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ABSTRACT

Jailbreak attacks against large language models (LLMs) aim to induce harmful
behaviors in LLMs through carefully crafted adversarial prompts. To mitigate
attacks, one way is to perform adversarial training (AT)-based alignment, i.e.,
training LLMs on some of the most adversarial prompts to help them learn how to
behave safely under attacks. During AT, the length of adversarial prompts plays a
critical role in the robustness of aligned LLMs. This paper focuses on adversarial
suffix jailbreak attacks and unveils that to defend against a jailbreak attack with
an adversarial suffix of length Θ(M), it is enough to align LLMs on prompts with
adversarial suffixes of length Θ(

√
M). Theoretically, we analyze the adversarial

in-context learning of linear transformers on linear regression tasks and prove a
robust generalization bound for trained transformers. The bound depends on the
term Θ(

√
Mtest/Mtrain), where Mtrain and Mtest are the number of adversarially

perturbed in-context samples during training and testing. Empirically, we conduct
AT on popular LLMs and evaluate their robustness against jailbreak attacks of
different adversarial suffix lengths. Results confirm a positive correlation between
the attack success rate and the ratio of the square root of the adversarial suffix
during jailbreaking to the length during AT. Our findings show that it is practical
to defend “long-length” jailbreak attacks via efficient “short-length” AT. The code
is available at https://github.com/fshp971/adv-icl.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023a; Liu et al., 2024a; Yang
et al., 2024a) have been widely integrated into various real-world applications, but their safety is
found to be vulnerable toward jailbreak attacks (Wei et al., 2023). With carefully crafted adversarial
prompts, one can “jailbreak” the safety mechanism of LLMs and induce arbitrary harmful behav-
iors (Zou et al., 2023; Chao et al., 2023; Liu et al., 2024c). Recent studies (Xhonneux et al., 2024;
Mazeika et al., 2024; Yu et al., 2024; Casper et al., 2024) have proposed performing safety align-
ment through adversarial training (AT) (Madry et al., 2018) to enhance LLMs’ robustness against
jailbreaking. A standard AT for LLMs would train them on harmful adversarial prompts synthesized
by strong jailbreak attacks to learn to refuse these harmful instructions (Mazeika et al., 2024).

In such AT, the length of synthesized adversarial prompts used for model training is critical to the
final jailbreak robustness of LLMs. Anil et al. (2024) and Xu et al. (2024) have shown that longer
adversarial prompts enjoy stronger jailbreaking abilities. Thus, it is reasonable to deduce that per-
forming AT with longer adversarial prompts can help LLMs achieve stronger robustness to defend
against “long-length” jailbreak attacks. However, synthesizing long-length adversarial prompts in
adversarial training is usually time-consuming since it requires solving discrete optimization prob-
lems in high-dimensional spaces. This may limit the application of AT in LLMs’ safety alignment
and further raises the following research question: How will the adversarial prompt length during
AT affect trained LLMs’ robustness against jailbreaking with different prompt lengths?

1

https://github.com/fshp971/adv-icl


Published at ICLR 2025 Workshop on Foundation Models in the Wild.

We study the raised question by analyzing suffix jailbreak attacks, where each jailbreak prompt
is formed by concatenating a harmful instruction with a synthesized adversarial suffix. Our main
finding is: To defend against a suffix jailbreak attack with suffix length of Θ(M), it is enough
to adversarially train LLMs on adversarial prompts with suffix length of Θ(

√
M). In other

words, we show that it is possible to defend long-length jailbreaking via efficient short-length AT.

Our finding is supported by theoretical and empirical evidence. Theoretically, we leverage the
in-context learning theory (Von Oswald et al., 2023; Zhang et al., 2024) to investigate how linear
transformers learn linear regression tasks from in-context task samples under AT. To better simulate
suffix jailbreak attacks in real-world LLMs, our analysis introduces a new in-context adversarial
attack. Concretely, for any in-context task sample, this attack will adversarially perturb the last
several in-context training points to maximize the squared prediction error that linear transformers
made on the in-context test point. Under our theoretical framework, we prove a robust generalization
bound for adversarially trained linear transformers. This bound has a positive correlation with the
term Θ(

√
Mtest/Mtrain), where Mtrain and Mtest are the number of perturbed in-context points in

training and testing in-context task samples, respectively.

Empirically, we conduct AT with GCG (Zou et al., 2023), one of the most effective jailbreak attacks,
under various adversarial suffix lengths on five popular real-world LLMs and evaluate their robust-
ness against jailbreak attacks with different adversarial suffix lengths. We use the jailbreak attack
success rate (ASR) to express the robust generalization error of trained LLMs and find that this ASR
has a clear positive correlation with the ratio of the square root of test-time adversarial suffix length
to the AT adversarial suffix length. Such a correlation empirically verifies our main finding. We
also find that AT with an adversarial suffix (token) length of 20 is already able to reduce the ASR of
jailbreaking with an adversarial suffix (token) length of up to 120 by at least 30% in all experiments.

2 RELATED WORKS

Jailbreak attacks. Jailbreaking (Wei et al., 2023) can be seen as adversarial attacks (Szegedy et al.,
2014; Goodfellow et al., 2015) toward LLMs, which aim to synthesize adversarial prompts to induce
targeted harmful behaviors from LLMs. Many efforts have been made on token-level jailbreak
attacks, i.e., searching adversarial prompts in the token space of LLMs, which can be achieved via
gradient-based optimization (Shin et al., 2020; Guo et al., 2021; Zou et al., 2023; Liao & Sun, 2024;
Schwinn et al., 2024), heuristic greedy search (Sadasivan et al., 2024; Hayase et al., 2024; Jin et al.,
2024), or fine-tuning prompt generators from pre-trained LLMs (Paulus et al., 2024). Other attempts
include word-level adversarial prompt searching (Liu et al., 2024c) or directly prompting LLMs to
generate adversarial prompts (Chao et al., 2023; Liu et al., 2024b). Our work focuses on token-level
jailbreaking since it make it easier for us to control the adversarial prompt length for our analysis.
More recent studies have found that increasing the length of adversarial prompts by adding more
harmful demonstrations (Anil et al., 2024) or synthesizing longer adversarial suffixes (Xu et al.,
2024) can make jailbreaking more effective. These works motivate us to investigate the problem of
defending against “long-length” jailbreak attacks.

Adversarial training on LLMs. To defend against jailbreak attacks, a large body of studies fo-
cus on aligning LLMs to refuse responding jailbreak prompts (Ouyang et al., 2022; Rafailov et al.,
2023; Qi et al., 2024a;b; Chen et al., 2024a). More recent works have started to adopt adversarial
training (AT) (Madry et al., 2018) to align LLMs. Mazeika et al. (2024) trained LLMs on (discrete)
adversarial prompts synthesized by GCG attack (Zou et al., 2023), in which they cached the inter-
mediate synthesized results to reduce the heavy cost of searching adversarial prompts from scratch.
Meanwhile, various studies (Xhonneux et al., 2024; Casper et al., 2024; Sheshadri et al., 2024; Yu
et al., 2024) conduct AT with adversarial examples found in the continuous embedding space rather
than the discrete text space since searching in the continuous embedding space is more computa-
tionally efficient. Nevertheless, as a preliminary study of the length of adversarial prompts during
AT, our work only analyzes AT with discrete adversarial prompts.

In-context learning theory (ICL). Transformer-based large models like LLMs are strong in per-
forming ICL: Given a series of inputs (also known as “prompt”) specified by a certain task, LLMs
can make predictions well for this certain task without adjusting model parameters. Current the-
ories in understanding ICL can be divided into two categories. The first aims to understand ICL
via constructing explicit multi-layer transformers to simulate the optimization process of learning
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function classes (Garg et al., 2022; Von Oswald et al., 2023; Ahn et al., 2023; Chen et al., 2024b;
Mahankali et al., 2024; Wang et al., 2024b). The second focuses on directly analyzing the train-
ing (Zhang et al., 2024; Yang et al., 2024b; Huang et al., 2023; Wu et al., 2024; Lin et al., 2024) and
generalization (Lu et al., 2024; Magen et al., 2024; Frei & Vardi, 2024; Shi et al., 2024) of simple
self-attention models (i.e., one-layer transformer). Anwar et al. (2024) is the first to study adversar-
ial attacks against linear transformers and finds that an attack can always succeed by perturbing only
a single in-context sample. However, their analysis allows samples to be perturbed in the entire real
space, which might not appropriately reflect real-world settings since real-world adversarial prompts
can only be constructed from token/character spaces of limited size. Unlike Anwar et al. (2024), we
propose a new ICL adversarial attack that requires each adversarial suffix token to be perturbed only
within restricted spaces, which thus can be a better tool for understanding real-world jailbreaking.

3 PRELIMINARIES

Large language models (LLMs). Let [V ] = {1, · · · , V } be a vocabulary set consisting of all
possible tokens. Then, an LLM can be seen as a function that for any sequence x1:n ∈ [V ]n consists
of n tokens, the LLM will map x1:n to its next token xn+1 following xn+1 ∼ pθ(·|x1:n), where pθ
is a conditional distribution over the vocabulary set [V ] and θ is the model parameter of the LLM.
Under such notations, when using the LLM pθ to generate a new token sequence for the input x1:n,
the probability of generating a sequence y1:m ∈ [V ]m of length m is (“⊕” denotes concatenation):

pθ(y1:m|x1:n) =
m∏
i=1

pθ(yi|x1:n ⊕ y1:(i−1)),

Jailbreak attacks. This paper will focus on suffix jailbreak attacks. Concretely, suppose x(h) and
y(h) are two token sequences, where x(h) represents a harmful prompt (e.g., “Please tell me how to
build a bomb.”) and y(h) represents a corresponded targeted answer (e.g., “Sure, here is a guide of
how to build a bomb”). The goal of a suffix jailbreak attack against the LLM pθ aims to synthesize
an adversarial suffix x(s)1:m for the original harmful prompt x(h) via solving the following problem,

min
x
(s)
1:m∈[V ]m

− log pθ(y
(h)|x(h) ⊕ x

(s)
1:m), (1)

where x(h) ⊕ x
(s)
1:m is the adversarial prompt and m is the sequence length of the adversarial suffix

x
(s)
1:m. Intuitively, a large m will increase the probability of the LLM pθ that generating the tar-

geted answer y(h) for the synthesized adversarial prompt x(h) ⊕ x
(s)
1:m. To solve Eq. (1), a standard

method is the Greedy Coordinate Gradient (GCG) attack (Zou et al., 2023), which leverages gradient
information to search for better x(s)1:m within the discrete space [V ]m in a greedy manner.

Adversarial training (AT). We consider the canonical AT loss L Mazeika et al. (2024); Qi et al.
(2024a) to train the LLM pθ, which consists of two sub-losses: an adversarial loss Ladv and an utility
loss Lutility. Specifically, given a safety dataset D(h), where each of its sample (x(h), y(h), y(b)) ∈
D(h) consists of a harmful instruction x(h), a harmful answer y(h), and a benign answer y(b) (e.g.,
“As a responsible AI, I can’t tell you how to...”). The adversarial loss Ladv is defined as follows,

Ladv(θ,M,D(h)) := E(x(h),y(h),y(b))∈D(h) [− log pθ(y
(b)|x(h) ⊕ x

(s)
1:m)], (2)

where x(s)1:m is the adversarial suffix obtained from Eq. (1) and m is the adversarial suffix length.
Note that the probability terms in Eqs. (1) and (2) look similar to each other. The difference is
that the term in Eq. (1) denotes the probability that pθ generates the harmful answer y(h) for the
adversarial prompt, while that in Eq. (2) denotes the probability of generating the benign answer
y(b). Besides, let D(u) be a utility dataset where each of its sample (x(u), y(u)) ∈ D(u) consists of
a pair of normal instruction and answer. Then, the utility loss Lutility is given by

Lutility(θ,D
(u)) := E(x(u),y(u))∈D(u) [− log pθ(y

(u)|x(u))].
Thus, the overall AT problem for improving the jailbreak robustness of the LLM pθ is given as

min
θ

{αLadv(θ,M,D(h)) + (1− α)Lutility(θ,D
(u))}, (3)
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where α ∈ [0, 1] is a factor that balances between the adversarial and utility sub-losses. The idea
behind such a loss design is that: (1) help LLM learn to respond harmlessly even when strong
jailbreak prompts present (achieved via Ladv), (2) retain the utility of LLM gained from pre-training
(achieved via Lutility). Intuitively, a larger adversarial suffix length m during AT will help the LLM
gain robustness against jailbreak attacks with longer adversarial suffixes.

4 THEORETICAL EVIDENCE

This section establishes the theoretical foundation of how “short-length” AT can defend against
“long-length” jailbreaking. Our analysis is based on the in-context learning (ICL) theory (Zhang
et al., 2024; Shi et al., 2024; Anwar et al., 2024), and we will bridge the ICL theory and the LLM
AT problem defined in Eq. (3) later. Here we first introduce the necessary notations to describe the
problem. To avoid confusion, we note that all notations in this section will only be used within
this section and have no relevance to those in other sections (e.g., Section 3).

In-context learning (ICL). In the ICL theory, a prompt with length N related to a specific task
indexed by τ is defined as (xτ,1, yτ,1, · · · , xτ,N , yτ,N , xτ,q), where xτ,i ∈ Rd is the i-th in-context
training sample (demonstration), yτ,i ∈ R is the label for the i-th training sample, and xτ,q ∈ Rd is
the in-context query sample. The embedding matrix Eτ for this task-related prompt is defined as

Eτ :=

(
xτ,1 · · · xτ,N xτ,q
yτ,1 · · · yτ,N 0

)
∈ R(d+1)×(N+1). (4)

Given a prompt embedding matrix Eτ of task τ , the goal of an ICL model is to make a prediction
based on Eτ for the query sample xτ,q . Such an ICL model design aims to model the ability of
real-world LLMs in making decisions based on prompting without updating model parameters.

Linear self-attention (LSA) models. LSA models are a kind of linear transformer that has been
widely adopted in existing theoretical ICL studies. Ahn et al. (2024) empirically show that LSA
models share similar properties with non-linear ones and thus are useful for understanding trans-
formers. We follow Zhang et al. (2024) to study the following single-layer LSA model,

fLSA,θ(Eτ ) :=

[
Eτ +WV Eτ ·

E⊤
τ W

KQEτ
N

]
∈ R(d+1)×(N+1)

where θ := (WV ,WKQ) is the model parameter, WV ∈ R(d+1)×(d+1) is the value weight matrix,
WKQ ∈ R(d+1)×(d+1) is a matrix merged from the key and query weight matrices of attention
models, Eτ ∈ R(d+1)×(N+1) is the prompt embedding matrix, and N is the prompt length. The
model prediction ŷq,θ for the query xτ,q is given by the right-bottom entry of the LSA model output,
i.e., ŷq,θ(Eτ ) := fLSA,θ(Eτ )(d+1),(N+1). We further follow Zhang et al. (2024) to denote that

WV =

(
WV

11 wV12
(wV21)

⊤ wV22

)
∈ R(d+1)×(d+1), WKQ =

(
WKQ

11 wKQ12

(wKQ21 )⊤ wKQ22

)
∈ R(d+1)×(d+1),

where WV
11,W

KQ
11 ∈ Rd×d, wV12, w

V
21, w

KQ
12 , wKQ21 ∈ Rd×1 and wV22,W

KQ
22 ∈ R. Under this setting,

the model prediction ŷq,θ can be further simplified as follows,

ŷq,θ(Eτ ) := fLSA,θ(Eτ )(d+1)×(N+1) =
(
(wV21)

⊤ wV22
)
· EτE

⊤
τ

N
·
(
WKQ

11

(wKQ21 )⊤

)
· xτ,q. (5)

Other notations. We denote [n] := {1, · · · , n} for any n ∈ N+. ∥A∥2,∞ := max1≤i≤m ∥Ai,:∥2
for any A ∈ Rn×m. Tr(A) :=

∑n
i=1Ai,i is the trace function for any matrix A ∈ Rn×n. Finally,

we use standard big O notations O(·) and Θ(·).

4.1 PROBLEM DEFINITION FOR ADVERSARIAL ICL

We now define the AT problem in ICL with the aforementioned notations. We focus on the linear
regression task and introduce a novel in-context “suffix” adversarial attack, where in-context adver-
sarial points are appended to the end of in-context prompts, to analyze the LSA model robustness.
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Data distribution and statistical model. For any task indexed by τ , we assume there is a task
weight wτ ∈ Rd drawn from wτ ∼ N (0, Id). Besides, for any in-context training point xτ,i (1 ≤
i ≤ N) and the query point xτ,q (see Eq. (4)), we assume that they are drawn from xτ,i, xτ,q ∼
N (0,Λ), where Λ ∈ Rd×d is a positive-definite covariance matrix. Moreover, the ground-truth
labels of training points xτ,i and the query point xτ,q are given by yτ,i = w⊤

τ xτ,i and yτ,q = w⊤
τ xτ,q .

ICL (suffix) adversarial attack. Our novel adversarial attack against ICL models is launched via
concatenating (clean) prompt embedding matrices with adversarial embedding suffixes. Specifically,
for a prompt embedding matrix Eτ of length N (see Eq. (4)), we will form its corresponding adver-
sarial prompt embedding matrixEadv

τ,M ∈ R(d+1)×(N+M+1) by concatenatingEτ with an adversarial
suffix of length M as follows,

Eadv
τ,M :=


(
Xτ

Yτ

)
︸ ︷︷ ︸

Training Data
of Length N

(
Xsfx
τ +∆τ

Y sfx
τ

)
︸ ︷︷ ︸

Adversarial Suffix
of Length M

(
xτ,q
0

)
︸ ︷︷ ︸

Query Sample
From Eτ

 , (6)

where Xτ := (xτ,1 · · · xτ,N ) ∈ Rd×N and Yτ := (yτ,1 · · · yτ,N ) ∈ R1×N denote the N original
training samples and labels, Xsfx

τ := (xsfx
τ,1 · · · xsfx

τ,M ) ∈ Rd×M and Y sfx
τ := (ysfx

τ,1 · · · ysfx
τ,M ) ∈

Rd×M denotes the new M clean suffix samples and labels, and ∆sfx
τ := (δτ,1 · · · δτ,M ) ∈ Rd×M

denotes the M adversarial perturbations for the suffix.

The clean suffix samples Xsfx
τ and labels Y sfx

τ here follow the same distribution as those in-context
data in the embedding Eτ , i.e., xsfx

τ,i ∼ N (0,Λ) and ysfx
τ,i = w⊤

τ x
sfx
τ,i hold for every i ∈ [M ]. For

the adversarial perturbation matrix ∆τ , we require each perturbation δτ,i is restricted within a ball-
sphere as ∥δτ,i∥2 ≤ ϵ, where ϵ > 0 is the perturbation radius. This aims to simulate that in jailbreak
attacks, and each adversarial token is searched within a token vocabulary set of limited size.

The goal of the ICL adversarial attack is to add an optimal suffix adversarial perturbation matrix ∆τ

to maximize the difference between the model prediction ŷq(Eadv
τ ) based on the adversarial prompt

embedding matrix Eadv
τ and the ground-truth query label yτ,q . We adopt the squared loss to measure

such a prediction difference, which thus leads to the robust generalization error for fLSA
θ as follows,

Radv(θ,M) = Eτ max
∥∆⊤

τ ∥2,∞≤ϵ

1

2
|ŷq,θ(Eadv

τ,M )− yτ,q|2, (7)

where M is the length of the adversarial suffix and the expectation Eτ [·] is calculated over the ran-
domness of wτ , Xτ , Xsfx

τ , and xτ,q . Since this paper aims to understand how the adversarial prompt
length in AT would affect the robustness of LLM, Eq. (7) will only focus on how the adversarial
suffix length M in ICL adversarial attacks would affect the robust generalization error Radv(θ,M).

Adversarial in-context learning. Following previous studies on minimax AT (Madry et al., 2018;
Javanmard et al., 2020; Ribeiro et al., 2023; Fu & Wang, 2024; Wang et al., 2024a), here we also
adopt a minimax AT loss to train the LSA model. We first use the introduced ICL adversarial attack
to synthesize adversarial prompts and then update the LSA model based on these adversarial prompts
to help the model gain robustness against adversarial prompts. We further assume that the adversarial
suffix length is fixed during AT, which thus leads to the following AT problem formalization,

min
θ

Ladv(θ) := min
θ

Radv(θ,Mtrain) = min
θ

{
Eτ max

∥∆⊤
τ ∥2,∞≤ϵ

1

2
|ŷq,θ(Eadv

τ,Mtrain
)− yτ,q|2

}
, (8)

where Ladv(θ) := Radv(θ,Mtrain) is the AT loss in ICL and Mtrain ∈ N+ is the fixed adversarial
suffix length during AT. We will perform AT with continuous gradient flow, and further following
Zhang et al. (2024) to make the following assumption on the LSA model parameter initialization.
Assumption 1 (c.f. Assumption 3.3 in Zhang et al. (2024)). Let σ > 0 be a parameter and Θ ∈
Rd×d be any matrix satisfying ∥ΘΘ⊤∥F = 1 and ΘΛ ̸= 0d×d. We assume that

WV (0) =

(
0d×d 0d×1

01×d σ

)
, WKQ(0) =

(
σΘΘ⊤ 0d×1

01×d 0

)
.

Recall in Eq. (5), wV12, wKQ12 , and wKQ22 do not contribute to the prediction function ŷq,θ(·). Thus,
Assumption 1 sets them to be zero at initialization. To ensure symmetric initialization, Assumption 1
further setswV21(0) andwKQ21 (0) to zero. These settings will simplify our AT analysis in next section.
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Bridging ICL AT and LLM AT. Finally, we explain the similarities between AT on ICL models and
LLMs to motivate why ICL AT (i.e., Eq. (8)) can be a good artifact to theoretically understand LLM
AT (i.e., Eq. (3)). We first compare the ICL suffix adversarial attack in Eq. (7) with the LLM suffix
jailbreak attack in Eq. (1). We find that their attack goals are similar since both attacks aim to make
targeted models behave wrongly via manipulating suffixes of input prompts. The only difference is
that jailbreak attacks aim to induce LLMs to generate specified harmful content while our ICL attack
aims to maximize linear regression prediction errors made by ICL models. Besides, unlike Anwar
et al. (2024), which performs ICL attacks by perturbing a single in-context sample in the entire real
space, our attack allows perturbing multiple in-context samples but only within restricted spaces,
thus better simulating how LLM jailbreak attacks allow adversarial token suffixes to be searched
only in the limited token vocabulary set.

We then compare the ICL AT problem in Eq. (8) with the LLM AT problem in Eq. (3). One can
find that the motivations behind the two AT problems are the same, which is to enhance models’
robustness by training them on adversarial prompts. However, we notice that the LLM AT problem
introduces an additional utility loss to maintain the performance of LLMs on benign data. This is
because in LLM jailbreak attacks, adversarial prompts would be crafted only from harmful prompts
but not benign ones. We argue that this discrepancy has little impact on our theoretical analysis,
as both our theory and experiments focus on studying how adversarially trained models can defend
against adversarial prompts rather than their performance on benign data.

4.2 TRAINING DYNAMICS OF ADVERSARIAL ICL

We now start to analyze the training dynamics of the minimax ICL AT problem formalized in Eq. (8).
The main technical challenge is that to solve the inner maximization problem in Eq. (8), one needs
to analyze the optimization of the adversarial perturbation matrix ∆τ . However, the matrix ∆τ

along with the clean data embedding Eτ and the clean adversarial suffix (Xsfx
τ , Y sfx

τ ) are entangled
together within the adversarial embedding matrix Eadv

τ,Mtrain
, which makes it very difficult to solve the

inner maximization problem and further analyze the ICL AT dynamics.

To tackle the challenge, we propose to instead study the dynamics of a closed-form upper bound of
the original AT loss Ladv(θ). Formally, we will analyze the following surrogate AT problem:

min
θ

L̃adv(θ) := min
θ

{ℓ1(θ) + ℓ2(θ) + ℓ3(θ) + ℓ4(θ)}, (9)

where L̃adv(θ) := (ℓ1(θ) + ℓ2(θ) + ℓ3(θ) + ℓ4(θ)) is the surrogate AT loss, and

ℓ1(θ) =
2

(N +Mtrain)2
Eτ
[
((wV21)

⊤ wV22)

(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)⊤(
WKQ

11

(wKQ21 )⊤

)
xτ,q − yτ,q

]2
,

ℓ2(θ) =
2ϵ4M2

train

(N +Mtrain)2
∥wV21∥22Eτ

[
∥WKQ

11 xτ,q∥22
]
,

ℓ3(θ) =
2ϵ2Mtrain

(N +Mtrain)2
Eτ
[
∥WKQ

11 xτ,q∥22 · ∥((wV21)⊤ wV22)

(
Xsfx
τ

Y sfx
τ

)
∥22
]
,

ℓ4(θ) =
2ϵ2Mtrain

(N +Mtrain)2
∥wV21∥22 · Eτ

[
∥
(
Xsfx
τ

Y sfx
τ

)⊤(
WKQ

11

(wKQ21 )⊤

)
xτ,q∥22

]
.

In the surrogate AT problem defined as Eq. (9), the surrogate AT loss function L̃adv(θ) is the closed-
form upper bound for the original AT loss function Ladv(θ) in Eq. (8). This is illustrated in the
following Proposition 1 (see Appendix A.2 for the proof):
Proposition 1. For the AT loss function Ladv(θ) defined in Eq. (8) and the surrogate AT loss function
L̃adv(θ) defined in Eq. (9), for any model parameter θ := (WV ,WKQ) of the LSA model fLSA,θ, we
uniformly have that: Ladv(θ) ≤ L̃adv(θ).

This result indicates that when we are training the LSA model via solving the surrogate AT problem
Eq. (9), we are also reducing the model training loss in the original AT problem Eq. (8). Thus,
solving the surrogate AT problem will also intuitively improve the robustness of the model.

Based on our previous analysis, we now turn to study the training dynamics of surrogate AT defined
in Eq. (9). To better describe our results, we define two functions Γ(·) : N → Rd×d and ψ(·) : N →
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R, both of which depend on the adversarial suffix length M , as follows,

Γ(M) :=
(N +M + 1

N +M
Λ +

Tr(Λ)

N +M
Id

)
∈ Rd×d, ψ(M) :=

M2Tr(Λ)

(N +M)2
∈ R, (10)

where N is the prompt length of the original embedding matrix Eτ (see Eq. (4)) and Λ is the
covariance matrix of in-context linear regression samples. The closed-form surrogate AT dynamics
of the LSA model fLSA,θ is then given in the following Theorem 1 (see Appendix A.3 for the proof).
Theorem 1 (Closed-form Surrogate AT Dynamics). Suppose Assumption 1 holds and fLSA,θ is
trained from the surrogate AT problem defined in Eq. (9) with continuous gradient flow. When the
σ in Assumption 1 satisfies σ <

√
2

d·∥(Γ(Mtrain)Λ+ϵ2ψ(Mtrain)Id)Λ−1∥2
, after training for infinite long

time, the model parameter θ will converge to θ∗(Mtrain) := (WV
∗ (Mtrain),W

KQ
∗ (Mtrain)), satisfying:

wKQ∗,12 = wKQ∗,21 = wV∗,12 = wV∗,21 = 0d×1, wKQ∗,22 = 0, WV
∗,11 = 0d×d, and

wV∗,22W
KQ
∗,11 =

(
Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id

)−1

Λ.

Remark 1. When the l2-norm adversarial perturbation radius ϵ is zero, the closed-form AT solution
θ∗ derived in Theorem 1 degenerates to that obtained without AT (see Theorem 4.1 in Zhang et al.
(2024)). Thus, a sufficient large adversarial perturbation ϵ is a key to helping the LSA model fLSA,θ
obtain significant adversarial robustness. This will be further justified in the next section.

4.3 ROBUST GENERALIZATION UPPER-BOUND

With the closed-form AT solution θ∗(Mtrain) in Theorem 1, we now analyze the robustness of the
trained LSA model. All proofs in this section are presented in Appendix A.4. We study how a LSA
model adversarially trained under a fixed adversarial suffix length Mtrain can defend against the ICL
adversarial attack with a different adversarial suffix length Mtest. That is, we aim to analyze the
magnitude of the robust generalization error Radv(θ∗(Mtrain),Mtest) for the converged robust model
parameter θ∗(Mtrain). We give an upper-bound for it in the following theorem.
Theorem 2 (Surrogate AT Robust Generalization Bound). Suppose all conditions in Theorem 1 hold
and θ∗(Mtrain) is the surrogate AT solution in Theorem 1. We have

Radv(θ∗(Mtrain),Mtest) ≤ 2Tr
[
Λ3
(
Γ(Mtest)Λ + ϵ2ψ(Mtest)Id

)(
Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id

)−2

+ Λ
]
,

where Mtrain is the adversarial suffix length in the ICL adversarial attack and functions Γ(·) and
ψ(·) are defined in Eq. (10).

We further adopt Assumption 2 to help us better understand our robust generalization bound.
Assumption 2. For adversarial suffix lengths during AT and testing, we assume that Mtrain,Mtest ≤
O(N), whereN is the original ICL prompt length. Besides, for the l2-norm adversarial perturbation
radius, we assume that ϵ = Θ(

√
d), where d is the ICL sample dimension.

In the above Assumption 2, the assumption made on adversarial suffix lengths means that they
should not be too long to make the model “forget” the original ICL prompt. Besides, the assumption
made on the perturbation radius ϵ ensures that it is large enough to simulate the large (but limited)
token vocabulary space of real-world LLMs to help model gain robustness.
Corollary 1. Suppose Assumption 2 and all conditions in Theorem 2 hold. Suppose ∥Λ∥2 ≤ O(1).
Then, we have the following robust generalization bound,

Radv(θ∗(Mtrain),Mtest) ≤ O(d) +O
(
d2/N

)
+O

(
N2 · (M2

test/M
4
train)

)
.

Corollary 1 is our main theoretical result, which show that for an adversarially trained LSA model,
its robust generalization bound depends on Θ(

√
Mtest/Mtrain), whereMtrain andMtest are the number

of adversarially perturbed in-context samples during training and testing. In other words, to defend
an ICL adversarial attack with an adversarial suffix length Θ(M), to maintain the order of the robust
generalization bound, one can perform surrogate AT with only an adversarial suffix length Θ(

√
M).

This finding is useful in practice, since one can thus leverage a “short-length” AT, which is efficient
in terms of both GPU memory and training time usage, to defend against “long-length” jailbreaking.
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Figure 1: Scatter plots of ASR to the ratio of the square root of the adversarial token suffix length in
jailbreak attacks to the adversarial token suffix length during AT (i.e.,

√
Mtest/Mtrain). For each pair

of base model and attack, 48 points are plotted. A high ASR indicates a weak jailbreak robustness.

5 EMPIRICAL EVIDENCE

In this section, we follow Eq. (3) to perform AT on LLMs and investigate the relationship between
adversarial suffix lengths during LLM AT and jailbreak attacks.

5.1 EXPERIMENTAL SETUP

Models. We adopt five pre-trained LLMs: Vicuna-7B-v1.5 (Zheng et al., 2023), Mistral-7B-Instruct-
v0.3 (Jiang et al., 2023), Llama-2-7B-Chat (Touvron et al., 2023b), Llama-3-8B-Instruct (Grattafiori
et al., 2024), and Qwen2.5-7B-Instruct (Yang et al., 2024a).

Datasets. For AT, we use the training set from Harmbench (Mazeika et al., 2024) as the safety
dataset and Alpaca (Taori et al., 2023) as the utility dataset. For the robustness evaluation, we
construct a test set of size 100 that consists of the first 50 samples from the test set of Harm-
bench (Mazeika et al., 2024) and the first 50 samples from AdvBench (Zou et al., 2023). For the
utility analysis, we use the benchmark data from AlpacaEval (Dubois et al., 2024).

Adversarial training. We leverage GCG (Zou et al., 2023), a token-level jailbreak attack, to
synthesize (suffix) jailbreak prompts, in which the adversarial suffix length is fixed to one of
{5, 10, 20, 30, 40, 50} during AT. To reduce computational complexity of tuning LLMs, LoRA (Hu
et al., 2022) is applied to all query and key projection matrices in attentions. In every AT experiment,
we follow Eq. (3) to perform AT with AdamW. See Appendix B.2 for detailed AT hyperparameters.

Jailbreak attacks. Two token-level jailbreak attacks are used to evaluate the robustness of trained
LLMs, which are GCG (Zou et al., 2023) and BEAST (Sadasivan et al., 2024). The token length of
the adversarial suffix is varied in {5, 10, 20, 40, 60, 80, 100, 120}. See Appendix B.3 for details.

Evaluations. We focus on evaluating the jailbreak robustness and the utility of trained LLMs. For
robustness evaluation, we report the Attack Success Rate (ASR) of jailbreak attacks. An LLM-
based judger from Mazeika et al. (2024) is used to determine whether a jailbreak attack succeeds or
not. Besides, for utility evaluation, we use AlpacaEval2 (Dubois et al., 2024) to report the Length-
controlled WinRate (LC-WinRate) of targeted models against a reference model Davinci003 eval-
uated under the Llama-3-70B model. An LC-WinRate of 50% means that the output qualities of the
two models are equal, while an LC-WinRate of 100% means that the targeted model is consistently
better than the reference Davinci003. Please refer to Appendix B.3 for more details.

5.2 RESULTS ANALYSIS

Table 1: PCCs and p-values calculated between ASR
and ratio

√
Mtest/Mtrain. A high PCC (within [−1, 1])

means a strong correlation between ASR and the ratio.

Model GCG Attack BEAST Attack

PCC (↑) p-value (↓) PCC (↑) p-value (↓)

Vicuna-7B 0.93 4.70 × 10−21 0.63 1.43 × 10−6

Mistral-7B 0.86 3.97 × 10−15 0.29 4.41 × 10−2

Llama-2-7B 0.88 9.04 × 10−17 0.68 1.32 × 10−7

Llama-3-8B 0.76 2.75 × 10−10 0.26 7.67 × 10−2

Qwen2.5-7B 0.87 1.06 × 10−15 0.58 1.03 × 10−5

Correlation between the jailbreak ro-
bustness and the ratio of the square root
of the jailbreak adversarial suffix length
to the adversarial suffix length in AT
(i.e.,

√
Mtest/Mtrain). We plot the ASR

of models trained and attacked with differ-
ent adversarial suffix lengths in Figure 1
(48 points for each pair of base model
and jailbreak attack). We also calculate
the Pearson correlation coefficient (PCC)
and corresponding p-value between the ra-
tio

√
Mtest/Mtrain and ASR in Table 1.
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Figure 2: Curves of the ASR versus the adversarial suffix token length during AT (i.e., Mtrain) under
jailbreak attacks with different adversarial suffix token lengths (i.e., Mtest). Mtrain = 0 means that
AT is not performed on the evaluated model. A high ASR indicates a weak jailbreak robustness.

When the jailbreak attack used during AT is the same as that used during robustness evaluation
(i.e., GCG), one can observe from Figure 1 that a clear positive correlation between the ratio√
Mtest/Mtrain and the ASR for all evaluated base models. Further, high PCCs (> 0.7) and low

p-values (< 0.05) in Table 1 also confirm that the observed correlation is statistically significant.

However, when the jailbreak attack in AT is different from that in robustness evaluation (i.e.,
BEAST), from Table 1, the correlation between the ratio

√
Mtest/Mtrain and the ASR can only be

observed from some of the base models (i.e., Vicuna-7B, Llama-2-7B, and Qwen2.5-7B) but not
others. This may be due to the fact that AT with only a single jailbreak attack may not help the
model generalize well to unseen attacks. Therefore, it might be necessary to adopt multiple attacks
when performing AT-based alignment on LLMs. Nevertheless, from Figure 1, we find that for those
models where the correlation between the ratio and ASR is not significant (i.e., Mistral-7B, and
Llama-3-8B), GCG-based AT can still suppress the ASR to no more than 50%. This indicates that
single-attack AT can still help models gain a certain degree of robustness against unseen attacks.
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Figure 3: Utility analysis based on LC-
WinRate. A high LC-WinRate indicates
strong model utility. An LC-WinRate of 50%
means that the evaluated model has the same
quality as the reference model Davinci003.

Relationship between adversarial suffix lengths
in AT (i.e., Mtrain) and jailbreaking (i.e., Mtest).
We plot curves of the model ASR versus the adver-
sarial suffix token length during AT in Figure 2, from
which we find that as the adversarial suffix token
length increases, AT can effectively reduce the ASR
of both GCG and BEAST attacks. Further, when the
AT adversarial suffix token length is set to 20, AT is
already able to reduce the ASR by at least 30% under
all settings. It is also worth noting that the adversar-
ial suffix length during AT is only up to 50, while
that during jailbreaking can vary from 5 to 120. All
these suggest the effectiveness of defending against
long-length jailbreaking with short-length AT.

Utility. We plot LC-WinRates of models trained
with different adversarial suffix token lengths and
the original pre-trained model (i.e., Mtrain = 0) in
Figure 3. We find that while AT reduces the utility of
models, they can still achieve WinRates close to or more than 50% against the reference Davinci003.
This means that these adversarially trained models achieve utility comparable to Davinci003.

6 CONCLUSION

We study the LLM AT problem and unveils that to defend against a suffix jailbreak attack with suffix
length of Θ(M), it is sufficient to perform AT on adversarial prompts with suffix length of Θ(

√
M).

The finding is supported by both theoretical and empirical evidence. Theoretically, we define a new
AT problem in the ICL theory and prove a robust generalization upper bound for adversarially trained
linear transformers. This bound has a positive correlation with Θ(

√
Mtest/Mtrain). Empirically, we

conduct AT on real-world LLMs and confirm a clear positive correlation between jailbreak ASR and
ratio

√
Mtest/Mtrain. Our results show that it is possible to conduct efficient “short-length” AT, which

requires less GPU memory and training time, against strong “long-length” jailbreak attacks.
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A PROOFS

This section collects all the proofs in this paper.

A.1 TECHNICAL LEMMAS

This section presents several technical lemmas that will be used in our proofs.
Lemma A.1 (c.f. Lemma D.2 in Zhang et al. (2024)). If x ∈ Rd×1 is Gaussian random vector of d
dimension, mean zero and covariance matrix Λ, and A ∈ Rd×d is a fixed matrix. Then

E[xx⊤Axx⊤] = Λ(A+A⊤)Λ + Tr(AΛ)Λ.

Lemma A.2. If x ∈ Rd×1 is Gaussian random vector of d dimension, mean zero and covariance
matrix Λ, and A ∈ Rd×d is a fixed matrix. Then

E[x⊤Ax] = Tr(AΛ).

Proof. Since

E[x⊤Ax] = E
[∑
i,j

xiAi,jxj

]
=
∑
i,j

Ai,j · E[xixj ] =
∑
i,j

Ai,j · Λi,j =
d∑
i=1

(AΛ⊤)i,i = Tr(AΛ),

which completes the proof.

Lemma A.3. For any matrices A ∈ Rn×m and B ∈ Rm×n, we have

Tr(AB) = Tr(BA).

Proof. Since

Tr(AB) =

n∑
i=1

(AB)i,i =

n∑
i=1

m∑
j=1

Ai,jBj,i =

m∑
j=1

n∑
i=1

Bj,iAi,j =

m∑
j=1

(BA)j,j = Tr(BA),

which completes the proof.

Lemma A.4 (From Lemma D.1 in Zhang et al. (2024); Also in Petersen et al. (2008)). Let X ∈
Rn×m be a variable matrix and A ∈ Ra×n and B ∈ Rn×m be two fixed matrices. Then, we have

∂XTr(BX⊤) = B ∈ Rn×m,
∂XTr(AXBX⊤) = (AXB +A⊤XB⊤) ∈ Rn×m.

Lemma A.5 (Von Neumann’s Trace Inequality; Also in Lemma D.3 in Zhang et al. (2024)). Let
A ∈ Rn×m and B ∈ Rm×n be two matrices. Suppose σ1(A) ≤ · · · ≤ σmin{n,m}(A) and σ1(B) ≤
· · · ≤ σmin{n,m}(B) are all the (ordered) singular values of A and B, respectively. We have

Tr(AB) ≤
min{n,m}∑

i=1

σi(A)σi(B) ≤
min{n,m}∑

i=1

∥A∥2 · ∥B∥2 = min{n,m} · ∥A∥2 · ∥B∥2.

A.2 PROOF OF PROPOSITION 1

This section presents the proof of Proposition 1.

Proof of Proposition 1. For the AT loss L(θ) defined in Eq. (8), we have that

Ladv(θ) :=Radv(θ,Mtrain) = Eτ max
∥∆⊤

τ ∥2,∞≤ϵ
|ŷq,θ(Eadv

τ,Mtrain
)− yτ,q|2

=Eτ

 max
∥∆⊤

τ ∥2,∞≤ϵ

1

2

∣∣∣∣∣((wV21)⊤ wV22
)
·
Eadv
τ,Mtrain

Eadv,⊤
τ,Mtrain

N +Mtrain
·
(
WKQ

11

(wKQ21 )⊤

)
· xτ,q − yτ,q

∣∣∣∣∣
2
 .

(A.1)
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Then, the term Eadv
τ,Mtrain

Eadv,⊤
τ,Mtrain

can be decomposed as follows,

Eadv
τ,Mtrain

Eadv,⊤
τ,Mtrain

=

((
Xτ

Yτ

) (
Xsfx
τ +∆τ

Y sfx
τ

) (
xτ,q
0

))
·
((

Xτ

Yτ

) (
Xsfx
τ +∆τ

Y sfx
τ

) (
xτ,q
0

))⊤

=

(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)⊤

+

(
0d×N ∆τ 0d×1

01×N 01×Mtrain 0

)(
0d×N ∆τ 0d×1

01×N 01×Mtrain 0

)⊤

+

(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)(
0d×N ∆τ 0d×1

01×N 01×Mtrain 0

)⊤

+

(
0d×N ∆τ 0d×1

01×N 01×Mtrain 0

)(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)⊤

=

(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)⊤

+

(
∆τ

01×Mtrain

)(
∆τ

01×Mtrain

)⊤

+

(
Xsfx
τ

Y sfx
τ

)(
∆τ

01×Mtrain

)⊤

+

(
∆τ

01×Mtrain

)(
Xsfx
τ

Y sfx
τ

)⊤

,

which further means that

(
(wV21)

⊤ wV22
)
·
Eadv
τ,Mtrain

Eadv,⊤
τ,Mtrain

N +Mtrain
·
(
WKQ

11

(wKQ21 )⊤

)
· xτ,q

=
(
(wV21)

⊤ wV22
)
·

(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)⊤

N +Mtrain
·
(
WKQ

11

(wKQ21 )⊤

)
· xτ,q + (wV21)

⊤ · ∆τ∆
⊤
τ

N +Mtrain
·WKQ

11 xτ,q

+
(
(wV21)

⊤ wV22
)
·

(
Xsfx
τ

Y sfx
τ

)
∆⊤
τ

N +Mtrain
·WKQ

11 xτ,q + (wV21)
⊤ ·

∆τ

(
Xsfx
τ

Y sfx
τ

)⊤

N +Mtrain
·
(
WKQ

11

(wKQ21 )⊤

)
xτ,q.

(A.2)

Inserting Eq. (A.2) into Eq. (A.1) and applying the inequality that |a+ b|2 ≤ 2 · (a2 + b2), Ladv(θ)
can thus be bounded as

Ladv(θ) ≤ 2 · Eτ
[(
(wV21)

⊤ wV22
)
·

(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)⊤

N +Mtrain
·
(
WKQ

11

(wKQ21 )⊤

)
· xτ,q − yτ,q

]2
+ 2 · Eτ max

∥∆⊤
τ ∥2,∞≤ϵ

[
(wV21)

⊤ · ∆τ∆
⊤
τ

N +Mtrain
·WKQ

11 xτ,q

]2
︸ ︷︷ ︸

:=A1(θ)

+ 2 · Eτ max
∥∆⊤

τ ∥2,∞≤ϵ

[(
(wV21)

⊤ wV22
)
·

(
Xsfx
τ

Y sfx
τ

)
∆⊤
τ

N +Mtrain
·WKQ

11 xτ,q

]2
︸ ︷︷ ︸

:=A2(θ)

+ 2 · Eτ max
∥∆⊤

τ ∥2,∞≤ϵ

[
(wV21)

⊤ ·
∆τ

(
Xsfx
τ

Y sfx
τ

)⊤

N +Mtrain
·
(
WKQ

11

(wKQ21 )⊤

)
xτ,q

]2
︸ ︷︷ ︸

:=A3(θ)

. (A.3)
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We then bound terms A1(θ), A2(θ), and A3(θ) in Eq. (A.3) seprately. For the term A1(θ) in
Eq. (A.3), we have

A1(θ) :=
2

(N +Mtrain)2
· Eτ max

∥∆⊤
τ ∥2,∞≤ϵ

[
(wV21)

⊤ ·
Mtrain∑
i=1

δτ,iδ
⊤
τ,i ·W

KQ
11 xτ,q

]2
≤ 2

(N +Mtrain)2
· Eτ max

∥∆⊤
τ ∥2,∞≤ϵ

[Mtrain∑
i=1

[(wV21)
⊤δτ,i]

2 ·
Mtrain∑
i=1

[δ⊤τ,iW
KQ
11 xτ,q]

2

︸ ︷︷ ︸
by Cauchy-Schwarz Inequality

]

≤ 2

(N +Mtrain)2
· Eτ

[Mtrain∑
i=1

max
∥δτ,i∥2≤ϵ

[(wV21)
⊤δτ,i]

2 ·
Mtrain∑
i=1

max
∥δτ,i∥2≤ϵ

[δ⊤i W
KQ
11 xτ,q]

2
]

=
2

(N +Mtrain)2
· Eτ

[Mtrain∑
i=1

[∥wV21∥2 · ϵ]2 ·
Mtrain∑
i=1

[∥WKQ
11 xτ,q∥2 · ϵ]2

]
=

2ϵ4M2
train

(N +Mtrain)2
· ∥wV21∥22 · Eτ∥W

KQ
11 xτ,q∥22. (A.4)

For the term A2(θ) in Eq. (A.3), we have

A2(θ) :=
2

(N +Mtrain)2
· Eτ max

∥∆⊤
τ ∥2,∞≤ϵ

[(
(wV21)

⊤ wV22
)
·
Mtrain∑
i=1

(
xsfx
τ,i

ysfx
τ,i

)
δ⊤τ,i ·W

KQ
11 xτ,q

]2
≤ 2

(N +Mtrain)2
· Eτ max

∥∆⊤
τ ∥2,∞≤ϵ

[Mtrain∑
i=1

[(
(wV21)

⊤ wV22
)(xsfx

τ,i

ysfx
τ,i

)]2
·
Mtrain∑
i=1

[δ⊤τ,iW
KQ
11 xτ,q]

2

︸ ︷︷ ︸
by Cauchy-Schwarz Inequality

]

=
2

(N +Mtrain)2
·
Mtrain∑
i=1

Eτ
[(
(wV21)

⊤ wV22
)(xsfx

τ,i

ysfx
τ,i

)]2
·
Mtrain∑
i=1

Eτ
[

max
∥δτ,i∥2≤ϵ

[δ⊤τ,iW
KQ
11 xτ,q]

2
]

=
2

(N +Mtrain)2
·
Mtrain∑
i=1

Eτ
[(
(wV21)

⊤ wV22
)(xsfx

τ,i

ysfx
τ,i

)]2
·
Mtrain∑
i=1

Eτ [∥WKQ
11 xτ,q∥2 · ϵ]2

=
2ϵ2Mtrain

(N +Mtrain)2
· Eτ∥WKQ

11 xτ,q∥22 ·
Mtrain∑
i=1

Eτ
[(
(wV21)

⊤ wV22
)(xsfx

τ,i

ysfx
τ,i

)]2
. (A.5)

For the term A3(θ) in Eq. (A.3), we have

A3(θ) :=
2

(N +Mtrain)2
· Eτ max

∥∆⊤
τ ∥2,∞≤ϵ

[
(wV21)

⊤ ·
Mtrain∑
i=1

δτ,i

(
xsfx
τ,i

ysfx
τ,i

)⊤

·
(
WKQ

11

(wKQ21 )⊤

)
xτ,q

]2
≤ 2

(N +Mtrain)2
· Eτ max

∥∆⊤
τ ∥2,∞≤ϵ

[Mtrain∑
i=1

[(wV21)
⊤δτ,i]

2 ·
Mtrain∑
i=1

[(xsfx
τ,i

ysfx
τ,i

)⊤(
WKQ

11

(wKQ21 )⊤

)
xτ,q

]2
︸ ︷︷ ︸

by Cauchy-Schwarz Inequality

]

=
2

(N +Mtrain)2
· Eτ

[Mtrain∑
i=1

max
∥δτ,i∥2≤ϵ

[(wV21)
⊤δτ,i]

2 ·
Mtrain∑
i=1

[(xsfx
τ,i

ysfx
τ,i

)⊤(
WKQ

11

(wKQ21 )⊤

)
xτ,q

]2]
=

2

(N +Mtrain)2
· Eτ

[Mtrain∑
i=1

[∥wV21∥2 · ϵ]2 ·
Mtrain∑
i=1

[(xsfx
τ,i

ysfx
τ,i

)⊤(
WKQ

11

(wKQ21 )⊤

)
xτ,q

]2]
=

2ϵ2Mtrain

(N +Mtrain)2
· ∥wV21∥22 ·

Mtrain∑
i=1

Eτ
[(xsfx

τ,i

ysfx
τ,i

)⊤(
WKQ

11

(wKQ21 )⊤

)
xτ,q

]2
. (A.6)
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As a result, by inserting Eqs. (A.4), (A.5), and (A.6) into Eq. (A.3), we finally have that

Ladv(θ) ≤ 2 · Eτ
[(
(wV21)

⊤ wV22
)
·

(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)⊤

N +Mtrain
·
(
WKQ

11

(wKQ21 )⊤

)
· xτ,q − yτ,q

]2
+

2ϵ4M2
train

(N +Mtrain)2
· ∥wV21∥22 · Eτ∥W

KQ
11 xτ,q∥22

+
2ϵ2Mtrain

(N +Mtrain)2
· Eτ∥WKQ

11 xτ,q∥22 ·
Mtrain∑
i=1

Eτ
[(
(wV21)

⊤ wV22
)(xsfx

τ,i

ysfx
τ,i

)]2
+

2ϵ2Mtrain

(N +Mtrain)2
· ∥wV21∥22 ·

Mtrain∑
i=1

Eτ
[(xsfx

τ,i

ysfx
τ,i

)⊤(
WKQ

11

(wKQ21 )⊤

)
xτ,q

]2
. (A.7)

The right-hand-side of Eq. (A.7) is exactly the surrogate AT loss L̃adv(θ) in Eq. (9), which thus
completes the proof.

A.3 PROOF OF THEOREM 1

This section presents the proof of Theorem 1, which is inspired by that in Zhang et al. (2024).
Specifically:

1. we first prove that terms wV21 and wKQ21 stay zero during the surrogate AT (Lemma A.6) via
continuous gradient-flow, which thus can simplify the surrogate AT loss L̃adv(θ) defined in
Eq. (9) (Lemma A.7).

2. We then calculate a closed-form solution θ∗ for the surrogate AT problem based on the
simplified L̃adv(θ) (Lemma A.8), which is exactly the solution given in Theorem 1.

3. Finally, we prove that under the continuous gradient flow, the LSA model starts from the
initial point defined in Assumption 1 can indeed converge to the closed-form solution θ∗
(Lemma A.12), which thus completes the proof of Theorem 1.

We now start to prove the following Lemma A.6.

Lemma A.6. Suppose Assumption 1 holds and the LSA model fLSA,θ is trained via minimizing
surrogate AT loss L̃adv(θ) in Eq. (9) with continuous gradient flow. Then, for any continuous training
time t ≥ 0, we uniformly have that wV21(t) = wKQ21 (t) = 0d×1.

Proof. When the LSA model fLSA,θ is trained with continuous gradient-flow, the updates of wV21
and wKQ21 with respect to the continuous training time t ≥ 0 are given by

∂tw
V
21(t) := −∂wV

21
L̃adv(θ),

∂tw
KQ
21 (t) := −∂wKQ

21
L̃adv(θ).

Meanwhile, since Assumption 1 assumes that wV21(0) = WKQ
21 (0) = 0d×1, therefore, to com-

plete the proof, we only need to show that ∂twV21(t) = ∂tW
KQ
21 (t) = 01×d as long as wV21(t) =

WKQ
21 (t) = 0d×1 for any t ≥ 0. In other words, below we need to show that wV21 = WKQ

21 = 0d×1

indicates ∂wV
21
L̃adv(θ) = ∂wKQ

21
L̃adv(θ) = 01×d.

Toward this end, we adopt the notation in Eq. (9) to decompose the surrogate AT loss L̃(θ) as
follows,

L̃adv(θ) := [ℓ1(θ) + ℓ2(θ) + ℓ3(θ) + ℓ4(θ)],
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where

ℓ1(θ) = 2Eτ
[
((wV21)

⊤ wV22)

(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)⊤

N +Mtrain

(
WKQ

11

(wKQ21 )⊤

)
xτ,q − yτ,q

]2
,

(A.8)

ℓ2(θ) =
2ϵ4M2

train

(N +Mtrain)2
∥wV21∥22Eτ

[
∥WKQ

11 xτ,q∥22
]
, (A.9)

ℓ3(θ) =
2ϵ2Mtrain

(N +Mtrain)2
Eτ
[
∥WKQ

11 xτ,q∥22 · ∥((wV21)⊤ wV22)

(
Xsfx
τ

Y sfx
τ

)
∥22
]
, (A.10)

ℓ4(θ) =
2ϵ2Mtrain

(N +Mtrain)2
∥wV21∥22 · Eτ

[
∥
(
Xsfx
τ

Y sfx
τ

)⊤(
WKQ

11

(wKQ21 )⊤

)
xτ,q∥22

]
. (A.11)

In the remaining of this proof, we will show that when wV21 = wKQ21 = 0d×1 holds, one has:
(1) ∂WV

21
ℓ1(θ) = ∂WKQ

21
ℓ1(θ) = 01×d, (2) ∂WV

21
ℓ2(θ) = ∂WKQ

21
ℓ2(θ) = 01×d, (3) ∂WV

21
ℓ3(θ) =

∂WKQ
21

ℓ3(θ) = 01×d, and (4) ∂WV
21
ℓ4(θ) = ∂WKQ

21
ℓ4(θ) = 01×d, which thus automatically indicates

that ∂WV
21
L̃adv(θ) = ∂WKQ

21
L̃adv(θ) = 01×d.

Step 1: Show that wV21 = wKQ21 = 0d×1 indicates ∂WV
21
ℓ1(θ) = ∂WKQ

21
ℓ1(θ) = 01×d. Such a

claim can be directly obtained from the proofs in Zhang et al. (2024). Specifically, when setting the
(original) ICL prompt length from N to (N +Mtrain), the ICL training loss L in Zhang et al. (2024)
is equivalent to our ℓ1(θ) defined in Eq. (A.8). Therefore, one can then follow the same procedures
as those in the proof of Lemma 5.2 in Zhang et al. (2024) to show that the continuous gradient flows
of WV

21 and WKQ
21 are zero when Assumption 1 holds. Please refer accordingly for details.

Step 2: Show that wV21 = wKQ21 = 0d×1 indicates ∂wV
21
ℓ2(θ) = ∂wKQ

21
ℓ2(θ) = 01×d. Since the term

wKQ21 does not exist in the expression of ℓ2(θ) in Eq. (A.9), we directly have that ∂wKQ
21
ℓ2(θ) = 01×d.

Besides, for the derivative ∂wV
21
ℓ2(θ), based on Eq. (A.9) we further have that

∂wV
21
ℓ2(θ)

∣∣∣
wV

21=0d×1

= ∂wV
21

[ 2ϵ4M2
train

(N +Mtrain)2
· ∥wV21∥22 · Eτ∥W

KQ
11 xτ,q∥22

]∣∣∣∣
wV

21=0d×1

=
[ 4ϵ4M2

train

(N +Mtrain)2
· Eτ∥WKQ

11 xτ,q∥22 · (wV21)⊤
]∣∣∣∣
wV

21=0d×1

=
4ϵ4M2

train

(N +Mtrain)2
· Eτ∥WKQ

11 xτ,q∥22 · 0⊤d×1 = 01×d,

which justifies our claim in Step 2.

Step 3: Show that wV21 = wKQ21 = 0d×1 indicates ∂wV
21
ℓ3(θ) = ∂wKQ

21
ℓ3(θ) = 01×d. We first

rewrite ℓ3(θ) that defined in Eq. (A.10) as follows,

ℓ3(θ) =
2ϵ2Mtrain

(N +Mtrain)2
Eτ
[
∥WKQ

11 xτ,q∥22 · ∥((wV21)⊤ wV22)

(
Xsfx
τ

Y sfx
τ

)
∥22
]

=
2ϵ2Mtrain

(N +Mtrain)2
· Eτ

[
∥WKQ

11 xτ,q∥22
]
·
Mtrain∑
i=1

Eτ
[(
(wV21)

⊤ wV22
)
·
(
xsfx
τ,i

ysfx
τ,i

)(
xsfx
τ,i

ysfx
τ,i

)⊤

·
(
(wV21)

⊤ wV22
)⊤]

=
2ϵ2Mtrain

(N +Mtrain)2
· Eτ

[
∥WKQ

11 xτ,q∥22
]
·
(
(wV21)

⊤ wV22
)
·

(
Mtrain∑
i=1

Eτ
[(xsfx

τ,i

ysfx
τ,i

)(
xsfx
τ,i

ysfx
τ,i

)⊤])
·
(
(wV21)

⊤ wV22
)⊤
.

(A.12)
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Then, for any i ∈ [M ] we have

Eτ
[(xsfx

τ,i

ysfx
τ,i

)(
xsfx
τ,i

ysfx
τ,i

)⊤]
= Ewτ ,xsfx

τ,i

(
xsfx
τ,i · (xsfx

τ,i)
⊤ xsfx

τ,i · (w⊤
τ x

sfx
τ,i)

⊤

w⊤
τ x

sfx
τ,i · (xsfx

τ,i)
⊤ w⊤

τ x
sfx
τ,i · (w⊤

τ x
sfx
τ,i)

⊤

)

=

(
Λ Λ · 0d×1

01×d · Λ Ewτ

[
w⊤
τ Λwτ

])
=

 Λ 0d×1

01×d Tr(IdΛ)︸ ︷︷ ︸
by Lemma A.2

 =

(
Λ 0d×1

01×d Tr(Λ)

)
. (A.13)

Finally, by inserting Eq. (A.13) into Eq. (A.12), ℓ3(θ) can thus be simplified as follows,

ℓ3(θ) =
2ϵ2Mtrain

(N +Mtrain)2
· Eτ

[
∥WKQ

11 xτ,q∥22
]
·
(
(wV21)

⊤ wV22
)
·

(
Mtrain∑
i=1

(
Λ 0d×1

01×d Tr(Λ)

))
·
(
(wV21)

⊤ wV22
)⊤

=
2ϵ2M2

train

(N +Mtrain)2
· Eτ

[
∥WKQ

11 xτ,q∥22
]
·
(
(wV21)

⊤ΛwV21 +Tr(Λ)(wV22)
2
)
. (A.14)

According to Eq. (A.14), ℓ3(θ) does not depend on wKQ21 , which means that ∂wKQ
21
ℓ3(θ) = 01×d.

On the other hand, based on Eq. (A.14), when wV21 = 0, the derivative of ℓ3(θ) with respect to wV21
is calculated as follows,

∂wV
21
ℓ3(θ)

∣∣∣
wV

21=0
= ∂wV

21

[ 2ϵ2M2
train

(N +Mtrain)2
· Eτ

[
∥WKQ

11 xτ,q∥22
]
·
(
(wV21)

⊤ΛwV21 +Tr(Λ)(wV22)
2
)]∣∣∣∣

wV
21=0

=
2ϵ2M2

train

(N +Mtrain)2
· Eτ

[
∥WKQ

11 xτ,q∥22
]
· ∂wV

21

[
(wV21)

⊤ΛwV21

]∣∣∣∣
wV

21=0

=
4ϵ2M2

train

(N +Mtrain)2
· Eτ

[
∥WKQ

11 xτ,q∥22
]
·
[
(wV21)

⊤Λ
]∣∣∣∣
wV

21=0

=
4ϵ2M2

train

(N +Mtrain)2
· Eτ

[
∥WKQ

11 xτ,q∥22
]
· 0⊤d×1Λ = 01×d,

which justifies our claim in Step 3.

Step 4: Show that wV21 = wKQ21 = 0d×1 indicates ∂wV
21
ℓ4(θ) = ∂wKQ

21
ℓ4(θ) = 01×d. When

wV21 = wKQ21 = 0d×1, based on the expression of ℓ4(θ) given in Eq. (A.11), the derivative of ℓ4(θ)
with respect to wV21 is calculated as follows,

∂wV
21
ℓ4(θ)

∣∣∣
wV

21=w
KQ
21 =0d×1

= ∂wV
21

[ 2ϵ2Mtrain

(N +Mtrain)2
∥wV21∥22 · Eτ∥

(
Xsfx
τ

Y sfx
τ

)⊤(
WKQ

11

(wKQ21 )⊤

)
xτ,q∥22

]∣∣∣∣∣
wV

21=w
KQ
21 =0d×1

=
[ 4ϵ2Mtrain

(N +Mtrain)2
· Eτ∥

(
Xsfx
τ

Y sfx
τ

)⊤(
WKQ

11

(wKQ21 )⊤

)
xτ,q∥22 · (wV21)⊤

]∣∣∣∣∣
wV

21=w
KQ
21 =0d×1

=
4ϵ2Mtrain

(N +Mtrain)2
· Eτ∥

(
Xsfx
τ

Y sfx
τ

)⊤(
WKQ

11

0⊤d×1

)
xτ,q∥22 · 0⊤d×1 = 01×d.

Besides, for the derivative of ℓ4(θ) with respect to wKQ21 , we also have that

∂wKQ
21
ℓ4(θ)

∣∣∣
wV

21=w
KQ
21 =0d×1

= ∂wKQ
21

[ 2ϵ2Mtrain

(N +Mtrain)2
∥wV21∥22 · Eτ∥

(
Xsfx
τ

Y sfx
τ

)⊤(
WKQ

11

(wKQ21 )⊤

)
xτ,q∥22

]∣∣∣∣∣
wV

21=w
KQ
21 =0d×1

=
[ 2ϵ2Mtrain

(N +Mtrain)2
· ∥wV21∥22 · ∂wKQ

21
Eτ∥

(
Xsfx
τ

Y sfx
τ

)⊤(
WKQ

11

(wKQ21 )⊤

)
xτ,q∥22

]∣∣∣∣∣
wV

21=w
KQ
21 =0d×1

=
2ϵ2Mtrain

(N +Mtrain)2
· ∥0d×1∥22 · ∂wKQ

21

[
Eτ∥

(
Xsfx
τ

Y sfx
τ

)⊤(
WKQ

11

(wKQ21 )⊤

)
xτ,q∥22

]∣∣∣∣∣
wKQ

21 =0d×1

= 01×d.
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The above two equations justify the claim in Step 4.

Step 5: Based on results from previous Steps 1 to 4, we eventually have that

∂wV
21
L̃adv(θ)

∣∣∣
wV

21=w
KQ
21 =0d×1

= ∂wV
21
[ℓ1(θ) + ℓ2(θ) + ℓ3(θ) + ℓ4(θ)]

∣∣∣
wV

21=w
KQ
21 =0d×1

=

4∑
i=1

01×d = 01×d,

∂wKQ
21

L̃adv(θ)
∣∣∣
wV

21=w
KQ
21 =0d×1

= ∂wKQ
21

[ℓ1(θ) + ℓ2(θ) + ℓ3(θ) + ℓ4(θ)]
∣∣∣
wV

21=w
KQ
21 =0d×1

=

4∑
i=1

01×d = 01×d.

The proof is completed.

With Lemma A.6, we can then simplify the surrogate AT loss L̃adv(θ), as shown in the following
Lemma A.7.

Lemma A.7. Under Assumption 1, the surrogate AT loss L̃adv(θ) defined in Eq. (9) can be simplified
as follows,

L̃adv(θ) = 2Tr
[
(Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id) · (wV22W

KQ
11 Λ

1
2 ) · (wV22W

KQ
11 Λ

1
2 )⊤
]
− 4Tr

[
(wV22W

KQ
11 Λ

1
2 ) · Λ 3

2

]
+ 2Tr(Λ),

where Γ(M) := N+M+1
N+M Λ+ Tr(Λ)

N+M Id and ψ(M) := M2Tr(Λ)
(N+M)2 are same functions as that defined in

Eq. (10).

Proof. When Assumption 1 holds, by applying Lemma A.6, one can substitute terms wV21 and wKQ21

in the surrogate AT loss L̃adv(θ) with the zero vector 0d×1, which thus simplifies L̃adv(θ) as follows,

L̃adv(θ) = 2Eτ
[(
01×d wV22

)
(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)(
Xτ Xsfx

τ xτ,q
Yτ Y sfx

τ 0

)⊤

N +Mtrain

(
WKQ

11
01×d

)
xτ,q − yτ,q

]2
+ 0 +

2ϵ2Mtrain

(N +Mtrain)2
Eτ
[
∥WKQ

11 xτ,q∥22 · ∥
(
01×d wV22

)(Xsfx
τ

Y sfx
τ

)
∥22
]
+ 0

= 2 · Eτ
[
wV22 ·

YτXτ + Y sfx
τ Xsfx

τ

N +Mtrain
·WKQ

11 xτ,q − yτ,q

]2
︸ ︷︷ ︸

:=B1(θ)

+
2ϵ2Mtrain

(N +Mtrain)2
· Eτ

[
∥WKQ

11 xτ,q∥22 · ∥wV22Y sfx
τ ∥22

]
︸ ︷︷ ︸

:=B2(θ)

.

(A.15)

For the term B1(θ) in Eq. (A.15), we have that

B1(θ) := 2 · Eτ
[
wV22 ·

YτX
⊤
τ + Y sfx

τ (Xsfx
τ )⊤

N +Mtrain
·WKQ

11 xτ,q − yτ,q

]2
= 2 · Eτ

[w⊤
τ · (XτX

⊤
τ +Xsfx

τ (Xsfx
τ )⊤)

N +Mtrain
· wV22W

KQ
11 · xτ,q − w⊤

τ xτ,q

]2
= 2 · Eτ

[[XτX
⊤
τ +Xsfx

τ (Xsfx
τ )⊤

N +Mtrain
· wV22W

KQ
11 · xτ,q − xτ,q

]⊤
· wτw⊤

τ ·
[XτX

⊤
τ +Xsfx

τ (Xsfx
τ )⊤

N +Mtrain
· wV22W

KQ
11 · xτ,q − xτ,q

]]
= 2 · Eτ

[[XτX
⊤
τ +Xsfx

τ (Xsfx
τ )⊤

N +Mtrain
· wV22W

KQ
11 xτ,q − xτ,q

]⊤
· Id ·

[XτX
⊤
τ +Xsfx

τ (Xsfx
τ )⊤

N +Mtrain
· wV22W

KQ
11 xτ,q − xτ,q

]]

= 2 · Eτ
[
x⊤τ,q · (wV22W

KQ
11 )⊤ ·

Eτ
[
(XτX

⊤
τ +Xsfx

τ (Xsfx
τ )⊤)(XτX

⊤
τ +Xsfx

τ (Xsfx
τ )⊤)

]
(N +Mtrain)2

· wV22W
KQ
11 · xτ,q

]
− 4 · Eτ

[
x⊤τ,q ·

Eτ
[
(XτX

⊤
τ +Xsfx

τ (Xsfx
τ )⊤)

]
N +Mtrain

· (wV22W
KQ
11 ) · xτ,q

]
+ 2 · Eτ

[
x⊤τ,q · xτ,q

]
.

(A.16)
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For Eτ
[
(XτX

⊤
τ +Xsfx

τ (Xsfx
τ )⊤)(XτX

⊤
τ +Xsfx

τ (Xsfx
τ )⊤)

]
in Eq. (A.16), we have

Eτ
[
(XτX

⊤
τ +Xsfx

τ (Xsfx
τ )⊤)(XτX

⊤
τ +Xsfx

τ (Xsfx
τ )⊤)

]
= Eτ [XτX

⊤
τ XτX

⊤
τ ] + Eτ [Xsfx

τ (Xsfx
τ )⊤] · Eτ [XτX

⊤
τ ] + Eτ [XτX

⊤
τ ] · Eτ [Xsfx

τ (Xsfx
τ )⊤] + Eτ [Xsfx

τ (Xsfx
τ )⊤Xsfx

τ (Xsfx
τ )⊤]

= Eτ
[∑
i,j

xτ,ix
⊤
τ,ixτ,jx

⊤
τ,j

]
+ Eτ

[∑
i

xsfx
τ,i(x

sfx
τ,i)

⊤
]
· Eτ

[∑
i

xτ,ix
⊤
τ,i

]
+ Eτ

[∑
i

xτ,ix
⊤
τ,i

]
· Eτ

[
xsfx
τ,i(x

sfx
τ,i)

⊤
]
+ Eτ

[∑
i,j

xsfx
τ,i(x

sfx
τ,i)

⊤xsfx
τ,j(x

sfx
τ,j)

⊤
]

= Eτ
[∑
i

xτ,ix
⊤
τ,ixτ,ix

⊤
τ,i +

∑
1≤i,j≤N,i̸=j

Λ2
]
+MtrainΛ ·NΛ +NΛ ·MtrainΛ

+ Eτ
[∑
i

xsfx
τ,i(x

sfx
τ,i)

⊤xsfx
τ,i(x

sfx
τ,i)

⊤ +
∑

1≤i,j≤Mtrain,i̸=j

Λ2
]

= Eτ
[ N∑
i=1

(2Λ2 +Tr(Λ)Λ)︸ ︷︷ ︸
by Lemma A.1

]
+ (N2 −N) · Λ2 + 2NMtrain · Λ2 + Eτ

[Mtrain∑
i=1

(2Λ2 +Tr(Λ)Λ)︸ ︷︷ ︸
by Lemma A.1

]
+ (M2

train −Mtrain) · Λ2

= (N2 +N +M2
train +Mtrain + 2NMtrain) · Λ2 + (N +Mtrain) · Tr(Λ) · Λ

= (N +Mtrain) · ((N +Mtrain + 1) · Λ2 +Tr(Λ) · Λ) = (N +Mtrain)
2 · Γ(Mtrain)Λ. (A.17)

For Eτ
[
XτX

⊤
τ +Xsfx

τ (Xsfx
τ )⊤

]
in Eq. (A.16), we have

Eτ
[
XτX

⊤
τ +Xsfx

τ (Xsfx
τ )⊤

]
= Eτ

[∑
i

xτ,ix
⊤
τ,i

]
+ Eτ

[∑
i

xsfx
τ,i(x

sfx
τ,i)

⊤
]
= NΛ +MtrainΛ = (N +Mtrain) · Λ.

(A.18)

Inserting Eqs. (A.17) and (A.18) into Eq. (A.16) leads to

B1(θ) = 2 · Eτ
[
x⊤τ,q · (wV22W

KQ
11 )⊤ · Γ(Mtrain)Λ · wV22W

KQ
11 · xτ,q

]
− 4 · Eτ

[
x⊤τ,q · Λ · wV22W

KQ
11 · xτ,q

]
+ 2 · Eτ

[
x⊤τ,qxτ,q

]
= 2 · Tr

[
(wV22W

KQ
11 )⊤ · Γ(Mtrain)Λ · wV22W

KQ
11 · Λ

]
︸ ︷︷ ︸

by Lemma A.2

−4 · Tr
[
Λ · wV22W

KQ
11 · Λ

]
︸ ︷︷ ︸

by Lemma A.2

+2 · Tr(Λ)

= 2 · Tr
[
Γ(Mtrain)Λ · (wV22W

KQ
11 Λ

1
2 ) · (wV22W

KQ
11 Λ

1
2 )⊤
]

︸ ︷︷ ︸
by Lemma A.3

−4 · Tr
[
(wV22W

KQ
11 Λ

1
2 ) · Λ 3

2

]
︸ ︷︷ ︸

by Lemma A.3

+2 · Tr(Λ).

(A.19)

Besides, for the term B2(θ) in Eq. (A.15), we have that

B2(θ) :=
2ϵ2Mtrain

(N +Mtrain)2
· Eτ

[
∥WKQ

11 xτ,q∥22 · ∥wV22Y sfx
τ ∥22

]
=

2ϵ2Mtrain

(N +Mtrain)2
· (wV22)2 · Eτ

[
x⊤τ,q · (W

KQ
11 )⊤WKQ

11 · xτ,q
]
· Eτ

[
w⊤
τ ·Xsfx

τ (Xsfx
τ )⊤ · wτ

]
=

2ϵ2Mtrain

(N +Mtrain)2
· (wV22)2 · Tr

[
(WKQ

11 )⊤WKQ
11 · Λ

]
︸ ︷︷ ︸

by Lemma A.2

·Eτ
[
w⊤
τ ·MtrainΛ · wτ

]

=
2ϵ2Mtrain

(N +Mtrain)2
· (wV22)2 · Tr

[
WKQ

11 · Λ · (WKQ
11 )⊤

]
︸ ︷︷ ︸

by Lemma A.3

·Tr
[
MtrainΛ · Id

]
︸ ︷︷ ︸

by Lemma A.2

= 2ϵ2 · M2
trainTr(Λ)

(N +MtrainΛ
1
2 )2

· Tr
[
(wV22W

KQ
11 Λ

1
2 ) · Λ · (wV22W

KQ
11 )⊤

]
= 2ϵ2 · ψ(Mtrain) · Tr

[
(wV22W

KQ
11 Λ

1
2 ) · Λ · (wV22W

KQ
11 )⊤

]
. (A.20)
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Finally, by inserting Eqs. (A.19) and (A.20) into Eq. (A.15), we have

L̃adv(θ) :=2 · Tr
[
Γ(Mtrain)Λ · (wV22W

KQ
11 Λ

1
2 ) · (wV22W

KQ
11 Λ

1
2 )⊤
]
− 4 · Tr

[
(wV22W

KQ
11 Λ

1
2 ) · Λ 3

2

]
+ 2 · Tr(Λ)

+ 2ϵ2 · ψ(Mtrain) · Tr
[
(wV22W

KQ
11 Λ

1
2 ) · Λ · (wV22W

KQ
11 )⊤

]
=2 · Tr

[
(Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id) · (wV22W

KQ
11 Λ

1
2 ) · (wV22W

KQ
11 Λ

1
2 )⊤
]

− 4 · Tr
[
(wV22W

KQ
11 Λ

1
2 ) · Λ 3

2

]
+ 2 · Tr(Λ),

which completes the proof.

Based on the simplified surrogate AT loss, the closed-form global minimizer θ∗ for the surrogate AT
problem is then calculated in the following Lemma A.8.

Lemma A.8. Suppose Assumption 1 holds. Then, θ∗ := (WV
∗ W

KQ
∗ ) is a minimizer for the surro-

gate AT loss L̃adv(θ) in Eq. (8) if and only if wV∗,22W
KQ
∗,11 = (Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id)

−1Λ.

Proof. For the simplified surrogate AT loss proved in Lemma A.7, we rewrite it as follows,

L̃adv(θ)

= 2Tr
[
(Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id) · (wV22W

KQ
11 Λ

1
2 ) · (wV22W

KQ
11 Λ

1
2 )⊤
]
− 4Tr

[
(wV22W

KQ
11 Λ

1
2 ) · Λ 3

2

]
+ 2Tr(Λ)

= 2 · Tr
[
(ΓtrainΛ + ϵ2ψtrainId) ·

(
wV22W

KQ
11 Λ

1
2 − (ΓtrainΛ + ϵ2ψtrainId)

−1Λ
3
2

)
·
(
wV22W

KQ
11 Λ

1
2 − (ΓtrainΛ + ϵ2ψtrainId)

−1Λ
3
2

)⊤]
− Tr

[
Λ3(ΓtrainΛ + ϵ2ψtrainId)

−1
]
+ 2 · Tr(Λ), (A.21)

where Γtrain := Γ(Mtrain) and ψtrain := ψ(Mtrain).

Notice that the second and third terms in Eq. (A.21) are constants. Besides, the matrix (ΓtrainΛ +
ϵ2ψId) in the first term in Eq. (A.21) is positive definite, which means that this first term is non-
negative. As a result, the surrogate AT loss L̃adv(θ) will be minimized when the first term in
Eq. (A.21) becomes zero. This can be achieved by setting

wV∗,22W
KQ
∗,11Λ

1
2 − (Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id)

−1Λ
3
2 = 0,

which is

wV∗,22W
KQ
∗,11 = (Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id)

−1Λ.

The proof is completed.

We now turn to prove an PL-inequality for the surrogate AT problem. The proof idea follows that
in Zhang et al. (2024). Specifically, we will first prove several technical lemmas (i.e., Lemma A.9,
Lemma A.10, and Lemma A.11), and then present the PL-inequality in Lemma A.12, which can
then enable the surrogate AT model in Eq. (9) approaches its global optimal solution.

Lemma A.9. Suppose Assumption 1 holds and the model fLSA,θ is trained via minimizing the sur-
rogate AT loss L̃adv(θ) in Eq. (9) with continuous training flow. Then, for any continuous training
time t ≥ 0, we uniformly have that

(wV22(t))
2 = Tr[WKQ

11 (t)(WKQ
11 (t))⊤].
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Proof. Since the model is trained via continuous gradient flow, thus ∂tW
KQ
11 (t) can be calculated

based on the simplified surrogate AT loss proved in Lemma A.7 as follows,

∂tW
KQ
11 (t) := −∂WKQ

11
L̃adv(θ)

= −2 · ∂WKQ
11

Tr
[
(Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id) · (wV22W

KQ
11 Λ

1
2 ) · (wV22W

KQ
11 Λ

1
2 )⊤
]
+ 4 · ∂WKQ

11
Tr
[
(wV22W

KQ
11 Λ

1
2 ) · Λ 3

2

]
= −2 · (wV22)2 · ∂WKQ

11
Tr
[
(Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id) ·WKQ

11 · Λ · (WKQ
11 )⊤

]
+ 4wV22Λ

2︸ ︷︷ ︸
by Lemma A.4

= −4 · (wV22)2 · (Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id) ·WKQ
11 · Λ︸ ︷︷ ︸

by Lemma A.4

+4wV22Λ
2. (A.22)

Similarly, for ∂twV22(t), we have

∂tw
V
22(t) := −∂wV

22
L̃adv(θ)

= −2 · ∂wV
22
Tr
[
(Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id) · (wV22W

KQ
11 Λ

1
2 ) · (wV22W

KQ
11 Λ

1
2 )⊤
]
+ 4 · ∂wV

22
Tr
[
(wV22W

KQ
11 Λ

1
2 ) · Λ 3

2

]
= −4wV22 · Tr

[
(Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id) · (WKQ

11 Λ
1
2 ) · (WKQ

11 Λ
1
2 )⊤
]
+ 4 · Tr

[
(WKQ

11 Λ
1
2 ) · Λ 3

2

]
.

(A.23)

Combining Eqs (A.22) and (A.23), we thus have

Tr
[
∂tW

KQ
11 (t)(WKQ

11 (t))⊤
]

= −4 · (wV22)2 · Tr
[
(Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id) · (WKQ

11 Λ
1
2 ) · (WKQ

11 Λ
1
2 )⊤
]
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which further indicates that
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11 (t)(WKQ
11 (t))⊤

]
= Tr

[
∂tW

KQ
11 (t) · (WKQ

11 (t))⊤
]
+Tr
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11 (t) · ∂t(WKQ
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Finally, according to Assumption 1, we have that when the continuous training time is t = 0,

Tr
[
WKQ

11 (0)(WKQ
11 (0))⊤

]
= ∥WKQ

11 (0)∥2F = σ2 = wV22(0)
2.

Combine with Eq. (A.24), we thus have that

Tr
[
WKQ

11 (t)(WKQ
11 (t))⊤

]
= wV22(t)

2, ∀t ≥ 0.

The proof is completed.

Lemma A.10. Suppose Assumption 1 holds and the model fLSA,θ is trained via minimizing the
surrogate AT loss L̃adv(θ) in Eq. (9) with continuous training flow. Then, if the parameter σ in
Assumption 1 satisfies

σ <

√
2

d · ∥(Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id)Λ−1∥2
,

we have wV22(t) > 0 holds for any continuous training time t ≥ 0.

Proof. According to the simplified AT loss calculated in Lemma A.7, we know that if wV22(t) = 0,
then L̃adv(θt) = 2Tr(Λ). Besides, under Assumption 1, we have wV22(0) = σ > 0. Therefore, if we
can show that L̃adv(θt) ̸= 2Tr(Λ) for any t ≥ 0, then it is proved that wV22(t) > 0 for any t ≥ 0.
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To this end, we first analyze the surrogate AT loss L̃adv(θt) at the initial training time t = 0. By
applying Assumption 1, we have

L̃adv(θ0)

= 2Tr
[
(Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id) · (wV22(0)W
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2 )⊤
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1
2 ) · Λ 3

2

]
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1
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]
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]
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−1∥2 · ∥ΛΘΘ⊤ΛΘΘ⊤∥2︸ ︷︷ ︸

by Lemma A.5

−4σ2∥ΛΘ∥2F + 2Tr(Λ)

≤ 2σ4 · d · ∥(Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id)Λ
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−1∥2 − 2) + 2Tr(Λ). (A.25)

By Assumption 1, we have ∥ΛΘ∥2F > 0. Thus, when (d·σ2 ·∥(Γ(Mtrain)Λ+ϵ2ψ(Mtrain)Id)Λ
−1∥2−

2) < 0, which is

σ <

√
2

d · ∥(Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id)Λ−1∥2
,

we will have L̃adv(θ0) < Tr(Λ).

Finally, since the surrogate AT loss L̃adv(θt) is minimized with continuous gradient, thus when the
above condition holds, for any t > 0, we always have that L̃adv(θt) ≤ L̃adv(θ0) < Tr(Λ).

The proof is completed.

Lemma A.11. Suppose Assumption 1 holds and the σ in Assumption 1 satisfies σ <√
2

d·∥(Γ(Mtrain)Λ+ϵ2ψ(Mtrain)Id)Λ−1∥2
. Then, for any continuous training time t ≥ 0, we have
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Proof. By applying Eq. (A.25) in Lemma A.10, we have that for any t ≥ 0,
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by Lemma A.5
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which indicates
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Besides, by combining Lemma A.9 and Lemma A.10, we know that

wV22(t) =

√
Tr[WKQ

11 (t)(WKQ
11 (t))⊤] =

√
∥WKQ

11 (t)∥2F = ∥WKQ
11 (t)∥F . (A.27)

Finally, inserting Eq. (A.27) into Eq. (A.26), we thus have

(wV22(t))
2 ≥ σ2 · ∥ΛΘ∥2F · (2− d · σ2 · ∥(Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id)Λ

−1∥2)
2d∥Λ2∥2

> 0.

The proof is completed.

Lemma A.12 (PL-inequality). Suppose Assumption 1 holds and the LSA model fLSA,θ is trained via
minimizing the surrogate AT loss L̃adv(θ) in Eq. (9) with continuous training flow. Suppose the σ

in Assumption 1 satisfies σ <
√

2
d·∥(Γ(Mtrain)Λ+ϵ2ψ(Mtrain)Id)Λ−1∥2

. Then for any continuous training
time t > 0, we uniformly have that

∥∂θL̃adv(θt)∥22 ≥ µ ·
(
L̃adv(θt)−min

θ
L̃adv(θ)

)
,

where
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1
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,

ν is defined in Lemma A.11, and Vec(·) denotes the vectorization function.

Proof. From Eq. (A.22) in Lemma A.9, we have that

∂tW
KQ
11 (t) = −4 · (wV22)2 · (Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id) ·WKQ

11 · Λ + 4wV22Λ
2

= −4wV22 · (Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id) ·D(θt) · Λ
1
2 ,

where

D(θt) :=
(
wV22W

KQ
11 Λ

1
2 − (Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id)

−1Λ
3
2

)
∈ Rd×d. (A.28)

As a result, the gradient norm square ∥∂θL̃adv(θt)∥22 can be further lower-bounded as follows,

∥∂θL̃adv(θt)∥22 := (∂wV
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where ν > 0 is defined in Lemma A.11.

Meanwhile, from to the proof of Lemma A.8, we can rewrite and upper-bound (L̃adv(θt) −
minθ L̃adv(θ)) as follows,(
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Lemma A.3
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where Γtrain := Γ(Mtrain) and ψtrain := ψ(Mtrain).

Combining Eqs. (A.29) and (A.30), we thus know that

∥∂θL̃adv(θt)∥22 ≥ 8ν

∥(ΓtrainΛ + ϵ2ψtrainId)−
1
2 ∥2F · ∥Λ− 1

2 ∥2F
·
(
L̃adv(θt)−min

θ
L̃adv(θ)

)
.

The proof is completed.

Finally, we prove Theorem 1 based on Lemma A.8 and Lemma A.12.

Proof of Theorem 1. When all the conditions hold, when the surrogate AT problem defined in Eq. (9)
is solved via continuous gradient flow, by Lemma A.8 we have
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)
≤
(
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θ
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)
· e−µt.

As a result, when performing continuous gradient flow optimization for an infinitely long time, since
µ > 0, the surrogate AT loss will eventually converge to the global minima, i.e.,(
L̃adv(θ∗)−min
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where θ∗ := limt→∞ θt is the converged model parameter. Meanwhile, from Lemma A.8, we know
that θ∗ is a global minimizer if and only if wV∗,22W

KQ
∗,11 = (Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id)

−1Λ, which
completes the proof.

A.4 PROOFS IN SECTION 4.3

This section collects all proofs that omitted from Section 4.3.

Proof of Theorem 2. By substituting allMtrain withMtest in proofs of Proposition 1 and Lemma A.7,
we immediately have that for any model parameter θ of the LSA model fLSA,θ,

R(θ,Mtest)

≤ 2Tr
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where (∗) is due to that the matrix ((Γ(Mtrain)Λ+ϵ2ψ(Mtrain)Id)
−1Λ3) is positive definite, and (∗∗)

is due to that: (1) (Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id)
−1 is symmetric and is commutative with Λ3, and

(2) Lemma A.3.

The proof is completed.

26



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Proof of Corollary 1. Let λ1, · · · , λd be the d singular values of the matrix Λ. Then, the robust
generalization bound in Theorem 2 can be rewritten as follows,
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Λ3 · (Γ(Mtest)Λ + ϵ2ψ(Mtest)Id) · (Γ(Mtrain)Λ + ϵ2ψ(Mtrain)Id)

−2
]
+ 2Tr(Λ),

≤
d∑
i=1

λ3i ·
N+Mtest+1
N+Mtest

λi +
Tr(Λ)
N+Mtest

+ ϵ2 · M2
testTr(Λ)

(N+Mtest)2(
N+Mtrain+1
N+Mtrain

λi +
Tr(Λ)

N+Mtrain
+ ϵ2 · M2

trainTr(Λ)

(N+Mtrain)2

)2 + 2Tr(Λ)

≤
d∑
i=1

λ3i ·
N+Mtest+1
N+Mtest

λi +
Tr(Λ)
N+Mtest(

N+Mtrain+1
N+Mtrain

λi

)2 +

d∑
i=1

λ3i ·
ϵ2 · M2

testTr(Λ)
(N+Mtest)2(

ϵ2 · M2
trainTr(Λ)

(N+Mtrain)2

)2 + 2Tr(Λ)

≤
d∑
i=1

λi ·
(

N +Mtrain

N +Mtrain + 1

)2

·

(
N +Mtest + 1

N +Mtest
λi +

∑d
k=1 λk
N

)

+

d∑
i=1

λ3i
ϵ2 ·maxdk=1{λk}

· (N +Mtrain)
4

N2
· M

2
test

M4
train

+ 2

d∑
i=1

λi

≤ O(d) · O(1) ·
(
O(1) +

O(d)

N

)
+O(d) · O

(
1

ϵ2

)
· (N +Mtrain)

4

N2
· M

2
test

M4
train

+O(d)

≤ O(d) +O
(
d2

N

)
+O

(
d

ϵ2

)
· (N +Mtrain)

4

N2
· M

2
test

M4
train

.

Then, by applying Assumption 2, we further have that
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which completes the proof.

B ADDITIONAL EXPERIMENTAL DETAILS

This section collects experimental details omitted from Section 5.

B.1 JAILBREAK ATTACKS

Our experiments adopt two token-level jailbreak attacks, which are GCG (Zou et al., 2023) and
BEAST (Sadasivan et al., 2024). We only use token-level attacks since they make it easier for us to
control the adversarial prompt length in our analysis. We re-implemented both attacks by ourselves
to enable fast batching operations during jailbreak, which can thus improve the efficiency of AT.
Besides, other than the adversarial suffix length, we will also tune the following hyperparameters of
jailbreak attacks:

• GCG: According to Algorithm 1 in Zou et al. (2023), hyperparameters that we need to
tune for GCG include the iteration number T , the top-k parameter k, and the “batch-size”
B.

• BEAST: According to Algorithm 1 in Sadasivan et al. (2024), hyperparameters that we
need to tune for BEAST are two beam-search parameters k1 and k2.
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B.2 MODEL TRAINING

Jailbreak attacks during AT. We use GCG to search adversarial prompts during AT. The adver-
sarial suffix token length is fixed to one of {5, 10, 20, 30, 40, 50} during the overall AT. For other
hyparameters described in Appendix B.1, we set T as 150, k as 256, and B as 64.

LoRA setting. We use the PEFT library (Mangrulkar et al., 2022) to apply LoRA (Hu et al.,
2022) to all query and key projection matrices in attentions. The PEFT hyperparameters are r=64,
lora alpha=32, and lora dropout=0.1.

Training hyparameters. In every AT experiment, we follow Eq. (3) to perform AT with AdamW
for 125 iterations, in which the learning rate is set as 5×10−5 and the factor α is set as 0.2. Besides,
the batch size is set as 64, in which 8 samples are jailbreak prompts crafted from data from the safety
training set, and the remaining 56 samples are from the utility training set.

Benign answer y(b) for the safety dataset D(h). We adopt four benign answers for the safety data
during AT, which are:

• “As a responsible AI assistant, I cannot generate content that promotes illegal activities or
violence.”

• “Sorry, but I can’t do that. Please try other instructions that are safe and responsible.”
• “I cannot fulfill your request. I am designed to provide safe and helpful information.”
• “This is a topic I am not permitted to discuss since it contain illegal or violent information.”

B.3 MODEL EVALUATIONS

Robustness evaluation. We report the Attack Success Rate (ASR) of jailbreak attacks to assess
the robustness of models. Specifically, for each instruction from the safety test set, we synthesize
the corresponding jailbreak prompt and use it to induce the targeted LLM to generate 10 responses.
Then, we use an LLM-based judge from Mazeika et al. (2024), which was fine-tuned from the
Llama-2-13B model 1, to determine whether the 10 generated LLM responses are harmful or not. If
any of them is determined to be harmful, the jailbreak attack is considered successful.

Jailbreak attacks for robustness evaluation. For every attack, the adversarial suffix length is
varied within {5, 10, 20, 40, 60, 80, 100, 120}. Besides, for jailbreak hyperparameters described in
Appendix B.1:

• For the GCG attack, we set T as 500, k as 256, and T as 64.
• For the BEAST attack, we set k1 as 64 and k2 as 16.

Utility evaluation. We use the AlpacaEval2 framework (Dubois et al., 2024) to report the Length-
controlled WinRate (LC-WinRate) of targeted models against a reference model based on their out-
put qualities on the utility test set. An LC-WinRate of 50% means that the output qualities of the two
models are equal, while an LC-WinRate of 100% means that the targeted model is consistently bet-
ter than the reference model. We use Davinci003 as the reference model and use the Llama-3-70B
model to judge output quality. The official code of the AlpacaEval2 framework is used to conduct
the evaluation. Additionally, the Llama-3-70B judger is run locally via the vLLM model serving
framework (Kwon et al., 2023).

1https://huggingface.co/cais/HarmBench-Llama-2-13b-cls
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