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ABSTRACT

Recently, scores of high-performing code generation systems have surfaced. As
has become a popular choice in many domains, code generation is often ap-
proached using large language models as a core, trained under the masked or
causal language modeling schema. This work shows that current code genera-
tion systems exhibit biases inherited from large language model backbones, which
might leak into generated code under specific circumstances.
To investigate the effect, we propose a framework that automatically removes hints
and exposes various biases that these code generation models use. We apply our
framework to three coding challenges and test it across top-performing coding
generation models. Our experiments reveal biases towards specific prompt struc-
ture and exploitation of keywords during code generation. Finally, we demon-
strate how to use our framework as a data transformation technique, which we
find a promising direction towards reliable code generation.

1 INTRODUCTION

Large language models (LLM) have recently demonstrated their ability to generate code (Li et al.,
2022; Wang & Komatsuzaki, 2021; Black et al., 2021; Brown et al., 2020; Wang et al., 2021) or
solve challenging programming/math tasks on par with human coders (Li et al., 2022; Lewkowycz
et al., 2022b; Chowdhery et al., 2022a); these models are trained with the data-driven paradigm. On
the other hand, an increasing body of work also questions whether the data-driven approach leads to
acquiring reasoning skills (Piekos et al., 2021; Zhang et al., 2022; Mouselinos et al., 2022), showing
that if left alone, it might not be sufficient for achieving truly human-level performance on tasks
such as logical or visual reasoning. In many studied cases, models still rely on various hints in their
“reasoning” process. This work extends the results above, i.e., the lack of reasoning capabilities, to
the code generation domain. More specifically, we devise a framework that automatically identifies
cues that a code generation model might exploit. Changes or removal of those cues stands as a
reasoning test towards the generational capabilities of the model at hand. Imagine the following
scenario: a code generation model is presented with the prompt ”def add two nums(a,b): ...”, and
the directive ”Generate a function that adds two numbers and returns their sum”. The expected
answer should resemble something like, ”return a + b.” Now, if we decide to rename the function
name to a generic ”func” token: ”def func(a,b): ...” but maintain the same directive, any inability of
the model to generate a correct solution can be attributed to cues related to the function name itself;
indicating that the tested model “copied-pasted” the whole or parts of the solution from training
data and it has not learned how to program. We present some interesting examples in the Appendix
section A.9.

We presume that the reasoning process of code generation models should remain invariant under
changes that still provide enough context or pose little if any, additional challenge to a human coder.
To this end, we propose an automatic and model-agnostic framework that modifies the following: (1)
function names, (2) keywords in a problem specification, and (3) examples provided in the problem
prompt We refer to these three parts as Blocks-Of-Influence; see Figure 1. Each block contributes
partially to the context needed for correct completion. We show that minor modifications of these
blocks are sufficient to “fool” LLM-based code generation methods. Our results reveal that keyword
preference and memorization bias can be identified across multiple models and coding challenges.
During our experiments, we ensure that any modifications maintain the global semantics of the
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(a) (b)

Figure 1: Left - Blocks Of Influence: Function / argument names (red), problem specification (green), and
examples (blue). Right - Examples: We demonstrate three possible transformations, one for each block: Swap
the function name with ”func”, remove keywords, and remove examples from the red, green and blue block,
respectively. In our framework, blocks can be targeted both individually and in a joint fashion.

coding challenge. This is achieved through a context-aware filtering mechanism that guarantees any
information altered or removed still exists and/or can be deducted from the remaining unaltered part.

Contributions. The main contributions of our work can be summarized in three points.
First, we propose a novel automated framework that identifies possible biases in a coding style
dataset. Our framework removes subtle hints, introducing minimal changes in the form of keyword
replacement or partial code-block omission, ultimately acting as an adversarial test. Since the frame-
work operates on a data level, it is agnostic to the model’s structure and internal workings. Finally,
the framework can be easily adjusted to any input format or programming language.
Second, we introduce the ”Blocks of Influence” concept. We suggest that every instance of a typical
coding challenge can be analyzed into three parts (blocks). Each part is correlated with a different
method of hinting and is used as a target of our transformations. A model’s reasoning process is in-
formed by all three blocks, making them perfect analyzing tools for cases of failing code generation.
Third, we explore new ways of mitigating biases during code generation. In Section 6.2, we study
the effects of adversarial training against our proposed perturbations and the benefits of including
examples with longer descriptions during finetuning. Our results show that combining these tech-
niques leads to more accurate code completions.

2 RELATED WORK

Our approach is inspired by works of various research directions, which we briefly describe here.
Solving coding and math challenges. The emergent abilities of large language models to gener-
ate, summarize and translate textual information, have recently sparked interest in their aptitude for
math, logic, and programming challenges. Tasks such as code-completion (Chen et al., 2021; Shin
et al., 2019; Hendrycks et al., 2021a; Li et al., 2022), code summarization and code translation (Lu
et al., 2021) have been proposed, with models constantly progressing towards near-human perfor-
mance. Similarly, Hendrycks et al. (2021b); Saxton et al. (2019); Ling et al. (2017); Amini et al.
(2019) have proposed tests measuring a model’s ability to perform math and logic, ranging from
school problems to competition-grade challenges. Impressive results in multiple programming lan-
guages have also been achieved by decoder-only works Brown et al. (2020); Chen et al. (2021). In
code understanding Feng et al. (2020); Kanade et al. (2020) provided strong baselines that can be
further finetuned for code repair and code retrieval taks. Fried et al. (2022) created the first gener-
ative model to perform infilling using a novel masking objective. Recent open-source works Black
et al. (2021); Wang & Komatsuzaki (2021); Tunstall et al. (2022a); Mitchell et al. have demon-
strated the value of good data pre-processing and hyperparameter tuning, with impressive results,
especially in lightweight architectures. Finally, massive-scale models such as Chowdhery et al.
(2022b); Lewkowycz et al. (2022a) demonstrated breakthrough capabilities in language, reasoning,
and code tasks achieving state-of-the-art performance in multiple domains simultaneously.
Bias in large language models. There is some existing research towards discovering biases in large
language models. In the area of ethics, Wallace et al. (2019) shows that generative models can
be conditioned to produce toxic content, with the use of nonsense, adversarial prefixes. Similarly,
Liang et al. (2021) suggest that models might adopt biases and social stereotypes found among their
training data and provide ways to apply fairness during generation. Countermeasures have been pro-
posed by Zhao et al. (2021); Liu et al. (2022), claiming that sanitized zero-shot examples contribute
to mitigating biases during generation.
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Probing reasoning through biases. There have been notable attempts to systemize intelligence and
reasoning as concepts (Legg, 2008; Chollet, 2019), yet a few recent works try to approach reason-
ing, through the analysis of failure modes in deep learning models. Glockner et al. (2018) suggest
that natural language inference systems can be easily fooled with a single hypernym/hyponym word
swap. Similarly, Lin et al. (2020) prove that numerical commonsense reasoning in LLMs is heav-
ily biased by adjectives describing the object of interest. Concerns against the current data-driven
methods have been expressed by Razeghi et al. (2022), pointing out that LLMs are more accurate
on mathematical challenges that involve terms significantly more frequently in their pre-training
dataset. Piekos et al. (2021) claim that LLMs can answer math and logic questions without an un-
derstanding of the rationale behind them. They introduce a novel task of correctly classifying the
order of reasoning steps to achieve better results.
Adversarial methods and Language Processing. NLP community developed excellent methods to
prepare adversarial tasks, including the TextAttack framework Morris et al. (2020) and sophisticated
techniques to elicit adversarial examples from humans, as in Talmor et al. (2022), though our work
seems to be the first focused on the disciplined construction of adversarial examples for code.

3 BENCHMARKS

In this section, we describe the datasets used in our experiments; We employed a widely used, com-
plex coding challenge (HE), a simpler one with everyday python problems (MBPP), and finally, a
dataset that uses long and analytic descriptions instead of docstrings (DMCC). More information
about the datasets can be found in the Appendix section A.2.
HumanEval (HE). This is a human-curated problem-solving dataset described in Chen et al.
(2021). It consists of 164 original programming challenges assessing language comprehension,
algorithms, and simple mathematics, with some comparable to simple software interview questions.
Each problem is presented as an incomplete function, accompanied by a docstring. The docstring
contains the task, directives for its completion, and a few examples. For each task, we are provided
with a set of unit tests. A task is considered solved when all unit tests are passed. This requires both
a syntactically and functionally correct Python program to be generated.
Mostly Basic Python Problems (MBPP). The dataset was introduced in Austin et al. (2021). It
contains 974 short Python functions designed to be solved by entry-level programmers. Contrary
to HumanEval, the task is given through a text description rather than a docstring. Additionally,
there are no input-output examples in the prompt. Test cases for each problem are provided, as-
sessing the functional correctness of the model’s completion. This dataset consists of a mixture of
crowd-sourced and hand-crafted questions. MBPP challenges models to perform tasks of imperative
control flow, requiring loops and conditionals in its solutions.
Deepmind Code Challenges (DMCC). This refers to the highly challenging dataset proposed by
Li et al. (2022). The dataset includes problems, solutions and test cases scraped from the Code-
forces platform (Mirzayanov, 2020), along with existing public competitive programming datasets
scraped from from Description2Code (Caballero, 2016), and CodeNet (Puri et al., 2021). The
dataset contains problems from multiple programming languages and training, validation, and test
splits. For our purpose, we focused on Python3 programs of the training split. DMCC contains a
long description of the problem alongside examples and some notes for its solution. Provided unit
tests are an be classified into public tests, visible to a human programmer and hidden tests are used
during the final evaluation.

4 EVALUATION

Models. In our experimental setup, we test five models representing a different approach to code
generation. The open-source CodeParrot (Tunstall et al., 2022a), has a typical GPT-2 (Radford
et al., 2019) architecture and exhibits very good performance given its size. We also challenge the
Incoder (Fried et al., 2022) model, which is trained under a novel bi-directional causal objective,
being able to handle context more efficiently than its causal counterparts. Bloom (Mitchell et al.)
is a recent model that excels in multiple domains. It poses a great challenge against our methods
given its excellent natural language understanding and diverse training dataset. CodeGen (Nijkamp
et al., 2022) is a high-performing model that was both trained in natural language understanding and
code. We test its Mono variant, which is further fine-tuned on the Python programming language.
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Finally, we have the powerful Codex model, able to tackle most of the proposed coding challenges
in the HumanEval and MBPP datasets. A list of the tested models with their sizes, as well as Key-
Bert (Grootendorst, 2020) that is used in our framework, can be found in Table 1.
Performance metrics. Whereas the syntactic correctness of a Python program can be easily evalu-
ated, functional correctness is currently studied under the pass@k metric, introduced in Kulal et al.
(2019). This metric serves as an estimator of the real model generational capabilities under a spe-
cific budget. In Chen et al. (2021), authors propose an updated estimator formulation, empirically
proving that for each budget k, ten times more generations should be used for an unbiased estimate.
Finally, the modification of 10@k is introduced in Li et al. (2022), testing only the ten best solutions
out of k attempts. Note here that k is tested at magnitudes of 104−106 instead of the typical 100−102
used in most code generation works. This setup’s purpose is to demonstrate their method’s filtering
effectiveness. Thus, to avoid confusion, our pass@k metric is calculated at exactly k attempts. An
average of five runs is presented for experiments in Tables 3 and 4. Sampling temperatures are 0.2 /
0.8 for pass@1 / pass@100 respectively, which is the optimal values across the tested models. More
information about the models can be found in the Appendix section A.2.

Model Name Usage Type Sizes Used

KeyBert (Grootendorst, 2020) model access 2M
Codeparrot (Tunstall et al., 2022a) model access 110M / 350M*/ 1.5B
InCoder (Fried et al., 2022) model access 1.6B / 6B
CodeGen (Nijkamp et al., 2022) model access 350M / 6B
Bloom (Mitchell et al.) model access & API 560M* / 1.7B / 176B
Codex (v1 / v2) (Chen et al., 2021) API ∼175B (Estimated)

Table 1: Models used in experiments. Enties marked with * refer to finetuned models

5 METHOD

5.1 BLOCKS OF INFLUENCE

We propose that each coding challenge is treated as a sequence of three, distinct but complementary
blocks, rather than a single, homogeneous input. We refer to them as “Blocks of Influence”, and cor-
relate each with different hinting methods during code generation. Taking Figure 1 as an example,
the model is challenged to complete a function that reverses a list, and then returns its second item.
Name Block. The first block of influence, marked in red, informs the model about the function name
and the names and expected types of the input arguments. Let us assume that initially, a model gen-
erates correct solutions to a problem. However, the model fails when we rename the function name
to something unrelated to the task e.g “fun”. This failure mode indicates that neither the problem
description was understood nor the model could extract a reasoning pattern out of the given exam-
ples. We associate such cases with memorization bias, where the model relies heavily on replicating
snippets from its training dataset with the same or similar function name.
Description Block. The description of the problem, stands as the second block, marked in green.
The model is expected to form a solution strategy for the presented task by utilizing its natural lan-
guage understanding capabilities. In this block, we observe that removing specific keywords from
the problem description can lead to catastrophic results in model performance. The most interest-
ing cases involve keywords the lack of which, does not degrade the context quality of the problem
description. For example in Figure 1, the removal of the word pair ”the list” creates a description
that is still well understandable by a human coder if the remaining blocks are unaltered. The model
should be able to deduct it from the existence of the word ”list” in the function name and the list
type of input in the example given. We associate such effects with limited abilities of the model to
truly understand the given task, and instead rely on inherent preference bias - frequency of token(s)
in training set - to fill the missing context.
Example Block. As the final block, we consider examples or notes given after the problem descrip-
tion. These act as demonstrations, guiding the model to specific reasoning patterns. Let’s consider a
scenario where some models cannot generate correct code when examples are absent. Arguably, the
model has exhausted its capacity to understand the task and given inputs. In this failure mode, the
provided examples act as a ”reasoning tie-breaker” between proposed solutions the model can gen-
erate. This effect is especially interesting in the case of composite tasks. The model can easily solve
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each task (e.g Figure 1: reverse a list / return the second item of an iterable). However, the request
of combining those tasks seems odd enough, that the model needs extra examples to internally filter
out faulty strategies. We associate such effects with poor generalization.

5.2 FRAMEWORK

Transformations in blocks enable us to repurpose a coding challenge into a test for reasoning failures
and biases. In our method, we extend our tests to modify not only a single but two blocks at a time
so that additional combinations of hints/cues can be explored. Here, we avoid performing changes
in all the Blocks of Influence at the same time; a model stripped of any necessary information cannot
generate a proper solution. Our framework is composed of three modules that operate in two steps.
The first step involves splitting the code instance into the Blocks of Influence. For this, we utilize a
Regex-based module that fully decomposes the code snippet. This is followed by identifying pos-
sible hinting keywords in the Description Block. Ideally, we are interested in unigrams or bigrams
that provide excess information towards completing the coding task. Secondary targets include key-
words that specifically describe a niche task and can act as memorization cues (e.g., if the task of
finding a palindrome is nicknamed ”tacocat”, it is possible that functions with that name exist in
the training set of the model. Such keywords should be removed so that no verbatim code is gen-
erated). For keyword extraction we used Keybert (Grootendorst, 2020), a LLM tasked to perform
keyword extraction and word/context similarity. We further finetuned its checkpoint on code embed-
dings so that more code-specific suggestions are made. However, carelessly removing words from
the code prompt can lead to a non-interesting drop in performance, associated with poor prompt
quality rather than hinting effects. To focus on those effects, we introduce a special filtering stage.
Keywords absent from the Name Block and Example Block, or correspond to adjectives and adverbs
non-related to coding, are of no interest to us. This is achieved with a mixture of hand-crafted rules
and weighted embedding similarity of each keyword with the set of words: [Python, Programming,
Code] again achieved through KeyBert. Words with similarity under 0.7 are considered unrelated
and thus discarded. The first step is presented in Figure 2. As a second step, we implemented a
selector that chooses between the following transformations, and modifies the coding challenge ac-
cordingly (Figure 1):
Drop one. Removes one of the provided keywords from the Description Block. This is repeated
N times where N is the number of identified keywords. The performance drop is reported as an
average of the N generated code instances.
Drop all. Removes all the provided keywords simultaneously from the Description Block
Drop examples. Removes all the provided examples from the Example Block. In the case of any
notes existing alongside the examples, the experiment is repeated twice, with and without the notes,
and the average performance drop is reported.
Anonymize. Replaces the function name with an arbitrary token. We use ”func” in our experi-
ments. Note that the function name is also replaced in the provided examples as well so no leak of
information takes place.

Figure 2: Keyword extraction step: The coding challenge is initially processed by the Blocks of Influence
splitting module (BOI splitter). Keybert, then recieves the Description Block and suggests possible hinting
keywords. Those are subsequently passed through the context-aware filtering module, leaving eligible key-
words finally ready to be used in the transformation step.
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5.3 SEMANTIC PRESERVATION

Preserving semantics is a non-trivial task. Arguably, any of our suggested transformations can de-
stroy local semantics. However, we take significant measures to ensure that global semantics is pre-
served, the challenge is still understandable by a human, and enough information exists towards its
solution. Starting from the anonymization transformation, we tested the hypothesis that the choice of
”func” may potentially bear some intrinsic adversarial effect associated with the training data. We
experimented with other word choice replacements (”action”,”do stuff”, ”XYZ”) and got the same
results. Information needed to solve a challenge is never limited to just the function name. A manual
inspection of the examples often reveals verbatim or near copies of the function name in the problem
description. Furthermore, we identify instances where the function name is closely correlated to the
task at hand, but if taken as the sole source of information, it could rather be misleading. We present
some of such cases in the supplementary material (SectionA.8). In the case of keywords, for each
candidate word, we calculate its embedding similarity with every other non-potential token. Again,
we utilize Keybert as a critic and consider as ”close” any keywords with cosine similarity larger than
0.7. In the case of Drop All, if the same word is identified in multiple locations, the first instance
is not removed. In the special case, a keyword happens to be an argument type (list, integer, tuple,
etc.); we take an additional step of using regular expression matching of that type in the examples.
In the case of a match, the keyword is safe to be removed since the equivalent information already
exists in the challenge.

To quantify how much global semantics is preserved, we employ the following test, inspired by the
work of Yasunaga et al. (2021): We collect a random sample of 200 coding challenges from the
HumanEval and MBPP. Each challenge is then transformed according to the methods presented in
Table 2. Then for the original and every modified version of a challenge, we calculate their log
probability score using a large language model. The main idea in Yasunaga et al. (2021) is that the
model will act as a soft critic, ranking modified prompts by their overall comprehensibility. Poorly
understood modified prompts will be assigned a log probability score far lower than the unmodified
one. Note that we omit results for the Drop Examples method. In this case, the log probabilities will
change rapidly since many tokens are removed, which violates the method’s assumption of moderate
changes. We calculate log probability similarity as: 100 − LogProbMethod−LogProbOriginal

LogProbOriginal

Results in Table 2 show that our transformations do not introduce drastic changes to the challenge.
Even in the most aggressive modification of Anonymization + Drop All, the critic assigns around
95% similarity between code challenges affected by it versus their original form. We believe this is
a fair indicator that the tested models observe semantically similar inputs during our experiments.

Method LogProb Similarity (%)

Original 100.0 (± 0.0)
Anonymization 98.5 (± 1.2)
Drop One 97.3 (± 1.5)
Drop All 95.3 (± 1.9)
Anonymization + Drop One 95.8 (± 1.4)
Anonymization + Drop All 94.6 (± 2.3)

Table 2: Log Probability Similarity scores for different methods of our framework.

6 EXPERIMENTS

6.1 RESULTS ON BLOCK OF INFLUENCE TRANSFORMATIONS

The main results of our experiment are presented in tables 3 and 4 (small / large models). Despite
their simplicity, our transformations cause consistent drops in performance across different model
sizes on both datasets.1 Mere anonymization causes drops of 19% on average in both Pass@1 and
Pass@100 metrics, validating our claims of memorization biases. Single (Drop One) and full key-
word removal (Drop All) reduce models’ performance by 15% and 22% on average, suggesting
their inability to deduct the missing context from Name Block and Example Block. Instead, models
rely on generating arbitrary, commonly used snippets that are vaguely fit for the task. Especially

1We present a full table of results, including Codeparrot (110M), CodeGen(Mono-350M), Bloom(1.7B) and
Codex(v1) in the Appendix section A.4
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interesting are the cases of Drop Examples and Anonymize + Drop Examples, with 15% and 25%
average drops. Both transformations remove the information provided by the docstring examples,
with the latter having the additional restriction of an anonymized function. With the Description
Block unmodified in both cases, these transformations target the models’ abilities to create solutions
based on their natural language understanding. The combination of anonymization with the drop of
all keywords (Anonymize + Drop All) seems to be the most challenging transformation overall, with
drops of approximately 40%. Its primary purpose is to assess the model’s capability of deducting
the missing context of the Description Block by only observing patterns in the examples. These ob-
servations suggest a clear model preference over its sources of information, with the task description
being the primary one. Thus, when a model exhausts its ability to understand the task, it exploits
similarities of the function name with previously seen code solutions. Simultaneously, the model’s
reasoning relies on the example demonstrations, which, as seen from (Anonymize + Drop All), are
not always able to provide clear directives.

Table 3: Model results on Human Eval and MBPP.

Codeparrot (1.5B) Incoder (1.6B) CodeGen-Mono (6B)
Human Eval MBPP Human Eval MBPP Human Eval MBPP

Method Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Original 4.1 17.8 6.1 31.2 11.3 24.2 14.6 56.7 26.1 65.8 42.3 77.3
Drop One 3.9 13.2 4.2 26.8 10.5 22.3 11.5 45.4 18.4 39.3 25.2 65.7
Drop All 3.6 11.1 3.9 21.7 9.7 17.6 12.8 42.1 13.9 34.8 22.4 57.7
Drop Ex 3.7 14.3 5.3 27.5 11.3 22.2 14.4 43.8 20.4 42.3 27.2 61.7
Anon 3.8 12.5 4.7 23.2 9.1 21.8 11.3 45.2 18.2 37.3 24.0 65.6
Anon+Drop One 3.3 9.5 3.9 20.2 7.4 21.5 10.5 44.9 12.6 24.6 15.8 58.6
Anon+Drop All 2.1 8.9 3.9 17.9 6.3 17.5 8.0 41.3 11.5 23.1 14.9 46.3
Anon+Drop Ex 3.7 11.8 4.6 22.8 8.7 21.3 11.2 43.5 16.0 28.3 18.2 60.7

Table 4: Model results on Human Eval and MBPP.

Incoder (6B) Codex (v2) Bloom (176B)
Human Eval MBPP Human Eval MBPP Human Eval MBPP

Method Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Original 15.2 47.0 19.4 65.1 49.4 91.4 60.1 86.3 16.4 57.2 20.8 62.4
Drop One 12.1 35.3 18.9 52.6 36.0 86.2 56.0 79.2 12.8 48.6 15.8 51.4
Drop All 10.2 28.2 15.6 47.0 37.1 73.7 52.1 69.5 11.5 40.2 14.2 44.4
Drop Ex 12.7 29.5 17.4 50.3 41.4 81.0 48.8 70.7 15.2 43.3 15.8 50.1
Anon 11.6 32.9 14.8 50.7 44.5 90.4 57.9 81.7 14.0 48.3 15.1 51.2
Anon+Drop One 8.1 30.6 13.5 46.7 29.8 74.4 51.2 69.5 12.8 41.9 13.6 46.8
Anon+Drop All 7.5 25.2 11.2 38.9 24.2 68.7 47.2 63.8 10.3 36.8 12.6 38.4
Anon+Drop Ex 11.2 28.1 14.5 50.2 34.1 72.5 42.6 70.5 14.0 39.8 14.3 47.8

6.2 TOWARDS BIAS MITIGATION

Inspired by the field of adversarial training, we decided to investigate the effects of using our frame-
work transformations as training augmentations. To this end, we apply our framework to examples
of the MBPP challenge and use them as a finetuning dataset for three different Codeparrot models.
We use HumanEval as our test dataset, which bears no overlap with the MBPP. In this way, our mod-
els have not seen examples of the test set during their training or finetuning steps. In Table 5. We
compare the results of our models before and after finetuning. Models benefit from the introduction
of augmented examples and partially recover from modes of failure caused by the need to rely on
hints. The larger the model, the more its abilities benefit. We believe this effect is closely related
to large language models’ scaling reasoning capabilities together with their parameter size. The
need to rely on hints can be attributed to low data quality or lack of task-specific inductive biases.
However, the capacity to properly understand coding tasks is undoubtedly there. In order to improve
the code generation abilities of models, we thus suggest exposing them to challenges that push their
deductive and reasoning abilities.

When causally training on coding datasets, models condition on multiple functions and declarations
in the same file. The input is a conglomerate of rapidly changing contexts, with each function or
class being a self-contained entity. Subsequently, a model is accustomed to localizing its focus when
trained on such data. As an extension to our previous experiment, in Table 6, we measure the effects
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Table 5: Fine-tuning Codeparrot variants on the modified MBPP dataset: Models are tested on Human Eval,
showing recovery against the perturbations. The average of 15 runs is presented. Bold marks statistically
significant improvements under the T-Test (Before versus After) with a = 0.95.

Codeparrot - 110M Codeparrot - 350M Codeparrot - 1.5B
Pass@1 (T=0.2) Pass@100 (T=0.8) Pass@1 (T=0.2) Pass@100 (T=0.8) Pass@1 (T=0.2) Pass@100 (T=0.8)

Method Before After Before After Before After Before After Before After Before After
Original 3.8 3.7 12.7 12.1 3.8 3.7 13.9 13.7 4.1 4.1 17.8 17.8

Drop One 3.3 3.6 9.7 10.4 3.3 3.6 11.9 12.3 3.9 4.0 13.2 14.1
Drop All 3.1 3.1 7.2 7.9 3.2 3.2 10.1 10.7 3.6 3.7 11.1 12.3
Drop Ex 3.8 3.7 9.9 10.2 3.8 3.7 12.9 12.9 3.7 3.7 14.3 15.1

Anon 3.4 3.5 8.7 9.1 3.6 3.6 11.6 12.2 3.8 3.9 12.5 13.8
Anon+Drop One 3.0 3.4 7.5 7.9 3.0 3.5 8.2 9.4 3.3 3.5 9.5 10.5
Anon+Drop All 1.9 2.0 6.9 6.9 2.0 2.2 8.1 8.3 2.1 2.4 8.9 9.4
Anon+Drop Ex 3.4 3.4 8.7 9.0 3.6 3.6 10.7 11.8 3.7 3.7 11.8 13.7

Table 6: Ablation Study of combined methods of fine-tuning: Results of Bloom (560M) on HumanEval before
and after the modified MBPP and long-description DMCC examples. The average of 15 runs is presented. Bold
marks statistically significant improvements under the T-Test (Before versus +DMCC) with a = 0.95.

Pass@1 (T=0.2) Pass@100 (T=0.8)

Method Before +MBPP +DMCC Before +MBPP +DMCC
Original 3.7 3.6 3.6 12.1 12.1 12.0

Drop One 3.1 3.6 3.6 10.3 10.9 10.9
Drop All 2.4 2.4 2.9 9.2 9.1 9.7
Drop Ex 3.0 3.0 3.0 11.0 11.3 11.5

Anon 2.5 3.0 3.6 10.7 10.9 11.3
Anon+Drop One 1.9 2.3 2.4 7.8 9.1 9.7
Anon+Drop All 1.8 1.8 2.3 7.0 7.2 8.3
Anon+Drop Ex 2.4 2.9 3.0 9.7 10.3 11.4

of using a long description dataset, DMCC, as a finetuning target. By training on long descriptions
of natural language, we promote the context-deducting skills of the model under test. A model able
to widen its focus can avoid distractions caused by missing keywords since it will not rely heavily
on internal biases but on context understanding. We choose Bloom as the model under test since
it was not explicitly tuned for code generation but rather general language understanding. In Ta-
ble 6, we present results of finetuning on MBPP, modified by our framework. We observe similar
performance improvements as in Table 5. We experiment again, this time combining both MBPP
and DMCC examples. We show that incorporating examples of more extended context leads to
even better performance against transformations targeting the Description Block and language un-
derstanding. Similar experiments were conducted with the CodeParrot variants but were unfruitful.
We attribute this to the restricted focus regarding training data (exclusively Python3 code) and archi-
tectural differences between the models. We believe that the merging benefits of our two proposed
setups can serve as an interesting direction towards model resilience in code generation scenarios.

7 CONCLUSIONS

We present a simple approach to isolate cues and benchmark the reasoning of code generation mod-
els through input-level transformations. Our method treats code examples as a combination of three
blocks, each providing different cues to the model. We show that minor transformations can lead
models to failure, signifying the existence of biases. Our framework can automatically identify
and remove keywords responsible for indirect hinting. We show that popular models with solid
results on challenging coding challenges are susceptible to our tests, with their performance degrad-
ing noticeably. Moreover, we studied the effects of utilizing our proposed transformations during
the fine-tuning of a model. Models can benefit from our proposed changes, with the effect propor-
tional to their parameter size. We believe that, despite their success, code generation systems with
LLMs as backbones inherit some of their biases and modes of failure. Training on structured and
well-documented code, combined with our proposed techniques, is a promising direction towards
reliable code generation. Although an ideal fit for competition-style challenges, our method can
be extended to support less formatted high-quality codebases (e.g. GitHub repositories). A short
analysis can be found in the Appendix section A.1
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(a) Anonymize in Codex (v2): In its completion, the model generates some basic reasoning checks ( If the sum
is not divisible by two, return False) but relies purely on the examples given for the final solution.

(b) Example drop in Codex (v1): The model exhibits signs of task comprehension, by comparing pairs of
differences with the threshold variable. The presence of examples is crucial however, since only then the model
proceeds to correctly check each item combination instead of a sequential check.

(c) Drop All in Bloom (175B): After the removal of the keywords, the context of the task remains intact: The
two strings keyword can be assumed by observing the function arguments, and the binary / string keywords
by the examples and return type signature of the function. Nevertheless, the model fails to generate a correct
solution.

(d) Anonymize + Drop Examples in Incoder 6B: Using only natural language understanding of the problem
description, the model creates partially informed subparts that are not combined correctly to solve the final
task, signifying that hints from the function name / examples are used in the original solution.

9
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A APPENDIX

A.1 EXTENSION TO OPEN-SOURCE CODE

Although an ideal fit for competition-style challenges, our method can be extended to support less
formatted high-quality codebases (e.g. GitHub repositories). Large files can be broken down into
individual functions/classes, each further analyzed into Blocks of Influence. In such codebases,
function names should be closely relevant to their purpose. The existence of meaningful docstrings
is crucial, the absence of which promotes more memorization and biases as we exhibited. Moreover,
the input/output checks contained in function unit tests can be repurposed as function examples.
Keywords can be chosen similarly, with the context being co-informed by both local and larger
scopes.

A.2 INFORMATION ON MODELS AND DATASETS

Model Name Link

KeyBert (Grootendorst, 2020) https://github.com/MaartenGr/KeyBERT
Codeparrot (Tunstall et al., 2022b) https://huggingface.co/codeparrot/codeparrot
InCoder (Fried et al., 2022) https://github.com/dpfried/incoder
CodeGen (Nijkamp et al., 2022) https://github.com/salesforce/CodeGen
Codex-V2 (Chen et al., 2021) https://beta.openai.com/

Table 7: URLs to Models. Table shows the URLs of models used in our investigations.

Name #Problems #Tests per Problem Avg. desc. length Avg. keywords

HumanEval (Chen et al., 2021) 164 8 449 4
MBPP (Austin et al., 2021) 1000 3 235 4
DMCC (Train / Python3) (Li et al., 2022) 8139 85 1480 9

Table 8: Datasets used in experiments. We present the number of problems, number of tests per
problem, average length of the challenge description and average distinct keywords identified by
our framework.

A.3 QUALITATIVE EXAMPLES

We present examples of code generation failures caused by our framework across different models
and scenarios. On each pair, the left image represents the original, unmodified challenge alongside
the correctly generated solution. The right image contains the modified version of the challenge and
the incorrect completion. Note that items that are the targets of our transformations are marked in
green in the original challenge and red on the modified one. In the case of anonymization, the items
are replaced by func, and in any other case are just removed.
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Figure 4: Instance of anonymization effect on Codex-V2.
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Figure 5: Instance of anonymization on Incoder-6B
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Figure 6: Instance of dropping the prompt examples on Codex-V2
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Figure 7: Instance of dropping the prompt examples on CodeParrot-1.7B
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Figure 8: Instance of anonymization and keyword drop on Bloom-1.7B
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Figure 9: Instance of dropping the prompt examples on CodeParrot-110M
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Figure 11: Instance of keyword drop on Incoder-1.6B
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A.4 QUANTATIVE RESULTS

We present our full results table, including the CodeParrot(110M) and Codex(v1) results. Note here
that experiments involving the large version of the Bloom Model were done once in the case of
pass@100 metric due to restrictions with the API request limits.

Human Eval MBPP

Model Method
of Attack

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Codeparrot (110M) (Tunstall et al., 2022b) Original 3.8 12.7 5.1 26.2
Drop One 3.3 (±0.1) 9.7 (±0.3) 4.1 (±0.1) 16.3 (±0.5)
Drop All 3.1 (±0.1) 7.2 (±0.5) 3.9 (±0.1) 15.7 (±0.7)
Drop Ex 3.8 (±0.0) 9.9 (±0.2) 5.0 (±0.0) 18.4 (±0.3)
Anon 3.4 (±0.1) 8.7 (±0.2) 4.4 (±0.1) 16.1 (±0.5)
Anon+Drop One 3.0 (±0.1) 7.5 (±0.5) 4.0 (±0.1) 13.6 (±1.1)
Anon+Drop All 1.9 (±0.2) 6.9 (±0.5) 3.9 (±0.2) 12.0 (±1.5)
Anon+Drop Ex 3.4 (±0.1) 8.7 (±0.3) 4.3 (±0.2) 16.1 (±0.8)

CodeGen-Mono (350M) (Nijkamp et al., 2022) Original 12.7 35.2 19.2 59.4
Drop One 7.1(±0.1) 31.1(±0.4) 10.7 (±0.1) 42.9 (±0.7)
Drop All 5.5(±0.1) 24.5(±0.6) 9.4 (±0.2) 38.5 (±0.7)
Drop Ex 8.3(±0.1) 29.8(±0.4) 11.7 (±0.1) 43.6 (±0.7)
Anon 6.1(±0.2) 29.8(±0.5) 12.6 (±0.1) 42.6 (±0.8)
Anon+Drop One 4.8(±0.2) 28.4(±0.6) 7.6 (±0.2) 39.4 (±1.3)
Anon+Drop All 3.4(±0.2) 22.1(±0.7) 6.8 (±0.3) 35.8 (±1.6)
Anon+Drop Ex 5.2(±0.2) 29.2(±0.6) 7.3 (±0.2) 40.5 (±1.1)

Codeparrot (1.5B) (Tunstall et al., 2022b) Original 4.1 17.8 6.1 31.2
Drop One 3.9 (±0.1) 13.2 (±0.4) 4.2 (±0.2) 26.8 (±0.8)
Drop All 3.6 (±0.3) 11.1 (±0.6) 3.9 (±0.2) 21.7 (±1.1)
Drop Ex 3.7 (±0.0) 14.3 (±0.2) 5.3 (±0.0) 27.5 (±0.7)
Anon 3.8 (±0.1) 12.5 (±0.2) 4.7 (±0.2) 23.2 (±0.9)
Anon+Drop One 3.3 (±0.2) 9.5 (±0.7) 3.9 (±0.1) 20.2 (±1.5)
Anon+Drop All 2.1 (±0.3) 8.9 (±1.1) 3.9 (±0.2) 17.9 (±1.8)
Anon+Drop Ex 3.7 (±0.2) 11.8 (±0.9) 4.6 (±0.1) 22.8 (±0.9)

Bloom (1.7B) (Tunstall et al., 2022b) Original 4.3 14.6 6.6 37.2
Drop One 3.0 (±0.2) 12.2 (±0.6) 2.7 (±0.3) 27.6 (±1.2)
Drop All 2.4 (±0.3) 9.8 (±0.9) 2.6 (±0.3) 24.2 (±1.8)
Drop Ex 3.6 (±0.1) 12.8 (±0.5) 3.1 (±0.2) 29.0 (±0.9)
Anon 3.6 (±0.1) 11.6 (±0.5) 3.1 (±0.1) 27.5 (±1.1)
Anon+Drop One 2.4 (±0.3) 9.1 (±1.1) 2.4 (±0.5) 25.3 (±1.8)
Anon+Drop All 1.8 (±0.5) 8.5(±1.3) 2.0 (±0.6) 23.1 (±2.3)
Anon+Drop Ex 3.4 (±0.2) 11.6 (±0.6) 3.0 (±0.3) 26.7 (±1.3)

Incoder (1.6B) (Fried et al., 2022) Original 11.3 24.2 14.6 56.7
Drop One 10.5 (±0.1) 22.3 (±0.9) 11.5(±0.4) 45.4 (±1.1)
Drop All 9.7 (±0.3) 17.6 (±1.2) 12.8 (±0.6) 42.1 (±1.9)
Drop Ex 11.3 (±0.2) 22.2 (±1.5) 14.4(±0.3) 43.8 (±0.7)
Anon 9.1 (±0.1) 21.8 (±0.8) 11.3 (±0.5) 45.2 (±0.8)
Anon+Drop One 7.4 (±0.7) 21.5 (±1.8) 10.5 (±0.6) 44.9 (±2.4)
Anon+Drop All 6.3 (±0.9) 17.5 (±2.2) 8.0 (±0.8) 41.3(±2.5)
Anon+Drop Ex 8.7 (±0.5) 21.3 (±1.6) 11.2 (±0.5) 43.5(±1.0)

Table 9: First part of results on Human Eval (Chen et al., 2021) and MBPP (Shin et al., 2019)
datasets, for four tested models.
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Human Eval MBPP

Model Method
of Attack

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Incoder (6B) (Fried et al., 2022) Original 15.2 47.0 19.4 65.1
Drop One 12.1 (±0.3) 35.3 (±1.2) 18.9 (±0.5) 52.6 (±1.1)
Drop All 10.2 (±0.5) 28.2 (±1.4) 15.6 (±0.5) 47.0 (±1.9)
Drop Ex 12.7 (±0.3) 29.5 (±0.9) 17.4 (±0.3) 50.3 (±0.7)
Anon 11.6 (±0.2) 32.9 (±0.9) 14.8 (±0.6) 50.7 (±0.8)
Anon+Drop One 8.1 (±0.7) 30.6 (±1.7) 13.5 (±0.7) 46.7 (±2.4)
Anon+Drop All 7.5 (±1.3) 25.2 (±2.3) 11.2 (±1.1) 38.9 (±2.5)
Anon+Drop Ex 11.2 (±0.4) 28.1 (±1.1) 14.5 (±0.5) 50.2 (±1.0)

CodeGen-Mono (6B) (Nijkamp et al., 2022) Original 26.1 65.8 42.3 77.3
Drop One 18.4 (±0.3) 39.3 (±0.9) 25.2 (±0.5) 65.7 (±1.2)
Drop All 13.9 (±0.4) 34.8 (±1.3) 22.4 (±0.6) 57.7 (±1.6)
Drop Ex 20.4 (±0.3) 42.3 (±1.1) 27.2 (±0.5) 61.7 (±1.1)
Anon 18.2 (±0.3) 37.3 (±1.0) 24.0 (±0.5) 65.6 (±1.3)
Anon+Drop One 12.6 (±0.5) 24.6 (±1.4) 15.8 (±0.7) 58.6 (±2.2)
Anon+Drop All 11.5 (±0.8) 23.1 (±1.9) 14.9 (±0.8) 46.3 (±2.6)
Anon+Drop Ex 16.0 (±0.5) 28.3 (±1.6) 18.2 (±0.7) 60.7 (±1.8)

Codex (v1) (Chen et al., 2021) Original 39 82.9 51.7 83.4
Drop One 29.2 (±0.2) 78 (±1.3) 48.3 (±0.4) 78.7 (±1.0)
Drop All 30 (±0.4) 67.2 (±1.7) 33.9 (±0.8) 67.3 (±1.9)
Drop Ex 32.9 (±0.1) 73.7 (±1.1) 42.1 (±0.2) 70.1 (±0.9)
Anon 35.3 (±0.1) 81.7 (±1.2) 50.8 (±0.2) 81.5 (±1.2)
Anon+Drop One 23.7 (±0.5) 67.0 (±2.3) 44.1 (±0.7) 67.7 (±2.6)
Anon+Drop All 19.5 (±0.9) 62.1 (±2.7) 40.7 (±1.4) 61.4 (±3.1)
Anon+Drop Ex 27.4 (±0.3) 65.2 (±1.6) 36.7 (±0.3) 67.7 (±1.5)

Codex (v2) (Chen et al., 2021) Original 49.4 91.4 60.1 86.3
Drop One 36.0 (±0.1) 86.2 (±0.8) 56.0 (±0.3) 79.2 (±1.1)
Drop All 37.1 (±0.3) 73.7 (±1.3) 52.1 (±0.6) 69.5 (±1.8)
Drop Ex 41.4 (±0.1) 81.0 (±1.1) 48.8 (±0.3) 70.7 (±0.9)
Anon 44.5 (±0.2) 90.4 (±1.1) 57.9 (±0.3) 81.7 (±1.0)
Anon+Drop One 29.8 (±0.7) 74.4 (±2.1) 51.2 (±1.1) 69.5 (±2.3)
Anon+Drop All 24.2 (±0.8) 68.7 (±2.8) 47.2 (±1.3) 63.8 (±3.0)
Anon+Drop Ex 34.1 (±0.3) 72.5 (±1.1) 42.6 (±0.4) 70.5 (±1.3)

Bloom (176B) (Tunstall et al., 2022b) Original 16.4 57.2 20.8 62.4
Drop One 12.8 (±0.3) 48.6 15.8 (±0.3) 51.4
Drop All 11.5 (±0.6) 40.2 14.2 (±0.5) 44.4
Drop Ex 15.2 (±0.2) 43.3 15.8 (±0.2) 50.1
Anon 14.0 (±0.3) 48.3 15.1 (±0.1) 51.2
Anon+Drop One 12.8 (±0.4) 41.9 13.6 (±0.7) 46.8
Anon+Drop All 10.3 (±0.8) 36.8 12.6 (±1.1) 38.4
Anon+Drop Ex 14.0 (±0.3) 39.8 14.3 (±0.3) 47.8

Table 10: Second part of results on Human Eval (Chen et al., 2021) and MBPP (Shin et al., 2019)
datasets, for four tested models.
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A.5 FEW INTERESTING EXAMPLES

Figure 12: Bloom (175B) using Javascript instead of Python3 to complete a function with the Anonymize
transformation.

Figure 13: Incoder (6B) disclosing the name of a file as well as some human-like questions when faced with a
Anonymize + Drop One transformation.
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Figure 14: Incoder (1.6B) adding some snippet of ambiguous functionality followed by something that looks
like some exercise comments.

Figure 15: Three different instances of Codex (v1) completions to an anonymized problem.
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A.6 ALGORITHMS

Algorithm 1 Block of Influence Splitting

1: cc ∶ Code Challenge Instance
# Locate function name, which is the next token after the last matched ”def”, and keep start and
end index of it.

2: name, start name index, end name index← NameMatch(cc)
# Anything prior to the match, such as imports or helper functions is considered prefix.

3: prefix← cc[∶ start name index]
# Look for tokens such as (Example, example, >,≫ and⋙).

4: if ExampleMatch(cc[end name index ∶]) ≠ None then
5: examples, start example index← ExampleMatch(cc[end name index ∶])
6: else

#If no matches were found, look for uses of the function name in the challenge.
7: examples, start example index← FunctionMatch(cc[end name index ∶])
8: end if

# The description should fall between the function name and the examples.
9: description← cc[end name index ∶ start example index]

# Form the blocks and return.
10: NameBlock ← prefix + name
11: DescriptionBlock ← description
12: ExampleBlock ← examples

Algorithm 2 Keyword Identification

1: KB ∶ The KeyBert model
2: nb ∶ Name Block
3: db ∶ Description Block
4: eb ∶ Example Block
5: kw ∶← ∅ Keywords
6: fkw ∶← ∅ Filtered Keywords

# Use the model to extract some initial unigram and bigram keywords.
7: kw ←KB(db)

# Filter out keywords non-related to coding.
8: for i in kw do
9: if cossim(i, [Python,Programming,Code]) > 0.7 then

# Look for similar word stems, or python language equivalents (e.g list → [], set → ()) in the
name block and example block

10: if stem(i) ∈ [nb, eb] or equiv(i) ∈ [nb, eb] then
11: fkw ← i
12: end if
13: end if
14: end for
15: return
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Algorithm 3 Transformation and Execution

1: CM ∶ The code generation model
2: cc ∶ A coding challenge instance
3: nb ∶ Name Block
4: fkw ∶ Filtered Keywords
5: db ∶ Description Block
6: eb ∶ Example Block
7: org pa1 ∶ Original Pass@1 score
8: tra pa1 ∶ Transformed Pass@1 score
9: org pa100 ∶ Original Pass@100 score

10: tra pa100 ∶ Transformed Pass@1 score
11: mode ∶ The transformation mode

# Measure initial performance on the challenge
12: org pa1, org pa100← CM(cc, T = 0.2),CM(cc, T = 0.8)
13: if mode = 0 then # Anonymization
14: cc new ← swap(nb,”func”) + db + eb
15: else if mode = 1 then# Drop One
16: cc new ← nb + remove kw(db, choose single(fkw)) + eb
17: else if mode = 2 then# Drop All
18: cc new ← nb + remove kw(db, fkw) + eb
19: else if mode = 3 then# Drop Examples
20: cc new ← nb + db
21: else if mode = 4 then# Anonymization + Drop One
22: cc new ← swap(nb,”func”) + remove kw(db, choose single(fkw)) + eb
23: else if mode = 5 then# Anonymization + Drop All
24: cc new ← swap(nb,”func”) + remove kw(db, fkw) + eb
25: else if mode = 6 then# Anonymization + Drop Examples
26: cc new ← swap(nb,”func”) + db
27: end if
28: tra pa1, tra pa100← CM(cc new,T = 0.2),CM(cc new,T = 0.8)

29: dif 1← tra pa1−org pa1
tra pa1

30: dif 100← tra pa100−org pa100
tra pa100

31: return dif 1, dif 100

23



Under review as a conference paper at ICLR 2023

A.7 NON-AUGMENTED FINE-TUNING AS A DEFENSE MECHANISM

We decided to repeat the experiments conducted in Section 6.2, but without including any of our data
augmentation techniques during finetuning. We observe that under this setup, models do not exhibit
any significant improvement against our method’s perturbations. Our suggested data augmentations
that push the reasoning limits of the models are thus a valid alternative to simple fine-tuning.

Table 11: Results of fine-tuning Codeparrot Models on the non-modified MBPP dataset. Each model
is tested again on Human Eval

Codeparrot - 110M Codeparrot - 350M Codeparrot - 1.5B
Pass@1 (T=0.2) Pass@100 (T=0.8) Pass@1 (T=0.2) Pass@100 (T=0.8) Pass@1 (T=0.2) Pass@100 (T=0.8)

Method Before After Before After Before After Before After Before After Before After
Original 3.8 3.7 12.7 12.1 3.8 3.7 13.9 13.7 4.1 4.1 17.8 17.8

Drop One 3.3 3.2 9.7 9.7 3.3 3.3 11.9 11.9 3.9 3.9 13.2 13.2
Drop All 3.1 3.1 7.2 7.2 3.2 3.2 10.1 10.0 3.6 3.6 11.1 11.1
Drop Ex 3.8 3.7 9.9 9.9 3.8 3.8 12.9 12.9 3.7 3.7 14.3 14.3

Anon 3.4 3.4 8.7 8.7 3.6 3.6 11.6 11.6 3.8 3.8 12.5 12.5
Anon+Drop One 3.0 2.8 7.5 7.5 3.0 2.8 8.2 8.2 3.3 3.3 9.5 9.5
Anon+Drop All 1.9 1.9 6.9 6.9 2.0 2.0 8.1 8.0 2.1 2.1 8.9 8.8
Anon+Drop Ex 3.4 3.3 8.7 8.7 3.6 3.6 10.7 10.7 3.7 3.7 11.8 11.8

Table 12: Results of fine-tuning Bloom (560M) to non-modified MBPP and DMCC examples.

Pass@1 (T=0.2) Pass@100 (T=0.8)

Method Before +MBPP +DMCC Before +MBPP +DMCC
Original 3.7 3.6 3.6 12.1 12.1 12.0

Drop One 3.1 3.1 3.1 10.3 10.3 10.3
Drop All 2.4 2.3 2.3 9.2 9.1 9.1
Drop Ex 3.0 3.0 3.0 11.0 11.0 11.0

Anon 2.5 2.5 2.6 10.7 10.7 10.8
Anon+Drop One 1.9 1.9 1.9 7.8 7.8 7.8
Anon+Drop All 1.8 1.8 1.8 7.0 7.0 7.0
Anon+Drop Ex 2.4 2.4 2.4 9.7 9.7 9.7
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A.8 ON THE EFFECT OF FUNCTION NAMES

Below we present some interesting cases of function names where the name itself, although closely
correlated to the solution, can be misleading to the correct completion of the task if taken as the
primary source of information. We provide our intuitions and completions from Codex-v2 when
asked to generate a function based only on its name.

• Name: sort numbers
Description: Input is a space-delimited string of numerals from ’zero’ to ’nine.’ Valid
choices are ’zero,’ ’one,’ ’two,’ ’three,’ ’four,’ ’five,’ ’six,’ ’seven,’ ’eight,’ and ’nine.’ Re-
turn the string with numbers sorted from smallest to largest.
Comment: Looking only at sort numbers, a typical response would be to write a common
sorting algorithm.
Most common Codex completions @ (T=0.2, p=0.95) and @ (T=0.6, p=0.95):

def sort_numbers(l):
return sorted(l, key=lambda x: x[1])

def sort_numbers(l):
return sorted(l, key=int)

• Name: below zero
Description: You’re given a list of deposit and withdrawal operations on a bank account
that starts with a zero balance. Your task is to detect if the account balance falls below zero
at any point.
Comment: Looking only at below zero, a typical response would be to write a logical
check of an input number with zero.
Most common Codex completions @ (T=0.2, p=0.95) and @ (T=0.6, p=0.95):

def below_zero(x):
return x < 0

def below_zero(x):
if x > 0:

return False
else:

return True

• Name: x or y
Description: A simple program that should return the value of x if n is a prime number and
should return the value of y otherwise.
Comment: Looking only at x or y, a typical response would be to write a logical check of
x ∧ y.
Most common Codex completions @ (T=0.2, p=0.95) and @ (T=0.6, p=0.95):

def x_or_y(x,y,n):
if x == n:

return y
elif y == n:

return x
else:

return n

def x_or_y(x,y,n):
if n == 1:

return x
elif n == 2:

return y
else:

return None
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• Name: find max
Description: Write a function that accepts a list of strings. The list contains different
words. Return the word with the maximum number of unique characters. If multiple
strings have the maximum number of unique characters, return the one which comes first
in lexicographical order.
Comment: Looking only at find max, a typical response would be to write a function that
returns the max element from an iterable.
Most common Codex completions @ (T=0.2, p=0.95) and @ (T=0.6, p=0.95):

def find_max(words):
max_len = 0
max_word = ''
for word in words:

if len(word) > max_len:
max_len = len(word)
max_word = word

return max_word

def find_max(words):
max=0
for word in words:

if len(word) > max:
max=len(word)

return max

A.9 LOOKING FOR COPYING PATTERNS IN OPEN-SOURCE DATASET

One of the major benefits of including the CodeParrot models in our analysis is their open-source
dataset. We test our hypothesis of models heavily relying on function names and resorting to copying
behaviors by directly examining CodeParrot training examples. Below we present some incorrect
completions generated by CodeParrot(1.5B) and the ”heavily inspired” files where the responses
were found. Note that in the case of anonymization, responses differ.

• 1 - CodeParrot Completion
def generate_random_string(s):

"Write a function that generates a random string using the
seed s."↪

return " ".join(random.sample(string.ascii_letters +
string.digits,s))↪

This is found in:
’blockly/appengine/storage.py’
’Android/platforms/android/assets/www/Blockly/appengine/storage.py’

CodeParrot Completion Anonymized
def func(s):

"Write a function that generates a random string using the
seed s."↪

return random.choice(s)

• 2 - CodeParrot Completion
def perimeter(s):

"Return the perimeter of a square with side length s."
return perimeter(s).magnitude()

This is found in:
‘bretglun/fwqpbo/fatWaterSeparation.py’
’indico/numpy/distutils/tests/test misc util.py’

CodeParrot Completion Anonymized
def func(s):

"Return the perimeter of a square with side length s."
return (s * 0.5)
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• 3 - CodeParrot Completion
def tostring(element):

"Convert the given element to string representation"
return str(element.toxml())

This is found in:
‘warrior/Framework/Utils/xml Utils.py’

CodeParrot Completion Anonymized
def func(s):

"Convert the given element to string representation"
return str(element)

• 4 - CodeParrot Completion
def add(s, p):

"Add s to p and return the result"
if not s:

return None
if not isinstance(p, list):

p = [p]
p.append(s)

return

This is found in:
’couchpotato/core/plugins/status/main.py’
’modules/wifi/nano-c047.12/WiFiEngine/tools/axfbin.py’

CodeParrot Completion Anonymized
def func(s):

"Add s to p and return the result"
return s + p

• 5 - CodeParrot Completion
def count_distinct_characters(string: str):

"Given a string, find out how many distinct characters
(regardless of case) does it consist of"↪

count = 0
for char in string:
if char in string:

count += 1
return count

This is found in:
’desktop/core/ext-py/guppy-0.1.10/guppy/heapy/Prof.py’
’cpp/scons/scons-local-2.0.0.final.0/SCons/Util.py’

CodeParrot Completion Anonymized
def func(string: str):

"Given a string, find out how many distinct characters
(regardless of case) does it consist of"↪

return len(re.findall(r"[ˆa-zA-Z0-9]", string))
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