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ABSTRACT

Despite the great advances in the machine learning field over the past decade,
deep learning algorithms are often vulnerable to data corruption in real-world
environments. We propose a simple yet efficient data augmentation method named
Exponential Smoothing on Perturbations (ESP) that imposes perturbations on
training data to enhance a model’s robustness to unforeseen data corruptions. With
the perturbation on the input side, the target label of a sample is smoothed with an
exponentially decaying confidence level with respect to the size of the perturbation.
ESP enforces a contour-like decision boundary that smoothly encompasses the
region around inter-class samples. We theoretically show that perturbations in input
space can encourage a model to find a flat minimum on the parameter space, which
makes a model robust to domain shifts. In the extensive evaluation on common
corruption benchmarks including MNIST-C, CIFAR-10/100-C, and Tiny-ImageNet-
C, our method improves the robustness of a model both as a standalone method
and in conjunction with the previous state-of-the-art augmentation-based methods.
ESP is a model-agnostic algorithm in the sense that it is neither model-specific nor
data-specific.

1 INTRODUCTION

Over the past decade, deep learning models have rapidly evolved to update state-of-the-art perfor-
mance on a wide range of machine learning tasks, including computer vision, natural language
processing, reinforcement learning, etc. Despite the remarkable advances in learning algorithms,
deep models are often prone to data corruptions that hinder the successful training of networks.
Albeit the importance of robust training, it is very recent that the robustness of deep models to real-
world-driven data corruption has gained attention in the machine learning society. The vulnerability
of the deep neural network (DNN) against adversarial perturbations was first raised way back in
the early 2010s (Szegedy et al., 2013; Goodfellow et al., 2015), and numerous methods have been
proposed to enhance the model’s robustness since then (Cui et al., 2021; Salman et al., 2020; Madry
et al., 2018). On the other hand, the benchmarks for evaluating DNN’s robustness to real-world
driven common corruptions such as noise, blur, fog, etc., have been only recently established for the
image classification tasks (Hendrycks & Dietterich, 2019; Mu & Gilmer, 2019), and algorithms to
improve the model robustness against the common corruptions are at their early stage of development
(Hendrycks et al., 2021b;a; Rusak et al., 2020; Wang et al., 2021a).

Recent approaches for improving the robustness to common corruptions in the image classification
tasks either utilize image augmentation methods (Hendrycks et al., 2021b;a; Rusak et al., 2020;
Calian et al., 2021), propose novel model architectures (Kim et al., 2021; Mao et al., 2021; He et al.,
2021), or adopt the adaptation learning settings (Wang et al., 2021a; Rusak et al., 2021). While it
is not yet revealed what the most dominant strategy against common corruption is, the group of
augmentation-based methods shares the desirable property that it can be easily combined with other
promising methods to further enhance the model’s robustness. In this aspect, augmentation-based
methods can be regarded as model-agnostic algorithms with a wide range of applicability. In addition,
empirical evidence demonstrates that exploiting diverse data augmentations can effectively enhance
the model’s robustness against common corruptions in many real-world scenarios (Hendrycks et al.,
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Figure 1: Visualization of the decision boundaries of the classifiers trained with the original dataset
(denoted as ‘Naive’), the augmented dataset with random noise with fixed L, distance (denoted as
‘Ly’), and the augmented dataset with our method (denoted as ESP). The spiral-like distributed inputs
from two classes are generated for the original dataset. The decision boundaries of the different
classifiers are illustrated. (a) ESP enforces a contour-like decision boundary which generalizes better
than Ls. (b) ESP is less sensitive to the maximum perturbation size compared to L.

2021a; Calian et al., 2021). However, there has been weak theoretical understanding on how such
data augmentations can enhance the model robustness.

We propose a method named Exponential Smoothing on Perturbations (ESP) that introduces the
data perturbation in the form of Lo distance-based stochastic noises on the input space. Also, ESP
smoothes the confidence level of the target label for the perturbed input to be decaying with respect
to the size of the perturbation. In addition, we theoretically show that input perturbations that have
bounded Ls norm can make a model find flatter minima in the parameter space. A model with flat
minima has a strong domain generalization capability (Cha et al., 2021a) and robustness to adversarial
examples (Stutz et al., 2021).

In the extensive simulations on the common corruption benchmarks, including MNIST-C (Mu &
Gilmer, 2019) and CIFAR-10/100-C (Hendrycks & Dietterich, 2019), and Tiny-ImageNet-C, a
standalone ESP or a combined model in conjunction with prior data augmentation methods achieves
state-of-the-art accuracies with considerable margins. The main contribution of this paper is threefold:

* We provide a new perspective on label smoothing (Szegedy et al., 2016) as a tool to embed
the uncertainty of data perturbations in the input space. Furthermore, we show that the
optimal decision boundary formed by the label smoothing function of ESP makes the
classifier more affected by the topologies of manifolds and less affected by the number of
datapoints in manifolds.

* We demonstrate that our method ESP, is at least effective as Lo distance based perturbations
both empirically and theoretically. With minimal assumptions and implications on the nature
of datasets and models, ESP is shown to improve model robustness in common corruption
benchmarks in all experiment cases further than Lo noise.

* We analyze how perturbations in input space can be related to perturbations in parameter
space. It has been proved that finding flat minima in the parameter space makes classifier
robust against distribution shifts in the test dataset (Cha et al., 2021b). We partially formalize
the above idea by considering how the perturbation regions in the input space and parameter
space can be related to each other via a linear model.

2 RELATED WORK

Recently, various strategies for enhancing model robustness have been suggested. Here, we categorize
prior methods into three types: data augmentation-based, model-specific, and adaptation-based
approaches.

Data Augmentation-based Approaches The most popular approach to increase model robustness
is augmenting training data to mimic the corruptions as a form of data transformation. AugMix of
Hendrycks et al. (2021b) is an image augmentation method that composes randomly-sampled basic
image processing operations to produce a novel image that maintains the semantic information of the
original image sample. In the training phase, AugMix utilizes the generated novel image samples
located around the original sample in the input space. To be specific, the divergence between the
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posterior distributions of the original and augmented samples is minimized for a model to embed
the augmented samples close to the original one. When we compare Exponential Smoothing on
Perturbations (ESP) with AugMix, our method adopts a simpler form of augmentation with Lo-
norm-bounded perturbations on the input space and directly trains the augmented sample with the
exponentially smoothed soft label.

Another group of approaches leverages parameterized models for data augmentation. DeepAugment
of Hendrycks et al. (2021a) distorts the image using a pretrained image-to-image transforming model
to generate augmented images. Besides, DeepAugment adopts the perturbations on networks by
employing predefined processes of hidden signals such as zeroing, negating, transposing, etc. The
main differences between ESP and DeepAugment are the utilization of parameterized augmentation
methods and the perturbations on networks. In the view of augmentation, ESP does not require
additional deep networks for transforming original images. In our theoretical analysis, we provide an
insight that relates the bounded perturbations on input via ESP to the perturbations in the parameter
space. On the other hand, DeepAugment introduces model perturbations by processing the hidden
signals, which are not restricted to the form of Lo-norm bounded perturbation in the parameter space.
Also, the robustness of DeepAugment is not theoretically guaranteed. Adversarial Noise Training
(ANT) of Rusak et al. (2020) trains an additional noise generator that produces adversarial noise that
maximally confuses the classifier. ANT is related to our method where they focus on imposing the
noise-based perturbations on the input space. However, ESP explicitly smooths the target label with
respect to the size of the perturbation and does not require additional training of a noise generator.
ESP is neither model-specific nor data-specific when compared to ANT which relies on model- and
data-specific noise generator.

Mixup of Zhang et al. (2018) linearly interpolates between two data points from different classes
and trains a classification model on the dataset that includes combined samples. The interpolated
image is labeled by the interpolation between two one-hot labels of the original data samples. Mixup
differs from our method, where the two samples are interpolated to construct a novel training sample.
From the perspective of the label smoothing by ESP, Mixup also smooths the target label of the
combined sample by interpolating the original labels. However, Mixup suffers from the manifold
intrusion problem due to the conflict between the interpolated manifold and other original manifolds
(Hendrycks et al., 2021b). ESP can alleviate the manifold intrusion problem by choosing a proper
perturbation size and the degree of smoothing on the input space.

Model Architecture-based Approaches Another branch of approaches is developing a model-
specific training scheme. Based on the clean image samples, QualNet of Kim et al. (2021) pretrains
a classifier with the invertible architecture and inverts it to obtain a decoder that is capable of
reconstructing original images from the corresponding feature vectors. The prepared decoder is
used as a reconstruction module that takes the features from a new target classifier to be trained in
the second stage. Even from the corrupted input samples with low quality, the target classifier is
then trained to construct clean-like features that can be decoded into high-quality images. Vision
transformer of (Dosovitskiy et al., 2021) has recently gained attention in building a robust vision
classifier. Some works have changed the components of vision transformers to gain robustness (Mao
et al., 2021; Zhou et al., 2022; Mao et al., 2022), while others have designed self-supervised tasks for
vision transformers (He et al., 2021). Despite the fact that the vision transformer-based approaches
have been continuously updating their remarkable performance on common corruption benchmarks,
they suffer from deficient generalizability. The group of model-specific methods relies on carefully
designed model architectures so that they have limitations to be combined with other methods.

Domain Adaptation-based Approaches The other approach borrows the concept of domain adap-
tation to improve model robustness. Test Entropy Minimization (TENT) of Wang et al. (2021a) is
a domain adaptation method that tunes the parameters of the batch normalization layers in the test
time. The adaptation method indeed enhances the generalization capability to the common corruption
that can be considered as input domain shifts. Robust Pseudo Labeling (RPL) of Rusak et al. (2021)
assumes the unsupervised domain adaptation setting and exploits a self-learning method for training
classifiers. The branch of adaptation-based methods requires additional access to the target data either
at the training stage (domain adaptation) or at the test time (test-time adaptation), which makes their
usage restricted to specific circumstances.
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3 ESP: EXPONENTIAL SMOOTHING ON PERTURBATIONS

3.1 BACKGROUND AND MOTIVATIONS OF ESP

Herein, we present the background and motivations for the algorithmic details of ESP.

Specifications of L,-Norm-based Noise When adding L, distance-based random noise to an input,
the perturbed input often lies outside the valid input domain, e.g., [0, 1]2**2® for samples in MNIST
dataset. A simple clipping of the perturbed sample into the valid input domain probably results in a
smaller effective noise than desired. To cope with the problem, we utilize the noise rescaling and
clipping algorithm of (Rauber & Bethge, 2020) that preserves the desired Lo-norm of the noise while
restricting the perturbed input to the valid domain. For the sake of simplicity, we will denote the
rescaled and clipped L, distance-based random noise simply as Lo noise henceforth.

Desired Properties of L, Noise Too large noise probably intrudes on other classes. When thinking
of a perturbed input sample that moves far away from the original data point, the noised sample can
intrude on other class manifolds so that the model robustness eventually decreases. In Figure 1b, Lo
noise with an excessive amount severely deteriorates the training of classifiers. However, reducing
the size of Ly noise raises another issue. The augmented samples should locate effectively far away
from the original data point to guarantee sufficient margins of decision boundaries. To this end, we
utilize a truncated Gaussian distribution with non-zero mean € > 0 to sample the power of Lo noise.

Desired Properties of Label Smoothing Label smoothing is conventionally exploited for model
calibration and penultimate layer’s equidistant embedding in a static fashion (M "uller et al., 2019).
Label smoothing assigns 1 — « for the true label and a/(C — 1) for the other labels, where « € (0, 1)
is a constant hyperparameter and C' is the number of classes. On the other hand, we re-purpose the
label smoothing technique as a tool for embedding the uncertainty of perturbations in the input space
and defining « as a perturbation size-dependent hyperparameter. By giving stronger label smoothing
to larger perturbations, the decision boundaries of a classifier are less affected by the number of
perturbed data points but more by the distribution of data points. Nonetheless, as shown in Figure 1a,
the application of smoothing from the region nearby the original data point can sharply shape the
decision boundaries without sufficient margins.

Our method, ESP processes probabilistic samplings of perturbation size and dynamic label smooth-
ing functions that are carefully chosen. In the following sections, we formally describe our data
augmentation strategy that guarantees the aforementioned properties of L noise and label smoothing.

3.2 ALGORITHMIC DETAILS OF ESP

ESP consists of three components: random orientation sampling, random size sampling, and a
smoothing function. First, the orientation of the perturbation vector, i.e., the normalized directional
vector of the perturbation, is randomly sampled. Since isotropic Gaussian has equal probability
over the vector orientations, we have implemented the random orientation sampling by sampling
a Gaussian vector and normalizing it. Second, the size of perturbation vector is sampled with
a pre-defined probability density function. In our experiments, truncated Gaussian distribution
is used. Finally, the hard label of the a datapoint is smoothed with respect to the Ly norm, or
the size of the perturbation vector. While any arbitrary nonincreasing function can be used, we
use an exponentially decaying function to smooth the original label, after a certain threshold e
of the perturbation size. One reason using exponential function ae~** is that for every x; and
Tg, ae~ME1HY) Jge=ru1 — qe=A@24b) /ge=Ar2 — = holds. In other words, the original label
is smoothed exponentially as the perturbation size grows, and the extent of smoothing is solely
dependent on the relative sizes of perturbations.

There are total four hyperparameters consisting of ESP, three for the truncated Gaussian and one
for the smoothing function. To be more specific, the truncated Gaussian Ny (+; €, 0,6 + 7,6 — 7)
defines the probability density function on the size of perturbation vector. The smoothing function
s(+; 1, &, C) smooths the ground truth label of the perturbed datapoint, and £ determines the extent
of exponential label smoothing. For the right half, smoothing function reduces the confidence in
the true label in an exponential way that interpolates (e, 1) and (e + 7,1/C + £). To reduce the
hyperparameter search space, we have used ¢ = 0.57 and 7 ~ ¢, of which the values are determined
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Figure 2: Illustration on the components and theoretical property of ESP. Left: Smoothing function
s(z) and probability density function p(z) w.r.t perturbation size z. Smoothing function smooths
the true label exponentially after threshold e. Hyperparameter £ adjusts the scale of smoothing.
Probability density function defines the size of perturbation, whose maximum and minimum bound is
symmetric w.r.t x = €. 6, (2),0_(z) are the indicator functions I[z > 0] and I[z > 0], respectively.
Right: The smoothing function of ESP makes a classifier less sensitive to the number of datapoints
consisting of manifolds, resulting in more reasonable decision boundary (Theorem 1 3.3.) a =
100,b =10, M = 10, ||&;|| < 0.25.

Algorithm 1 ESP psuedocode

Input: input data (x, y), noise hyperparameter ¢, o, 7, smoothness hyperparameter £
Output: augmented data (', y')

k ~ Ngpunc(€,0,6 + 7,6 — 7)

v~ N(0,1)
a' < x4 0, where 6 = ku, u = el
s(k;7,€,C) ify; =1
/ 1 _ .
Y < s(k;1,8,0) otherwise ° where
Cc-1
: _[eNE9 iz > e 1 C
5578 0) = {1 otherwise 2" A= :ml TéC
return z’,y/’

empirically. Two plots on the left side of Figure 2 indicate the smoothing function and the truncated
Gaussian. Algorithm 1 is the pseudocode of ESP.

3.3 THEORETICAL PROPERTIES OF ESP

ESP can be viewed as a generalized form of L noise family. When 7 — O and £ — 1 — 1/C,
ESP has the same effect as Ly noise with the constant perturbation radius e. Herein, we provide
the theoretical analysis of ESP, i.e., the decision boundary of ESP is less affected by the imbalance
between classes, and the relationship between the ESP’s input perturbations and flat minima. When
focusing on the first property, the label smoothing function of ESP makes the optimal decision
boundary less affected by the number of datapoints composing manifolds, but more by the position
of manifolds and the distance between manifolds. For simplicity, we provide a binary classification
task with the imbalance between two clusters.

Problem Formulation Suppose a binary classification dataset D is given as follows:
D= {(Xa Y)} = {(Xl + €1, 17 0)7 Tty (Xl + €q, 17 0) (XQ + €a+1, 07 1)7 Tty (XQ + €a+by 07 1)}7 (1)

where x € R™, y € {0, 1}2. Also, a and b are integer and b = aM. Larger M implies the imbalance
between classes, i.e., the class y = (0,1) contains M times larger number of samples than the
class y = (1,0). x; and xo are the centroids of two different classes, respectively. €, indicates the
deviations around the centroids. The problem setting simulates a binary classification task, where
data samples are located around their class centroids and the number of samples of two classes is
imbalanced by the factor of M. By letting ¢; — 0 for all ¢ € [a + b], we can make each cluster to be
concentrated, i.e., it stands for a binary classification task with the clearly separated clusters.

Then let us denote a perturbed data point without label smoothing as (X, ys) := (x + d,y). To be
specific, (x,y) is a uniformly sampled data point from D, and § := ku, k ~ Nyunc(€,0,¢ + 7, ¢ —
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T),u = v/|lv|,v ~ N(0,T), i.e., ESP without label smoothing. Similarly, let us denote a perturbed
data point via ESP as (Xg,yg) := (x + 0,¥), where § := s(||d]]),s(2) := 04 (—z+¢€) +6_(z —
e)e_x(z_ﬁ) for some A > 0. We will use y51 and yso to denote the the first and the second elements
of ys5, and similarly yg1, yg2 for yz.

When M becomes larger than a certain value, in other words, when the imbalance becomes severe,
the perturbed sample from an input x becomes more likely to be classified into the dominant class
(0,1),i.e., ys, > 0.5and yp, > 0.5 for ESP without smoothing and ESP respectively. The following
mathematical statement claims that ESP endures a more severe class imbalance that makes any
perturbed inputs be more likely to be classified into the dominant class.

Theorem 1. For any x, let n’ € RT be the number such that for all M > n/, Elyse | Xs =] > 0.5
holds, and let n € R™ be the number such that for all M > n, Elygs | Xg = x| > 0.5 holds. Then,
n>n'.

Theorem 1 claims that the smoothing function of ESP makes the optimal decision boundary, {x |
Elyg:1 | z] = Elyga | ] = 0.5}, less affected by the severity of the data imbalance, M. In Figure
2. we simulate a binary classification task with a strong class imbalance and show that ESP is less
sensitive to the imbalance. The decision boundary of ESP locates around the middle of two manifolds,
but ESP without smoothing, pushes the decision boundary to the inferior class, which makes almost
all regions classified into the dominant class. Proof of Theorem 1 is on Appendix D.

In the perspective of domain generalization, researches insist that seeking flat minima in the parameter
space increases model robustness against distribution shifts (Izmailov et al., 2018; Cha et al., 2021b).
If perturbation in the input space can be related to the perturbation in the parameter space, we can
deduce that the perturbation of ESP encourages a model to find flat minima in the parameter space.
We partially formalize the property by considering a linear model with sigmoid activation function.

Problem Formulation Given a linear model f : z +— o(Wa +b), where 2 € R”, W € R™*"™(m <
n),b € R™, we consider the relationship between input perturbation (§ € R"™) and parameter
perturbation (A € R™*") that satisfies (W (z +6) + b) = o((W + A)x + b). When we have input
perturbation bounded by Lo-norm, i.e., ||0]| < ~, what will be the possible perturbation region Ra
for A so that for any ||0]| < , there exists A € R satisfying the equality or vice versa? Conversely,
what will be the perturbation region Rs for d, given ||A|| < ~?

Definition 1. (Definition of Rs) Given W € R™*" x € R", and parameter perturbation region
{A e R™*™ | |A|| € 4}, Rs € R™ is a region that satisfies the following constraint:

VAl <v,30 € Rs s.t. Wé=AzandV o € Rs,3||A]| <7 st. Wo=Azx

Definition 2. (Definition of Ra) Given W € R™*" D = {x1,--- ,xn}(x; € R"/{0} fori € [N]),
and input perturbation region {0 € R™ | ||6]| < ~}, Ra € R"™*" is a region that satisfies the
following constraint:

Yz € D,V||§|| <7,3A € Ra s.t. Wi = Az and Vo € D,VA € Ry, 3||d]| < v s.t. Wo = Ax

With these definitions on the regions of interest, we now present theorems on converting perturbations
in input space to parameter space (Theorem 2) and vice versa (Theorem 3, 4.) Colloquially, Theorem
2 states that perturbations bounded by L, norm in the parameter space can be converted to the pertur-
bations bounded by an rotated ellipsoid in the input space. Meanwhile, converting the perturbation in
the input space to parameter space in a closed form expression is infeasible. As an alternative, we
provide the subset and the superset of the converted perturbation region in the hyperparameter space
in Theorem 3 and 4. X is an (m x n)? square matrix which is defined by the input z and weight .
The formal definition on X, is stated in Appendix C.

Theorem 2. Given W € R™*", x € R"™, and parameter perturbation region {A € R™*" | [|A]| <
v}, a volume-zero m-dim rotated ellipsoid satisfies the definition of R;.

Theorem 3. Given W € R™*™, D = {x1,--- ,zn }(x; € R"/{0} for i € [N]), and input pertur-
bation region {6 € R" | [|0]| < v}, let Xmar = argmax,, ||z;|| and Apin = min{Ay,--- Ay}
{A e R™ A < (Izmazll?/Xoin) '} € Ra

Theorem 4. Given W € R™*", D = {z1,--- ,ayHz; € R"*/{0}fori € [N]), and input
perturbation region {§ € R™ | ||8]| < 7}, let R; := {d € R"™>™ | dTXy)d <1} andT := {R; |
i € [N]}. Ra C {argminR1,~-,Rner MaXpeU;ein Rs ||ﬂ||2}-
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ESP introduces a bounded noise into input samples, and it means that the perturbed samples can
deviate in the bounding sphere around the clean input sample. Also, ESP smoothly decays the
confidence level of labels for the perturbed inputs in the bounding sphere. The aforementioned
mathematical statements claim that the perturbed inputs in a bounded sphere can be interpreted as
the perturbed parameter space in a bounded ellipsoid for the clean input samples, and vice versa.
Consequently, label smoothing of ESP makes the perturbations of parameters in the bounded ellipsoid
smooth labels of the clean input samples. Then the loss landscape in the parameter space becomes
more smooth by preventing the rapid change of loss values due to the perturbations of parameters.
Along with the theoretical analysis, we empirically confirm that ESP achieves flatter minima than the
baselines. The proofs of Theorem 2, 3, and 4 are on Appendix B and C.

4 EXPERIMENTS

Table 1: Model robustness over MNIST-C, CIFAR-10/100-C, and Tiny-ImageNet-C benchmarks
in the measure of average corruption error (lower is better). The reported values are the average
corruption error of three individual runs for each method. The best results are marked in bold.

Augmentation MNIST-C  CIFAR-10-C CIFAR-100-C  Tiny-IN-C
Naive 8.01 £0.10 2557+045 52214+047 75494+0.24
Naive + Lo 7.07£043 1855+£0.26 4564 +0.11 75.09 +£0.15
Naive + ESP 645+0.02 16.17£041 40.28+0.29 73.97+0.37
AugMix 1436 £0.30 10.67 £0.09 3550=£0.10 67.78 £0.48
AugMix + Loy 12.02 £0.29 1036 £0.07 35.12+£0.20 67.81 +0.01
AugMix + ESP 11.69 £0.29 8.62£0.11 3459 £0.18 67.71 £0.03
DeepAugment 10.68 £0.27 1321 +£0.11 3954 +0.04 64.75 +£0.32
DeepAugment + Lo 10.57£0.06 11.94+0.21 38.82+£0.29 64.58+0.33
DeepAugment + ESP 10.35+0.52  11.16 £0.07 3646 +£0.21 61.43 +£0.07
AugMix + DeepAug 7.45£0.65 9.15+0.06 3256 £0.05 60.61 £0.13
AugMix + DeepAug + Lo 722+0.05 9.01 £0.09 3244 £0.06 61.07 £0.19
AugMix + DeepAug + ESP  7.09 £0.33  890=£0.11 3223 +£0.17 59.02 +£0.21

4.1 DATASET STATISTICS

MNIST-C Mu & Gilmer, 2019) 15 corruptions (brightness, canny edges, dotted line, fog, glass blur,
impulse noise, motion blur, rotate, scale, shear, shot noise, spatter, stripe, translate, zigzag). There are
10,000 images corresponding to each corruption, resulting in total 150,000 images.

CIFAR-10/100-C, Tiny-ImageNet-C (Hendrycks & Dietterich, 2019) 15 corruptions (brightness,
contrast, defocus blur, elastic transform, fog, frost, Gaussian, glass, impulse noise, jpeg compres-
sion, motion blur, pixelate, shot noise, snow, zoom blur), 5 severities. There are 10,000 images
corresponding to each severity, resulting in total 750,000 images.

4.2 EXPERIMENTAL SETUP

Model Architecture For MNIST-C benchmark, we have used convolutional neural network architec-
ture proposed in (Rony et al., 2019). For CIFAR-10/100-C benchmarks, we have used WRN-40-2
model (Zagoruyko & Komodakis, 2016) as backbone network. For Tiny-ImageNet-C benchmark,
ResNet18 (He et al., 2016) has been employed.

Optimizer In all our experiments, SGD momentum with initial learning rate of 0.1 and momentum
value of 0.9 has been used. For both MNIST-C and CIFAR-10/100-C experiments, we have used
cosine learning rate decay scheduling to train the model until convergence as in Hendrycks et al.
(2021b). For Tiny-ImageNet-C benchmark, we have utilized step learning rate decay scheduling at
100 and 150 epoch with the coefficient of 0.1 as in Wang et al. (2021b).
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Hyperparameter Tuning We have used grid search to find the optimal hyperparameters for Ly noise
and ESP. As mentioned in Section 3.2, we use 0 = 0.57 and 7 = € to reduce the hyperparameter
search space. Despite the fact that there is no general rule for deciding ¢ values, we have chosen
¢ such that the maximally smoothed true label (C~! + £) is v times higher than the other labels
(1 —C~7t =) /(C —1)). Specifically, we have chosen v = {10,20} for MNIST-C/CIFAR-10-
C, v = {20, 50,100} for CIFAR-100-C, and v = {200} for Tiny-ImageNet-C. Such choice of
gamma results in & = {0.426,0.590} for MNIST-C/CIFAR-10-C, £ = {0.158,0.326,0.493} for
CIFAR-100-C, and £ = {0.496} for Tiny-ImageNet-C.

Evaluations As in Hendrycks et al. (2021b), we have calculated the average corruption error across
different corruption types and severities.

Further experiment details can be found at Appendix E.

4.3 RESULTS

We first examined the performance of ESP with respect to different data augmentations in common
corruption benchmarks (referring Table 5.) On the MNIST-C benchmark, AugMix and DeepAug-
ment impaired model robustness in contrast to Lo noise and ESP. The ensemble of AugMix and
DeepAugment slightly increased model robustness, but was still inferior to Ly noise and ESP. On the
other hand, L5 noise and ESP increased model robustness either as a standalone method or combined
with other methods. In the CIFAR-10/100-C experiment, all methods improved model robustness
both solely and in composition with other methods as well. On the CIFAR-10-C benchmark, AugMix
enhanced model robustness the most as a sole method, and AugMix composed with ESP enhanced
robustness the most as an ensemble method. In CIFAR-100-C experiment, AugMix exhibited the best
performance among the sole methods, and combining AugMix, DeepAugment, and ESP together
yielded the highest robustness among ensemble methods. In Tiny-ImageNet-C experiment, ESP
boosted model robustness in all circumstances by large margin, in constrast to L, noise which had
trivial or no improvement on the model robustness. In general, ESP showed consistent improvement
on the model’s robustness in all experiment cases, dominating Lo distance based noise.

Naive + ESP AugMix + ESP Naive + ESP AugMix + ESP. Naive + ESP AugMix + ESP
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Figure 3: Model robustness across different hyperparameter configurations consisting of ESP’s search
space in MNIST-C (left), CIFAR-10-C (middle), and CIFAR-100-C (right) dataset. X-axis represents
the e value of ESP, and y-axis represents the error according to varying e. The average corruption
error of original augmentation method is represented as a gray line.

Next, we compared the model performance over different hyperparameters consisting the search
space of ESP (Figure 3.) While ESP improved model robustness in most cases, the amount of
robustness gain differed meaningfully with respect to the perturbation size (¢) and its corresponding
hyperparameters (7, ) in many cases, drawing a convex average corruption error loss graph with
respect to the perturbation size. One interpretation of the convex-shaped loss graph is that when the
perturbation is too small, model learns a decision boundary that is not general enough; however when
the perturbation is too large, the decision boundary tumbles down due to fuzzy data augmentations
intruding each other’s manifolds severely.

Subsequently, we investigated the flatness of each augmentation method in the CIFAR-10-C bench-
mark (Figure 4). With varying radius, we used Monte-Carlo simulation with 50 individual samples
for each method. The input perturbation that has bounded Ly norm of ESP encouraged the model to
find a relatively flat minimum in the hyperparameter space compared to the naive Empirical Risk
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Figure 4: Experiment results on the removal of smoothing function and on the flatness of local
minima. Left: An ablation study on the smoothing function of ESP. A+D denotes the ensemble of
AugMix and DeepAugment methods. Right: The flatness of Empirical Risk Minimization (denoted
as naive), ESP, AugMix, and DeepAugment, respectively in CIFAR-10-C benchmark.

Minimization (ERM). While AugMix found the flattest minimum in the parameter space, the local
minimum found by DeepAugment was escalating the most.

Finally, we analyzed how the removal of the smoothing function in ESP can affect performance.
In MNIST-C and CIFAR-10-C benchmarks, there were no statistically meaningful differences in
the model robustness. Nevertheless, removing the smoothing function of ESP significantly harmed
model robustness in CIFAR-100-C and Tiny-ImageNet-C benchmarks. One possible explanation
for this phenomenon is that the increase in the diversity of classes results in smaller and diverse
data manifolds with different labels. This may induce larger overlapping areas of perturbations with
different labels in the input space.

5 DISCUSSION

AugMix and DeepAugment damaged robustness in MNIST-C benchmark, but prominently enhanced
model robustness in CIFAR-10/100-C and Tiny-ImageNet-C benchmark. On the other hand, ESP
showed the tendency to consistently improve model robustness in a mild way. We interpret this
phenomenon as the difference between each method’s inductive bias. Since ESP is a high-level
data-agnostic algorithm, the robustness gain of data augmentation may not be drastic compared to the
existing methods. Nonetheless, there is more room for exploiting ESP, regardless of the semantics of
dataset.

However, ESP is sensitive to the choice of hyperparameter that determines the maximal perturbation
size. The problem stems from the intrinsic nature of perturbation based augmentation methods. With
varying data distributions on different tasks, we cannot estimate the sweet spot of ESP before actually
conducting model training with varying perturbation sizes. Insufficient perturbations will trivially
improve robustness, while intense perturbations will demolish the decision boundary of the target
model due to manifold intrusions overwhelming in the end.

6 CONCLUSION

Deep neural networks (DNNs) being prone to real-world driven common data corruptions, various
methods have been proposed to increase model robustness. Among several approaches, we have
focused on developing augmentation-based method due to its broad applicability. Inspired by the
robustness gain achieved by simple L, distance based random noise, we have proposed an efficient
and general data augmentation method, ESP, that makes classifier robust to diverse image data
corruptions without strong inductive bias on the nature of dataset. The data augmentation nature of
ESP enforces a classifier to have a contour-like decision boundary, different from most of the existing
DNN learning algorithms. Moreover, we have provided theoretical analysis and experiment result
on how perturbations with bounded Lo norm can be related to the perturbations in the parameter
space. Despite the fact that we have only exploited corrupted image classification benchmarks on
measuring the robustness gain, ESP can be exploited to different classification tasks other than image
classification to enhance a model’s robustness to unexpected data corruptions.



