
A Highly-Efficient Group Elastic Net Algorithm with
an Application to Function-On-Scalar Regression

Tobia Boschi
Department of Statistics
Penn State University
tub37@psu.edu

Matthew Reimherr
Department of Statistics
Penn State University
mlr36@psu.edu

Francesca Chiaromonte
Department of Statistics
Penn State University,

EMbeDS
Sant’Anna School of

Advanced Studies
fxc11@psu.edu

Abstract

Feature Selection and Functional Data Analysis are two dynamic areas of research,
with important applications in the analysis of large and complex data sets. Strad-
dling these two areas, we propose a new highly efficient algorithm to perform
Group Elastic Net with application to function-on-scalar feature selection, where
a functional response is modeled against a very large number of potential scalar
predictors. First, we introduce a new algorithm to solve Group Elastic Net in ultra-
high dimensional settings, which exploits the sparsity structure of the Augmented
Lagrangian to greatly reduce computational burden. Next, taking advantage of the
properties of Functional Principal Components, we extend our algorithm to the
function-on-scalar regression framework. We use simulations to demonstrate the
CPU time gains afforded by our approach compared to its best existing competitors,
and present an application to data from a Genome Wide Association Study on
childhood obesity.

1 Introduction

As problems involving very large and potentially structured data become ever more ubiquitous,
attention is being devoted to the integration of approaches and techniques from the areas of Feature
Selection and Functional Data Analysis (FDA). Indeed, more and more regression applications
comprise a large number number of variables – some of which are scalar and some of which are
suitable for a functional representation, such as longitudinal measurements or biomedical images
(Sørensen et al., 2013; Ullah and Finch, 2013; Cremona et al., 2019). A great deal of recent work has
been concerned with feature selection in these applications. Matsui and Konishi (2011); Gertheiss et al.
(2013); Fan et al. (2015) study the case where the response is scalar and the features are functional.
Chen et al. (2016); Fan and Reimherr (2016); Barber et al. (2017); Parodi et al. (2018); Mirshani
and Reimherr (2019) tackle the so called function-on-scalar case, where the response is functional
and the features are scalar – focusing on settings in which the number of features is bigger than
the number of observations. However, recent developments in optimization have demonstrated that
substantial computational gains can still be made when the number of features is massive (e.g ∼1e6).
In this article, we present Functional Group Elastic Net (fgen), a novel and highly efficient method
to solve the function-on-scalar feature selection problem in ultra-high-dimensional settings – where
the number of features is indeed massive and much larger than the number of observations. The
ability to solve these problems with a lower computational burden is increasingly critical. Given the
complex, noisy nature of much contemporary data, changing some aspects of their pre-processing
or some of the tuning parameters involved in the analysis can lead to completely different results
(Krawczyk and Cano, 2018; Murdoch et al., 2019). For this reason, repeating an analysis multiple

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

times (e.g., with different choices of data preprocessing pipelines, or to tune certain meta-parameters)
is paramount to capture significant signals and ensure the stability of outcomes (Yu and Kumbier,
2020). Substantial reductions in computational burden enable such repetition, allowing scientists and
practitioners to conduct truly meaningful and reproducible analyses.

Group Elastic Net incorporates the group structure (Yuan and Lin, 2006) and the Elastic Net penalty
(Zou and Hastie, 2005) into a penalized regression framework. The former allows one to represent
each feature (or component) by a group of variables. The latter induces sparsity and regularizes the
estimates. We consider the case where all groups have the same size k. The minimization problem is
formulated as follows:

min
B

(1/2) ‖XB − Y ‖22 + λ1

p∑
i=1

‖Bi‖2 + (λ2/2)

p∑
i=1

‖Bi‖22 . (1)

Let p be the number of features, n the number of statistical units, and ‖ · ‖2 the l2 norm for matrices,
i.e. the Frobenius norm, and vectors. Then, X ∈ Rn×p is the design matrix (that we assume to have
standardized columns), Y ∈ Rn×k the response matrix, and B ∈ Rp×k the coefficient matrix. In
other words, (1) describes a sparse multi-task model where the response and each of the features are
represented by a group of k coefficients (Zhang and Yang, 2018). Throughout this article, we follow
the notation in Johnson et al. (2014) and we use the subscripts i and (i) to indicate the i-th row and
the i-th column of a matrix, respectively. Thus, Bi ∈ Rk are the coefficient values associated with
the i-th group, and X(i) ∈ Rn are the observed values relative to the i-th feature. Before proceeding,
note that (1) can be expressed as

min
B

(
h(XB) + π(B)

)
, (P)

where h(XB) = (1/2) ‖XB − Y ‖22 is the least-squares loss function and π(B) =
∑p
i=1 π(Bi) =

λ1
∑p
i=1 ‖Bi‖2 + (λ2/2)

∑p
i=1 ‖Bi‖

2
2 is the Group Elastic Net penalty function. The first term in π

is not differentiable and creates sparsity at the group level, i.e, if a component is selected, then all
its coefficients are selected and vice-versa. The second term is a Ridge-type penalty which reduces
model complexity and tries to control variance inflation due to multicollinearity – feature selection
models are indeed known to be less effective and not reliable in scenarios characterized by very high
collinearity among features (Katrutsa and Strijov, 2015). λ1 and λ2 are penalty parameters > 0 and
control the weight of the two penalties with respect to the least square loss.

To solve (1), we develop a new Semi-smooth Newton Augmented Lagrangian (SsNAL) algorithm.
We then extend it to the function-on-scalar regression framework by means of Functional Principal
Components (FPC) (James et al., 2000; Chiou et al., 2004; Hall and Hosseini-Nasab, 2006). SsNAL
exploits the sparsity induced by the augmented Lagrangian second order information to guarantee
a super-linear convergence and greatly reduce the computational cost. This methodology, first
introduced by Tomioka and Sugiyama (2009) and Tomioka et al. (2011), has been recently used
in several applications, e.g., to regular Lasso (Li et al., 2018), constrained Lasso (Deng and So,
2019), and Elastic-Net (Boschi et al., 2020). However, incorporating the group structure significantly
increases the dimension of the problem. Indeed, (1) is not separable and the optimization must be
carried out jointly across the coordinates of the outcome. Therefore, considering a new group penalty
while preserving the efficiency of the method requires that we carefully redefine a set of all-new
mathematical operators and the theory behind them.

We implemented an efficient version of fgen in python and benchmarked it against the two best
Group Elastic Net solvers we found in the literature: the python package sklearn (Pedregosa
et al., 2011) and the R package glmnet (Friedman et al., 2010), which is written in fortran.
Both of these solvers implement a highly optimized coordinate descent algorithm (Friedman et al.,
2010; Breheny and Huang, 2015) and outperform competitors such us FISTA (Beck and Teboulle,
2009; Bonnefoy et al., 2015), ADMM (Deng et al., 2013; Zhu, 2017), and proximal gradient (Chen
et al., 2010) by at least one order of magnitude in terms of CPU time. Our simulation results
demonstrate that in sparse scenarios fgen is at least 3 times faster than glmnet and more than 10
times faster than sklearn. We also applied fgen to the Intervention Nurses Start Infants Growing
on Healthy Trajectories (INSIGHT) study (Paul et al., 2014), which investigates risk factors for
childhood obesity. Specifically, we examined the association between hundreds of thousand of Single
Nucleotide Polymorphisms (SNPs) and growth curves, which represent a functional outcome.

The remainder of the article is organized as follows. In Section 2 we describe the Group Elastic
Net problem and introduce some preliminary results. In Section 3 we present our new methodology

2

and illustrate how to extend it to a function-on-scalar feature selection problem. In Section 4 we
investigate the performance of our method on simulated data and apply it to data from INSIGHT.
In Section 5 we provide final remarks and discuss future developments. Proofs of theoretical
results and additional simulations are included in the Supplement. The fgen code is available at
https://github.com/tobiaboschi/fgen

2 Preliminaries

In this section we define the Group Elastic Net problem and we introduce some results related to
Fenchel conjugate functions and proximal operators, which are essential tools in our developments.

2.1 Fenchel conjugate function and proximal operator of π(B)

Fenchel conjugate functions (Fenchel, 1949) allow one to more readily define the dual problem
(Boyd and Vandenberghe, 2004) of (P), which is called the primal problem. Let X ⊆ Rp be a
convex set and f : X → R. Then, the conjugate function of f is f∗ : X ∗ → R defined as
f∗(z) = supx∈X

(
〈z, x〉 − f(x)

)
, where X ∗ =

{
z : supx∈X (〈z, x〉 − f(x)) <∞

}
. 〈·, ·〉 indicates

the inner product. i.e. the dot product. If X ⊆ Rp×k, i.e. if z is a matrix, the definition is still valid
but 〈·, ·〉 is the Frobenius inner product. In our first proposition we provide a closed form solution for
the Group Elastic Net penalty conjugate function (see Supplemental Section A.1 for a proof).
Proposition 1. Given Z ∈ Rp×k, the conjugate function of π has the form

π∗(Z) =

p∑
i=1

π∗(Zi) = (2λ2)−1
p∑
i=1

([
‖Zi‖2 − λ1

]
+

)2
, (2)

where [·]+ is the positive part operator; [s]+ = s if s > 0 and 0 otherwise.

Note that π∗(Z) is a continuous differentiable function. This is a more general results than the one
presented in Li et al. (2018); Boschi et al. (2020), because we extend the definition of π∗ to the
case where Z is a matrix and not just a vector. In the simple scenario where k = 1, i.e. when every
group consists of just one variable, we obtain again the conjugate function of the standard Elastic
Net penalty. Notably, starting from a non-separable objective function, we derive a π∗ which does
separate. As we will see in Section 3.1, this allows one to induce a new level of sparsity in the
Lagrangian problem which is actually key for the massive computational advantage offered by fgen.

Proximal operators (Rockafellar, 1976a,b) are fundamental in many optimization algorithms. Given
a lower semi-continuous convex function f : Rp → R, the proximal operator of f at x with
parameter σ > 0 is denoted as proxσf : Rp → Rp and defined as proxσf (x) = arg mint(f(t) +

(2σ)−1 ‖t− x‖22). If f : Rp×k → R, i.e. if x is a matrix, then proxσf : Rp×k → Rp×k and ‖·‖2 is
the Frobenius norm. Parikh et al. (2014) and Beck (2017) (Chapter 6) provide numerous examples
and properties. Combining their results, one can easily find the form of the proximal operator of
π(B) provided in our second proposition (see Supplemental Section A.2 for a proof).

Proposition 2. The proximal operator of π(B) is: proxσπ(B) =
(

proxσπ(B1), . . . ,proxσπ(Bp)
)T

,
where

proxσπ(Bi) = (1 + σλ2)−1
[
1− ‖Bi‖−12 σλ1

]
+
Bi. (3)

Note that proxσπ(B) : Rp×k → Rp×k. To implement fgen, one also needs the proximal operator of
π∗, which can be obtained through the Moreau decomposition:

x = proxσπ(x) + σ proxπ∗/σ(x/σ) , σ > 0. (4)

2.2 Dual formulation and Augmented Lagrangian

Here we introduce the dual Group Elastic Net problem and its augmented Lagrangian. From Boyd
and Vandenberghe (2004), a possible dual formulation of (P) is

min
V,Z

(
h∗(V) + π∗(Z)

)
s.t. XTV + Z = 0 (D)

3

https://github.com/tobiaboschi/fgen

Algorithm 1 Semi-smooth Augmented Lagrangian (SsNAL) method

Augmented Lagrangian method
Start from the initial values V 0, Z0, B0, σ0

while not converged do
(1) Given Bk, find V k+1 and Zk+1 which ap-
proximately solve the inner subproblem(
V k+1, Zk+1) ≈ arg min

V,Z
Lσ
(
V,Z | Bk

)
(7)

(2) Update the Lagrangian multiplier B and the
parameter σ:
Bk+1 = Bk − σk

(
XTV k+1 + Zk+1)

σk+1 ↑ σ∞ ≤ ∞
(8)

end while

Semi-smooth Newton method for (7)
To solve (7) and find

(
V k+1, Zk+1

)
:

while not converged do
(1) Find the descent direction Dj solving exactly
or by conjugate gradient the linear system
∂2ψ(V j) vec(Dj) = − vec

(
∇ψ(V j)

)
(9)

(2) Line search (Li et al., 2018): choose µ ∈
(0, 1/2) and reduce the step size sj until
ψ
(
V j + sjDj) ≤ ψ(V j) +µsj

〈
∇ψ(V j), Dj〉

(3) Update V : V j+1 = V j + sjDj

(4) UpdateZ: Zj+1 = proxπ∗
σ

(
Bk

σk
−XTV j+1

)
end while

where V ∈ Rn×k and Z ∈ Rp×k are the dual variables matrices. In particular Vi, Zi ∈ Rk are the
dual variables associated with the i-th group. h∗ and π∗ are the Fenchel conjugate functions of h and
π, respectively. Specifically, h∗(V) = (1/2) ‖V ‖22 + 〈Y, V 〉 (Dünner et al., 2016) and π∗(Z) is given
in Proposition 1. We can now define the augmented Lagrangian function and the Karush-Kuhn-Tucker
(KKT) system associated with (D). The augmented Lagrangian is given by

Lσ(V,Z,B) = h∗(V) + π∗(Z)−
p∑
i=1

〈
Bi, V

TX(i) + Zi
〉

+ (σ/2)

p∑
i=1

∥∥V TX(i) + Zi
∥∥2
2
, (5)

where σ > 0. B is both the primal variable and the Lagrangian multiplier which penalizes the
constraints’ violations. The KKT system is given by the following three equations:

∇h∗(V)−XB = 0, 0 = ∇π∗(Z)−B = 0, XTV + Z = 0. (6)

Note that ∇h∗(V) = V + Y . A closed form of ∇π∗(Z) is not essential for our SsNAL method.
The KKT equations will be useful to determine the convergence of our algorithm, since the set
(V ?, Z?, B?) solves the KKT (6) if and only if (V ?, Z?) and B? are the optimal solutions of (D) and
(P), respectively (Boyd and Vandenberghe, 2004).

3 Methodology

In this section we present our new methodology. First, we introduce a SsNAL algorithm to solve the
Group Elastic Net problem. Next, we illustrate how to extend it to the function-on-scalar regression
framework. Finally, we describe how to implement a solution path over different values of λ1.

3.1 SsNAL method

The SsNAL method is summarized in Algorithm 1. It consists of an Augmented Lagrangian method
characterized by an inner subproblem. The subproblem is solved with a Semi-smooth Newton method
which exploits the sparsity of the augmented Lagrangian second order information and greatly reduces
computational costs. We now provide the details of its implementation and some important theoretical
results. From Rockafellar (1976a), one can find the optimal solution of (D) by solving the Augmented
Lagrangian method described in Algorithm 1. The essential part of the algorithm is the subproblem
(7). As described in Li et al. (2018), an approximate solution

(
V̄ , Z̄

)
for a given B can be found as

V̄ = arg min
V
Lσ
(
V | Z̄, B

)
, Z̄ = arg min

Z
Lσ
(
Z | V̄ , B

)
. (10)

With a slight abuse of notation, we indicate by Lσ(V |Z,B) the function Lσ(V,Z,B) where the
parameter Z and B are fixed. Similarly for Lσ(Z|V,B). Our third proposition provides explicit forms
for Lσ

(
V | Z̄, B

)
and Z̄ (see Supplemental Section A.3 for a proof).

4

Proposition 3. Define ψ(V) := Lσ
(
V | Z̄, B

)
. Then, for the Group Elastic Net problem we have

(a) ψ(V) = h∗(V) +
1 + σλ2

2σ

p∑
i=1

∥∥proxσπ
(
Bi − σV TX(i)

)∥∥2
2
− 1

2σ

p∑
i=1

‖Bi‖22

(b) Z̄ = proxπ∗/σ

(
B/σ −XT V̄

)
,

(11)

where proxπ∗/σ

(
B/σ −XT V̄

)
=
(

proxπ∗/σ

(
B1/σ − V̄ TX(1)

)
, · · · ,proxπ∗/σ

(
Bp/σ − V̄ TX(p)

))T
.

Z̄ has a closed form. To find V̄ one has to minimize ψ or, equivalently, find the solution of ∇ψ = 0.
Note that ψ is continuous and differentiable, and thus∇ψ is well defined.

To solve the subproblem (7), we propose the Semi-smooth Newton method in Algorithm 1. V and
Z are updated iteratively – Z according to the rule in Proposition 3, and V by minimizing ψ through
one Newton step. The main computational cost is solving the linear system (9). This leads to our
next crucial result (see Supplemental Section A.4 for a proof).

Theorem 1. Let T = B − σXTV , X̂ = X ⊗ Ik (the nk × pk Kronecker product between X
and the k × k identity matrix), ∂̂2ψ be the generalized Hessian of ψ, and ∂ proxσπ be the Clarke
sub-differential of proxσπ (Clarke, 1990). Then we have

(i)∇ψ(V) = V + Y −X proxσπ(T) (ii)∂̂2ψ(V) = Ink + σX̂∂ proxσπ(T)X̂T (12)

Moreover, let Q ∈ Rpk×pk be the block-diagonal matrix Q =

P1

. . .
Pp

, where each Pi is a

squared k × k matrix defined as

(iii) Pi =

{
(1 + σλ2)−1

(
1− ‖Ti‖−1

2 σλ1)Ik + ‖Ti‖−3
2 σλ1TiT

T
i

)
‖Ti‖2 > σλ1

0 o.w.
. (13)

Then Q ∈ ∂ proxσπ(T) and ∂2ψ(V) vec(D) = (Ink + σX̂QX̂T) vec(D) for every D ∈ Rn×k in
the domain of V – where vec(D) ∈ Rnk is obtained by stacking all the columns of D.

Note that, while in Li et al. (2018); Deng and So (2019); Boschi et al. (2020) ∇ψ and ∂2ψ are a
vector and a matrix, respectively, here the dimensions of these operators increase due to the group
nature of the problem. In particular, ∇ψ becomes a matrix and ∂2ψ a higher order tensor – which
we express as an nk × nk matrix by stacking its dimensions. Moreover, Q is not a simple diagonal
matrix as in the previous SsNAL algorithms, but is now characterized by blocks associated to the
different groups of variables.

Theorem 1 is critical for preserving the efficiency of fgen, while integrating groups into the problem.
First, it states that solving (9) is equivalent to solving

(
Ink + σX̂QX̂T

)
vec(D) = − vec

(
∇ψ(V)

)
.

Second, the form of Q still allows one to induce sparsity in the linear system and drastically reduce
the computational cost. Indeed, let J =

{
j : ‖Tj‖2 ≥ σλ1

}
and let r = |J | be the cardinality of

J . Then the linear system (9) is equivalent to(
Ink + σX̂JQJ X̂

T
J

)
vec(D) = − vec

(
∇ψ(V)

)
. (14)

Here, X̂J ∈ Rnk×rk is defined as X̂J = XJ ⊗ Ik, with XJ ∈ Rn×r being the sub-matrix of X
restricted to the columns in J . In addition, QJ ∈ Rrk×rk is the block-diagonal matrix formed by
all the Pi such that i ∈ J . Using the Cholesky factorization (the generalized Hessian is positive
semidefinite) the total cost of solving the linear system reduces from O

(
nk3(n2 + p2 + np)

)
to

O
(
nk3(n2 + r2 + nr)

)
. This includes computing X̂JQJ X̂T

J , which is O
(
nrk3(n+ r)

)
, and the

Cholesky factorization, which is O(n3k3). Because of the sparsity induced by the Group Elastic Net
penalty, r is usually much smaller than p – implying a substantial computational gain. Even when
p is very large (∼ 106), one can still solve the linear system efficiently, as long as the dimension
k of each group is relatively small (< 102). Furthermore, if r < n, which is often the case when

5

Algorithm 2 Functional Group Elastic Net method

(1) Perform FPC of B and find the first k basis components (γi, . . . γk) with their eigenvalues (ρ1, . . . ρk)

(2) Find the first k FPC scores for each response function Yi: Yi = (〈Yi, γ1〉L2 , . . . , 〈Yi, γk〉L2)

(3) Using Y as response matrix, apply SsNAL to solve (1) and find the coefficient scores estimates B.

(4) Project B into the FPC basis to find the coefficient curve estimates: Bi =
∑k
j=1B(i,j)γj

the solution of the Group Elastic Net problem is sparse, one can factorize an rk × rk (instead of
nk × nk) matrix using the Sherman-Morrison-Woodbury formula (Van Loan and Golub, 1983):(

Ink + σX̂JQJ X̂
T
J

)−1
= Ink − X̂J

(
(σQJ)

−1
+ X̂T

J X̂J

)−1
X̂T
J . (15)

The total cost is further reduced from O
(
nk3(n2 + r2 + nr)

)
to O

(
rk3(n2 + r2 + nr + 1)

)
, in-

cluding the computation of Q−1J which can be done with a cost of O(rk3) by inverting each one of
the Pi blocks independently. Finally, if in the first iterations of the algorithm n and r are both larger
than 104, one can solve (9) approximately using the conjugate gradient method (Polyak, 1969).

To determine the convergence of the Augmented Lagrangian and the Semi-smooth Newton methods,
we check the residuals of the third and first KKT in (6), respectively, i.e. :

res(kkt3) =

∑p
i=1

∥∥V TX(i) + Zi
∥∥
2

1 +
∑m
i=1 ‖Vi‖2 +

∑p
i=1 ‖Zi‖2

, res(kkt1) =

∑n
i=1 ‖Vi + Yi −XiB‖2

1 +
∑n
i=1 ‖Yi‖2

. (16)

Taking the l2-norm of the KKT residuals, normalizing them and using them to assess convergence
is a common procedure in the literature (Li et al., 2018; Deng and So, 2019). Both methods have
a super-linear convergence rate. Accordingly, the convergence rate of the entire algorithm, which
is the sum of the convergence rate of the two sub-problems (Tomioka and Sugiyama, 2009), is still
super-linear. Thus, as we show in Section 4, fgen typically converges in very few iterations. The
convergence analysis here follows directly from that in Tomioka et al. (2011) and Boschi et al. (2020),
where SsNAL convergence is proved for the standard Elastic Net. The proof leverages results in
Rockafellar (1976a,b); Luque (1984); Li et al. (2018) and the fact that π∗ is a continuous differentiable
function (which is also true for the Group Elastic Net).

3.2 Extension to function-on-scalar regression

We now extend fgen to the function-on-scalar features selection problem. In function-on-scalar
regression, a functional response is regressed on a set of scalar predictors. Assuming the response
belongs to the Hilbert Space L2([a, b]), the optimization problem (1) becomes

min
B

(1/2) ‖XB − Y‖2L2 + λ1

p∑
i=1

‖Bi‖L2 + (λ2/2)

p∑
i=1

‖Bi‖2L2 (17)

where Y and B are functional objects with n and p rows, respectively. Each row Yi is a response
function and each row Bi is a coefficient function. The squared L2-norm of a function f is ‖f‖2L2 =

〈f, f〉L2 , where the inner product between two functions f and g is 〈f, g〉L2 =
∫ b
a
fg.

Applying SsNAL directly to (17) is not straightforward and would substantially hinder its efficiency.
First, the definition of conjugate functions and proximal operators in functional spaces would require
a new theoretical background. Second, and perhaps most important from a practical standpoint,
computing integrals is much more expensive than computing euclidean norms. For these reasons, in
Algorithm 2 we take advantage of Functional Principal Components (FPC) (Horváth and Kokoszka,
2012; Kokoszka and Reimherr, 2017) to solve an optimization problem of the same type as (1), which
is in fact a very close approximation to (17). In particular, we build a response matrix Y , where each
group i is formed by the first k FPC scores of the the function Yi (Fan and Reimherr, 2016). The
level of approximation of fgen thus depends on the number of FPC scores k, i.e the dimension of
each group. Indeed, given a function f and its FPC basis {γi}∞i=1, we have

‖f‖L2 =

∞∑
j=1

‖〈f, γj〉L2‖2 . (18)

6

This property – which is true for every orthonormal basis system – plays a crucial role in the extension
of our SsNAL approach to the function-on-scalar regression, since it allows one to approximate
the L2 function norm with the standard l2 matrix norm. Consequently, one can use the FPC scores
to construct the response matrix Y and the coefficients matrix B in (1) starting from the response
functions Y and the coefficient functions B. The number of selected FPC scores determines the
dimension k of each group in the Group Elastic Net problem. In many applications just a few FPC
scores allow one to obtain a very close approximation of the original functions. Indeed, among the
many orthonormal bases one could envision, FPC has the advantage of being the most parsimonious
allowing one to reconstruct the response curves using fewer coefficients than any other orthonormal
basis. In scenarios investigated by simulation in Section 4, k = 5 is sufficient to capture more than the
99% of the L2-norm. This produces an almost perfect approximation of (17) while fully preserving
fgen efficiency.

3.3 Solution path implementation

To evaluate different values of the penalty parameter λ1, we implement an efficient solution path
search. We compute the solution for a decreasing sequence sequence of λ1, starting from λmax =
maxi‖(Xi)

TY ‖ which selects 0 active features. When we move to the next λ1 value, we use the
solution obtained at the previous value for initialization (warm start). The two consecutive solutions
tend to be close, and fgen converges in very few iterations – usually just one. We also allow the user
to specify a maximum number of selected features; when this number is reached the path search is
stopped, further reducing computation.

To guide the choice of (λ1, λ2) we propose two quantitative criteria: k-fold Cross Validation (cv)
and an Extended Bayesian Information Criterion (e-bic) (Chen and Chen, 2012), which modifies the
standard BIC to also include the number of features p. In symbols, we have

e-bic(B) = k log (rss(B)/(nk)) + (kν) (log(nk) + log p) /n (19)
where rss(B) is the residual sum of squares associated with the solution B, and ν are the Group
Elastic Net degrees of freedom. From Tibshirani et al. (2012), ν = tr

(
XJ
(
XT
JXJ + λ2Ir

)−1
XT
J
)
.

Note that cv can be very computationally expensive because it requires to run fgen multiple times
for each value of λ1 and λ2 under consideration. In contrast, e-bic can be computed directly from
the original solution. Before evaluating both criteria, we de-bias the fgen estimates following the
approach suggested by Belloni et al. (2014); Zhao et al. (2017). First, we run fgen, then, we fit
a standard least squares on the selected features. In the next section, following standard practice
in the literature – e.g., Friedman et al. (2010); Pedregosa et al. (2011) – we rewrite λ1 and λ2 as
λ1 = cλλ

max and λ2 = (1−α)cλλ
max, with cλ ∈ (0, 1] and α ∈ (0, 1). cλ determines the reduction

with respect of λmax, α controls the relative weight of the two penalties.

4 Simulation study and INSIGHT data

In this section we use synthetic data to illustrate the computational efficiency of fgen, and apply
our new method to a Genome Wide Association Study (GWAS) on childhood obesity. In the
simulations, we benchmark fgen against the two best Group Elastic Net solvers we found in the
literature: the python package sklearn and R package glmnet, which is written in fortran.
Other functional-on-scalar feature selection methods, such as the ones proposed by Barber et al.
(2017); Parodi et al. (2018); Mirshani and Reimherr (2019), have a computational burden more than
two order of magnitudes larger than fgen and could not complete instances with p > 104.

4.1 Simulation results

We generate synthetic data as follows. The entries of the design matrix X ∈ Rn×p are each drawn
independently from a standard normal distribution. The response curves are created as Y = XB + ε.
B contains p0 non-zero curves. These and the errors ε are generated from a 0 mean Gaussian process
with a Matérn covariance function (Cressie and Huang, 1999) of the form

C(t, s) = ω2
(
Γ(ν)2ν−1

)−1 (
(l)−1(2ν)1/2 |t− s|

)ν
Kν

(
(l)−1(2ν)1/2 |t− s|

)
, (20)

where Kν is a modified Bessel function. In particular, we set the point-wise variance ω2 = 1 and the
range l = 0.25 (this determines how fast the curves dependency decays). The smooth parameter ν

7

Table 1: a, b and c report CPU time in seconds for fgen, sklearn and glmnet, respectively. For
fgen we also report the number of iterations in parenthesis. r is the number of selected features, l is
the range parameter of the Matern process used to generate the coefficients.

α = 0.8, l = 0.25 n=500 n=1000 n=5000
p; p0 k cλ r a b c r a b c r a b c

2(104); 10

5
0.8 2 0.1(3) 0.5 0.3 1 0.1(2) 0.9 0.6 1 0.5(2) 9.1 3.2
0.4 10 0.2(4) 0.5 0.3 4 0.3(3) 1.1 0.6 6 1.1(3) 10.9 3.1
0.2 21 0.4(4) 0.5 0.4 8 0.3(4) 1.1 0.7 10 1.2(3) 10.4 3.4

10
0.8 2 0.2(3) 0.9 0.5 1 0.2(2) 1.9 1.2 1 1.3(2) 18.8 5.4
0.4 10 0.3(4) 0.8 0.5 4 0.4(3) 2.1 1.0 6 2.0(3) 22.3 4.9
0.2 21 0.9(4) 0.9 0.5 8 0.5(4) 2.2 1.2 10 1.9(3) 23.2 5.3

105; 102

5
0.8 5 0.3(2) 4.5 1.5 4 0.7(2) 9.9 3.3 6 2.6(2) 97.9 17.2
0.6 29 0.6(2) 4.7 1.6 17 0.7(2) 9.6 3.3 12 3.0(2) 85.7 19.8
0.4 486 13.7(3) 4.8 0.2 53 1.4(2) 10.2 3.1 42 4.1(2) 99.7 17.8

10
0.8 5 0.6(2) 10.2 2.6 4 1.4(2) 22.6 5.2 6 3.5(2) 175.2 27.9
0.6 29 0.9(2) 10 2.4 17 1.5(2) 19.6 4.8 12 3.8(2) 183.7 27.6
0.4 486 79.2(3) 9.1 2.4 53 1.8(2) 20.2 5.3 42 6.7(2) 190.7 28.0

α = 0.5, l = 0.25 n=500 n=1000 n=5000
p; p0 k cλ r a b c r a b c r a b c

2(104); 10 10
0.8 2 0.1(2) 1.0 0.6 1 0.2(2) 1.8 1.3 1 0.9(2) 18.3 5.2
0.4 10 0.2(3) 0.9 0.6 3 0.2(2) 2.5 0.9 7 0.9(2) 20.6 5.3
0.2 73 1.1(3) 0.9 0.5 8 0.4(3) 2.0 1.3 10 1.9(3) 22.7 5.2

α = 0.8, l = 0.10 n=500 n=1000 n=5000
p; p0 k cλ r a b c r a b c r a b c

2(104); 10 10
0.8 3 0.2(3) 0.9 0.6 3 0.2(2) 1.8 1.3 1 0.9(2) 19.7 5.1
0.4 10 0.3(4) 1.2 0.6 7 0.4(3) 2.6 1.1 10 1.9(3) 19.8 5.2
0.2 20 1.5(4) 1.2 0.6 10 0.5(4) 2.4 1.2 10 2.0(3) 22.2 4.0

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

responses

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2

errors

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

coefficients

true
estimated

Figure 1: Curves related to a simulation scenario described in Table 1 (second row, n = 500). The
left and center panels display a sample of 10 response curves and 10 linear model errors terms,
respectively. The right panel depicts the true non-zeros coefficients curves (dashed lines) and the
fgen de-biased estimates (solid lines).

is equal to 3.5 for B and to 1.5 for ε, i.e. the errors are rougher than the coefficients. Each curve is
sampled at 1000 evenly spaced points between 0 and 1. Figure 1 shows instances of the response
and error curves, Y and ε, and the true non-zero coefficient curves in B along with their de-biased
estimates produced by fgen (the underlying simulation parameters are those in Table 1, second
row, n = 500). In all scenarios, fgen is run with both the tolerances in (16) set to 10−6 (we set
the same tolerance for sklearn and glmnet) and µ in (12) set to 0.2. We start from σ0 = p0/p
and increase it by a factor of 5 every iteration. If we start from smaller values of σ, the algorithm
needs more iterations to converge, while if σ0 is too large, fgen does not converge to the optimal
solution. We set λ1 = cλλ

max and λ2 = (1 − α)cλλ
max, where cλ ∈ (0, 1], α ∈ (0, 1), and

λmax = maxi‖(Xi)
TY ‖. Note that for glmnet and sklearn we need to divide λmax by n since

both solvers divide the least squares loss in (1) by the number of observations.

Table 1 reports CPU times for fgen, sklearn and glmnet under different simulation settings. fgen
is the fastest solver in almost every instance. When both n and p are large and the solution is sparse,
fgen is approximately 6 times faster than glmnet and more than 30 times faster than sklearn. Note

8

0 10 20 30

0.
06

0.
10

0.
14

0.
18

response

weeks

0.
00

60
2

0.
00

60
8

10−fold cv

cλ

0.99 0.9 0.8 0.7

α = 0.8
α = 0.6
α = 0.4

−
20

−
15

−
10

−
5

e−bic

cλ

0.99 0.9 0.8 0.7

Figure 2: Plots related to the INSIGHT study. The left panel displays the growth curves. The center
and right panels depict values of the 10-fold cv Mean Squared Error and the e-bic, respectively,
against cλ These are obtained from fgen run with 3 different values of α; 0.8 (green line), 0.6 (red
line), 0.4 (blue line). fgen estimates are de-biased prior to computing both criteria.

that the super-linear convergence rate allows fgen to converge in very few iterations (no more than
4 in all cases). The CPU time increases with k for all solvers. However, k = 5 already captures
more than the 99% of the L2-norm in all the scenarios considered. If we decrease α from 0.8 to 0.5,
fgen need even fewer iterations to converge, increasing its computational gain with respect to the
competitors. Considering rougher coefficients (created with a Matern process with range parameter
l = 0.1) does not affect the relative performance of the algorithms. The instance with an active set of
486 features is the only one where fgen performs worse than its competitors. As expected, in the
presence of non-sparse solutions fgen looses some of its efficiency. However, to tune the penalty
parameters in practice, one evaluates a sequence of cλ values starting from very sparse solutions.
In the first steps of the solution path, fgen exploits sparsity and is very efficient. In the following
steps, it still converges very quickly thanks to the warm-start approach described in Section 3.3.
In Supplemental Table B.2 we compare the solution path computing time. fgen outperforms the
other solvers in every scenario, being approximately 2 times faster than glmnet and from 10 to more
than 30 times faster than sklearn. Finally, to gauge uncertainty in our CPU time evaluations, we
replicated a subset of the instances explored in Table 1 20 independent times. Mean CPU times and
standard errors over such replicates are reported in Supplemental Table B.1. Results agree with those
obtained considering just one replication. Furthermore, one can notice that fgen has also a smaller
variability in CPU time when n = 5000.

Taking into account that glmnet (written in fortran) and sklearn are highly optimized packages,
the results above provide strong evidence in support of our method. We also tracked prediction
performance for all methods and in all simulation settings considered, but we do not report them here
since all three solvers solve the same convex minimization problem and therefore converged to the
same solution in all settings.

4.2 INSIGHT study

Here, we apply fgen to data from the Intervention Nurses Start Infants Growing on Healthy Trajec-
tories (INSIGHT) study (Paul et al., 2014). In particular, we focus on data collected to investigate
genetic variants that may affect the risk of childhood obesity. As the prevalence of obesity increases
also among children, examining possible causes and risk factors has become an essential public health
concern. INSIGHT provides genome-wide Single Nucleotide Polymorphisms (SNPs) information for
a cohort of very young children, along with longitudinal information on their growth. Selecting SNPs
that may affect growth is thus a GWAS (a Genome-Wide Association Study) – where the outcome is
a growth curve. In recent years, many GWASs have identified SNPs strongly associated with obesity
phenotypes (Locke et al., 2015). Before proceeding with the analysis, we point out that due to high
feature collinearity, low signal-to-noise ratio, and ultra-high dimensionality, GWAS data are very
hard to examine and users should be very careful in interpreting results; e.g., selected SNPs may
just be proxies for other causal SNPs in their vicinity. While being well aware of all its complexities
and potential pitfalls, our main aim in presenting a GWAS analysis is to show the efficiency and the
broad applicability of fgen. Our functional outcome captures the evolution of weight/height ratios
(Daniels et al., 2015) measured at birth and at 4, 16, 28, and 40 weeks for a total of n = 210 children.
The growth curves – shown in the left panel of Figure 2 – are fitted as in Craig et al. (2019) using

9

Principal Analysis by Conditional Estimation (Chen et al., 2017). Building a smooth curve for each
child allows one to capture information along the entire time domain and at the same time to de-noise
and mitigate the effect of outlying/anomalous raw measurements. The SNPs collected in INSIGHT
are available upon request at dbGaP using the access number phs001498.v1.p1. The growth curves
are based on privacy protected data and cannot be made publicly available.

Craig et al. (2019) used flame (Parodi et al., 2018) to solve the function-on-scalar feature selection
problem. To do so, they had to reduce the analysis from p = 342325 to 10000 SNPs with various
preliminary screening steps. The computational efficiency of fgen allows us to inspect all the 342325
SNPs simultaneously. The center and left panels of Figure 2 display 10-fold cv and e-bic for different
values of α and cλ. Both criteria identify just one (cλ = 0.99) dominant SNP, rs79187646. Without
drawing any strong domain conclusion, we remark that the selected SNP appears to be relevant in
the literature. Notably, this is the same SNP selected by Boschi et al. (2020), where the same SNP
data were associated to BMI at age 3 – a scalar response. Also notably, this dominant SNP was not
among the SNPs identified by Craig et al. (2019). Based on the U.S. National Library of Medicine,
rs79187646 is located in NTM, a well known gene. According to the NHGRI-EBI GWAS Catalog,
many GWASs, including two recent studies (Kichaev et al., 2019; Pulit et al., 2019), have connected
NTM to body mass, food addiction, intake of sweet substances and other obesity-related traits.

5 Conclusions

In this article we proposed a new Function Group Elastic Net method (fgen) to solve the function-on-
scalar feature selection problem. Our proposal starts with the development of a novel, highly-efficient
SsNAL algorithm to solve the Group Elastic Net – which is then extended to the function-on-scalar
regression framework using a Functional Principal Components representation. Though we could
rely on critical prior results (Tomioka and Sugiyama, 2009; Li et al., 2018; Boschi et al., 2020), in
order to integrate the group structure into SsNAL, we had to tackle more complex mathematical
operators and redefine the theoretical foundation. Our simulations show a substantial reduction in
CPU time with respect to the best existing Group Elastic Net solvers. Finally, we applied fgen to a
GWAS study detecting a SNP that may affect obesity risk in children.

The current version of fgen is limited to the case where each group has the same size k and to the
functional-on-scalar feature selection problem. In the future, we plan to further extend our work
investigating more complex optimization problems (e.g., allowing each group to have a different
size) and functional regression frameworks. In particular, we aim to adapt our methodology to the
function-on-function feature selection scenario, where both the response and the predictors can be
represented as functional curves.

Acknowledgments and Disclosure of Funding

We thank Kateryna Makova and her laboratory at Penn State for access to the INSIGHT data, Ana
Kenney for help with the data and useful discussions. The work of Tobia Boschi and Francesca
Chiaromonte was partially supported by the Huck Institutes of the Life Sciences at Penn State, the
work of Matthew Reimherr was partially supported by the Grant NSF SES-1853209.

References
Barber, R. F., M. Reimherr, T. Schill, et al. (2017). The function-on-scalar lasso with applications to

longitudinal gwas. Electronic Journal of Statistics 11(1), 1351–1389.

Beck, A. (2017). First-order methods in optimization, Volume 25. SIAM.

Beck, A. and M. Teboulle (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences 2(1), 183–202.

Belloni, A., V. Chernozhukov, and C. Hansen (2014). Inference on treatment effects after selection
among high-dimensional controls. The Review of Economic Studies 81(2), 608–650.

Bonnefoy, A., V. Emiya, L. Ralaivola, and R. Gribonval (2015). Dynamic screening: Accelerating
first-order algorithms for the lasso and group-lasso. IEEE Transactions on Signal Processing 63(19),
5121–5132.

10

https://www.ncbi.nlm.nih.gov/search/
https://www.ebi.ac.uk/gwas/home

Boschi, T., M. Reimherr, and F. Chiaromonte (2020). An efficient semi-smooth newton augmented
lagrangian method for elastic net. arXiv preprint arXiv:2006.03970.

Boyd, S. and L. Vandenberghe (2004). Convex optimization. Cambridge university press.

Breheny, P. and J. Huang (2015). Group descent algorithms for nonconvex penalized linear and
logistic regression models with grouped predictors. Statistics and computing 25(2), 173–187.

Chen, J. and Z. Chen (2012). Extended bic for small-n-large-p sparse glm. Statistica Sinica, 555–574.

Chen, K., X. Zhang, A. Petersen, and H.-G. Müller (2017). Quantifying infinite-dimensional data:
Functional data analysis in action. Statistics in Biosciences 9(2), 582–604.

Chen, X., Q. Lin, S. Kim, J. G. Carbonell, and E. P. Xing (2010). An efficient proximal gradient
method for general structured sparse learning. stat 1050.

Chen, Y., J. Goldsmith, and R. T. Ogden (2016). Variable selection in function-on-scalar regression.
Stat 5(1), 88–101.

Chiou, J.-M., H.-G. Müller, and J.-L. Wang (2004). Functional response models. Statistica Sinica,
675–693.

Clarke, F. H. (1990). Optimization and nonsmooth analysis, Volume 5. Siam.

Craig, S. J. C., A. M. Kenney, J. Lin, I. M. Paul, L. L. Birch, J. Savage, M. E. Marini, F. Chiaromonte,
M. L. Reimherr, and K. D. Makova (2019). Polygenic risk score based on weight gain trajectories
is a strong predictor of childhood obesity. bioRxiv, 606277.

Cremona, M. A., H. Xu, K. D. Makova, M. Reimherr, F. Chiaromonte, and P. Madrigal (2019).
Functional data analysis for computational biology. Bioinformatics (Oxford, England) 35(17),
3211.

Cressie, N. and H.-C. Huang (1999). Classes of nonseparable, spatio-temporal stationary covariance
functions. Journal of the American Statistical Association 94(448), 1330–1339.

Daniels, S. R., S. G. Hassink, et al. (2015). The role of the pediatrician in primary prevention of
obesity. Pediatrics 136(1), e275–e292.

Deng, W., W. Yin, and Y. Zhang (2013). Group sparse optimization by alternating direction method.
In Wavelets and Sparsity XV, Volume 8858, pp. 88580R. International Society for Optics and
Photonics.

Deng, Z. and A. M.-C. So (2019). An efficient augmented lagrangian based method for constrained
lasso. arXiv preprint arXiv:1903.05006.

Dünner, C., S. Forte, M. Takáč, and M. Jaggi (2016). Primal-dual rates and certificates. arXiv preprint
arXiv:1602.05205.

Fan, Y., G. M. James, P. Radchenko, et al. (2015). Functional additive regression. The Annals of
Statistics 43(5), 2296–2325.

Fan, Z. and M. Reimherr (2016). High-dimensional function-on-scale regression via the alternating
direction method of multipliers. In 2016 3rd International Conference on Information Science and
Control Engineering (ICISCE), pp. 397–399. IEEE.

Fenchel, W. (1949). On conjugate convex functions. Canadian Journal of Mathematics 1(1), 73–77.

Friedman, J., T. Hastie, and R. Tibshirani (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of statistical software 33(1), 1.

Gertheiss, J., A. Maity, and A.-M. Staicu (2013). Variable selection in generalized functional linear
models. Stat 2(1), 86–101.

Hall, P. and M. Hosseini-Nasab (2006). On properties of functional principal components analysis.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68(1), 109–126.

11

Horváth, L. and P. Kokoszka (2012). Inference for functional data with applications, Volume 200.
Springer Science & Business Media.

James, G. M., T. J. Hastie, and C. A. Sugar (2000). Principal component models for sparse functional
data. Biometrika 87(3), 587–602.

Johnson, R. A., D. W. Wichern, et al. (2014). Applied multivariate statistical analysis, Volume 6.
Pearson London, UK:.

Katrutsa, A. and V. Strijov (2015). Stress test procedure for feature selection algorithms. Chemomet-
rics and Intelligent Laboratory Systems 142, 172–183.

Kichaev, G., G. Bhatia, P.-R. Loh, S. Gazal, K. Burch, M. K. Freund, A. Schoech, B. Pasaniuc, and
A. L. Price (2019). Leveraging polygenic functional enrichment to improve gwas power. The
American Journal of Human Genetics 104(1), 65–75.

Kokoszka, P. and M. Reimherr (2017). Introduction to functional data analysis. CRC Press.

Krawczyk, B. and A. Cano (2018). Online ensemble learning with abstaining classifiers for drifting
and noisy data streams. Applied Soft Computing 68, 677–692.

Li, X., D. Sun, and K.-C. Toh (2018). A highly efficient semismooth newton augmented lagrangian
method for solving lasso problems. SIAM Journal on Optimization 28(1), 433–458.

Locke, A. E., B. Kahali, S. I. Berndt, A. E. Justice, T. H. Pers, F. R. Day, C. Powell, S. Vedantam,
M. L. Buchkovich, J. Yang, et al. (2015). Genetic studies of body mass index yield new insights
for obesity biology. Nature 518(7538), 197.

Luque, F. J. (1984). Asymptotic convergence analysis of the proximal point algorithm. SIAM Journal
on Control and Optimization 22(2), 277–293.

Matsui, H. and S. Konishi (2011). Variable selection for functional regression models via the l1
regularization. Computational Statistics & Data Analysis 55(12), 3304–3310.

Mirshani, A. and M. Reimherr (2019). Adaptive function-on-scalar regression with a smoothing
elastic net. arXiv preprint arXiv:1905.09881.

Murdoch, W. J., C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu (2019). Definitions, methods,
and applications in interpretable machine learning. Proceedings of the National Academy of
Sciences 116(44), 22071–22080.

Parikh, N., S. Boyd, et al. (2014). Proximal algorithms. Foundations and Trends® in Optimiza-
tion 1(3), 127–239.

Parodi, A., M. Reimherr, et al. (2018). Simultaneous variable selection and smoothing for high-
dimensional function-on-scalar regression. Electronic Journal of Statistics 12(2), 4602–4639.

Paul, I. M., J. S. Williams, S. Anzman-Frasca, J. S. Beiler, K. D. Makova, M. E. Marini, L. B. Hess,
S. E. Rzucidlo, N. Verdiglione, J. A. Mindell, et al. (2014). The intervention nurses start infants
growing on healthy trajectories (insight) study. BMC pediatrics 14(1), 184.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, et al. (2011). Scikit-learn: Machine learning in python. the Journal
of machine Learning research 12, 2825–2830.

Polyak, B. T. (1969). The conjugate gradient method in extremal problems. USSR Computational
Mathematics and Mathematical Physics 9(4), 94–112.

Pulit, S. L., C. Stoneman, A. P. Morris, A. R. Wood, C. A. Glastonbury, J. Tyrrell, L. Yengo,
T. Ferreira, E. Marouli, Y. Ji, et al. (2019). Meta-analysis of genome-wide association studies for
body fat distribution in 694 649 individuals of european ancestry. Human molecular genetics 28(1),
166–174.

Rockafellar, R. T. (1976a). Augmented lagrangians and applications of the proximal point algorithm
in convex programming. Mathematics of operations research 1(2), 97–116.

12

Rockafellar, R. T. (1976b). Monotone operators and the proximal point algorithm. SIAM journal on
control and optimization 14(5), 877–898.

Sørensen, H., J. Goldsmith, and L. M. Sangalli (2013). An introduction with medical applications to
functional data analysis. Statistics in medicine 32(30), 5222–5240.

Tibshirani, R. J., J. Taylor, et al. (2012). Degrees of freedom in lasso problems. The Annals of
Statistics 40(2), 1198–1232.

Tomioka, R. and M. Sugiyama (2009). Dual-augmented lagrangian method for efficient sparse
reconstruction. IEEE Signal Processing Letters 16(12), 1067–1070.

Tomioka, R., T. Suzuki, and M. Sugiyama (2011). Super-linear convergence of dual augmented
lagrangian algorithm for sparsity regularized estimation. Journal of Machine Learning Re-
search 12(5).

Ullah, S. and C. F. Finch (2013). Applications of functional data analysis: A systematic review. BMC
medical research methodology 13(1), 1–12.

Van Loan, C. F. and G. H. Golub (1983). Matrix computations. Johns Hopkins University Press.

Yu, B. and K. Kumbier (2020). Veridical data science. Proceedings of the National Academy of
Sciences 117(8), 3920–3929.

Yuan, M. and Y. Lin (2006). Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68(1), 49–67.

Zhang, Y. and Q. Yang (2018). An overview of multi-task learning. National Science Review 5(1),
30–43.

Zhao, S., A. Shojaie, and D. Witten (2017). In defense of the indefensible: A very naive approach to
high-dimensional inference. arXiv preprint arXiv:1705.05543.

Zhu, Y. (2017). An augmented admm algorithm with application to the generalized lasso problem.
Journal of Computational and Graphical Statistics 26(1), 195–204.

Zou, H. and T. Hastie (2005). Regularization and variable selection via the elastic net. Journal of the
royal statistical society: series B (statistical methodology) 67(2), 301–320.

NeurIPS paper checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We briefly describe some
limitations of our methodology at the end of Section 5

(c) Did you discuss any potential negative societal impacts of your work? [No] We do not
see the potential for adverse societal impacts

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] All proofs are included

in Supplemental Section A.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] Code to
reproduce the simulation results is included in the Supplemental Material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4.

13

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We run a subset of experiments multiple times computing
mean and standard errors. These results are included in Supplemental Section B.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Supplemental Section B.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cited the creators

of data from INSIGHT in Section 4.2
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

The code to run fgen is included in the Supplementary Material and will be made
available on GitHub

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No] The INSIGHT study operated under an appropriate IRB. We
did not reference it or provide details here. We do thank the individuals who provided
access to the data in the Acknowledgments Section.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] The INSIGHT data we used for our application
is privacy potected. We discuss how parts of it are available upon request through
dbGaP, and parts of it are not available, in Section 4.2

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Preliminaries
	Fenchel conjugate function and proximal operator of (B)
	Dual formulation and Augmented Lagrangian

	Methodology
	SsNAL method
	Extension to function-on-scalar regression
	Solution path implementation

	Simulation study and INSIGHT data
	Simulation results
	INSIGHT study

	Conclusions

