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Abstract

Estimating the confidence of large language model
(LLM) outputs is essential for real-world applica-
tions requiring high user trust. Black-box uncer-
tainty quantification (UQ) methods, relying solely
on model API access, have gained popularity due
to their practical benefits. In this paper, we examine
the implicit assumption behind several UQ meth-
ods, which use generation consistency as a proxy
for confidence—an idea we formalize as the consis-
tency hypothesis. We introduce three mathematical
statements with corresponding statistical tests to
capture variations of this hypothesis and metrics
to evaluate LLM output conformity across tasks.
Our empirical investigation, spanning 8 benchmark
datasets and 3 tasks (question answering, text sum-
marization, and text-to-SQL), highlights the preva-
lence of the hypothesis under different settings.
Among the statements, we highlight the ‘Sim-Any’
hypothesis as the most actionable, and demonstrate
how it can be leveraged by proposing data-free
black-box UQ methods that aggregate similari-
ties between generations for confidence estima-
tion. These approaches can outperform the closest
baselines, showcasing the practical value of the
empirically observed consistency hypothesis.

1 INTRODUCTION & RELATED WORK

Large language models (LLMs) have become pervasive due
to their state-of-the-art performance for various natural lan-
guage processing tasks. Despite recent advances, LLMs
are known to suffer from important limitations that heav-
ily impact their usability in diverse real-world applications,
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including lack of traceability, context sensitivity, and diffi-
culty around incorporating domain-specific knowledge and
handling rare queries as well as dynamic and evolving data.
These issues often lead to unpredictable or unverifiable re-
sponses, or outputs that appear authoritative even when they
are incorrect, which can undermine user trust in high-stakes
domains such as healthcare, finance, and law.

Uncertainty quantification (UQ) approaches provide in-
sights into the reliability of an LLM’s predictions by associ-
ating them with confidence estimates, making them a critical
component of many real-world systems. The estimated con-
fidences should ideally be well calibrated, as gauged by
the degree to which they match the empirical accuracy for
that prediction [Murphy and Epstein, 1967, Dawid, 1982].
They can be used to distinguish correct LLM responses from
incorrect ones, as well as for selective generation, i.e. for re-
jecting a fraction of the instances that one is least confident
about [El-Yaniv et al., 2010]. Robust UQ enables down-
stream decision-making systems to act conservatively when
necessary, and can facilitate human-AI collaboration by al-
lowing users to identify when to trust or question model
outputs. Moreover, well-calibrated uncertainty estimates
are essential for integrating LLMs into broader pipelines
where resource allocation or fallback mechanisms depend
on confidence-aware behavior.

There is a growing body of literature on UQ techniques for
estimating the confidence of LLM generations. Verbalized
UQ approaches rely on prompting LLMs to express uncer-
tainty about a generated response in natural language, such
as through qualifying phrases or numbers [Lin et al., 2022,
Kadavath et al., 2022, Mielke et al., 2022]. For instance,
Kadavath et al. [2022] use a self-verification approach for
question answering tasks where an LLM is asked to declare
whether a provided answer is true or false for a question,
and the model’s token logit is used to infer the probability
that the answer is correct. Although some empirical studies
show that verbalized confidences using LLMs trained via
the reinforcement learning with human feedback paradigm
can yield well-calibrated estimates [Tian et al., 2023], others
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indicate that LLMs are overconfident when verbalizing their
own confidence [Xiong et al., 2024] and that LLMs’ meta-
linguistic judgments are less reliable than quantities derived
directly from token-level probabilities [Hu and Levy, 2023].

UQ approaches, regardless of whether they are verbal-
ized or not, can be categorized into two high-level cate-
gories – black-box techniques only assume API access to
an LLM [Lin et al., 2023, Manakul et al., 2023, Cole et al.,
2023], whereas white-box approaches require other model
information such as the model weights [Gal and Ghahra-
mani, 2016, Xiao and Wang, 2019], or internal states such
as embeddings and activation spaces [Ren et al., 2023], or
only token-level logits [Kuhn et al., 2022, Kadavath et al.,
2022]. Some recent white-box methods for calibrating LLM
output typically require substantial training data for fine-
tuning LLMs [Chen et al., 2023, Kapoor et al., 2024, Ulmer
et al., 2024], making them computationally intensive. In
comparison, black-box approaches offer practical advan-
tages, including robustness to LLM upgrades, compatibility
with proprietary models (even those limited to API-based in-
puts and outputs), and computational tractability at inference
time. As a result, such approaches have gained popularity
in generation tasks.

Several UQ approaches, both black-box and white-box, sam-
ple multiple generations from an LLM and characterize
some notion of variability between generations as a proxy
for confidence. For instance, Kuhn et al. [2022] find seman-
tic equivalence between generations to cluster them and
then compute the entropy of each cluster, where a lower
entropy value implies a more confident generation. Lin et al.
[2023] take a spectral clustering approach instead by treating
generations as nodes in a graph, but also rely on variabil-
ity. Various other approaches leverage consistency between
generations via different forms of perturbation [Gao et al.,
2024], for addressing challenges such as ambiguous ques-
tions [Cole et al., 2023] or detecting hallucinated facts [Man-
akul et al., 2023].

Recent efforts have recommended combining ideas from the
various UQ categories, such as an approach that estimates
a numeric confidence score for any LLM output by com-
bining an extrinsic consistency-based metric over multiple
samples with an intrinsic confidence estimate obtained by
prompting the LLM itself [Chen and Mueller, 2023]. Xiong
et al. [2024] suggest that using both verbalized confidence
and sampling consistency could be promising for attaining
more accurate confidence assessments in LLMs.

There is an implicit assumption behind all approaches that
generate multiple samples and use consistency or variability
to infer confidence – informally, when a generated response
is more different than others, it is more likely to be incorrect,
thus responses that are consistently similar are more likely
to be correct. We refer to this assumption as the consistency
hypothesis, and visualize it using Figure 1, which consid-

ers two instances each from two datasets – CoQA [Reddy
et al., 2019] for open-ended question answering and Spider
Realistic [Deng et al., 2021] for the text-to-SQL genera-
tion task. We represent 30 generations for each instance
via t-SNE projections of their semantic encodings, distin-
guishing between generations deemed to be correct and
incorrect through color coding. For instances across both
types of datasets, we observe that correct generations tend
to be visually closer to other generations and to each other
as compared to incorrect generations (Figures 1a, 1c). In-
correct generations tend to lie on the border of the correct
generations. Furthermore, when there are many incorrect
generations, these are often largely spread across the rep-
resentation space and may be dissimilar (Figures 1b, 1d).
This is merely an illustrative visual examination for specific
instances, but how can this crucial assumption that forms the
basis for so many UQ approaches be formalized and tested?
Importantly, how can one measure the extent to which
the consistency hypothesis holds for LLM generations
for a dataset?

In this paper, we continue the burgeoning investigation of
consistency-based methods for UQ in LLMs. Our specific
contributions are as follows:

• We propose a rigorous statistical procedure (as outlined
in Algorithm 1) for testing the implicit assumption be-
hind consistency-based UQ approaches for LLMs using
notions of similarity between generations. We propose
both conceptual and actionable versions of the hypothe-
sis stated verbally, and formulate them as comparisons
between sets of similarities.

• We propose metrics to measure the extent to which vari-
ous versions of the consistency hypothesis hold for LLM
generations for a task and dataset.

• We conduct a detailed empirical investigation spanning
8 benchmark datasets over 3 tasks – question answering,
text summarization, and text-to-SQL – to verify the extent
to which the hypotheses hold for these datasets.

• Based on the empirical findings, we design a black-box
UQ method associated with new aggregation functions
that performs reasonably well for confidence estimation,
further demonstrating the practical value of exploiting
the consistency hypothesis for UQ and motivating future
exploration into related approaches.

• In addition, our illustrative visualization tools such as
those depicted in Figures 1 and 2 can aid data exploration
pertaining to the consistency hypothesis (see Appendix B
for further examples).

2 CONSISTENCY HYPOTHESIS
FORMALIZATION

We begin by clarifying the problem setup with notation, and
subsequently propose and formalize various versions of the
consistency hypothesis.



(a) QA case 1 (b) QA case 2 (c) Text-to-SQL case 1 (d) Text-to-SQL case 2

Figure 1: T-SNE projections of 30 generations represented by sentence embeddings, for 2 instances each from the CoQA and
Spider Realistic dev datasets. Correct and incorrect generations are labeled in blue and red respectively. The plots suggest
that correct generations tend to cluster closely to other generations and to each other as compared to incorrect generations,
whereas incorrect generations are often more dispersed and exhibit greater dissimilarity.

2.1 PRELIMINARIES & NOTATION

Consider a dataset with queries x1, · · · , xn, where xi is the
ith query (a.k.a. instance, such as a question in a question
answering task). Consistency-based approaches call an LLM
for multiple generations (a.k.a. samples, such as answers in
a question answering task) for each instance. Generations
corresponding to xi are denoted y1i , · · · , ymi . We use [n] :=
{1, · · · , n} and [m] := {1, · · · ,m} as shorthand to denote
the set of indices for queries and generations, respectively.

We assume there is a set of responses Y∗
i that are deemed

correct for query xi. Therefore, a generated output yji is
correct if yji ∈ Y∗

i . For tasks such as open-ended question
answering and summarization, a generation for a particular
input may be viewed as correct if a metric such as Rouge-
L with respect to the ground truth output exceeds some
predetermined threshold.

We also assume access to a similarity metric s(·) defined on
the interval [0, 1], to compute pairwise similarities sj,ki =

s(yji , y
k
i ), which is the similarity between the jth and kth

samples for the ith instance in the dataset. In addition, an ag-
gregation function f(·) is required for combining pairwise
similarities into a scalar.

2.2 STATEMENTS & FORMALIZATIONS

We propose three different verbal statements as candidates
for the consistency hypothesis, and formalize them as mathe-
matical statements. These formal statements could either be
at the “instance-level”, i.e. at the level of a particular query
involving multiple generations, or at the “group-level”, i.e.
applicable over a set of queries in the dataset. As a preview,
we visualize the distributions of two similarity sets, denoted
SC (correct cluster) and SI (incorrect cluster) in Figure 2;
these are keys for formalizing the consistency hypothesis
and will be defined subsequently. We highlight that these
distributions are clearly distinct across all three verbal hy-

Figure 2: Visualization of the distributions of the Jaccard
pairwise similarities of correct cluster SC and incorrect
cluster SI under different hypotheses from Granite gener-
ations of 30 samples each on the CoQA dataset. Complete
visualizations for each dataset can be found in Figure 14.

potheses proposed. Furthermore, the mean of the correct set
notably exceeds that of the incorrect set, which will form
the basis for our formal statements.

Motivated by Figure 1, we first introduce two natural hy-
potheses that compare generations with either other correct
generations or those within the same category. We then pro-
pose a more actionable hypothesis designed for the practical
scenario where generation labels are unavailable.

2.2.1 The Sim-Correct Hypothesis

One of the natural verbal statements inspired by Figure 1
is as follows: A correct generation is more similar to other
correct generations for an instance, as compared to an
incorrect generation. We call this statement the sim-correct
hypothesis, as it makes a claim about similarity only with
respect to correct generations.

We consider two variants for formalization: one considers
similarity of a generation with respect to other individual
generations, and the other aggregates similarities with re-
spect to other generations.

Pairwise Consistency. First we consider pairwise similar-
ities between generations. We build two sets of pairwise



similarities for each instance; one is for correct generations
and one for incorrect generations: SC

i = {sj,ki : j, k ∈
Y∗
i , k ̸= j} and SI

i = {sj,ki : j /∈ Y∗
i , k ∈ Y∗

i } where
k ∈ [m]. We construct these sets by selecting the appropri-
ate entries from the matrix formed by computing pairwise
similarities between all generations.

The formal statement can now be made as: µC
i > µI

i , where
these are the means of sets SC

i and SI
i respectively. The

statement could be verified using a one-sided t-test by re-
jecting the null hypothesis of µC

i ≤ µI
i at a suitable p-value.

Note that the above statements are instance-level as there is
a statement for each i-th instance. There may however not be
enough data for statistical significance at this level. Group
level versions of the sets can be obtained by collecting over
all instances in a group: SC

g =
⋃

i∈G{s
j,k
i : j, k ∈ Y∗

i , k ̸=
j} and SI

g =
⋃

i∈G{s
j,k
i : j /∈ Y∗

i , k ∈ Y∗
i }, where group

g is associated with indices of queries G ⊆ [n] and k ∈ [m].
The formal statement at the group level is µC

g > µI
g. When

G = [n], there is only 1 group and the statement is at the
“dataset level”. We denote the correct and incorrect sets at
the dataset level as SC and SI , respectively.

Aggregated Consistency. Here we consider the aggregated
similarity over all other samples. Besides similarity metric
s(·), this requires an aggregation function f(·). In this case,
we use aggregated similarities instead of pairwise ones to
gauge how a generation compares with other generations:
SC
i = {s̄ji : j ∈ Y∗

i } and SI
i = {s̄ji : j /∈ Y∗

i }, where
s̄ji = f(sj,i1i , · · · , sj,imi ) with {sj,i1i , · · · , sj,imi } ∈ Y∗

i is
the aggregated similarity of generation j w.r.t other correct
generations for instance i. The formal statement remains
µC
i > µI

i using means for the aforementioned sets, and once
again one can consider either instance-level statements or
those collecting over instances in a group.

The pairwise consistency hypothesis offers more data points
for conducting statistical tests, while the aggregated consis-
tency hypothesis is more practical for designing new UQ
methods with improved aggregation functions.

2.2.2 The Sim-Separate Hypothesis

According to Figure 1, another candidate verbal statement
is: A correct generation is more similar to other correct gen-
erations than an incorrect generation is to other incorrect
generations, for an instance. We refer to this statement as
the sim-separate hypothesis as its assertion entirely sepa-
rates correct and incorrect generations.

The main difference between the formalization for this hy-
pothesis and the previous one is how instance-level similar-
ity sets are defined. Here, SC

i = {sj,ki : j, k ∈ Y∗
i , k ̸= j}

and SI
i = {sj,ki : j, k /∈ Y∗

i , k ̸= j} where k ∈ [m]. Note
that the aggregated consistency version of this hypothesis in-
volves aggregating similarities for a correct generation over

the set of all correct generations, and for an incorrect gen-
eration over the set of all incorrect generations, for a given
instance. All other aspects are the same as Sim-Correct.

2.2.3 The Sim-Any Hypothesis

When labels for correct and incorrect generations are un-
available, as is typical, one black-box UQ approach for
confidence estimation [Lin et al., 2023] is to leverage this
aggregation function directly, e.g. confidence in yji could be
computed as cji = f(sj,1i , · · · , sj,mi ) and interpreted as the
probability of the generation being correct, potentially after
further calibration. Thus, while conceptually intuitive, the
previous two hypotheses are insufficient for providing prac-
tical guidance in designing black-box UQ methods. We then
propose a novel formalization of the consistency hypothesis
by comparing each generation with all other generations,
eliminating the need for labels during aggregation.

A verbal statement for this version of the consistency hy-
pothesis is as follows: A correct generation is more similar
to other generations for an instance, as compared to an in-
correct generation. We refer to this statement as the sim-any
hypothesis, as the statement makes a claim about similar-
ity with respect to any other generation or generations, not
necessarily those that are correct or incorrect.

For this hypothesis, instance-level similarity sets are con-
structed as: SC

i = {sj,ki : j ∈ Y∗
i , k ̸= j} and SI

i = {sj,ki :
j /∈ Y∗

i , k ̸= j} where k ∈ [m]. The aggregated consistency
version of this hypothesis performs aggregation only over
the set of all generations for an instance; All other aspects
remain the same as Sim-Correct. As the Sim-Any hypoth-
esis is less intuitive from Figure 1, it should be carefully
examined by statistical tests. If verified to some extent, the
confidence in a generation could potentially be estimated by
aggregating its similarity with all other generations.

In subsequent sections (including figures), we also refer to
the Sim-Any, Sim-Correct, and Sim-Separate hypotheses as
Hypo #1, #2, and #3, respectively, for brevity.

3 CONSISTENCY HYPOTHESIS
VERIFICATION

How can one measure the extent to which a dataset conforms
to a consistency hypothesis? We propose the following met-
rics that leverage the formal statements. The metrics rely on
Algorithm 1, which is provided the number of groups ng and
returns the fraction of groups that verify the hypothesis, de-
noted ρ(ng), as determined by whether the null hypothesis
is rejected at p-value ≤ 0.05.

Mean difference ∆µ = µC − µI . This measures the ex-
tent to which the statement holds true across the entire
dataset but is problematic as a measure of the efficacy of



(a) QA (b) Summarization (c) Text-to-SQL

Figure 3: Verification of hypotheses using mean difference ∆µ between similarity sets with Jaccard pairwise similarity on
all 8 datasets for the QA, summarization, and text-to-SQL tasks.

(a) CoQA dataset (b) XSum dataset (c) Spider dataset

Figure 4: Verification of hypotheses (pairwise consistency statements) using the fraction of verified groups ρ(ng) as
a function of the relative number of groups ng/n with Jaccard pairwise similarity on representative datasets for QA,
summarization, and text-to-SQL tasks. Complete results for 8 datasets are included in the Appendix.

consistency-based UQ methods, which necessarily need to
be applied at the instance level; this is because it compiles
similarity sets using all instances and only applies at the
dataset level. There is likely to be sufficient data to test the
hypothesis at this level.

Fraction of instances where the hypothesis is verified
ρ(n). This is an instance level measure that calls upon Al-
gorithm 1 with a group for each instance, i.e. ng = n. Note
that there may not be sufficient data at the instance level for
testing the statistical significance of a statement.

Maximum relative number of groups for a thresh-
olded fraction of verified groups: θ∗ = n∗

g/n for n∗
g =

argmaxng
I(ρ(ng) ≥ ρ∗), where I(·) is the indicator func-

tion, ρ(ng) is the fraction of verified groups obtained from
Algorithm 1, ρ∗ is some user-specified threshold %, and n
is the number of instances in the dataset. We use the rela-
tive number of groups θ = ng/n for comparability across
datasets. This metric is intended to balance the other two
metrics by considering both statistical power (significant
proportion) and practicality (relative group number) for the
purpose of conducting consistency-based UQ. Moreover,
this metric is a summary quantity that effectively represents
the ‘height’ of the trade-off curve of statistical power and
practicality using a single measure — a higher curve means
that a hypothesis is more valid for that dataset. Although
we selected ρ∗ = 80% as a threshold in experiments for

quantification purposes, our conclusions are based on a com-
parative analysis of the curves rather than hinging upon this
specific value.

These metrics serve as tools for evaluating the verification
extent of different consistency hypotheses based on various
similarity metrics s(·) and aggregation functions f(·). They
provide essential building blocks for comparing metric per-
formance and inspiring the development of new black-box
UQ methods based on the verification extent.

4 EMPIRICAL INVESTIGATION

We conduct experiments for various generative tasks, cov-
ering several datasets and generations with representative
LLMs to tackle those datasets, with the intent of understand-
ing the extent to which the hypotheses hold and how they
could be leveraged for UQ.

QA Task. Following prior work on UQ [Kuhn et al., 2022,
Lin et al., 2023], we use the open-book conversational ques-
tion answering dataset CoQA [Reddy et al., 2019], the
closed-book QA dataset TriviaQA [Joshi et al., 2017], as
well as the more challenging closed-book QA dataset Natu-
ral Questions (NQ) [Kwiatkowski et al., 2019]. We consider
the corresponding dev sets, consisting of 7983, 9960, and
3610 questions for CoQA, TriviaQA, and NQ respectively.



Aggregation/
Similarity

Mean difference when ng = 10 ↑ Max relative group number when ρ∗ = 0.6 ↑
Jaccard Rouge-1 Rouge-L Sbert Jaccard Rouge-1 Rouge-L Sbert

pairwise 0.2247
±0.0009

0.2329
±0.0008

0.2331
±0.0007

0.1713
±0.0005

0.1838
±0.00002

0.1992
±0.00002

0.1994
±0.00003

0.2194
±0.00003

arithmetic 0.0816
±0.0011

0.0897
±0.0010

0.0898
±0.0012

0.0858
±0.0005

0.0464
±0.00009

0.0587
±0.00003

0.0548
±0.00005

0.1096
±0.00012

geometric 0.1437
±0.0010

0.1729
±0.0009

0.1729
±0.0011

0.1127
±0.0004

0.1176
±0.00002

0.1453
±0.00001

0.1450
±0.00001

0.1532
±0.00002

harmonic 0.1417
±0.0010

0.1722
±0.0011

0.1722
±0.0008

0.1425
±0.0004

0.0410
±0.00002

0.1468
±0.00007

0.1536
±0.00003

0.1714
±0.00009

Table 1: Ablation study on choice of similarity metric and aggregation functions for the Natural Question dataset. Higher
numbers indicate stronger verification of the consistency hypothesis H1.

(a) Trivia QA dataset (b) CNN daily mail dataset (c) Bird dataset

Figure 5: Verification of hypotheses using the fraction of verified groups ρ(ng) as a function of the relative number of
groups ng/n with Jaccard pairwise similarity and three different aggregation functions on 3 representative datasets for QA,
summarization, and text-to-SQL tasks. Complete results for 8 datasets are included in Figure 12 in the Appendix.

We generate responses using Granite 13B [Mishra et al.,
2024] (default) and LLaMA 2 70B [Touvron et al., 2023].

Summarization Task. We use the CNN DailyMail Version
3.0.0 [See et al., 2017, Hermann et al., 2015] and Extreme
Summarization (XSum) [Narayan et al., 2018] datasets. For
each dataset, we generate summaries using LLaMA 3 8B
[Meta, 2024] (default) and Mistral 8x7B [MistralAI, 2023]
for the first 1000 documents.

Text-to-SQL Task. We consider various real-world bench-
mark datasets for the task of converting natural language
queries to SQL. Spider [Yu et al., 2018] is a popular bench-
mark that covers 138 domains, and Spider-Realistic [Deng
et al., 2021] is a more challenging version that modifies
the natural language queries to avoid explicit mention of
column names. BIRD [Li et al., 2024] is a recent cross-
domain benchmark of 95 databases covering more than 37
professional domains. We use the dev sets for all 3 datasets,
which include 1034, 508, and 1533 queries respectively. We
generate SQL with Codellama 34 B [Rozière et al., 2024]
(default) and a Deepseek 33 B model [Guo et al., 2024]
that is further fine-tuned with LoRA [Hu et al., 2022] using
Spider’s training dataset.

Other Experimental Details. We produce 5 samples each
over 6 temperatures (from 0.25 to 1.5 in increments of 0.25)

from all LLMs, so as to obtain sufficient variability across
generations [Zhu et al., 2024]. An exploration of other sam-
pling approaches and their ablation is provided in the Ap-
pendix. Most experiments use the Jaccard coefficient as simi-
larity metric s(·), but we also consider variations of ROUGE
metrics such as Rouge-1 and Rouge-L, and the cosine
similarity between sentence BERT https://sbert.net/
(sbert) representations of the generations. Wherever rele-
vant, we consider the arithmetic mean of similarities as the
aggregation function f(·), but we also consider simple ex-
tensions such as the geometric and harmonic mean. For QA
and summarization, a generated response is deemed correct
if the Rouge-L score with respect to ground truth is no less
than 0.5 and 0.2 respectively; Rouge-L has been used in
this fashion for QA in prior work [Kuhn et al., 2022, Lin
et al., 2023]. Our results are robust with respect to Rouge-L
thresholds that define correctness of generations, as noted
by an ablation study in Appendix A.5. For text-to-SQL, a
generated SQL is correct if it returns the same result as the
ground truth SQL upon query execution on the underlying
database. We run Algorithm 1 with R = 10 repetitions.

4.1 PAIRWISE CONSISTENCY STATEMENTS

We begin by verifying the pairwise consistency hypotheses
1–3 (denoted H1–H3) using the Jaccard similarity measure

https://sbert.net/


(a) Hypo 1 (Sim-Any) (b) Hypo 2 (Sim-Correct) (c) Hypo 3 (Sim-Separate)

Figure 6: Impact of different datasets and models on verifying Hypothesis 1–3 for the text-to-SQL task.

Algorithm 1 Fraction of verified groups ρ(ng)

1: Input: Similarity matrix of generations, number of
groups ng , number of repetitions R

2: for each repetition r from 1 to R do
3: Split dataset randomly into ng groups
4: Initialize nv ← 0
5: for each group g in ng do
6: Construct similarity sets SC

g and SI
g

7: Conduct a t-test on the means
8: Calculate the p-value
9: if p-value ≤ 0.05 then

10: nv ← nv + 1
11: end if
12: end for
13: Compute ρr(ng)← nv

ng

14: end for
15: Compute ρ(ng)← 1

R

∑R
r=1 ρr(ng)

16: Compute the error bar of ρ(ng) as the variance
17: Output: ρ(ng) with the error bar

across various datasets on the three tasks.

We show the mean difference of correct similarity set SC

and incorrect set SI in Figure 3 across diverse datasets and
tasks. All mean differences are positive, indicating that all
hypotheses are validated to some extent, but it is largest
for H2. Recall that H2 suggests that compared to incorrect
generations, correct generations are more similar to other
correct generations. The validation of H3 indicates that in-
correct generations have higher variability and are more
diversely distributed than the correct generations. Note that
in practical scenarios, one does not know the correct and
incorrect labels in advance. Therefore, despite the stronger
validation of H2 and H3, H1 serves as a practical approxi-
mation and its validation provides guidance for confidence
estimation of each generation using similarity with respect
to all other generations.

In Figure 4, we illustrate the verification of all hypotheses at
the group level using a plot of significant proportion (a.k.a.
the fraction of verified groups) vs. the relative number of
groups. We showcase only one representative dataset for
each task in Figure 4 and defer plots for other datasets to
Figure 8 in the Appendix. Conclusions drawn regarding the
correctness of the hypotheses at the dataset level remain
applicable at the group level. We also provide similar plots
for the hypotheses using Rouge-L similarity in Figure 9 in
the Appendix. The trend is the same as those using Jaccard.

4.2 AGGREGATED CONSISTENCY STATEMENTS

Next we investigate the correctness of the aggregated consis-
tency statements and impact of different aggregation func-
tions across diverse datasets on three tasks: QA, summa-
rization, and text-to-SQL. We provide the verification plots
of the aggregated version of three hypotheses in Figure 10
in the Appendix. All hypotheses are again verified to some
extent. We choose H1 to study the effect of different ag-
gregation functions versus the pairwise similarity statement
due to its practical implications for UQ.

We show results for representative datasets in Figure 5 and
defer others to Figure 12 in the Appendix. The conclusions
for QA and summarization tasks are identical – since there is
less data available for the aggregated consistency statement
than the pairwise one, the aggregated hypothesis tends to
be statistically less significant. However, this seems to flip
for the text-to-SQL task, especially for the harmonic mean.
This suggests that aggregated consistency statements may
be particularly effective in summarizing useful information
from pairwise similarities, at least for some tasks.

4.3 ABLATION STUDY: SIMILARITY METRIC &
AGGREGATION FUNCTION

In this section, we conduct an ablation study of similar-
ity measures and aggregation functions for the verification



Dataset (Model) CoQA (Granite) Spider (Codellama) TriviaQA (Granite)

AUROC ↑ AUARC ↑ AUROC ↑ AUARC ↑ AUROC ↑ AUARC ↑
Baselines always 1 0.5±0.0 0.62±0.003 0.5±0.0 0.21±0.009 0.5±0.0 0.35±0.005

avg. prob 0.75±0.004 0.79±0.006 0.62±0.012 0.26±0.015 0.74±0.002 0.51±0.005

spec-ecc 0.18±0.008 0.37±0.003 0.31±0.008 0.13±0.006 0.20±0.002 0.17±0.002

p(True) 0.59±0.026 0.70±0.015 0.54±0.009 0.23±0.011 0.68±0.005 0.47±0.007

Black-box arith-agg 0.82±0.006 0.82±0.007 0.74±0.006 0.34±0.013 0.80±0.002 0.57±0.004

(Agg. sims) geom-agg 0.85±0.008 0.83±0.007 0.76±0.011 0.35±0.017 0.80±0.003 0.57±0.004

harm-agg 0.85±0.008 0.83±0.008 0.76±0.010 0.35±0.016 0.80±0.003 0.57±0.004

Table 2: Comparing different aggregation approaches with Jaccard similarities for black-box UQ. Error bars for AUROC
and AUARC are computed over 5 runs that randomly choose 50% of the dataset for testing.

of H1. The results for QA and text-to-SQL tasks in terms
of both mean difference and maximum relative number of
groups to achieve ρ∗ amount of verified group are shown in
Tables 1 and 3. Due to space limitations, we defer Table 3
to the Appendix. For similarity measures, we test Jaccard,
Rouge-1, Rouge-L, and the cosine similarity between sbert
representation for both tasks, and another metric that identi-
fies the type of SQL output [Pourreza and Rafiei, 2024] for
the text-to-SQL datasets. For aggregation functions, we use
the arithmetic, geometric and harmonic means.

The key insights from these two tables are: 1) similar to the
conclusion in Section 4.2, aggregation degrades the verifica-
tion extent in the QA task, whereas it enhances validation of
the hypothesis in the text-to-SQL task; 2) the hypothesis is
more true under Rouge-1 and Rouge-L scores than Jaccard
similarity across both tasks; 3) Jaccard, Rouge-1, Rouge-
L are robust in both tasks; 4) sbert similarity occasionally
outperforms others in the max. relative group number to
achieve a certain fraction of verified groups; 5) SQL output
type similarity is least reliable for verifying the hypothesis
in the text-to-SQL task. Furthermore, since Jaccard similar-
ity is the most computationally efficient measure besides
being the most robust, we use it for most experiments.

4.4 ABLATION STUDY: DATASETS & MODELS

The correctness of a hypothesis is a property of both datasets
and models. Here we investigate the effect of different
datasets and models on the validation of pairwise state-
ments for the text-to-SQL task as shown in Figure 6. We
refer the Codellama and the fine-tuned Deepseek model
as the few-shot and fine-tuned model, respectively. The
Spider Realistic dataset is one where the consistency hy-
pothesis holds to the greatest extent, followed by Bird and
then Spider. We observe that all the hypotheses are stronger
for few-shot models as compared to fine-tuned models, for
both the Spider Realistic and Bird datasets. This may occur
because incorrect instances may have less variability after
fine-tuning the models for specific tasks.

Figure 7: Effects of sampling approaches to the verification
of H1 on the QA task with Granite model.

4.5 ABLATION STUDY: SAMPLING METHOD

We evaluate the consistency hypothesis for the QA task us-
ing three sampling methods: 1) standard sampling, where
tokens are generated through decoding at a fixed tempera-
ture of 0.25, 2) temperature sampling, which involves gen-
erating one sample at varying temperatures, and 3) hybrid
sampling, where multiple samples are generated from multi-
ple temperatures (this is what we used in other experiments).
Figure 7 displays the mean difference between correct and
incorrect clusters at the dataset level. Sampling at different
temperatures (temperature and hybrid sampling) increases
the variability of generations, thereby enhancing the validity
of the consistency hypotheses.

5 CONFIDENCE ESTIMATION BY
AGGREGATION

To demonstrate how rigorous statistical validation of the
consistency hypothesis can guide UQ method design, we
introduce a new UQ method based on the ‘Sim-Any’ hy-
pothesis (H1) as an illustrative example.

Given that the consistency hypothesis H1 is generally veri-



fied to various degrees across datasets and models in Section
4, we investigate the use of simple aggregation methods
including arithmetric, geometric and harmonic mean as a
way of estimating confidence. Specifically, we treat the ag-
gregated similarity of generation j w.r.t other generations
s̄ji = f(sj,1i , · · · , sj,mi ) as its confidence. Note that the ‘de-
gree’ approach used after spectral clustering, as discussed
in [Lin et al., 2023], corresponds to what we describe here
as arithmetic mean aggregation. In contrast, the geometric
and harmonic means are novel aggregation methods intro-
duced in this work, inspired by their superior empirical
performance on verifying consistency hypothesis in Table 1.
Both methods yield more conservative confidence estimates,
typically lower than those produced by the arithmetic mean.

We evaluate confidence using two standard metrics. The
Area Under the Receiver Operating Characteristic (AU-
ROC) evaluates confidence when used as a probabilistic
classifier for correctness, whereas the Area Under the Ac-
curacy Rejection Curve (AUARC) is suitable when confi-
dences are used for selective generation, i.e. for rejecting a
fraction of the instances that one is least confident about.

Table 2 compares various UQ approaches over 2 datasets for
QA (CoQA, TriviaQA) and 1 for text-to-SQL (Spider). We
consider 4 baselines: a naive one that always returns a score
of 1, a white-box approach that uses the avg. log probability
of tokens, a spectral clustering technique using ‘eccentric-
ity’ [Lin et al., 2023], and a white-box verbalized approach
that prompts an LLM to determine whether a generation is
correct and uses the logit of the answer (True/False) [Ka-
davath et al., 2022]. Results suggest that the black-box UQ
methods with the geometric and harmonic means outper-
form the baselines. This highlights the practical significance
of our work around verifying the consistency hypothesis
and demonstrates that the extent of verification can inform
the design of effective new UQ methods.

6 CONCLUSION

In this paper, we proposed three mathematical formula-
tions to formalize a common conjecture about consis-
tency in LLM generations. We substantiated these hypothe-
ses through a comprehensive empirical investigation on
eight benchmark datasets (CoQA, TriviaQA, Natural Ques-
tions, CNN DailyMail, XSum, Spider, Spider-Realistic, and
BIRD) spanning three tasks (QA, Summarization and Text-
to-SQL), establishing justification for consistency-based UQ
methods. We conducted a thorough ablation study, analyzing
factors such as aggregation methods, sampling techniques,
datasets, and models to validate the consistency hypothe-
ses. Inspired by the empirical findings, we also proposed
a black box UQ method with new aggregation approaches
over similarities and demonstrated its superior performance
over some baselines, thereby highlighting how our exten-
sive empirical study on consistency can inform practice.

An investigation of other aggregation methods as well as
a broader empirical study with tasks involving additional
complexities are potential avenues for future work.
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A ADDITIONAL EXPERIMENTAL RESULTS

In this section, we include the omitted figures and tables from the main paper.

A.1 VERIFICATION OF PAIRWISE CONSISTENCY STATEMENTS

In this section, we provide the complete verification results for the pairwise consistency hypotheses for all the datasets in
Figure 8. We also provide the validation of the pairwise consistency hypotheses using Rouge-L similarity in Figure 9. All of
the hypotheses are verified to some extent across all of the datasets. Among those, consistency hypotheses are more true on
the QA and text-to-SQL tasks than the summarization task. This may due to the higher viability of correct answers in the
text summarization task.

A.2 VERIFICATION OF AGGREGATED CONSISTENCY STATEMENTS

In this section, we provide the complete verification results for the aggregated consistency hypotheses with Jaccard similarity
for all the datasets in Figure 10 and Figure 12. It can be seen that all three hypotheses are validated to some extent in all
of the datasets. Surprisingly, while the aggregate consistency hypotheses generally exhibit lower validity compared to the
pairwise version, especially in QA and summarization tasks due to reduced available similarity pairs, this trend does not hold
for the text-to-SQL task. Notably, the harmonic mean aggregation achieves the highest validation performance, indicating its
potential as an effective method for classifying the generations based on consistency.



(a) CoQA dataset (b) Trivia QA dataset (c) Natural Question dataset (d) CNN daily mail dataset

(e) XSum dataset (f) Spider dataset (g) Spider Realistic dataset (h) Bird dataset

Figure 8: Verification of three hypotheses using Jaccard pairwise similarity on various datasets for QA, summarization, and
text-to-SQL tasks.

Aggregation/
Similarity

Mean difference when ng = 10 ↑ Max relative group number when ρ∗ = 0.8 ↑
Jaccard Rouge-1 Rouge-L Sbert SQL Jaccard Rouge-1 Rouge-L Sbert SQL

pairwise 0.1519
±0.0004

0.1395
±0.0002

0.1482
±0.0003

0.0815
±0.0001

0.099
±0.0003

0.2472
±0.0003

0.2820
±0.0001

0.2728
±0.0004

0.2847
±0.0002

0.1269
±0.0002

arithmetic 0.1625
±0.0003

0.1964
±0.0002

0.1956
±0.0002

0.1410
±0.0001

0.0656
±0.0005

0.3261
±0.0003

0.3933
±0.0001

0.3854
±0.0002

0.4144
±0.0003

0.0361
±0.0001

geometric 0.1365
±0.0003

0.2081
±0.0008

0.2007
±0.0005

0.1653
±0.0001

0.2010
±0.0013

0.2858
±0.0003

0.2951
±0.0004

0.2983
±0.0003

0.0010
±0.0001

0.1348
±0.0001

harmonic 0.1317
±0.0003

0.2161
±0.0005

0.2058
±0.0004

0.1928
±0.0462

0.2012
±0.0010

0.3710
±0.0001

0.3558
±0.0005

0.3648
±0.0001

0.0034
±0.0001

0.1386
±0.0001

Table 3: Ablation study of similarity metric and aggregation functions on Spider dataset.

A.3 ABLATION STUDY: SIMILARITY METRIC & AGGREGATION FUNCTION

In addition to Figure 12, in this section, we include the ablation study w.r.t the similarity metric and aggregation function on
Spider dataset with Codellama model in Table 3. In Spider dataset, some aggregation methods outperform the pairwise
similarity, especially for Rouge-1 and Rouge-L score. The SQL output type similarity exhibits the least capability in
capturing the viability of incorrect clusters, resulting in the least propensity for validating the consistency hypothesis. This
may suggest the poor behavior of SQL output type similarity when applying to UQ methods.

A.4 VALIDATION OF HYPOTHESES OVER NON-DEFAULT MODELS

To show the robustness of the validation of the proposed hypotheses across different LLM models, we plot the mean
difference of correct and incorrect clusters on the dataset level for the non-default models (i.e. LLaMA 2 70 B for QA task,
Mistral 8x7B for text summarization task, and fine-tuned Deepseek 33B model for text-to-SQL task ) in Figure 11. Similar
to the results for the default models, all of the mean difference are positive, meaning that all of the consistency hypotheses
are true in some sense. Among those, H2 is more true than H3, followed by H1. This suggests that while the validation
extent varies across models, the means of the similarity sets for correct generations always exceed those of incorrect ones,
indicating that the proposed consistency hypotheses hold to some degree across different models.



(a) CoQA dataset (b) Trivia QA dataset (c) Natural Question dataset (d) CNN daily mail dataset

(e) XSum dataset (f) Spider dataset (g) Spider Realistic dataset (h) Bird dataset

Figure 9: Verification of different hypotheses with Rouge-L pairwise similarity on QA, summarization, and text-to-SQL
tasks for 8 datasets.

A.5 ABLATION STUDY: ROUGE-L SCORE

As the correctness of generations for QA and summarization task depend on the thresholds for Rouge-L score, we conduct
an ablation study over this threshold in this section. The results are shown in Figure 13, demonstrating that the extent of
validation for all three versions of the hypotheses are robust to the choice of Rouge-L threshold.

B VISUALIZATION OF THE DISTRIBUTIONS OF SIMILARITY SETS

In this section, we visualize the distributions of correct similarity sets SC and incorrect similarity sets SI across various
datasets in QA, summarization, and text-to-SQL tasks in Figure 14. The mean values of pairwise similarity sets for correct
generations consistently surpass those of incorrect ones across all tasks. The differentiation between these two clusters varies
by task. In QA tasks, owing to the short responses, SC is concentrated around 1, while SI centers around 0. In text-to-SQL
tasks, SC tends to have higher values, whereas SI is skewed towards lower values. The most challenging task from this
perspective is text summarization, where even correct answers exhibit diverse distributions. However, SC still maintains a
higher mean compared to SI .

This visualization of the distributions of the pairwise similarity set provides insights into the inherent difficulty levels of
different tasks. It is instructive in further classifying generations as correct or incorrect through clustering based on their
similarities with other generations.



(a) CoQA dataset (b) Trivia QA dataset (c) Natural Question dataset (d) CNN daily mail dataset

(d) XSum dataset (d) Spider dataset (e) Spider Realistic dataset (f) Bird dataset

Figure 10: Verification of different hypotheses using Jaccard similarity and arithmetic mean as aggregation function on QA,
summarization, and text-to-SQL tasks for 8 datasets.

(a) QA (b) Summarization (c) Text-to-SQL

Figure 11: Verification of hypotheses for non-default models using mean difference ∆µ between similarity sets with Jaccard
pairwise similarity on all datasets for the QA, summarization, and text-to-SQL tasks for 8 datasets.

(a) CoQA dataset (b) Trivia QA dataset (c) Natural Question dataset (d) CNN daily mail dataset

(e) XSum dataset (f) Spider dataset (g) Spider Realistic dataset (h) Bird dataset

Figure 12: Impact of aggregation functions for verifying aggregation version of Hypothesis 1 on different datasets in QA,
summarization, and text-to-SQL tasks for 8 datasets.



(a) threshold 0.4 for QA (b) threshold 0.5 for QA (c) threshold 0.6 for QA

(a) threshold 0.1 for summarization (b) threshold 0.2 for summarization (c) threshold 0.3 for summarization

Figure 13: Verfication of hypotheses under varying Rouge-L score thresholds for the correctness of generations using mean
difference ∆µ between similarity sets with Jaccard arithmetic similarity on all 5 datasets for the QA and summarization
tasks.

(a) Trivia QA dataset (b) Natural Question dataset (c) CoQA dataset

(d) CNN daily mail dataset (e) XSum dataset

(f) Spider dataset (g) Spider Realistic dataset (h) Bird dataset

Figure 14: Visualization of the distributions of the Jaccard pairwise similarities of correct cluster SC and incorrect cluster
SI under different hypotheses on the datasets of QA, summarization, and text-to-SQL tasks.
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