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ABSTRACT

The truthfulness of existing explanation methods in authentically elucidating the
underlying model’s decision-making process has been questioned. Existing meth-
ods have deviated from faithfully representing the model, thus susceptible to
adversarial attacks. To address this, we propose a novel eXplainable AI (XAI)
method called SRD (Sharing Ratio Decomposition), which sincerely reflects the
model’s inference process, resulting in significantly enhanced robustness in our
explanations. Different from the conventional emphasis on the neuronal level, we
adopt a vector perspective to consider the intricate nonlinear interactions between
filters. We also introduce an interesting observation termed Activation-Pattern-
Only Prediction (APOP), letting us emphasize the importance of inactive neurons
and redefine relevance encapsulating all relevant information including both active
and inactive neurons. Our method, SRD, allows for the recursive decomposition of
a Pointwise Feature Vector (PFV), providing a high-resolution Effective Receptive
Field (ERF) at any layer.

1 INTRODUCTION

In light of the remarkable advancements in deep learning, the necessity for transparent and reliable
decision-making has sparked significant interest in explainable AI (XAI) methods. In response to this
imperative demand, XAI researchers have aimed to provide insightful and meaningful explanations
that shed light on the decision-making process of complex deep learning models. However, the
reliability of existing explanation methods in providing genuine insights into the decision-making
process of complex AI models has been questioned.

Previous methods have not consistently adhered to the model but rather customized it to their re-
spective preference. As a result, many of them are vulnerable to adversarial attacks, causing doubt
on their reliability. To address this issue, we focus on faithfully representing the model’s inference
process, relying exclusively on model-generated information, and refraining from any form of cor-
rection. This approach supports the robustness of our explanations compared to other methods.

Moreover, existing methods have traditionally analyzed models at the neuronal level, often over-
looking the intricate nonlinear interaction between neurons1 to form a concept. This approach has
been derived from the assumption that an individual scaler-valued channel (a filter or a neuron)
carries a specific conceptual meaning. That is, the value of a single neuron directly determines the
conceptual magnitude with the significance of a pixel being determined as a linear combination of
each constituting neuron’s conceptual magnitude. However, this assumption may oversimplify the
complex nature of deep learning models, wherein multiple neurons nonlinearly collaborate to form
a concept. Therefore, we analyze the models from a perspective of a vector, exploring the vector
space to account for the interaction among neurons. Specifically, we introduce the pointwise feature
vector (PFV), which is a vector along a channel axis of a hidden layer, amalgamating neurons that
share the same receptive field.

∗Equal contribution. †Corresponding author.
1A neuron outputs a scalar, an element in a tensor, by combining the information in its receptive field.
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Table 1: Classification accuracies on Im-
ageNet validation set achieving compara-
ble performance without any inputs, solely
relying on weights and the activation pat-
tern. Here, activation pattern means that
the model records masks where the inac-
tive neurons are flagged, during a predic-
tion. Even with an empty image, the model
makes comparable predictions when ReLU
and Maxpool are replaced by the recorded
masks. More information about APOP is
contained in Appendix D.

Top-1 Top-5

Original APOP Original APOP

VGG13 .679 .544 .882 .787
VGG16 .698 .575 .894 .809
VGG19 .705 .593 .898 .822
ResNet18 .670 .487 .876 .734
ResNet34 .711 .557 .900 .790
ResNet50 .744 .569 .918 .794
ResNet101 .756 .560 .928 .785
ResNet152 .769 .612 .935 .826

In addition, we alter the conventional way of calcu-
lating relevance based on post-activation values into
the one based on pre-activation values. It is widely
believed that, for achieving conceptual harmony and
class differentiation at the final layer, image activa-
tions from the same class should undergo progressive
merging along the shallow to deep layers (Fel et al.,
2023). With this belief, previous methods have pri-
marily focused on analyzing the value of the post-
activation output, identifying the key contributor to the
merged concept. However, we observe a fascinating
phenomenon termed Activation-Pattern-Only Predic-
tion (APOP), which shows that classification accura-
cies can be considerably maintained without receiving
any input image, relying solely on the on/off activa-
tion pattern of the network (Refer to Tab. 1 for de-
tails). This highlights the importance of not only con-
sidering active neurons but also inactive ones, as both
contribute to forming the patterns. However, after the
nonlinear activation process, such as ReLU, the infor-
mation about the contributors to the inactive neurons
is lost. Therefore, we consider the contribution of the
neurons in the prior layer to inactive neurons to fully
comprehend the contribution of features.

Considering the aforementioned challenges, we present our novel method, Sharing Ratio Decom-
position (SRD), which decomposes a PFV comprising preactivation neurons occupying the same
spatial location of a layer into the shares of PFVs in its receptive field. Our approach is centered on
faithfully adhering to the model, relying solely on model-generated information without any alter-
ations, thus enhancing the robustness of our explanations. Furthermore, while conventional methods
have predominantly examined models at the neuronal level, with linear assumptions about chan-
nel significance, we introduce a vector perspective, delving into the intricate nonlinear interactions
between filters. Additionally, with our captivating observation of APOP, we redefine our relevance,
focusing on contributions to the pre-activation feature map, where all pertinent information is encap-
sulated. Our approach goes beyond the limitations of traditional techniques in terms of both quality
and robustness, by sincerely reflecting the inference process of the model.

By recursively decomposing a PFV into PFVs of any prior layer with our Sharing Ratio Decompo-
sition (SRD), we could obtain a high-resolution Effective Receptive Field (ERF) at any layer, which
further enables us to envision a comprehensive exploration spanning from local to global explana-
tion. While the local explanation allows us to address where in terms of model behavior, the global
explanation enables us to delve into what the model looks at. Furthermore, by decomposing the steps
of our explanation, we could see a hint on how the model inferences (Appendix A).

2 RELATED WORKS

Backpropagation-based methods such as Saliency (Simonyan et al., 2014), Guided Backprop
(Springenberg et al., 2015), GradInput (Ancona et al., 2018), InteGrad (Sundararajan et al., 2017),
Smoothgrad (Smilkov et al., 2017), Fullgrad (Srinivas & Fleuret, 2019) generate attribution maps by
analyzing a model’s sensitivity to small changes through backpropagation. They calculate the error
through backpropagation for the input value to indicate the importance of each pixel, often generat-
ing noisy maps due to the presence of noisy gradients. Furthermore, there is doubt on the credibility
of these methods, claiming that the gradients are not used during the inference process.

In contrast, LRP (Bach et al., 2015) constructs saliency maps solely using the model’s weights and
activations, without gradient information. LRP calculates the contribution of every neuron by prop-
agating relevance, while our method, SRD, calculates relevance of vectors. Yet, different from LRP
families (Bach et al., 2015; Montavon et al., 2017; 2019), which either ignores or assigns minor
contribution to negatively contributing neurons for the active neuron, we acknowledge the signifi-
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cance of every contribution in the model’s inference process. Moreover, while LRP may not account
for contributions to inactive neurons, who hold vital information for the inference, we elaborately
handle contributions to both active and inactive neurons.

Activation-based methods generate activation maps by using the linearly combined weights of ac-
tivations from each convolutional layer of a model. Class Activation Mapping (CAM) (Zhou et al.,
2016) and its extension, Grad-CAM (Selvaraju et al., 2017), enhance interpretability in neural net-
works by utilizing convolutional layers and global average pooling. Grad-CAM++ (Chattopadhay
et al., 2018) further improves localization accuracy by incorporating second-order derivatives and
applying ReLU for finer details. These CAM-based approaches assume that each channel possesses
distinct significance, and the linear combination of channel importance and layer activation can
explain the regions where the model looks at importantly. However, due to nonlinear correlations
between neurons, the CAM methods, except LayerCAM, struggle at lower layers, yielding saliency
maps only with low-resolution. In contrast, LayerCAM (Jiang et al., 2021) inspects the importance
of individual neurons, aggregating them in a channel-wise manner. It seems similar to our SRD as
it calcalates the importance of a pixel (thus a vector). However, it also disregards negative contribu-
tions of each neuron and does not account for contribution of inactive neurons, as gradients do not
flow through them.

Desiderata of explanations The absence of a ‘ground truth’ poses challenges for objective com-
parisons, given that explainability inherently depends on human interpretation (Doshi-Velez & Kim,
2017). To mitigate this issue, specific desiderata have been established such as Localization, Com-
plexity, Faithfulness, and Robustness (Binder et al., 2023). Localization demands accurate identi-
fication of crucial regions during model inference, while Complexity requires creating sparse and
interpretable saliency maps. Faithfulness insists that the removal of ‘important’ pixels significantly
impacts the model’s prediction. Robustness necessitates consistent saliency maps under both random
and targeted perturbations, ensuring resilience against manipulations aimed at misleading explana-
tions (Ghorbani et al., 2019a; Dombrowski et al., 2019). Our model, SRD, surpasses other state-
of-the-art methods in meeting these desiderata without any modification of neuronal contributions
during model inference.

3 METHOD: SHARING RATIO DECOMPOSITION (SRD)

Our method provides the versatility to perform both in forward (Fig. 1) and backward (Fig. 2) passes
through the neural network, enabling a comprehensive analysis from different angles. A formal proof
demonstrating this equivalence is provided in Appendix C.

3.1 FORWARD PASS

Pointwise Feature Vector The pointwise feature vector (PFV), our new analytical unit, comprises
neurons in the hidden layer that share the same receptive field along the channel axis. Consequently,
the PFV serves as a fundamental unit of representation for the hidden layer, as it is inherently a
pure function of its receptive field. For linear layers, we compute the contributions of the previous
PFVs to the current layer directly, leveraging the distributive law. However, for nonlinear layers, it
is challenging to obtain the exact vector transformed by the layer, leading us to calculate relevance
instead. The output or activation of layer l, denoted as Al ∈ RC×HW , is composed of HW PFVs,
vlp ∈ RC , where p ∈ {1, · · · , HW} ≜ [HW ] denotes the location of the vector in the feature map.
Note that each vector belongs to the same C-dimensional vector space V l.

Effective Receptive Field Each neuron can be considered as a function of its Receptive Field (RF),
and likewise, other neurons situated at the same spatial location but within different channels are
also functions of the same RF. Consequently, the PFV, which comprises neurons along the channel
axis, serves as a collective representation of the RF, effectively encoding the characteristics of its
corresponding RF. However, note that the contribution of individual pixels within the RF is not uni-
form. For example, pixels in the central area of the RF contribute more in the convolution operation
compared to edge pixels. This influential region is known as the Effective Receptive Field (ERF),
which corresponds to only a fraction of the theoretical receptive field (Luo et al., 2016). However,
the method employed in (Luo et al., 2016) lacks consideration for the Activation-Pattern-Only Pre-
diction (APOP) phenomenon and the instance-level of ERF. To address this limitation, we introduce
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Figure 1: Forward Pass of our method. Top: An illustration of inference process. Red box portrays
the contribution of v25i s in forming v27(5,7), quantified by µ25→27

i→(5,7). Each v25i is labeled with its cor-
responding ERF. Bottom Left: The process of building ERF for v27(5,7). Bottom Right: The final
saliency map is derived as a weighted sum of the ERFs at the encoder output layer.

the sharing ratio µ to reflect the different contributions of pixels and make a more faithful ERF
for each PFV. With our ERFs, we can investigate the vector space of the PFV, leading to a global
explanation of the model. For more details, refer to Appendix A.

Sharing Ratio Decomposition Assuming we have prior knowledge of the sharing ratio, denoted as
µ, between layers (which can be derived at any point, even during inference), where µ signifies the
extent to which each PFV contributes to the PFV of the subsequent layer (Exact way to obtain µ
is deferred to Sec. 3.2). Given that we already possess information on the ERFs and sharing ratios
of PFVs, we can construct the ERF of the next activation layer through a weighted sum of the
constituent PFV’s ERFs, expressed as follows (Fig. 1 Top, Bottom Left):

∑
l<k

∑
i

µl→k
i→j · ERFvl

i
= ERFvk

j
, (1)

where µl→k
i→j is the sharing ratio of pixel i of layer l to pixel j of the subsequent layer k, and ERFvl

i

is an ERF of PFV vli. Note that we can summate the ERFs of different layers which are parallelly
connected to the k-th layer, e.g., residual connection. For the first layer, its ERF is defined as:

ERFv0
i
= Ei, (2)

where Ei is a unit matrix, where only the i-th element of the matrix is one, and all the others are
zero. This means that the ERF for an input pixel is the pixel itself.

Consequently, we can sequentially construct the ERF for each layer until reaching the output of the
encoder. The output consists of HW PFVs along with their ERFs. The final sailency map ϕc(x) is
obtained through a weighted sum of the ERFs of the encoder’s output PFVs (Fig. 1 Bottom Right):∑

i

µL→O
i→c · ERFvL

i
= ϕc(x), (3)

where µL→O
i→c is the sharing ratio of the pixel i of last layer L to the pixel c of the output (logit) O,

which is the contribution of each PFV to output class c. As MLP classifier after encoder flattens the
vectors to the scalars, there is no need to persist with our vector-based approach. Thus, for an MLP
layer, we opt for the established backward methods such as Grad-CAM (Selvaraju et al., 2017).
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Figure 2: Backward Pass of our method. i and j are pixels in activation layer l and k, respectively.
Left: vkj is a pre-activation PFV at activation layer k, vli is a post-activation PFV at activation layer
l, f l

i→j is an affine transformation function assigned to (i, j). Summation of every v̂li→j leads to vkj
(
∑

i∈RFk
j
v̂li→j = vkj ). µl→k

i→j is a sharing ratio of each vli→j to vkj . Rl
i→j is the relevance share of i

in the leading layer to j in the following layer. Right: RF k
j is the receptive field of pixel j and Rk

j is
the relevance score of j to the output. Relevance Rl

i in the leading layer can be calculated recursively
using the next layer’s relevance Rk

j ’s via Rl
i→j’s for j’s whose receptive field includes pixel i.

Additionally, in order to ensure class-discriminative saliency, we subtract the mean of its saliency
and disregard any negative contributions. Then, the modified sharing ratio2, µL→O

i→c , for the encoder
output layer is calculated as follows:

µL→O
i→c = max(Φc

i −
1

K

∑
k∈[K]

Φk
i , 0), Φc

i =
∑
k

αc
kA

k
i , αc

k =
1

HW

∑
i∈[HW ]

∂yc

∂Ak
i

, (4)

where Ak
i is the k-th element of the PFV vlasti and yc is the c-th element of the output logit y ∈ RK

for K classes. ReLU operation is ommited when calculating Φc
i since it is already applied after

subtracting the mean.

3.2 BACKWARD PASS (FOR CALCULATING SHARING RATIO)

Suppose a PFV vkj positioned at j just prior to activation layer k. In a feed-forward network, vkj is
entirely determined by the l-th activation layer’s PFVs vli’s within the receptive field of j, RF k

j , i.e,

vkj = f(V kl
j ) =

∑
i

f l
i→j(v

l
i) =

∑
i

v̂li→j where V kl
j = {vli|i ∈ RF k

j }, (5)

for some affine function f(·) (See details in Appendix B). Note that PFV vkj can be decomposed into
v̂li→j which is a sole function of PFV vli. In our approach, we initially define the relevance Rk

j of
pixel j in layer k as the contribution of the pixel to the output, typically the logit. Then, we distribute
the relevance, Rk

j , to pixel i’s in layer l by the sharing ratio µl→k
i→j , which is calculated as taking the

inner product of v̂li→j with vkj and normalizing both vectors by
∥∥vkj ∥∥ as follows (Fig. 2 Left):

µl→k
i→j = ⟨

v̂li→j∥∥vkj ∥∥ , vkj∥∥vkj ∥∥ ⟩ where v̂li→j = f l
i→j(v

l
i), i.e,

∑
i∈RFk

j

µl→k
i→j = 1. (6)

2The summation of modified sharing ratios does not necessarily equal to 1.
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Then, according to the sharing ratio µl→k
i→j , we decompose the relevance to the output:

Rl
i→j = µl→k

i→jR
k
j , i.e, Rk

j =
∑

i∈RFk
j

Rl
i→j . (7)

Finally, the relevance of i to the output can be calculated as

Rl
i =

∑
j∈PF l

i

Rl
i→j , PF l

i = {j|i ∈ RF k
j }, (8)

where PF l
i is the Projective Field of pixel i to the next nonlinear layer (Fig. 2 Right).

The initial relevance at the last layer L, RL
i→c, is given as

RL
i→c = µL→O

i→c , (9)

where µL→O
i→c is the modified sharing ratio described in Eq. 4, which represents the contribution of

pixel i in the encoder output layer to class c.

4 EXPERIMENT

In this section, we conducted a comprehensive comparative analysis involving our proposed method,
SRD, and several state-of-the-art methods: Saliency (Simonyan et al., 2014), Guided Backprop
(Springenberg et al., 2015), GradInput (Ancona et al., 2018), InteGrad (Sundararajan et al., 2017),
LRPz+ (Montavon et al., 2017), Smoothgrad (Smilkov et al., 2017), Fullgrad (Srinivas & Fleuret,
2019), GradCAM (Selvaraju et al., 2017), GradCAM++ (Chattopadhay et al., 2018), ScoreCAM
(Wang et al., 2020), AblationCAM (Ramaswamy et al., 2020), XGradCAM (Fu et al., 2020), and
LayerCAM (Jiang et al., 2021).

In our experiments, we leveraged ResNet50 (He et al., 2016) and VGG16 (Simonyan & Zisserman,
2015) models3 Each method has different choice of targeted layer for its best performance. Thus,
we conducted experiments by targeting various layers to accomodate the varying resolutions of
generated attribution maps. Since most CAM-based methods except for LayerCAM exhibit optimal
performance when targeting higher layers, we generated low-resolution explanation maps for them.
The dimensions of the resulting saliency maps were as follows: (7, 7) for low-resolution, (28, 28)
for high-resolution, and (224, 224) for input-scale. All saliency maps were normalized by dividing
them by their maximum values, followed by bilinear interpolation to achieve a resolution of (224,
224).

4.1 QUALITATIVE RESULTS

We visualize the counterfactual explanations of an original image with a cat and a dog. Fig. 3 shows
that our explanations with SRD, are not only fine-grained but also counterfactual, while other meth-
ods do not capture the class-relevant areas and result in nearly identical maps. For more examples,
refer to Appendix H.1.

4.2 QUANTITATIVE RESULTS

Experimental setting We conducted a series of experiments to assess the performance of our
method compared to existing explanation methods. All evaluations were carried out on the
ImageNet-S50 dataset (Gao et al., 2022), which contains 752 samples along with object segmen-
tation masks.

Metric The metrics used in our experiments are as follows: To evaluate localization, Pointing Game
(↑) (Zhang et al., 2018) measures whether maximum attribution point is on target, while Attribu-
tion Localization (↑) (Kohlbrenner et al., 2020) measures the ratio between attributions within the
segmentation mask and total attributions. To evaluate complexity, Sparseness (↑) (Chalasani et al.,

3In this paper, we restrict our discussion to Convolutional Neural Networks (CNNs); however, the extension
to arbitrary network architecture is straightforward.
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Figure 3: Qualitative results on ResNet50 for the class label ‘Dog (Top)’ and ‘Cat (Bottom)’. Meth-
ods decorated with † have the resolution of (7, 7) and methods with ‡ have the resolution of (28,
28), while the others have the input-scale resolution, (224, 224). Notably, compared to other meth-
ods, SRD for input resolution is adept at capturing the fine details of the image. Best viewed when
enlarged.

2020) measures how sparse the attribution map is, based on Gini index. For a faithfulness test, Fi-
delity (↑) (Bhatt et al., 2020) measures correlation between classification logit and attributions. To
evaluate robustness, Stability (↓) (Alvarez Melis & Jaakkola, 2018) measures stability of explanation
against noise perturbation, calculating the maximum distance between original attribution and per-
turbed attribution for finite samples. All of the metrics are calculated after clamping the attributions
to [-1, 1], since all the attrubution methods are visualized after clamping. Also, the arrow inside the
parentheses indicates whether a higher value of that metric is considered desirable. For more details
of the metrics, refer to Appendix E.

Results In the comprehensive evaluation presented in Table 2, our method, SRD, showcased supe-
rior performance across various metrics. Notably, for VGG16 architecture, SRD-high attained the
highest scores in both the Pointing game and Fidelity, securing the second-highest score in Attribu-
tion Localization. Furthermore, SRD-input excelled in Sparseness and Stability, while consistently
maintaining competitive scores across other metrics. This was particularly noteworthy when com-
pared to input-scale methods.

In the case of ResNet, since many saliency map methods struggle to properly handle residual con-
nections, some of the methods showed a decline in performance even when the model performance
itself improved. Remarkably, our method retained its competitive performance on ResNet50. On
ResNet50, SRD-high achieved the highest scores in Attribution Localization and Fidelity with the
second highest score at Pointing game. Additionally, SRD-input achieved the best performance for
Pointing game and Stability, achieving the second highest scores in Attribution Localization and
Sparseness. These results point out that our proposed method, SRD, can give functional, faithful,
and robust explanation.

4.3 ADVERSARIAL ROBUSTNESS

An explanation can be easily manipulated by adding small perturbations to the input, while main-
taining the model prediction almost unchanged. This means that there is a discrepancy between the
actual cues the model relies on and those identified as crucial by explanation. While the Stability
metric in Sec 4.2 assesses the explanation method’s resilience to random perturbations, Dombrowski
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Table 2: Average results of Pointing game (Poi.), Attribution localization (Att.), Complexity (Com.),
Sparseness (Spa.), Fidelity (Fid.), and Stability (Sta.) on Imagenet-S50 752 samples. All metrics
are calculated after normalization, which is the default setting of Hedström et al. (2023). Methods
decorated with † have the resolution of (7, 7) and methods with ‡ have the resolution of (28, 28),
while the others have the input-scale resolution, (224, 224). We marked the highest result in bold,
and the second with underline.

VGG16 ResNet50

Method Poi.↑ Att.↑ Spa.↑ Fid.↑ Sta.↓ Poi.↑ Att.↑ Spa.↑ Fid.↑ Sta.↓
Saliency .793 .394 .494 .093 .181 .654 .370 .488 .063 .172
GuidedBackprop .892 .480 .711 .022 .100 .871 .498 .741 .022 .112
GradInput .781 .387 .630 -.013 .181 .639 .361 .626 -.018 .178
InteGrad .869 .416 .618 -.017 .175 .759 .382 .614 -.016 .171
LRPz+ .855 .456 .535 .098 .182 .543 .332 .572 .012 .105
Smoothgrad .845 .363 .536 -.005 .190 .888 .396 .556 -.002 .166
Fullgrad .796 .362 .334 .107 .203 .938 .387 .262 .123 .689
GradCAM† .945 .431 .466 .175 .583 .946 .424 .411 .128 .757
GradCAM++† .932 .429 .351 .176 .570 .945 .414 .386 .129 .732
ScoreCAM† .937 .582 .342 .167 .622 .916 .381 .313 .123 .827
AblationCAM† .928 .481 .493 .189 .622 .934 .394 .329 .133 .814
XGradCAM† .896 .406 .446 .181 .576 .946 .424 .411 .126 .753
LayerCAM-low† .869 .425 .446 .175 .450 .934 .411 .379 .128 .734
LayerCAM-high‡ .865 .435 .401 .199 .423 .941 .423 .349 .135 .486

SRD-low (ours)† .945 .424 .437 .179 .595 .946 .544 .682 .130 .600
SRD-high (ours)‡ .948 .566 .629 .206 .406 .952 .579 .628 .142 .375
SRD-input (ours) .925 .561 .788 .069 .099 .953 .576 .724 .082 .104

et al. (2019) evaluates the method’s vulnerability to targeted adversarial attacks, while maintaining
the logit output unchanged. The perturbation δ is optimized to minimize the loss below:

L = λ1 ∥ϕ(xadv)− ϕ(xtarget)∥2 + λ2 ∥F (xadv)− F (xorg)∥2 , (10)

where xadv = xorg + δ, ϕ(x) is the saliency map of image x, and F (x) is the logit output of model
F given image x. We set λ1 = 1e11 and λ2 = 1e6 as in Dombrowski et al. (2019).

Experimental setting We conducted targeted manipulation on a set of 100 randomly selected Im-
ageNet image pairs for the VGG16 model. Given that adversarial attacks can be taken only to
gradient-trackable explanation methods, we selected Gradient, GradInput, Guided Backpropagation,
Integrated Gradients, LRPz+ and our SRD for comparison. The learning rate was 0.001 for all meth-
ods. For more detail, refer to the work of Dombrowski et al. (2019). The attack was stopped once the
Mean Squared Error (MSE) between x and xadv reached 0.001, while ensuring that the change in
RGB values was bounded within 8 in a scale of 0-255 to let xadv be visually undistinguishable with
x. After computing saliency maps, the absolute values were taken, as in Dombrowski et al. (2019).
Since we obtained our µL→O

i→c by leveraging other methods, we set all µL→O
i→c to a constant value of

1 to eliminate the potential influence of other methods.

Metric To quantitatively compare robustness of the explanation methods towards the adversarial
attacks, we measured the similarity between the original explanation ϕ(xorg) and the manipulated
explanation ϕ(xadv) using metrics such as the Structural Similarity Index Measure (SSIM) and Pear-
son Corelation Coefficient (PCC). High values of SSIM and PCC denote that ϕ(xadv) maintained
the original features of ϕ(xorg), thereby demonstrating the robustness of the explanation method.

Result In both PCC and SSIM results (Figure 4), SRD consistently outperformed other input-scale
resolution saliency maps, attending the highest scores. his, coupled with the findings from the Sta-
bility experiments detailed in Table 2, substantiates that our proposed method, SRD, demonstrates
exceptional resilience against adversarial attacks. Importantly, it maintains its explanatory efficacy
even in the presence of perturbations, emphasizing its robustness.
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Figure 4: Adversarial attack experiment. Top: Qualitative comparison between explanations. While
other methods deleted the goldfish (original image) in their explanation due to the manipulation, our
method successfully retained the goldfish part. For more results, see Appendix H.2. Bottom: Quanti-
tative result. Higher SSIM and PCC scores indicate less susceptibility to perturbation manipulation.
In both SSIM and PCC, our method demonstrates superior defense against adversarial attack.

5 CONCLUSION

We propose a novel method, Sharing Ratio Decomposition (SRD), which analyzes the model with
Pointwise Feature Vectors and decomposes relevance with sharing ratios. Unlike conventional ap-
proaches, SRD faithfully captures the model’s inference process, generating explanations exclu-
sively from model-generated data to meet the pressing need for robust and trustworthy explanations.
Departing from traditional neuron-level analyses, SRD adopts a vector perspective, considering non-
linear interactions between filters. Additionally, our introduction of Activation-Pattern-Only Predic-
tion (APOP) brings attention to the often-overlooked role of inactive neurons in shaping model
behavior.

In our comparative and comprehensive analysis, SRD outperforms other saliency map methods
across various metrics, showcasing enhanced effectiveness, sophistication, and resilience. Espe-
cially, it showcases notable proficiency in robustness, withstanding both random noise perturbation
and targeted adversarial attacks. We believe that this robustness is a consequence of our thorough
reflection of the model’s behavior, signaling a promising direction for local explanation methods.

Moreover, through the recursive decomposition of Pointwise Feature Vectors (PFVs), we can derive
high-resolution Effective Receptive Fields (ERFs) at any layer. With this, we would be able to gen-
erate a comprehensive exploration from local to global explanations in the future. Furthermore, we
will go beyond answering where and what the model looks importantly to providing insights into
how the model makes its decision.
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A FUTURE WORKS: GLOBAL EXPLANATION WITH SRD

Figure 5: Top: Nearest neighbor PFVs encode similar concepts to that of the target PFV. By la-
beling each PFV with its ERF, we emphirically observed that the local manifold near certain PFV
encodes a concept. For example, to know what v29(4,9) encodes, we find its top 3 nearest neighbors
from other samples’ PFVs. Bottom: Recursive global explanation to explain the decision-making
process of the model. Given modified sharing ratio, µL→O

i→c , we know how much a certain concept
of PFV vLi at layer L contributed to output. For example, v29(4,9) is a PFV of (4, 9) in layer 29 which
represents “fluffy bird head” concept contributed µL→O

(4,9)→c of the total prediction. v29(4,9) is formed by
the subconcepts of [v27(4,9) : “bird head”, v27(4,10) : “beak”, ..., v27(5,10) : “small animal head”], whose
contributions are µ27→29

i→(4,9). These ‘subconcepts’ can be further decomposed into minor concepts
recursively, revealing the full decision-making process of the deep neural network.

Local Explanation methods explain where the model regards important for classification, and global
explanation methods (Kim et al., 2018; Ghorbani et al., 2019b; Fel et al., 2023) explain what it
means. However, with our method, SRD, we even go further to explain how the model makes its
decision.

In short, we can provide how the model predicted along with where the model saw and what it
meant. Through empirical observation, by labeling the Pointwise Feature Vector (PFV) with Ef-
fective receptive field (ERF), we discerned that each PFV encodes a specific concept. While there
are numerous sophisticated global explanation methods available, for clarity, we opted for a more
straightforward approach: examining the nearest neighbors of a given PFV. By observing its closest
neighbors, we can discern the meaning of the target PFV (Top of Figure 5).

Furthermore, by analyzing the sharing ratio of a PFV, we gain insights into how each subcon-
cept—components of the target PFV—shapes our target PFV (Bottom of Figure 5).

This recursive application allows SRD to thoroughly illuminate the model’s decision-making pro-
cess. Figure 5 shows an example of this attempt and gives a hint on how decision is made in a model.
Detailed research on the global explanation of SRD will be dealt with in our next paper.
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B DETAIL DESCRIPTION OF AFFINE FUNCTION f l
i→j

In this section, we describe how to calculate affine function f l
i→j in Eq. 6.

Convolutional layer Each PFV in a CNN is transformed linearly by the convolutional layer and then
aggregated with a bias term. We regard a PFV of a convolutional layer as a linear combination of
PFVs in the previous layers in addition to the contribution of the bias vector. For example, consider
a convolutional layer with a kernel ω ∈ RC′×C×hw, where C ′and C are the number of output and
input channels, and h and w are the height and width of the kernel, respectively. The affine function
of one convolutional layer f l

i→j is defined as:

f l
i→j(v

l
i) = ωi→jv

l
i + b

∥∥vli∥∥∑
k∈RFj

∥∥vlk∥∥ , (11)

where ωi→j ∈ RC′×C , the size of RFj is h× w.

Pooling layer The average pooling layer computes the average of the PFVs within the receptive
field. As a result, the contribution of each PFV is scaled down proportionally to the size of the
receptive field. On the other hand, the max pooling layer performs a channel-wise selection process,
whereby only a subset of channels from vl is carried forward to vl+1. This is achieved by clamping
the non-selected vl’s contribution to zero:

f l
i→j(v

l
i) = 1m(vl,j,i) ⊙ vli (12)

Here, 1m ∈ RC is the indicator function that outputs 1 only for the maximum index among the
receptive field, RFj , which can be easily obtained during inference and ⊙ denotes the elementwise
multiplication. Thus, given information from inference, we can consider max pooling as a linear
function, f l

i→j , whose coefficients are binary (0/1).

Batch normalization layer Additionally, for batch normalization layer, we manipulate each PFV
in a direct manner by scaling it and adding a batch-norm bias vector to it, without resorting to any
intermediate representation.

Multiple functions If there are multiple affine functions between vli and vl+1
j , we composite mul-

tiple affine function along possible paths. For example, if there are max pooling layer and convolu-
tional layers together, the resulting f l

i→j would be:

f l
i→j =

∑
k

gli→k ⊙ hl
k→j , (13)

where gli→k is affine function of max pooling layer and hl
k→j is affine function of convolutional

layer.

C PROOF OF EQUIVALENCE BETWEEN FORWARD AND BACKWARD
PROCESSES

Forward process: Given that the saliency map for class c being

ϕc(x) =
∑
i

µL→O
i→c · ERFvL

i
, (14)

and for each layer l we have

ERFvl+1
i

=
∑
j

µl→l+1
j→i · ERFvl

j
, (15)

ERFvL
i

can be broken down as follows:

ERFvL
i
=
∑

j∈RFi

µ
(L−1)→L
j→i · (

∑
k∈RFj

µ
(L−2)→(L−1)
k→j (· · · (

∑
p∈RFq

µ0→1
p→q · ERFv0

p
))). (16)
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This can be generalized as

ERFvL
i
=

∑
p∈[HW ]

(
∑
τ∈T

∏
l∈[L]

µ(l−1)→l
pl−1→pl

) · Ep, (17)

where τ = (p0 = p, p1, · · · , pL−1, pL = i) is a trajectory (path) from a pixel in an input image p to
a pixel in the last layer L, and T denotes the set of all the trajectories. Note that H and W are the
height and width of an input image and invalid trajectories have at least one zero sharing ratio on
their path, i.e, µ = 0 for some layer.

From Eq. 17, ϕc(x) becomes

ϕc(x) =
∑
p

∑
i

µL→O
i→c (

∑
τ∈T

∏
l∈[L]

µ(l−1)→l
pl−1→pl

) · Ep. (18)

Backward process: The saliency map ϕc(x) is defined as

ϕc(x) =
∑
p

R0
p · Ep, (19)

where
Rl−1

i =
∑

j∈PFi

µ
(l−1)→l
i→j Rl

j (20)

Thus, R0 becomes

R0
p =

∑
j∈PFp

µ0→1
p→j(

∑
k∈PFj

µ1→2
k→j(· · · (

∑
i∈PFq

µ
(L−1)→L
q→i ·RL

i ))). (21)

This can be generalized as
R0

p =
∑
i

RL
i (
∑
τ∈T

∏
l∈[L]

µ(l−1)→l
pl−1→pl

). (22)

Since RL
i = µL→O

i→c and ϕc(x) =
∑

p R
0
p · Ep,

ϕc(x) =
∑
p

∑
i

µL→O
i→c (

∑
τ∈T

∏
l∈[L]

µ(l−1)→l
pl−1→pl

) · Ep, (23)

which is identical to Eq. 18.

D MORE RESULT OF APOP

We made an interesting observation during our experiments, which we term Activation-Pattern-Only
Prediction (APOP). This phenomenon was discovered by conducting a series of experiments where
a model made predictions with an image input. Subsequently, the model retained the binary on/off
activation pattern along with its corresponding label (Algorithm 1). Following this, the model made
a prediction once more, but this time with an entirely different input (i.e. zeros, ones) while keeping
the activation pattern frozen.

All of our APOP experiments were conducted on the ImageNet validation dataset. We conducted
experiments under three different input conditions: ‘zeros’, ‘ones’, and ‘normal’. The ’zeros’ set-
ting is the experiment introduced in the main paper (Table 1). In ’ones’ setting, we predicted again
with matrix with ones instead of empty matrix. In ’normal’ setting, matrix filled with normal dis-
tribution N(0, 1) was used. As shown in Table 3, all settings achieved higher accuracy compared
to random prediction baselines – 0.001 for Top-1 accuracy and 0.005 for Top-5 accuracy. Espe-
cially, it is intriguing that it achieved almost the same accuracy with the original accuracy in APOP
& ReLU setting, supporting our idea that activation pattern is a crucial component in explanation,
complementing the actual values of the neurons.

We carried out an additional experiment: Particular Layer Activation Binarization as illustrated in
Figure 6. Instead of entirely freezing the activation pattern, we replaced the activation value of a
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Top-1 acc. Top-5 acc.

Model Input Ori. APOP APOP
& relu

Ori. APOP APOP
& relu

VGG13
zeros

0.6790
0.5447 0.6603

0.8828
0.7870 0.8716

ones 0.4901 0.6594 0.7390 0.8707
normal 0.2510 0.6580 0.4513 0.8702

VGG16
zeros

0.6980
0.5754 0.6847

0.8940
0.8094 0.8875

ones 0.5268 0.6837 0.7665 0.8870
normal 0.2903 0.6854 0.4979 0.8871

VGG19
zeros

0.7052
0.5937 0.6948

0.8981
0.8226 0.8947

ones 0.5462 0.6937 0.7801 0.8938
normal 0.2956 0.6957 0.5067 0.8923

Resnet18
zeros

0.6707
0.4871 0.6404

0.8769
0.7340 0.8595

ones 0.4813 0.6408 0.6750 0.8593
normal 0.2518 0.6375 0.4594 0.8598

Resnet34
zeros

0.7113
0.5578 0.6917

0.9009
0.7906 0.8910

ones 0.5102 0.6902 0.7456 0.8907
normal 0.3194 0.6918 0.5380 0.8917

Resnet50
zeros

0.7446
0.5690 0.7328

0.9183
0.7943 0.9148

ones 0.5198 0.7334 0.7527 0.9141
normal 0.3035 0.7366 0.5066 0.9168

Resnet101
zeros

0.7560
0.5601 0.7459

0.9280
0.7853 0.9231

ones 0.5151 0.7431 0.7433 0.9228
normal 0.3276 0.7514 0.5379 0.9259

Resnet152
zeros

0.7696
0.6124 0.7593

0.9359
0.8260 0.9304

ones 0.5585 0.7592 0.7785 0.9300
normal 0.3561 0.7618 0.5666 0.9319

Table 3: Additional results of APOP. Ori. is the original model, while APOP is the case where
activation pattern of each activation layer is replaced (yet, the value of neurons can be negative).
APOP & relu is the setting where after activation pattern is replaced, neurons are calculated with
relu layer (every neuron has a non-negative value, while preserving information of the activation
pattern).

particular layer into 1 or 0; if the activation value was greater than 0, then it was set to 1, otherwise, it
was set to 0. Remarkably, even under this setting, the model predicted more accurately than random
guessing. It happened even when this binarization occurred in the very first activation layer. This
experiment reinforces our notion that the activation pattern holds comparable significance to the
actual neuronal values.

Figure 6: APOP - Particular Layer Activation Binarization. Target layer’s activation was replaced
with its binary version. In all layer, it achieved higher than random guessing baseline.
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Algorithm 1 APOP process in PyTorch pseudocode

import torch
import torch.nn as nn
import torch.nn.functional as F

class CustomReLU(nn.ReLU):
def forward(self,x):

output = F.relu(x)
self.mask = torch.sign(output) # make binary mask
return output

def APOP_forward(self,x):
output = x * self.mask # mask inactive neuron
return output

class CustomMaxPool2d(nn.MaxPool2d):
def forward(self,x):

output,self.mask_indices = F.max_pool2d(x,return_indices=True)
return output

def APOP_forward(self,x):
output = indice_pool(x,self.mask_indices) # mask inactive neuron

# with saved mask_indices
return output

total_sample = 0
original_correct_predictions = 0
APOP_correct_predictions = 0
model = CustomModel(model) # replace ReLU and Maxpool into CustomReLU and CustomMaxPool2d
empty_input = torch.zeros_like(data)
for data,labels in data_loader:

original_predictions = CustomModel(x) # predict original prediction and save masks
APOP_predictions = CustomModel.APOP_forward(empty_input) # APOP with saved masks
original_correct_predictions += compute_accuracy(original_predictions,labels)
APOP_correct_predictions += compute_accuracy(APOP_predictions,labels)
total_samples += labels.size(0)

original_model_accuracy = original_correct_predictions / total_sample
APOP_model_accuracy = APOP_correct_predictions / total_sample

E DETAIL OF METRICS

Pointing Game (↑) (Zhang et al., 2018) evaluates the precision of attribution methods by assessing
whether the highest attribution point is on the target. The groundtruth region is expanded for some
margin of tolerance (15px) to insure fair comparison between low-resolution saliency map and high-
resolution saliency map. Intuitively, the strongest attribution should be confined inside the target
object, making a higher value for a more accurate explanation method.

µPG =
Hits

Hits+Misses
(24)

Attribution Localization (↑) (Kohlbrenner et al., 2020) measures the accuracy of an attribution
method by calculating the ratio , µAL, between attributions located within the segmentation mask
and the total attributions. A high value indicates that the attribution method accurately explains the
crucial features within the target object.

µAL =
Rin

Rtot
, (25)

where µAL is an inside-total relevance ratio without consideration of the object size. Rin is the sum
of positive relevance in the bounding box, Rtot is the total sum of positive relevance in the image.

Sparseness (↑) (Chalasani et al., 2020) evaluates the density of the attribution map using the Gini
index. A low value indicates that the attribution is less sparse, which may be observed in low-
resolution or noisy attribution maps.

µSpa = 1− 2

d∑
k=1

v(k)

||v||1
(
d− k + 0.5

d
), (26)

where v is a flatten vector of the saliency map ϕ(x)

Fidelity (↑) (Bhatt et al., 2020) measures the correlation between classification logit and attributions.
Randomly selected 200 pixels are replaced to value of 0. The metric then measures the correlation
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between the drop in target logit and the sum of attributions for the selected pixels.

µFid = Corr
S∈( [d]

|S|)

(∑
i∈S

ϕ(x)i, F (x)− F
(
x[xs=x̄s]

))
,

where F is the classifier, ϕ(x) the saliency map given x

Stability (↓) (Alvarez Melis & Jaakkola, 2018) evaluates the stability of an explanation against noise
perturbation. While measuring robustness against targeted perturbation (as discussed in Section 4.1)
can be computationally intensive and complicated due to non-continuity of some attribution meth-
ods, a weaker robustness metric is introduced to assess stability against random small perturbations.
This metric calculates the maximum distance between the original attribution and the perturbed at-
tribution for finite samples. A low stability score is preferred, indicating a consistent explanation
under perturbation.

µSta = max
xj∈Nϵ(xi)

∥ϕ(xi)− ϕ(xj)∥2
∥xi − xj∥2

, (27)

where Nϵ(xi) is a gaussian noise with standard deviation 0.1. all of the metrics are measure after
clamping the attributions to [-1,1], as all the attrubution methods are visualized after clamping.

F ABLATION STUDY

To clarify the gains of our method, we conducted an ablation study for each factor (Figure 7). The
scalar-based approach with our method can be regarded as LRP-0 (Bach et al., 2015). Next to it, we
showcased the generated explanation when calculating the relevance with post-activation values. As
you can see, compared to ours (SRD), the generated explanations with scalar are very noisy, while
those with post-activation values are too sparse. With our observation of APOP, we have proven that
we should consider every information including active and inactive neurons. This is the reason that
we used vectors as our analysis unit and pre-activation values to propagate our relevance.

G APPLICATION TO VARIOUS ACTIVATIONS

Activation ReLU ELU LeakyReLU Swish GeLU Tanh
GuidedBackprop 0.064 0.025 0.001 0.015 0.030 0.028
GradInput -0.010 -0.007 -0.005 -0.024 -0.004 -0.006
InteGrad 0.006 0.015 -0.001 -0.008 -0.007 0.014
LRPz+ 0.039 - - - - -
Smoothgrad -0.012 0.026 -0.014 -0.023 -0.009 -0.017
Fullgrad 0.038 0.209 0.029 0.171 0.095 0.107
GradCAM 0.005 -0.014 -0.004 0.042 -0.001 0.002
ScoreCAM 0.013 0.052 0.031 0.061 0.010 0.017
AblationCAM 0.020 0.024 0.003 0.015 0.033 0.012
XGradCAM 0.007 0.011 0.018 0.028 0.012 0.017
LayerCAM 0.021 0.042 0.012 0.018 0.007 -0.001
SRD(Ours) 0.078 0.214 0.065 0.194 0.128 0.115

Table 4: Fidelity results on various activation functions. We evaluated the fidelity metric of ResNet50
in CIFAR-100 with different activation functions: ReLU, ELU, LeakyReLU, Swish, GeLU, and
Tanh. Our method, SRD, achieved highest performance on every activation function. The model
accuracies with each activation varient were as follows: 0.780 for ReLU, 0.746 for ELU, 0.785 for
LeakyReLU, 0.756 for Swish, 0.767 for GeLU, and 0.685 for Tanh.

Most of the existing methods have been limited to ReLU or have had to be redesigned for other
activations. However, as in Fig. 8 and Tab. 4, SRD can be applied to various activations due to the
utilization of preactivation, while maintaining high fidelity.
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H ADDITIONAL SALIENCY MAP COMPARISON

H.1 SALIENCY MAP COMPARISON

Fig. 9-18 are some examples that compare the saliency maps of different methods.

H.2 EXPLANTION MANIPULATION COMPARISON

Fig. 19-23 are examples that compare explanation manipulation of different methods.
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Figure 7: Ablation Study on ResNet50 (Left) and VGG16 (Right). We firstly generated the saliency
maps with a neuron (scalar) rather than a vector as an analysis unit. And then, we analyzed with
vectors, yet by using postactivation values. Lastly, we utilized vectors and pre-activation values,
which is our method.
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Figure 8: Qualitative results applied to various activation functions. Here, even with various activa-
tions, SRD generates the most fine-grained and feasible explanation maps.
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Figure 9: Qualitative comparison on VGG16. The highlighted region is the segmentation mask.
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Figure 10: Qualitative comparison on VGG16. The highlighted region is the segmentation mask.
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Figure 11: Qualitative comparison on VGG16. The highlighted region is the segmentation mask.
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Figure 12: Qualitative comparison on VGG16. The highlighted region is the segmentation mask.
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Figure 13: Qualitative comparison on VGG16. The highlighted region is the segmentation mask.
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Figure 14: Qualitative comparison on ResNet50. The highlighted region is the segmentation mask.
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Figure 15: Qualitative comparison on ResNet50. The highlighted region is the segmentation mask.
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Figure 16: Qualitative comparison on ResNet50. The highlighted region is the segmentation mask.
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Figure 17: Qualitative comparison on ResNet50. The highlighted region is the segmentation mask.
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Figure 18: Qualitative comparison on ResNet50. The highlighted region is the segmentation mask.
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Figure 19: Additional results on explanation manipulation comparison.
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Figure 20: Additional results on explanation manipulation comparison.
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Figure 21: Additional results on explanation manipulation comparison.
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Figure 22: Additional results on explanation manipulation comparison.
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Figure 23: Additional results on explanation manipulation comparison.
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