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Abstract

Drug–drug interaction (DDI) prediction is critical for treatment safety.
While large language models (LLMs) show promise in pharmaceutical
tasks, their effectiveness in DDI prediction remains challenging. Inspired
by the well-established clinical practice where physicians routinely refer-
ence similar historical cases to guide their decisions through case-based
reasoning (CBR), we propose CBR-DDI, a novel framework that distills
pharmacological patterns from historical cases to improve LLM reasoning
for DDI tasks. CBR-DDI constructs a knowledge repository by leverag-
ing LLMs to extract pharmacological insights and graph neural networks
(GNNs) to model drug associations. A hybrid retrieval mechanism and two-
tier knowledge-enhanced prompting allow LLMs to effectively retrieve and
reuse relevant cases, thereby leveraging their in-context learning ability for
case-based reasoning. We further introduce a representative sampling strat-
egy for dynamic case refinement. Extensive experiments demonstrate that
CBR-DDI achieves state-of-the-art performance, with a significant 28.7%
accuracy improvement over both popular LLMs and CBR baseline, while
maintaining high interpretability and flexibility.

1 Introduction

Drug-drug interaction (DDI) prediction is critical for pharmacology and healthcare, as
it safeguards patients from adverse drug reactions, optimizes therapeutic efficacy, and
reduces healthcare costs (32; 38; 34). Accurately identifying DDIs is challenging due to the
intricate potential relationships between drugs and the diverse mechanisms underlying
the interactions (such as the competition for drug-metabolizing enzymes) (41; 10). These
challenges become even more pronounced when predicting interactions involving new
drugs, where interaction data is typically sparse or nonexistent.

Recently, large language models (LLMs) (6; 15; 16) have demonstrated impressive capabil-
ities across various tasks, particularly excelling at identifying patterns hidden in natural
languages. While LLMs have shown promise in pharmaceutical applications (47; 26; 22),
their effective utilization for DDI prediction remains an open research question. Current
approaches commonly enhance LLMs by incorporating biomedical knowledge graphs (KGs)
(55; 1), which provide structured knowledge about drugs. They typically employ heuristic
methods to retrieve relevant drug information from KGs and feed it directly into LLMs
for prediction. However, these methods provide only triplets and are insufficient to acti-
vate the reasoning capabilities of LLMs, as surface-level drug associations alone cannot
reveal their potential interactions evidently. For example, in Figure 1, the new drug pair
Fosphenytoin-Diphenhydramine binds to the same gene, yet their actual interaction cannot
be directly inferred. Therefore, modeling and understanding the underlying interaction
mechanisms are critical for prediction (10), as they function as intermediate reasoning steps
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that enhance the LLM’s ability to link drug associations with plausible outcomes, analogous
to a chain-of-thought process (52).

We further observe that many DDI cases share common interaction mechanisms that reflect
fundamental pharmacological patterns. As illustrated in Figure 1, the new case and an
existing case exhibit similar drug associations, enabling the transfer of known interaction
mechanisms from the historical case to the new one. Yet current methods neglect these
valuable inter-case relationships, preventing LLMs from exploiting their powerful in-context
learning capacity to perform effective analogy-based reasoning. This also diverges from
established clinical practice (3; 5), where physicians routinely reference historical cases
through case-based reasoning (CBR)—a cognitive process that solves new problems by
adapting previously solutions to similar problems (51; 23).

Figure 1: (a). Illustration of using historical
cases to solve new cases in DDI task. (b).
Accuracy comparison on DrugBank dataset:
our CBR-DDI shows significant improvement
over base model and Naive-CBR.

Inspired by these observations, we propose
CBR-DDI, a framework that leverages CBR
to enhance LLMs’ capabilities for DDI pre-
diction. Our approach constructs a struc-
tured knowledge repository that stores a
collection of representative cases enriched
with pharmacological insights. Each case in
the repository includes key associations of
drug pair extracted by a GNN module from
KGs, and mechanistic insights generated by
an LLM, providing a structured represen-
tation of pharmacological patterns. To ef-
fectively utilize the repository, we design a
hybrid retrieval strategy that identifies both
semantically and structurally relevant cases,
alongside a two-tier knowledge-enhanced
prompting to facilitate accurate and faithful
reasoning in LLMs. Furthermore, to reduce
storage overhead, we propose a sampling
strategy that dynamically refines the reposi-
tory by retaining representative cases. CBR-
DDI achieves state-of-the-art performance
across multiple benchmarks, outperforming
the base LLM model by 463% and surpass-
ing the Naive-CBR baseline by 28.7%. In
addition, it offers interpretable prediction results and integrates seamlessly with off-the-
shelf LLMs without fine-tuning or intensive interactions. The contributions are summarized
as follows:

• Inspired by the success of CBR in clinical practice, we propose CBR-DDI, a new framework
that distills pharmacological patterns from historical cases to enhance LLM’s reasoning
for DDI tasks.

• We propose to construct a knowledge repository, through a collaboration between LLMs
for distilling pharmacological insights and GNNs for extracting drug associations from
biomedical knowledge graphs.

• For the utilization of the knowledge repository, we design a hybrid retrieval mechanism
to identify relevant cases, a two-tier knowledge-enhanced prompting to guide LLMs in
case reuse, and a representative sampling strategy for repository refinement.

• Extensive experiments on DDI demonstrate CBR-DDI achieves state-of-the-art perfor-
mance while maintaining high interpretability and flexibility.

2 Related Work
Drug-Drug Interaction Prediction. The task of DDI prediction identifies potential adverse
interactions or synergistic effects between co-administered medications (32). Measuring
DDIs in clinical experiments is time-consuming and costly, driving the adoption of machine
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learning approaches (30). Feature-based methods leverage shallow models to classify DDI
types using drug pair features (e.g., fingerprints) (39; 40). Graph-based methods model the
drug interaction data as a graph. Simple approaches employ embedding techniques (48; 59)
to learn drug representations. More advanced methods enhance prediction by incorporating
biomedical KGs (20; 7), which represent relationships between biomedical concepts (e.g.,
drugs, genes, and diseases) in a multi-relational structure. To capture structural patterns in
the graph, various deep models have been proposed, such as graph neural networks (GNNs)
(64; 27; 60; 61; 50; 12) and graph transformers (43). Language model (LM)-based methods (63)
leverage drug descriptions to train models (e.g., RoBERTa (29)) for prediction. Notably,
another category of methods (9; 62; 45) uses drug molecular structures as input, whereas
our approach does not, making these methods orthogonal to ours.

Recently, LLMs are increasingly utilized in biomedical applications, including drug dis-
covery (8), repurposing (22), and molecular understanding (26). Their pre-training on
vast biomedical literature enables them to leverage implicit knowledge about drug interac-
tions (45; 10). However, complex drug associations, diverse interaction mechanisms, and
multiple interaction types pose significant challenges for LLMs in DDI prediction. Recent
approaches heuristically retrieve drug information (e.g., paths between drugs (1), one-hop
neighbors (55)) from KGs and feed it directly into LLMs. However, they fail to explore
and leverage the underlying pharmacological mechanisms, reducing the reliability and
generalization to new drug prediction.

Retrieval-Augmented Generation. Retrieval-Augmented Generation (RAG) (13; 21; 4; 56)
is a framework that enhances the generative capabilities of LLMs by retrieving relevant
knowledge from an external knowledge source. Recent advancements have explored to
retrieve from KGs to enhance LLMs’ reasoning (35; 2). These methods primarily extracting
question-relevant reasoning paths from KGs for LLMs (31; 44). However, in DDI tasks,
explicit questions are absent, and the diverse relational paths between drugs do not directly
reveal their interaction type, making these methods difficult to adapt effectively.

Case-Based Reasoning (CBR). CBR is a problem-solving paradigm that addresses new
problems by adapting solutions from previously resolved cases (42; 51; 23). Typical CBR
process involves retrieving similar past problems, reusing their solutions, evaluating the
effectiveness, revising the solution, and retaining successful solutions (51). Historically,
CBR has been widely applied across various domains, such as medical diagnosis (25), and
industrial problem-solving (19). Recently, there has been increasing interest in integrating
CBR with LLMs (53; 57; 17; 18). However, applying CBR to the DDI task is non-trivial, as it
requires carefully designed case retrieval strategies, and existing datasets typically contain
only interaction labels without in-depth pharmacological insights as solutions that can be
transferred to new cases.

3 Proposed Method

3.1 Overall Framework

In DDI prediction task, we have a set of drugs VD and interaction relations RD among
them. Given a query drug pair (u, v), the goal of DDI prediction is to determine their
interaction type r ∈ RD . We formulate it as a reasoning task for LLMs to select the most
likely interaction type r from the relation set RD . Additionally, we utilize a biomedical
KG (20) to capture the associations of drugs.

While the diversity of interaction mechanisms presents a significant challenge for DDI
prediction, different cases may share interaction patterns, reflecting universal pharmaco-
logical principles (49; 37). Inspired by the proven success of CBR in clinical practice, we
propose CBR-DDI, a framework that distills pharmacological patterns from historical cases
to enhance LLM’s reasoning. In contrast to naive CBR applications (6) that rely on simple
retrieval methods (e.g., fingerprint-based matching (39)) and offer only interaction labels as
solutions, CBR-DDI constructs a knowledge repository that integrates rich pharmacological
insights, and strengthens LLMs through comprehensive case retrieval, knowledge-enhanced
reuse, and dynamic refinement.
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Figure 2: Comparison between Naive-CBR method and our method CBR-DDI. CBR-DDI
constructs a knowledge repository storing cases with rich pharmacological insights, and
enhances LLM predictions via LLM-GNN collaborative case retrieval, two-tier knowledge-
enhanced reuse, and representative sampling-based dynamic refinement.

As illustrated in Figure 2, the framework operates in three stages: (1) case retrieval via
LLM-GNN collaboration, (2) case reuse via two-tier knowledge guided reasoning, and
(3) case refinement via representative sampling. Given the names of a drug pair, we first
leverage the LLM to generate concise drug descriptions, which are used both to perform
semantic-level retrieval and to augment a GNN module that encodes the subgraph of
the drug pair in the KG. This enables a hybrid retrieval mechanism that identifies both
semantically and structurally relevant cases from the knowledge repository. Then, the
retrieved cases are integrated into a two-tier knowledge-enhanced prompt, which combines
key drug associations extracted by the GNN module with historically similar mechanistic
insights, guiding the LLM to generate accurate and explainable prediction. Finally, we
design a sampling strategy to refine the repository by grouping similar cases and retaining
representative ones, reducing redundancy and improving adaptability to new discoveries.

3.2 Knowledge Repository

Figure 3: Illustration of the case.

To effectively leverage the histori-
cal drug interaction cases and dis-
cover important pharmacological
patterns, we propose to construct a
lightweight knowledge repository
that stores a collection of represen-
tative cases enriched with pharma-
cological insights. This design is in-
spired by the case-based reasoning
paradigm widely adopted in clini-
cal decision support systems (3; 5),
where past cases are enriched and
reused to guide new decisions. The
repository is designed to capture
both factual information of drugs and generalizable pharmacological patterns, thereby en-
abling accurate retrieval of relevant cases and facilitating analogical reasoning in predicting
new drug interactions. Specifically, as shown in Figure 3, each case C involving a drug
pair (u, v) in the repository is a structured representation of DDIs, consisting of four key
components:
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• drug description Dc = (Du, Dv): functional descriptions of the drugs generated by LLM
(detailed in Section 3.3.1).;

• drug association Hc: structured knowledge extracted from the KG using the GNN mod-
ule, representing the relationships between drugs, with representation hc (detailed in
Section 3.3.2);

• mechanistic insights Mc: pharmacological insights suggest why the drugs might interact,
distilled from domain knowledge and historical cases by LLM (detailed in Section 3.3.2);

• interaction type Tc: the label of interaction;

Among these, drug descriptions and associations provide factual grounding for retrieval,
while the mechanistic insights are the core of each case, as they capture the plausible
underlying reason for the interaction and provide key pharmacological patterns that can
be transferred to new drug pairs. These patterns guide LLM towards stepwise reasoning
process, thereby enhancing its reasoning capacity.

3.3 Reasoning Steps

3.3.1 Case Retrieval via LLM-GNN Collaboration

Effective case retrieval is crucial for CBR, as the relevance and quality of retrieved cases
directly impact the accuracy and interpretability of predictions. Considering the diverse
functions of drugs and their varying associations, we propose a hybrid retrieval mechanism
that combines the natural language processing capabilities of LLMs with the structured
learning abilities of GNNs, enabling retrieval of semantically and structurally similar cases.

To retrieve relevant historical cases C’s for a given drug pair p = (u, v), we compute
a retrieval score based on a weighted combination of semantic similarity and structural
similarity:

s(p, c) = λ · SemanticSim(p, c) + (1− λ) · StructSim(p, c), (1)

where λ ∈ [0, 1] is a hyperparameter that balances the contribution of the two components.
The two similarity are defined as follows:

• SemanticSim(p, c) = Sim( f (Dp), f (Dc)): We prompt an LLM (i.e., Llama3.1-8B-
Instruct (15)) to generate concise functional descriptions Du and Dv for drugs u and
v, denoted as Dp = (Du, Dv) = LLMdes(u, v). The function f (·) denotes a text embed-
ding model (29). We then compute the cosine similarity between the embeddings of Dp
and the stored case description Dc, capturing the semantic closeness of drug functionality
and pharmacological properties.

• StructSim(p, c) = Sim(hp, hc): We employ a subgraph-based GNN module with attention
mechanism (i.e., EmerGNN (61)) to encode the subgraph connecting the drug pair in KG,
with the embeddings of LLM-generated drug descriptions as node features, obtaining the
subgraph representation: hp = GNN( f (Du), f (Dv)). Cosine similarity is then computed
between hp and the stored case representations hc, reflecting the structural similarity in
the association patterns between drug pairs.

We rank all cases in the repository based on s(p, c) and select the top-K most relevant ones
for subsequent reasoning. By integrating semantic drug descriptions with graph-structured
relational knowledge, this hybrid approach enables a comprehensive case retrieval process,
capturing pharmacologically similar drug pairs while preserving structural association
relevance.

3.3.2 Case Reuse via two-tier Knowledge Guided Reasoning

Although relevant cases reflect potential interaction mechanisms, they do not provide
sufficient factual information for the given drug pair. To address this, we design a two-tier
knowledge-enhanced prompt that integrates both external factual knowledge (i.e., drug
associations) and internal regularity knowledge (i.e., historical mechanistic insights) to
guide the LLM’s reasoning process.
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Table 1: Comparison of different methods using LMs.

Methods Without
Fine-Tuning Interpretability Drug Association

Augmentation
Mechanism

Augmentation

TextDDI × × × ×
DDI-GPT × ✓ × ×

Naive-CBR ✓ × × ×
K-Paths ✓ ✓ ✓ ×

CBR-DDI ✓ ✓ ✓ ✓

Specifically, the prompt comprises the key drug associations of given pair extracted by the
attention-based GNN module, and relevant mechanistic insights contained in historical
similar cases. The LLM is then prompted to synthesize these two complementary sources of
knowledge, generating the interaction mechanism insights Mp and type Tp. The prediction
process is formalized as:{

Mp, Tp
}
= LLMpre

(
TD, {Ci}K

i=1, Hp, Ap
)
, (2)

where TD is the task description, {Ci}K
i=1 are the top-K retrieved cases, Hp denotes the

extracted drug association facts, and Ap is the filtered candidate interaction types. We detail
the two-tier knowledge as follows:

• External factual knowledge (i.e., drug associations Hp): To capture essential associations
between drugs, we employ the attention-based GNN module to extract high-quality rela-
tional paths that connect them. Unlike prior work (1) that retrieves triplets heuristically,
we scores triplets along the paths by attention weights during GNN propagation. We
then select the top-P paths with the highest average attention as Hp, which are incorpo-

rated into the prompt as structured, high-quality factual evidence (e.g., Fosphenytoin binds−−−→
CYP3A4 binds−−−→ Diphenhydramine).

• Internal regularity knowledge (i.e., mechanistic insights within historical cases {Ci}K
i=1

): The retrieved cases (in Section 3.3.1) contain mechanistic insights Mci that reflect
generalized pharmacological patterns observed in similar drug pairs. They can guide the
LLM to perform analogical reasoning, drawing parallels between the current drug pair
and previously known regularity.

By structuring the prompt in this manner, we enhance the interpretability and reliability of
LLM-generated predictions, as the historical cases offer relevant pharmacological patterns,
while the factual drug associations provide the evidence base. Furthermore, to reduce the
complexity introduced by numerous interaction types, we pre-filter candidate answers Ap
based on the scores of GNN module, retaining only top-N candidates. This focuses the
LLM’s attention on the most plausible options and reduces noise from irrelevant candidates.

3.3.3 Case Refinement via Representative Sampling

To ensure both the quality and size control of our knowledge repository, we propose a
dynamic refinement strategy that updates cases in the knowledge repository. Specifically,
for each LLM-generated prediction, we verify its correctness against ground truth label
(i.e., from training data), and prompt revisions for errors based on the correct label. The
LLM is also prompted to allow for the possibility of providing no mechanistic insight when
neither external knowledge nor its internal knowledge is sufficient; in such cases, we leave
this component of the case empty to prevent the introduction of erroneous information.
Furthermore, to control the growth of the repository while preserving its expressive power,
we group semantically similar cases within each DDI category using the text embeddings
of their mechanistic insights Mc. Our case-based design allows for simple yet effective
clustering methods to retain only the most representative cases, i.e., filtering out redundancy
while preserving diversity in pharmacological scenarios (details are shown in Appendix B.1).
This approach keeps the repository compact and efficient while allowing for new discoveries.

6



Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

Table 2: Performance comparison of different methods for DDI. ∆avg denotes the average
improvement in accuracy and recall (in percent) on two datasets.

Type Method
DrugBank TWOSIDES

∆avgS1 S2 S1 S2
Acc F1 Acc F1 Recall NDCG Recall NDCG

Feature-based MLP 57.77 42.53 39.85 20.15 12.70 14.88 3.60 5.95 6.42 ↑

Graph-based

ComplEx 4.02 1.74 4.32 1.77 2.30 3.61 1.62 1.81 32.06 ↑
MSTE 54.66 40.57 32.88 4.93 5.12 7.37 2.78 3.12 11.02 ↑
Decagon 32.41 28.56 22.47 6.12 4.48 6.36 2.38 3.61 19.54 ↑
SumGNN 57.04 54.77 25.28 17.85 4.08 5.24 2.11 3.48 13.03 ↑
EmerGNN 68.10 65.78 44.84 34.22 13.79 16.06 3.01 4.93 2.45 ↑
TIGER 60.11 57.21 33.46 19.78 11.72 14.33 2.69 3.90 7.81 ↑

LM-based TextDDI 66.75 66.53 44.23 32.79 9.88 13.24 4.16 6.04 3.35 ↑

Llama3.1-8B

Base 8.71 4.10 7.30 3.94 0.04 0.06 0.02 0.03 28.92 ↑
Naive-CBR 47.88 42.38 15.02 8.70 3.60 4.47 0.27 0.50 16.24 ↑
KAPING 36.61 29.06 12.29 7.34 0.18 0.29 0.05 0.07 20.65 ↑
K-Paths 57.79 46.58 35.58 22.95 0.25 0.38 0.07 0.08 9.51 ↑
CBR-DDI 68.52 61.57 44.94 32.43 13.89 15.45 4.38 7.04 -

Llama3.1-70B

Base 8.93 4.37 8.02 4.12 0.05 0.06 0.03 0.03 30.21 ↑
Naive-CBR 48.09 50.62 21.22 13.04 4.54 5.46 0.68 0.84 15.84 ↑
KAPING 41.87 36.43 19.66 10.82 1.58 2.11 0.52 0.97 18.56↑
K-Paths 61.19 56.16 36.00 24.87 2.09 3.18 1.01 1.42 9.40 ↑
CBR-DDI 71.36 70.85 47.43 36.88 14.40 16.97 4.68 7.32 -

Base 12.62 9.61 12.12 6.78 0.03 0.04 0.03 0.05 28.82 ↑
Naive-CBR 55.20 47.24 22.26 15.46 3.18 4.22 0.32 0.47 14.78 ↑

DeepSeek-V3 KAPING 46.42 40.25 22.47 14.83 1.40 1.89 0.55 0.94 17.31↑
-671B K-Paths 64.52 58.17 38.33 35.41 1.73 2.21 1.19 1.66 8.58 ↑

CBR-DDI 71.05 74.38 49.45 40.69 14.85 16.56 4.73 6.60 -

3.4 Comparison with Existing Works

As shown in Table 1, TextDDI (63) and DDI-GPT (55) rely on fine-tuning small language
models (e.g., RoBERTa (29)) as classifiers, which limits their compatibility with off-the-
shelf LLMs. Specifically, TextDDI relys solely on individual drug descriptions. DDI-GPT
retrieves one-hop neighbors from KGs for binary classification and applies an attention
mechanism for limited interpretability. Naive-CBR method (6) retrieves structurally similar
drug pairs based on fingerprint features, providing only case labels for LLMs without
deeper pharmacological insight. K-Paths (1) uses heuristic methods to extract diverse
paths between drugs and directly feeds them into LLMs. In contrast, CBR-DDI uniquely
integrates both drug association knowledge and mechanistic insights to augment LLM,
enabling interpretable prediction, while offering plug-and-play flexibility across LLMs
without requiring fine-tuning.

4 Experiment

4.1 Experimental Setup

Datasets. We conduct experiments on two widely used DDI datasets: (1) DrugBank (54), a
multi-class dataset that contains 86 types interactions between drugs. (2) TWOSIDES (46), a
multi-label dataset that records 200 side effects between drugs.

Experimental Settings. Following (61; 1; 11), we evaluate our model on two challenging
settings: S1 and S2. For S1 setting, the task is to predict the interaction type between an new
drug—one that has no interaction records in the training set—and an existing drug. For S2
setting, the goal is to predict the interaction type between two new drugs. We also provide
experimental results for S0 setting in Appendix C.1.
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Table 3: Comparison of different variants of CBR-DDI-Llama3.1-70B.

Method
DrugBank TWOSIDES

S1 S2 S1 S2
Acc F1 Acc F1 Recall NDCG Recall NDCG

CBR-DDI 71.36 70.85 47.43 36.88 14.40 16.97 4.68 7.32
w.o.case 68.33 68.44 46.02 33.48 13.94 15.11 3.42 5.21

w.o.association 69.42 68.94 46.45 34.19 14.07 16.40 4.38 6.96

Table 4: Influence of representative sampling strategy.

Method
DrugBank TWOSIDES

S1 S2 S1 S2
Acc #Case Acc #Case Recall #Case Recall #Case

w.o.sample 71.36 35255 47.38 3056 14.32 4684 4.68 808
w.sample 71.05 2139 47.43 398 14.40 1639 4.48 504

Evaluation Metrics. For DrugBank dataset, where each drug pair corresponds to a single
interaction type, we adopt Accuracy and F1 Score as evaluation metrics. For TWOSIDES
dataset, where a drug pair may involve multiple interaction types, we treat it as a rec-
ommendation task and use Recall@5 and NDCG@5 as the evaluation metrics (detailed
demonstrations are provided in Appendix B.3).

Experiment Details. We follow the settings of (61) to train the GNN module and use
HetioNet (20) as the external KG. Considering the plug-and-play convenience of CBR-DDI,
we use three LLMs in experiments: Llama3.1-8B-Instruct (15), Llama3.1-70B-Instruct (15),
and DeepSeek-V3 (28). We typically set number of reference cases K as 5, the number of
paths in drug associations P as 5, and vary the number of candidate answers among {3,5,10}.
Other details are shown in Appendix B.3.

Baseline Methods. We consider the following baseline methods for comparison: (1) tradi-
tional methods without using LLMs: MLP (14), ComplEx (48), MSTE (59), Decagon (64),
SumGNN (60), EmerGNN (61), TIGER (43), TextDDI (63); (2) LLM-based methods: Base
model, Naive-CBR (retrieve 10 similar labeled cases based on fingerprint similarity as
few-shot prompting (6)), KAPING (4), K-Paths (1).

4.2 Performance Comparison

As shown in Table 2, among LLM-based baselines, Naive-CBR achieves notable performance
improvements, highlighting the importance of historical cases in prediction. By providing
similar drug pairs with their interaction labels, it demonstrates that past interaction patterns
offer valuable knowledge for guiding LLM predictions. However, Naive-CBR relies on
untrained and simple feature similarity metrics, which fail to capture complex relationships
between cases or provide in-depth pharmacological insights. Consequently, it can not
outperform other advanced deep learning approaches that are specifically trained for DDI.
In contrast, our proposed method, CBR-DDI, significantly outperforms all baseline methods
across multiple benchmarks, especially when paired with powerful LLMs like Llama3.1-
70B or DeepSeek. Even with smaller models such as Llama3.1-8B, our method achieves
superior results over state-of-the-art methods. Compared to heuristic-based approaches like
K-Paths, which may introduce irrelevant or redundant information, CBR-DDI effectively
leverages historical cases to extract valuable pharmacological insights, and enhances the
reasoning capacity of LLMs by integrating both factual drug association knowledge and
mechanistic insights, thereby achieving more accurate and reliable predictions. These results
demonstrate that CBR-DDI is the first work to effectively unlock the potential of LLMs for
DDI prediction.
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(a) Acc vs λ on DrugBank-S1 (b) Acc vs λ on DrugBank-S2

Figure 4: Effect of Hyperparameter λ on Hybrid Retriever Accuracy.

4.3 Ablation Study

4.3.1 Influence of two-tier Knowledge Augmentation

To validate the necessity of both factual knowledge (i.e., drug associations) and regularity
knowledge (i.e., mechanistic insights derived from historical cases), we conduct ablation
studies under three configurations: (i) the full prompt, (ii) factual-only (w.o. case), and (iii)
regularity-only (w.o. association). As shown in Table 3, removing any tier of knowledge
leads to a performance drop. These results confirm that factual knowledge provides evi-
dence base for reasoning, while regularity knowledge facilitates mechanistic generalization.
Notably, the retrieved cases play a more critical role, as drug associations from KGs do not
directly determine interaction types. Accurate prediction demands deeper insights into
pharmacological mechanisms derived from historical cases, highlighting the importance of
case-based reasoning. More detailed ablation studies are presented in Appendix C.2.

4.3.2 Effectiveness of Hybrid Case Retriever

We evaluate the effectiveness of the hybrid retriever by varying the similarity weight λ
between semantic and structural components in (1). Specifically, we measure the retrieval
accuracy by selecting the top-K cases (K = 1, 5) under different λ values and assigning the
majority label among them to the test sample. As shown in Figure 4, retrieval accuracy
first increases and then decreases as λ changes, suggesting that a balanced combination
of semantic and structural similarity yields optimal performance. This demonstrates that
our hybrid retriever effectively integrates both drug functional descriptions and structural
associations, enabling the retrieval of cases that are not only pharmacologically similar but
also share interaction patterns, thereby improving prediction accuracy. More experiments
are shown in Appendix C.5.

4.3.3 Influence of Representative Sampling

Table 4 demonstrates the impact of our representative sampling strategy for case refinement.
By replacing individual cases with representative cluster centroids, we significantly reduce
the size of the case repository—by over 90% in DrugBank—thus greatly enhancing scalability.
Notably, reducing the case volume does not compromise performance, while still achieving
comparable or even improved results. These results indicate the representative sampling
strategy optimizes system efficiency and computational resource usage while filtering out
noisy or redundant cases, leading to more representative and informative case selection.

4.4 Case Study

We present a case study in Figure 5, which shows the query drug pair, input task description,
one of the retrieved cases, extracted drug associations, filtered candidate answers, and the
final output of the LLM. As shown, the retrieved case exhibits similar drug associations
and mechanisms to those of the query pair, providing strong reasoning evidence. The LLM
leverages its powerful in-context learning capabilities to analyze the provided knowledge,
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<Query drug pair-Answer>
Rifabutin, Zopiclone — The metabolism of Zopiclone can be increased when combined with Rifabutin. 

<Input Task Description> 
You are a medical expert. Your task is to predict the interaction between a pair of drugs. There are some examples for your reference before the given question. You can refer to the 

interaction mechanisms in the provided examples. You should answer the given question based on the candidate answers, correct probability, related facts and your own knowledge. 

Please end your reply with `The interaction is <your answer>'. 

<Input Reference Cases>
Example: What is the interaction between Fosphenytoin and Cytarabine? 

Related Facts: 

(Fosphenytoin, binds, Gene::CYP2C19), (Glucosamine, binds, Gene::CYP2C19), (Glucosamine, resembles, Cytarabine); 

(Fosphenytoin, binds, Gene::CYP3A4), (Cytarabine, binds, Gene::CYP3A4); 

(Modafinil, resembles, Fosphenytoin), (The metabolism of Modafinil can be decreased when combined with Glucosamine), (Glucosamine, resembles, Cytarabine); 

Answer: The given facts suggest that Fosphenytoin binds to CYP2C19 and CYP3A4, and Cytarabine also binds to CYP3A4. Since Glucosamine resembles Cytarabine, it is likely that 

Cytarabine also binds to CYP2C19. Fosphenytoin's binding to CYP2C19 can lead to increased metabolism of Cytarabine, therefore, The metabolism of Cytarabine can be increased when 

combined with Fosphenytoin.

<Input question, drug associations and candidate answers> 
Question: What is the interaction between Rifabutin and Zopiclone?  

Candidate Answers:

The serum concentration of Zopiclone can be decreased when it is combined with Rifabutin. (correct probability: 0.251) 

The metabolism of Zopiclone can be increased when combined with Rifabutin. (correct probability: 0.233) 

The risk or severity of adverse effects can be increased when Rifabutin is combined with Zopiclone. (correct probability: 0.211)

Related Facts: 

(Rifabutin, resembles, Rifapentine), (Rifapentine, binds, Gene::CYP2C9), (Zopiclone, binds, Gene::CYP2C9); 

(Rifabutin, resembles, Rifapentine), (Rifapentine, binds, Gene::CYP3A4), (Zopiclone, binds, Gene::CYP3A4);

(Rifabutin, resembles, Rifapentine),(The metabolism of Eszopiclone can be increased when combined with Rifapentine),(Zopiclone, resembles, Eszopiclone); 

<Output by CBR-DDI-Llama3.1-70B> 
The given facts suggest that Rifabutin resembles Rifapentine and Rifampicin, which increase the metabolism of Eszopiclone, a drug that resembles Zopiclone. This implies that Rifabutin 

may have a similar effect on Zopiclone, increasing its metabolism. Additionally, Rifapentine binds to  CYP2C9, and CYP3A4 enzymes, and Zopiclone also binds to these enzymes. This 

suggests that Rifabutin may induce these enzymes, leading to increased metabolism of Zopiclone.  Considering these facts, the most likely interaction between Rifabutin and Zopiclone 

is that the metabolism of Zopiclone can be increased when combined with Rifabutin. 

The interaction is: The metabolism of Zopiclone can be increased when combined with Rifabutin.

Figure 5: One case study from DrugBank.

generating accurate predictions and mechanistic insights that offer practical value for
medical practitioners. This example illustrates how CBR-DDI effectively enhances the LLM’s
reasoning by incorporating pharmacological insights from historical cases and relevant
evidence from KG, resulting in accurate and faithful outcomes.

5 Conclusion
In this work, we introduce CBR-DDI, a novel framework that leverage CBR to enhance
LLMs for DDI tasks. CBR-DDI constructs a knowledge repository by distilling pharmaco-
logical insights by an LLM and integrating structured knowledge extracted by a GNN from
KGs. The framework employs a hybrid retrieval mechanism for case selection, a two-tier
knowledge-enhanced prompting strategy for case reuse, and a representative sampling
method for dynamic refinement. Extensive experiments validate the effectiveness of CBR-
DDI, achieving state-of-the-art results on multiple benchmarks, while maintaining high
interpretability and flexibility.
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A Discussion

Like many existing DDI prediction methods leveraging KGs, our approach belongs to the
phenotype-based category, where the prediction relies solely on textual information, without
incorporating the drug molecular structures. In future work, we believe it is promising
to integrate molecular structure processing into our framework, which helps with more
precise case retrieval and offer deeper pharmacological insights of interaction mechanism.

In addition, just as the final predictions generated by LLMs may not always be accurate, the
mechanistic insights they produce are not guaranteed to be entirely precise. Nevertheless,
the interaction labels stored in the knowledge repository can be reliably verified through
straightforward string matching with the ground truth provided in the training set. For the
mechanistic component, the LLM primarily offers a plausible reasoning path rather than a
definitive explanation. To further assess their validity, we conducted additional experiments
(Appendix C.2), which demonstrate that these insights are of high quality and play a critical
role in supporting the model’s reasoning accuracy. Beyond predictive performance, such
explicit reasoning traces also enhance interpretability and align with recent findings (24),
suggesting that chain-of-thought style outputs can provide new opportunities for monitor-
ing and improving the safety of reasoning models. In future work, it would be valuable to
explore how to validate these mechanistic insights by incorporating additional biomedical
evidence, or employing advanced verification methods, to further improve the precision of
the generated content.

B Implementation Details

B.1 Details of Knowledge Repository

Repository Initialization. To initialize the knowledge repository, we randomly sample
a subset of instances from the training data and use them to construct the initial set of
cases. For each selected drug pair, we provide the LLM (e.g., Llama3.1-70B-Instruct) with
the correct interaction label and relevant drug association facts, prompting it to generate a
plausible mechanistic insight when possible, or to leave this component empty if sufficient
knowledge is not available.

Repository Update. Whenever the number of cases in the knowledge base exceeds the
threshold, or when a certain number of new cases (e.g., 1000) are added, we execute our
representative sampling case refinement method. Specifically, we apply the K-Medoids
clustering algorithm (36) within each DDI category to group semantically similar cases,
using the text embeddings of their mechanistic insights Mc. The number of clusters is pre-
specified based on the overall sample size (e.g., retaining 5% of the cases or at least 10 cases
per category). Within each cluster, only the medoid—the most central and representative
case—is retained, while redundant or overly similar cases are removed. This approach not
only reduces storage and computational overhead but also ensures that the retained cases
reflect diverse pharmacological scenarios.

B.2 Algorithms for GNN module.

Following (61), we present the algorithms of the GNN module. Given a drug pair p = (u, v),
we implicitly encode the pair-wise subgraph representations with Algorithm 1, and use
beam search to find the top-P paths between them with Algorithm 2.

B.3 Details of Experiments

Datasets. We conduct experiments on two widely used DDI datasets: (1) DrugBank (54), a
multiclass DDI prediction dataset that contains 86 types of pharmacological interactions
between drugs. (2) TWOSIDES (46), a multilabel DDI prediction dataset that records 200
side effects between drugs. We use HetioNet (20) as for the external biomedical knowledge
graph. Table 5 and 6 display the statistics of the datasets and knowledge graph, where V ’s
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Algorithm 1 Pair-wise subgraph representation learning with flow-based GNN.

Require: p = (u, v), fu = f (Du), fv = f (Dv), L, δ, σ, {W (ℓ), w(ℓ)}ℓ=1...L}, G.
{p = (u, v): drug pair; { fu, fv}: the embeddings of drug descriptions; L: the depth of path-based
subgraph; δ: activation function; σ: sigmoid function; {W (ℓ), w(ℓ)}ℓ=1...L}: learnable parameters;
G: biomedical KG.}

1: initialize the u→ v pair-wise representation as h0
u,e = fu if e = u, otherwise h0

u,e = 0;
2: initialize the v→ u pair-wise representation as h0

v,e = fv if e = v, otherwise h0
v,e = 0;

3: for ℓ← 1 to L do
4: for e ∈ VD do {This loop can work with matrix operations in parallel.}
5: message for u→ v:

h(ℓ)
u,e = δ

(
W (ℓ) ∑

(e′ ,r,e)∈ND

σ
(
(w(ℓ)

r )⊤[ fu; fv]
)
·
(

h(ℓ−1)
u,e′ ⊙ h(ℓ)

r

))
;

6: message for v→ u:

h(ℓ)
v,e = δ

(
W (ℓ) ∑

(e′ ,r,e)∈ND

σ
(
(w(ℓ)

r )⊤[ fu; fv]
)
·
(

h(ℓ−1)
v,e′ ⊙ h(ℓ)

r

))
;

7: end for
8: end for
9: Return hp = [h(L)

u,v ; h(L)
v,u ].

Algorithm 2 Path extractor.

Require: (u, v), L, P
1: initialize openList[0]← u;

2: set V (0)u,v = {u},V (L)
u,v = {v};

3: obtain the set V (ℓ)u,v = {e : d(e, u) = ℓ, d(e, v) = L− ℓ}, ℓ = 1, . . . , L with bread-first-search;
4: for ℓ← 1 to L do
5: set closeList[ℓ]← ∅, pathList[ℓ]← ∅;
6: for each edge in {(e′, r, e) : e′ ∈ openList[ℓ− 1], e ∈ V ℓu,v} do

7: compute the attention weights α
(ℓ)
r = σ

(
(w(ℓ)

r )⊤[ fu; fv]
)

;

8: compute score(u, e′, e) = score(u, e) + α
(ℓ)
r ;

9: closeList[ℓ].add((e, score(u, e′, e)));
10: end for
11: for (u, e′, e) ∈topP(clostList[ℓ]) do
12: openList[ℓ].add(e), pathList[ℓ].add((e′, r, e));
13: end for
14: end for
15: Return: join(pathList[1]. . . pathList[L]).

represent the sets of nodes, R’s represent the sets of interaction types, and N ’s represent
the sets of edges.

Table 5: Statistics of datasets.

Dataset |VD-train| |VD-valid| |VD-test| |RD| |ND-train|
S1 S2

|ND-valid| |ND-test| |ND-valid| |ND-test|
DrugBank 1,461 79 161 86 137,864 17,591 32,322 536 1,901
TWOSIDES 514 30 60 200 185,673 3,570 6,698 106 355

Evaluation metrics. For the DrugBank dataset, there is one interaction between a pair
of drugs. Hence, we evaluate the performance in a multi-class setting, which estimates
whether the model can correctly predict the interaction type for a pair of drugs. We consider
the following metrics:

• Accuracy: the percentage of correctly predicted interaction type compared with the
ground-truth interaction type.
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Table 6: Statistics for knowledge graph.

KG |VB| |RB| |NB|
HetioNet 34,124 23 1,690,693

• F1(macro) = 1
∥ID∥ ∑i∈ID

2Pi ·Ri
Pi+Ri

, where Pi and Ri are the precision and recall for the interac-
tion type i, respectively. The macro F1 aggregates the fractions over different interaction
types.

Experimental settings for TWOSIDES. We modify the traditional setup to accommodate
the multi-label nature of TWOSIDES by framing the task as a recommendation problem.
The model is required to predict the top 5 most likely side effects for each drug pair, without
either binary classification based on predefined interaction type or negative sampling.
This design is motivated by three factors: (1) Limitations of conventional classification:
binary classification with fixed types and random negatives oversimplifies the task, often
producing inflated AUC scores (>90%). (2) Alignment with practical needs: clinicians
require identification of potential side effects without prior information, making a multi-
label recommendation formulation more realistic. (3) Scalability and LLM efficiency: the
traditional setup entails 2× 200 = 400 LLM calls for each drug pair, whereas our approach
reduces this to a single call, cutting computational cost by a factor of 400.

Therefore, we use Recall@5 and NDCG@5 as the evaluation metrics:

Recall@5 =
|R1:5 ∩ T|
|T| , (3)

NDCG@5 =
∑5

i=1 I(Ri ∈ T)1/log2(i+1)

∑
min(|T|,5)
i=1

1/log2(i+1)
, (4)

where R is a list of recommended interactions for the given pair, T is the ground-truth list,
and indicator function I(x) = 1 if x is true and 0 otherwise.

Hyperparameters. For the training of the GNN module, we follow EmerGNN (61)’s hy-
perparameter settings. We use three LLMs in experiments: Llama3.1-8B-Instruct (15),
Llama3.1-70B-Instruct (15), and DeepSeek-V3 (28). The training of GNN module and the
inference of Llama3.1-8B are on an RTX 3090-24GB GPU, while the inference for Llama3.1-
70B runs on two A100-80GB GPUs. DeepSeek is accessed via API calls. We set the number
of reference cases K to 5, maintain P = 5 paths in drug associations, and limit candidate
answers to 3 for DrugBank and 10 for TWOSIDES.

Baseline Methods. We consider following baseline methods for performance comparison:

(1) traditional methods without using LLMs:

• MLP (14) uses multilayer perceptron to map the fingerprint features of drugs to the
interaction types between them.

• ComplEx (48) converts KG in to a complex matrix and predict DDI based on the
decomposition of the matrix.

• MSTE (59) is an embedding-based method that learns on KG to predict the possibil-
ity of whether a relation exists.

• Decagon (64) utilizes drug, genes and diseases information to learn drug represen-
tation and predict DDI with a graph convolutional network.

• SumGNN (60) samples a subgraph from KG for drug pair and designs a summa-
rization scheme to generate reasoning path in the subgraph.

• EmerGNN (61) designs a flow-based GNN on the KG to learn the representation of
subgraph between drugs for prediction.

• TIGER (43) uses graph transformer to encode the molecular structure and biomedi-
cal KG to learn dual-channel representation for drugs.

17



Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

Table 7: Performance comparison of different methods for DDI on S0 setting.

Type Method DrugBank TWOSIDES
Acc F1 Recall NDCG

Feature-based MLP 81.22 61.56 25.21 27.78

Graph-based
Decagon 87.10 58.61 12.47 14.92
EmerGNN 96.48 95.44 26.84 30.22
TIGER 95.57 93.89 21.54 25.36

LM-based TextDDI 96.04 94.53 14.07 17.64

Llama3.1-70B

Base 9.17 4.79 0.06 0.07
Naive-CBR 57.92 54.26 7.05 8.74
KAPING 55.68 51.72 0.63 1.05
K-Paths 63.75 65.27 0.87 1.38
CBR-DDI 96.98 95.95 27.18 31.04

• TextDDI (63) trains an LM as predictor with an RL-based information selector for
extracting relevant drug descriptions.

(2) LLM-based methods:

• Base model is a zero-shot method which directly prompts LLMs to select the most
likely interaction type r from the relation setRD .

• Naive-CBR (6) retrieves 10 similar labeled cases based on fingerprint similarity as
few-shot prompting.

• KAPING (4) is a universal KG-based RAG approach that retrieves triples via se-
mantic similarity as zero-shot prompting.

• K-Paths (1) employs a diversity-aware adaptation of Yen’s algorithm to retrieve the
K shortest paths between drugs for LLM’s prediction.

C Supplementary Experiments

C.1 Performance on S0 Setting

We present the performance of different methods under the S0 setting (predicting inter-
actions between existing drugs) in Table 7. As can be seen, our method still achieves the
best performance. However, the advantage is not as pronounced as in the S1 and S2 set-
tings, since our approach primarily targets the scenario of new drug prediction. Under
the S0 setting, existing methods can memorize possible interaction types between known
drugs through training, whereas our method does not fine-tune LLMs and thus lacks this
advantage.

C.2 Effect and Reliability of Mechanistic Insights

To further evaluate the effectiveness of the mechanistic insights generated by LLMs, we
conduct an ablation study on the DrugBank dataset. Specifically, we progressively mask
different proportions of the generated insights within each case. The masking ratio, ranging
from 0% to 100%, indicates the proportion of the insight content removed (e.g., a ratio of
25% corresponds to removing the last quarter of the insights, whereas 100% corresponds
to removing the entire insights, leaving only the interaction label). As illustrated in Fig-
ure 6, the performance decreases consistently as the masking ratio increases. These results
demonstrate that the LLM-generated mechanistic insights contribute substantially to the
prediction process, providing reliable reasoning cues that are indispensable for achieving
high accuracy.

In addition, we employ the hallucination detection method proposed in SelfCheckGPT (33)
to further assess content validity. Specifically, we randomly sample 500 cases, generate 10
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Figure 6: Impact of masking mechanistic insights on DrugBank-S1.

Figure 7: Impact of the number of retrieved cases on DrugBank-S1.

responses for each using the LLM, and computed BERTScore between outputs to estimate
the hallucination score. We obtain an average score of S = 0.21 (where S = 0 indicates no
hallucination, S = 1 indicates complete hallucination), suggesting that the LLM outputs are
largely consistent and confident with fewer hallucinations. These results provide strong
evidence for the effectiveness and reliability of the mechanistic insights in knowledge
repository.

C.3 Effect of Case Number

We investigate how the number of retrieved cases K affects model performance. As shown
in Figure 7, increasing K generally improves accuracy for both the Llama3.1-8B and 70B
models. These results suggest that incorporating more cases enhances LLM’s reasoning by
providing richer phamacological insights, but overly large K may introduce redundancy or
noise. Specifically, incorporating case information can significantly enhance the performance
of smaller LLMs (i.e., Llama3.1-8B), as their weaker reasoning capabilities make it difficult to
delve beyond superficial drug associations to uncover underlying interaction mechanisms
and consequently make accurate predictions.

C.4 Effect of Drug Association Knowledge

We also analyze the impact of the number of extracted drug association paths P on model
performance. As shown in Figure 8, prediction accuracy initially improves with increasing
P, as additional paths provide more factual evidence for mechanistic reasoning. However,
beyond an optimal point, performance gradually declines as excessive paths introduce
irrelevant or conflicting relationships that obscure core interaction mechanisms.

Furthermore, the Figure compares our attention-based GNN retriever with the random
retriever (i.e., heuristic retrieval used in existing methods). The results demonstrate that
our GNN retriever achieves superior performance, as the attention mechanism enables the

19



Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

Figure 8: Impact of retrieved drug associations on DrugBank-S1 of CBR-DDI-Llama3.1-70B.

model to learn and prioritize more high-quality relationship paths, thereby providing a
more effective foundation for reasoning. In contrast, heuristic retrieval methods lack this
discriminative capability to identify the critical pharmacological relationships.

C.5 Effect of Hybrid Retriever

In Figure 4, we have conducted an ablation study on different retrieval strategies, in terms
of the retrieval accuracy. In that figure, the leftmost point (λ = 0) corresponds to using only
structural similarity (StructSim), while the rightmost point (λ = 1) corresponds to using
only semantic similarity (SemanticSim). The results indicate that a balanced combination of
semantic and structural similarity achieves the best retrieval performance.

To further substantiate this finding, we additionally evaluate the impact of each retriever on
the final prediction accuracy of the LLM on DrugBank-S1 dataset. As reported in Tabel 8,
the hybrid retriever outperforms both individual components, which aligns with the trends
observed in Figure 4.

Table 8: Performance of different retrievers on DrugBank-S1.

Retriever SemanticSim StructSim Hybrid

Accuracy 69.43 70.74 71.36

We also present the most relevant cases retrieved by different retrievers for the same query
drug pair (Figure 9). When using either the semantic-based retriever (λ = 1) or the structure-
based retriever (λ = 0) alone, the retrieved cases often fail to share the same interaction type
as the test case and therefore provide limited value for mechanism reasoning. In contrast,
the proposed hybrid retriever effectively combines semantic similarity and structural simi-
larity, enabling the retrieval of cases that capture both relevant pharmacological effects and
meaningful drug associations. For clarity, we omit the mechanistic insights in the retrieved
cases, since they are not involved in the retrieval process.

C.6 Additional Performance Comparison

Table 9: Performance Comparison on TWOSIDES dataset.

Method S1-Recall S1-NDCG S2-Recall S2-NDCG

SA-DDI 4.43 5.98 3.98 5.96
CBR-DDI 14.40 16.97 4.68 7.32

As noted in the related work section, several DDI methods rely on molecular structure
graphs, whereas our method does not incorporate such structural information, making it
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----------------------------------------------------------- Query Drug Pair -----------------------------------------------------------

<Drug Description>
1. Maprotiline: Maprotiline is a tetracyclic antidepressant (TeCA) used to treat major depressive disorder. It works by 

increasing the levels of certain neurotransmitters in the brain …….

2. Cinacalcet: Cinacalcet is a calcimimetic agent used to treat secondary hyperparathyroidism in patients with chronic 

kidney disease on dialysis, as well as to treat hypercalcemia in patients with parathyroid carcinoma. 

<Drug Association> 
(Maprotiline, binds, Gene::CYP2D6), (Cinacalcet, binds, Gene::CYP2D6); 

(Maprotiline, binds, Gene::CYP1A2), (Cinacalcet, binds, Gene::CYP1A2);

(Maprotiline, binds, Gene::CYP3A4), (Cinacalcet, binds, Gene::CYP3A4) ……

<Interaction Type> 
The metabolism of Cinacalcet can be decreased when combined with Maprotiline.

--------------------------------------------- Retrieved Case with Hybrid Retriever ---------------------------------------------

<Drug Description>
1. Maprotiline

2. Cimetidine: Cimetidine is a histamine H2-receptor antagonist that is used to treat ulcers and gastroesophageal reflux 

disease (GERD) by reducing stomach acid production.

<Drug Association> 
(Maprotiline, binds, Gene::CYP2D6), (Cimetidine, binds, Gene::CYP2D6); 

(Maprotiline, binds, Gene::CYP1A2), (Cimetidine, binds, Gene::CYP1A2);

(Maprotiline, binds, Gene::ABCB1), (Cimetidine, binds, Gene::ABCB1)……

<Interaction Type> 
The metabolism of Cimetidine can be decreased when combined with Maprotiline. 

------------------------------------------- Retrieved Case with Semantic Retriever -------------------------------------------

<Drug Description>
1. Maprotiline

2. Pomalidomide: Pomalidomide is an immunomodulatory drug used in the treatment of multiple myeloma, a type of blood 

cancer. It works by inhibiting the growth of cancer cells and enhancing the immune system's ability to attack cancer cells. 

<Drug Association> 
(Maprotiline, binds, Gene::ABCB1), (Pomalidomide, binds, Gene::ABCB1);

(Maprotiline, binds, Gene::CYP1A2), (Pomalidomide, binds, Gene::CYP1A2);

(Maprotiline, resemble, Desiparamine), (Desipramine, binds, Gene::ABCB1), (Pomalidomide, binds, Gene::ABCB1) ……

<Interaction Type> 
The risk or severity of adverse effects can be increased when Maprotiline is combined with Pomalidomide.

------------------------------------------- Retrieved Case with Structure Retriever -------------------------------------------

<Drug Description>
1. Maprotiline

2. Desvenlafaxine: Desvenlafaxine is a serotonin-norepinephrine reuptake inhibitor (SNRI) used to treat major depressive 

disorder and generalized anxiety disorder.

<Drug Association> 
(Maprotiline, binds, Gene::CYP3A4), (Desvenlafaxine, binds, Gene::CYP3A4);

(Maprotiline, binds, Gene::CYP2D6), (Desvenlafaxine, binds, Gene::CYP2D6); 

(Maprotiline, binds, Gene::SLC6A2), (Desvenlafaxine, binds, Gene::SLC6A2) ……

<Interaction Type> 
The risk or severity of adverse effects can be increased when Maprotiline is combined with Desvenlafaxine.

Figure 9: Retrieved cases of different retrievers on DrugBank-S1.

fundamentally orthogonal to these approaches. For this reason, they are not included in the
main experimental results.

To provide a more comprehensive comparison, we additionally evaluate a strong baseline
SA-DDI (58) among these methods. Specifically, for each query drug pair, SA-DDI is used to
compute scores for all possible side effects, and the top-K side effects (K = 5) were taken
as its final predictions. The results are displayed in Table 9, which show that our method
consistently outperforms SA-DDI across all metrics on the TWOSIDES dataset.

D Case Study

We present two more representative cases from DrugBank and TWOSIDES in Figure 10
and Figure 11. Each case includes LLM-generated drug descriptions, key drug associations
extracted by the GNN module, mechanistic insights generated by the LLM based on both
external and internal knowledge, and the ground truth interaction label. These cases are
constructed to capture both factual evidence and underlying pharmacological patterns of
drug interactions, thereby supporting accurate retrieval and interpretable reasoning for new
prediction tasks.
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Figure 10: One case from DrugBank.

Figure 11: One case from TWOSIDES.
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