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ABSTRACT

On-device LLMs have gained increasing attention for their ability to enhance pri-
vacy and provide a personalized user experience. To facilitate private learning with
scarce data, Federated Learning has become a standard approach. However, it faces
challenges such as computational resource heterogeneity and data heterogeneity
among end users. We propose CoMiGS (Collaborative learning with a Mixture of
Generalists and Specialists), the first approach to address both challenges. A key
innovation of our method is the bi-level optimization formulation of the Mixture-of-
Experts learning objective, where the router is optimized using a separate validation
set to ensure alignment with the target distribution. We solve our objective with
alternating minimization, for which we provide a theoretical analysis. Our method
shares generalist experts across users while localizing a varying number of spe-
cialist experts, thereby adapting to users’ computational resources and preserving
privacy. Through extensive experiments, we show CoMiGS effectively balances
general and personalized knowledge for each token generation. We demonstrate
that CoMiGS remains robust against overfitting—due to the generalists’ regular-
izing effect—while adapting to local data through specialist expertise. We open
source our codebase for collaborative LLMs.

1 INTRODUCTION

Large Language Models (LLMs) have been showing great success serving as foundation models,
evidenced by their capability to understand a wide range of tasks, such as ChatGPT (OpenAI, 2023),
Claude (Anthropic, 2023), Gemini (DeepMind, 2023) and etc. However, cloud-based inference
introduces significant delays for end users, and it often fails to meet their personalized needs (Ding
et al., 2024; Iyengar & Adusumilli, 2024). Recently, there has been growing interest in deploying
LLMs on edge devices, which offer benefits like lower latency, data localization, and more person-
alized user experiences (Xu et al., 2024). For instance, Apple (2024) recently launched on-device
foundation models as part of its personal intelligence system. Meta (2024), Qwen (2024) newly
released lightweight models with less than 3B parameters targeting edge AI.

Figure 1: Chat box between two users with
different characteristics. Next word predic-
tion for smart keyboards should be tailored to
users’ topic preferences for personalization.
However, to ensure factual accuracy and lin-
guistic consistency, the results of next word
prediction should maintain universality.

Figure 2: Diagram of our proposed method
CoMiGS illustrated with a simplified 2-
heterogenous-models setup (corresponding to
the two users in Fig. 1). Generalist experts

( θG
1 , θG

2 ) are aggregated across users, and

specialist experts ( {θSi
1 }3i=1 , {θS1

2 } ) and

Routers ( ϕ1 , ϕ2 ) are kept local.
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On-device LLMs present challenges such as limited and variable computational resources, scarce and
heterogeneous local data, and privacy concerns related to data sharing (Peng et al., 2024; Wagner
et al., 2024). Fine-tuning is typically performed on-device to quickly adapt to users’ individual
needs. While data sharing is a common solution to address local data scarcity, on-device data is often
privacy-sensitive and must remain on the device. To overcome this, Federated Learning has been
proposed as a method for enabling collaborative learning while preserving user privacy, allowing end
users to collaborate by sharing model parameters (Chen et al., 2023; Zhang et al., 2023).

Collaboration between end devices introduces challenges like model (Cho et al., 2023; Bai et al.,
2024) and data heterogeneity Wagner et al. (2024). Moreover, in language modeling, decisions on
collaboration vs. personalization occur at the word level. For instance, as shown in Fig. 1, the prompt
”In my free time, I like to” should yield user-specific predictions, while factual statements, such as the
U.S. presidential election result, should remain universal.

Towards addressing these challenges, we propose a novel Collaborative learning approach via
a Mixture of Generalists and Specialists (CoMiGS). Our approach utilizes a Mixture-of-Experts
architecture and allows users to share some expert modules while keeping other modules user-specific,
thus providing personalized solutions. We name the shared part generalists and the user-specific part
specialists. Like all previous works, the generalists and specialists are simply LoRA modules (Hu
et al., 2021). At the same time, as long as the shared part can be aggregated, the user-specific part can
be of different sizes, which can be adapted to various device capacities, as illustrated by different
numbers of specialists across users in Fig. 2.

We further notice a hierarchical structure between the router and the experts: the router dynamically
assigns tokens based on emerging expert specializations, while the experts refine their roles to
optimize token processing under the router’s guidance. Towards addressing this, we formulate
our learning objective as a bi-level optimization problem and propose a new first-order algorithm
based on alternating minimization as a solution. Our method enjoys convergence guarantees and is
resource-efficient for deployment.

Contributions:
• We propose a novel approach (CoMiGS) for on-device personalized collaborative fine-tuning of

LLMs. Key parts of our approach are: 1) an innovative bi-level formulation of the MoE learning
objective (Section 2.1); 2) a new algorithm based on alternating minimization (Alg.1); 3) a theoretical
analysis with a proof showing linear convergence rate under suitable assumptions (Section 2.3).

• Our collaborative framework effectively addresses both data heterogeneity (Section 3.1), concerning
diverse local data distributions across users, and computational resource heterogeneity (Section 3.2),
with respect to varying local model architectures, making it the first model to accomplish both.

• Our framework separates model heterogeneity from data quantity (Section 3.3). Users with larger
local datasets benefit from a bigger model, while users with more powerful models but smaller
datasets are less prone to overfitting.

• CoMiGS is resource-efficient: it adds marginal (+1.25%) computational overhead and memory
requirement compared to FedAvg, while reducing communication costs by 50% (Appendix C).

2 METHOD

Building on the hierarchical insights of MoE learning, we formulate our learning objective into a
bi-level optimization problem, where expert parameters and routing parameters are updated using
training sets and validation sets respectively. We further let experts diversify into generalists and
specialists via parameter aggregation or localization. As the problem solver, we provide a multi-round
gradient-based algorithm, of which the pseudo codes are presented in Appendix A.

2.1 A BI-LEVEL FORMULATION

Instead of learning routing and expert parameters simultaneously like the conventional way in
LLMs (Zoph et al., 2022; Fedus et al., 2022), we update the two sets of parameters in an alternating
fashion. We observe a natural hierarchy between the experts and the router: the assignment of tokens
to experts depends on the router’s outputs, while the experts’ parameters are updated based on the
assigned tokens. In this way, the experts’ development follows the router’s decisions, establishing an
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inherent leader-follower structure. Following Von Stackelberg (2010), we formulate the hierarchical
problem as a bi-level optimization objective as follows:

min
Φ

∑
i

L(Xvalid
i ,Θ⋆(Φ),ϕi) (upper)

s.t. Θ⋆(Φ) ∈ argmin
Θ

∑
i

L(X train
i ,θG,θS

i ,ϕi) (lower)

where L is the language modeling loss. X train
i and Xvalid

i are local training and validation sets
respectively. The routing parameters Φ = {ϕi} are updated based on the validation loss, which
reflects the target distribution (upper optimization), while the expert parameters Θ = θG ∪ {θS

i } are
updated using the training loss (lower optimization). This formulation further brings in the following
benefits: 1) routing parameters can be updated less frequently and thus less prone to overfit; 2) it
handles situations where target distributions differ from training distributions

2.2 OUR ALGORITHM

To solve our bi-level problem, we use alternating updates of the two sets of parameters. The
pseudo-code of our proposed algorithm is detailed in Alg.1 in the Appendix.
Alternating Update of Θ and Φ. Alternating update of two sets of parameters is a standard way to
solve bi-level optimization problems (Chen et al., 2021). The alternating updates of expert and routing
parameters are performed using local training and validation sets separately. To simplify notations,
we denote fvalid(Θ,Φ) :=

∑
i L(Xvalid

i ,θG,θS
i ,ϕi) and ftrain(Θ,Φ) :=

∑
i L(X train

i ,θG,θS
i ,ϕi).

Note that in contrast to (upper) bi-level formulation, we allow parameter Θ to be free in fvalid, which
makes it easier to optimize. We can write the alternating update steps as follows.

Φk+1 = argmin
Φ

fvalid(Θk,Φ), Θk+1 = argmin
Θ

ftrain(Θ,Φk+1). (1)

Given that the data is distributed among clients, when optimizing Θk+1, we first obtain the solutions
θG
i and θS

i to local problems, for each client i. A parameter aggregation is then performed on the
user-specific θG

i via a trusted server to establish a shared θG across all users.{
θ̃G,k+1
i , θ̃S,k+1

i

}N

i=1
= argmin

Θ
ftrain(Θ,Φk+1),

Θk+1 =

(
1

N

∑
i

θ̃G,k+1
i , {θ̃S,k+1

i }
)
.

(2)

In the next round, each user replaces their θG
i with the global θG, while their θS

i remains local.

2.3 CONVERGENCE RESULTS

First, we establish a linear rate of convergence under general assumptions on our objectives, that
always hold locally, when the parameters are close to the training solution (assuming the pretrained
model is not far from the fine-tuned models). Then, we show that in the case of linear experts, the
same optimization procedure possesses global linear convergence. The technical details are provided
in Appendix G.
Theorem 2.1 (Convergence under Contraction). If Assumptions 1, 2 hold, and λ1 · λ2 < 1, then the
weights (Θk,Φk) generated by alternating updates (1) converge to (Θ⋆,Φ⋆) with a linear rate.

Theorem 2.2 (Global Convergence for Linear Experts). If fvalid = ftrain and all the expert modules
are linear models, we have a global linear convergence rate for a practical instance of our method.

3 EXPERIMENTS

The experimental setup and relevant details are provided in the Appendix B. Additionlly, we provide
an anlysis of the computational and communication Overhead in Appendix C.
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3.1 DATA-DRIVEN SELECTION: GENERALIST VS. SPECIALIST

We start by equipping users with the same model architecture locally (GPT-124M or LLama3.2-1B
with the same number of LoRA modules), to illustrate the effectiveness of our hierarchical learning
of routing and expert parameters. We compare our one generalist one specialist (CoMiGS-1G1S)
method to the following baselines. In order to match the trainable parameter count of our method, we
use 2 times LoRA modules within each user.
• Upper and lower bounds: Pretrained, Centralized
• Baselines: Local, FedAvg, PCL, pFedMoE, FDLoRA
• Ablations: CoMiGS-2S, CoMiGS-2G

3.1.1 RESULT ANALYSIS

The comparison between our method and the baseline methods for models trained on Multilingual
Wikipedia Wikimedia-Foundation, SlimPajama Soboleva et al. (2023), AG News (Zhang et al., 2016)
or Common Corpus (pleias, 2024), including Harvard US Patent dataset (Suzgun et al., 2022) is
summarized in Table 2.
Effectiveness of Our Routing Mechanism. Depending on the dataset, either CoMiGS-2G or
CoMiGS-2S achieves the best performance. The key advantage over Local and FedAvg is the
layer-wise token-level router, which learns to combine generalists and specialists effectively. This
highlights that how knowledge is combined is crucial. Although pFedMoE also has a learned router,
it underperforms even in-distribution because its routing parameters are updated alongside expert
parameters, limiting adaptation to the target distribution. When a validation set is unavailable,
CoMiGS can instead sample new training batches to update routers, maintaining competitive in-
distribution performance (see Table 5).
Token-level Collaborative Decisions Outperform Client-Level. Compared to the state-of-the-art
baseline PCL and FDLoRA, our method demonstrates a clear performance improvement. While both
methods require a separate validation set as in our method to determine collaboration weights, PCL
determines the weights to combine each client’s models iteratively while FDLoRA determines the
weights for the global and local model at the end of training. Our method, in contrast, decides the
collaboration pattern based on each input token, allowing the router weights to co-adapt with the
expert parameters throughout training. This enables a more flexible and fine-grained collaboration.
The Necessity of the Co-existence of Generalists and Specialists. The performances of
CoMiGS-2G and CoMiGS-2S are not consistent across the different scenarios, while our
CoMiGS-1G1S can always closely track the best-performing model, which is clearly visualized
in Fig. 7. Even for in-distribution tasks, it is unclear whether CoMiGS-2G or CoMiGS-2S will
outperform, suggesting both generalists and specialists are necessary as it is impossible to determine
the language structure in advance. Even drastically different users still share many of the same tokens.
A data-dependent combination of generalists and specialists is required.

3.1.2 ROUTING ANALYSIS

Token-wise Analysis. Fig. 3 visualizes token-level routing for models fine-tuned on SlimPajama.
In the first layer, function words (e.g., “and”, “a”, “on”, “the”) are mostly routed to generalists, while
in the last layer, content words are more frequently assigned to generalists. This pattern is especially
clear for the first two users, trained on math and programming texts, where domain-specific terms are
routed to specialists. These results indicate that later-layer experts develop distinct specializations.
Notably, only the top choice is shown, so the presence of blue does not mean generalists are unused.
Compared to CoMiGS-2S, our CoMiGS-1G1S produces more consistent results. Additional token-
wise routing visualizations, including out-of-distribution tasks, are in Appendix F, with experiments
shown in Fig. 12-17.
Layer-wise Analysis. Fig. 4 shows the evolution of layer-wise router outputs for generalist and
specialist experts in an out-of-distribution task, comparing CoMiGS-1G1S and pFedMoE. As
training progresses, CoMiGS-1G1S undergoes a phase transition: routers initially favor generalists
but gradually shift to specialists, a pattern absent in pFedMoE, underscoring the importance of our
routing mechanism. Different layers converge to distinct expert distributions. With CoMiGS-1G1S,
some layers consistently favor generalists, reflecting the fact that the target distribution is a union of
local training distributions. For in-distribution tasks (Fig. 8), early in training, some layers prefer
generalists, but near convergence, specialists dominate. This occurs because generalists, trained on
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StackEx User Codes User ArXiv User Book User

StackEx User Codes User ArXiv User Book User

Figure 3: Visualization of in-distribution token-level routing results for CoMiGS-1G1S trained on
SlimPajama. Tokens are colored with the Top1 expert choice at the first layer (top) and last layer
(bottom). Orange denotes the generalist and blue denotes the specialist. Texts are generated by
ChatGPT. Further colored text plots are provided in Appendix F.
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Figure 4: Expert Scores for the generalist ex-
pert and the specialist expert, averaged across
all tokens and multiple batches for the out-of-
distribution task (AG News). X-axis: number
of iterations. Top: CoMiGS-1G1S, Bottom:
pFedMoE. Darker colors indicate deeper layers.
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Figure 5: Test Perplexity vs. the number of itera-
tions. Low and high denote data quantity. Legend
denotes ni.

more tokens, become knowledgeable sooner, whereas specialists take longer to refine their expertise
with limited local data.

3.2 ADAPTATION TO COMPUTATIONAL RESOURCE HETEROGENEITY

3.2.1 BASELINE COMPARISON

In this section, our focus is to deal with computational resource heterogeneity, where users can have
different numbers of experts ni. We denote different experimental setup by specifying the list of
nis. We still keep one generalist expert per device, but the number of specialists can vary across the
users (the variation is called One-Generalist-X-Specialists, in short, CoMiGS-1GXS). Importantly,
the richness of computational resources doesn’t always correlate with the complexity of local data.
For instance, some users may have ample computational resources but local data in small quantities.
In such cases, a crucial objective is to prevent overfitting due to redundant model-fitting abilities.

We compare our approach to two state-of-the-art baselines: HetLoRA from Cho et al. (2023) and
FlexLoRA from Bai et al. (2024), both of which adapt LoRA ranks based on the resource capacity of
each user. We compare our method to these baselines by matching the number of tunable parameters,
measured as both active and full parameters. For example, to match the full parameter count of
CoMiGS-1GXS with (4, 2, 2, 2) LoRA experts (rank 8), LoRA modules of ranks (32, 16, 16, 16)
would be required. With Top2 routing, to match the active parameter count, each user would need
LoRA modules of rank 16.

The results are presented in Table 1, where our method outperforms the baseline methods for all in-
distribution tasks, regardless of matching the full parameter count or the active parameter count. This
advantage stems from the fact that both HetLoRA and FlexLoRA average model parameters across
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users without allocating parameters for local adaptations, focusing on building a strong generalist
model. In contrast, our approach adaptively integrates both generalist and specialist knowledge,
excelling in scenarios where specialized knowledge is crucial.

Table 1: Mean test ppl (std) over users with
heterogeneous models, averaged across 3 seeds.
Light / dark grey denote in-distribution and out-
of-distribution tasks respectively.

OURS HETLORA FLEXLORA
COMIGS-1GXS ACTIVE FULL ACTIVE FULL

GPT2-124M
MULTILINGUAL
(2,2,4,4) 46.48 (0.16) 57.76 (0.10) 58.60 (0.20) 77.71 (0.15) 77.66 (0.06)
(4,4,2,2) 47.24 (0.09) 57.76 (0.10) 59.14 (0.04) 77.71 (0.15) 75.64 (0.19)
SLIMPAJAMA
(2,4,4,2) 22.10 (0.17) 23.33 (0.10) 23.15 (0.09) 22.98 (0.10) 23.03 (0.07))
(4,2,2,4) 22.28 (0.09) 23.33 (0.10) 23.17 (0.09) 22.98 (0.10) 23.03 (0.08)
AG NEWS
(4,2,2,2) 33.66 (0.07) 31.58 (0.14) 31.95 (0.13) 36.41 (0.18) 36.62 (0.11)
(2,4,4,4) 34.22 (0.09) 31.58 (0.14) 32.52 (0.19) 36.41 (0.18) 36.46 (0.04)

Llama3.2-1B
COMMON-CORPUS
(2,4,4,2) 18.74 (0.14) 21.41 (0.12) 21.74 (0.09) 24.63 (0.12) 25.18 (0.08)
(4,2,2,4) 18.68 (0.11) 21.41 (0.12) 21.61 (0.10) 24.63 (0.12) 24.74 (0.09)
AG NEWS
(4,2,2,2) 16.39 (0.11) 15.89 (0.05) 16.02 (0.05) 17.33 (0.04) 17.52 (0.04)
(2,4,4,4) 16.44 (0.07) 15.89 (0.05) 16.25 (0.11) 17.33 (0.04) 17.70 (0.10)

Table 2: Mean (std) test perplexity over the users
with homogeneous models, averaged across 3
seeds (the lower the better). Light grey denotes
in-distribution tasks and dark grey denotes out-of-
distrition tasks.

Base Model GPT2-124M LLAMA3.2-1B
Dataset Multilingual SlimPajama AG News Com-Corpus AG News

Pretrained 156.12 37.19 90.65 30.40 29.37
Centralized 55.41 (0.12) 19.53 (0.14) 28.19 (0.52) 17.97 (0.19) 16.12 (0.05)

Local 54.38 (0.32) 26.95 (0.14) 41.46 (0.06) 20.19 (0.11) 19.96 (0.01)
FedAvg 58.80 (0.34) 23.27 (0.05) 31.84 (0.02) 21.95 (0.11) 15.86 (0.05)
PCL 54.53 (0.19) 26.99 (0.19) 32.25 (0.12) 19.65 (0.03) 16.84 (0.05)
pFedMoE 52.27 (0.17) 25.40 (0.09) 38.72 (0.21) 20.41 (0.05) 17.84 (0.05)
FDLoRA 57.45 (0.81) 22.71 (0.40) 33.61 (0.07) 22.11 (0.05) 16.64 (0.02)

CoMiGS - 2S 46.36 (0.16) 22.51 (0.08) 35.81 (0.13) 18.46 (0.13) 18.03 (0.11)
CoMiGS - 2G 58.31 (0.17) 21.36 (0.01) 31.18 (0.05) 20.18 (0.09) 15.41 (0.05)
CoMiGS - 1G1S 47.19 (0.10) 21.79 (0.04) 33.53 (0.03) 18.37 (0.03) 16.31 (0.05)

3.3 USER-SPECIFIC ANALYSIS

In this section, we investigate how each user can benefit from our CoMiGS-1GXS. In practice, users
may not know their local data complexity, leading to a potential mismatch in resource allocation
relative to data quantity. To simulate such scenarios, we allocate model capabilities—measured by
ni (the number of LoRA modules per user)—either positively or negatively correlated with their
local data size. It is important to note that one generalist is always assigned. Top2 routing is always
performed when ni ≥ 2. The results are shown in Fig. 5.

More Specialists Help with Higher Data Quantity. High data quantity users (French and Italian)
consistently benefit from having more specialists locally, as their test perplexities decrease when the
number of specialists increases from 1 to 3 to 7. This suggests that when sufficient local training data
is available, adding more specialists leads to improved performance. (Top panel in Fig. 5)

Generalists Help to Prevent Redundant Specialists from Over-Fitting. For users with low data
quantities, local model training with just two LoRA modules already results in overfitting (a trend
observed in Fig. 7). Our method succeeds to suppress overfitting, even when fine-tuning twice or four
times as many expert parameters. We attribute this to the existence of the generalists. (Middle panel
in Fig. 5)

Specialists Can Benefit Generalists. What happens if users can only support a maximum of one
expert? In our setup, such users must rely on the generalist expert when participating in collaboration.
Interestingly, even when their collaborators are allocated more specialists, low-resourced users with
only one generalist still benefit from the refined role diversification between generalists and specialists.
As a result, the generalists become more powerful. (Bottom panel in Fig. 5)

4 CONCLUSIONS

We propose a novel framework for on-device personalized collaborative fine-tuning of LLMs,
grounded in an innovative bi-level formulation of the Mixture-of-Experts learning objective. Our
fine-grained integration of generalist and specialist expert knowledge achieves superior performance
in balancing personalization and collaboration within Federated LLMs.

Furthermore, our framework is the first to address both model and data heterogeneity in collaborative
LLM training. It further decouples local data quantity from resource availability, allowing high-
resourced users to leverage larger datasets for improved performance while remaining resilient against
overfitting in low-data scenarios. CoMiGS is both theoretically sound and resource-efficient for
practical deployment.
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IMPACT STATEMENT

We offer a collaboration framework for edge devices, aiming to enable smaller devices to leverage
large language models (LLMs) despite limited resources and data availability. Our approach enhances
fairness and mitigates privacy concerns by ensuring data remains on end devices. The privacy aspects
can further be enhanced by differential private aggregation of generalist weights, which we do not
pursue here.

The robustness towards attackers is beyond the scope of our work. Our collaboration framework has
no guarantee of resilience towards adversarial attackers through the aggregation of the generalist
weights, which could potentially lead to misuse by certain parties. Further research is required on top
of our framework to guarantee its safe deployment.
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A OUR ALGORITHM

The pseudo codes of our proposed CoMiGS method are presented in Alg. 1. While the scheme
requires a server, it can alternatively be implemented in a serverless all2all fashion, which requires N
times more communication overhead and we do not further pursue this here.

Algorithm 1 Pseudo code of our proposed algorithm

Input: Expert parameters {θG
i,0,θ

S
i,0}, routing parameters {ϕi,0}. Local training data and valida-

tion data {X train
i ,Xvalid

i }, i ∈ {1, 2, .., N}. Communication round T and routing update period τ .
Load balancing weight λ.
for t = 1, ..., T do

Server aggregates generalist parameters: θG
t−1 = 1

N

∑
i θ

G
i,t−1

for i ∈ [0, N) do
Users download aggregated generalist weights and
prepare model parameters for training {θG

t−1,θ
S
i,t−1,ϕi,t−1}

Do gradient steps on (θG
t−1,θ

S
i,t−1) towards minimizing (3) and get (θG

i,t,θ
S
i,t)

min
θG
i ,θS

i

L(f(X train
i ;θG

i ,θ
S
i ,ϕi,t−1),X

train
i )+

λ · LLB
i (X train

i ;θG
i ,θ

S
i ,ϕi,t−1)

(3)

if t%τ = 0 then
Do gradient steps on ϕi,t−1 towards minimizing (4) and get ϕi,t

min
ϕi

L(f(Xvalid
i ;θG

i,t,θ
S
i,t,ϕi),X

valid
i )+

λ · LLB
i (Xvalid

i ;θG
i,t,θ

S
i,t,ϕi)

(4)

end if
end for
Each device i ∈ {1, 2, .., N} sends generalist weights θG

i,t to the server
end for
Return: Expert parameters {θG

i,T ,θ
S
i,T } and routing parameters {ϕi,T }

B EXPERIMENTAL DETAILS

B.1 SETUP

B.1.1 DATASETS

We selected the following datasets to demonstrate the efficacy of our proposed algorithm: 1) Multilin-
gual Wikipedia: Wikipedia articles in four languages: German, French and Italian from Wikimedia-
Foundation, and Dutch from Guo et al. (2020); 2) SlimPajama: We pick the following four categories
– StackExchange, Github Codes, ArXiv, Book from Soboleva et al. (2023); 3) AG News: News from
categories of World, Sports, Business, and Sci/Tech (Zhang et al., 2016). 4) Common Corpus (pleias,
2024): specifically the following three categories – YouTube-Commons, Public Domain Books, and
EU Tenders collections, and the Harvard US Patent dataset from Suzgun et al. (2022).

The number of tokens for our experiments within each user is shown in Table 3.

Given the extensive pre-training of Llama 3.2 models on over 15 trillion tokens from public sources,
and the multilingual capabilities of Llama 3.2 - 1B, fine-tuning on multilingual Wikipedia or SlimPa-
jama resulted in negligible improvements likely due to significant overlap with the pre-training data
corpus. We curated another more difficult fine-tuning dataset – Common Corpus to show case the
distinctions of the baseline methods.
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Table 3: Number of tokens in each dataset splits

User 1 User 2 User 3 User 4

Multilingual
TRAINING 557’662 407’498 556’796 451’584
VALIDATION 300’764 216’318 220’071 165’984
TEST 229’720 219’741 210’570 172’547

SlimPajama
TRAINING 1’000’000 1’000’000 1’000’000 1’000’000
VALIDATION 200’000 200’000 200’000 200’000
TEST 200’000 200’000 200’000 200’000

AG News
TRAINING 761’924 756’719 814’131 771’460
VALIDATION 48’809 48’730 50’398 48’249
TEST 48’167 47’721 48’344 49’377

Common Corpus
TRAINING 1’000’000 1’000’000 1’000’000 1’000’000
VALIDATION 200’000 200’000 200’000 200’000
TEST 200’000 200’000 200’000 200’000

B.1.2 EXPERIMENTAL DETAILS

We choose the following base model architectures: GPT2 (124M, English only) and Llama 3.2(1B,
Multilingual)1. We incorporate LoRA modules into every linear layer, including MLP and Self-
Attention Layers, following the recommendations of Fomenko et al. (2024). A routing mechanism is
exclusively implemented atop MLP layers. The number of LoRA experts in MLP blocks depends on
the local resource abundance.

For training, we followed Kalajdzievski (2023). We choose γ to be a rank-stabilized value, a
technique which helps stabilize gradient norms. α and the rank r are hyper-parameters to choose
from. The LoRA modules function as follows:

W = W 0 + γ ·AB, γ =
α√
r

(5)

All our experiments except the centralized ones were conducted on a single A100-SXM4-40GB GPU.
The centralized learning baseline experiments were conducted on a single A100-SXM4-80GB GPU,
as a batch size of 64*4 requires a larger storage capacity.

We use a constant learning rate of 2× 10−3 for updating routing parameters and a 2× 10−3 learning
rate with a one-cycle cosine schedule for expert parameters during fine-tuning. The LoRA rank r is
set to 8 unless otherwise specified, with LoRA alpha α set to 16, following the common practice of
setting alpha to twice the rank (Raschka, 2023). A load balancing weight 0.01 is always applied.

GPT2 Experiments. For AG News and Multilingual Wikipedia data splits, we conduct 20 com-
munication rounds. For SlimPajama data splits, due to greater category diversity, we conduct 50
communication rounds. Between each pair of communication rounds, there are 10 local iterations. In
each iteration, a batch size of 64 is processed with a context length of 128. We set the routing update
period to 30 iterations, and every time we update routing parameters, we do 10 gradient steps on the
validation loss. The choice of the hyperparamters is from a sweep run and we provide the evidence in
Fig. 6.

Llama3.2 Experiments. For AG News data splits, we conduct 10 communication rounds. For
Common-corpus data splits, due to greater category diversity, we conduct 20 communication rounds.
Between each pair of communication rounds, there are 10 local iterations. In each iteration, a batch
size of 64 is processed with a context length of 128. We set the routing update period to 30 iterations,
and every time we update routing parameters, we do 10 gradient steps on the validation loss.

1We adopt the codes from https://github.com/karpathy/nanoGPT and https://
github.com/danielgrittner/nanoGPT-LoRA, https://github.com/pjlab-sys4nlp/
llama-moe
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Figure 6: Sweep results on SlimPajama data splits using GPT2-124M base model. We ablate the
impact of the update period (τ ) and the number of update steps (s) on model performance.

C COMPUTATIONAL AND COMMUNICATION OVERHEAD

Our approach offers a significant advantage for on-device deployment due to its minimal computa-
tional and communication overhead. We compare the resource consumption of our CoMiGS-1G1S
to FedAvg in Table 4, matching the parameter count for LoRA modules.

The communication costs are halved compared to standard FedAvg, as only the weights of generalist
experts are exchanged. Our framework employs a first-order algorithm, ensuring that computation
and memory requirements remain on par with those of standard FedAvg algorithms. The additional
memory and computational overhead primarily stem from the inclusion of the router, which is
minimal (1.25% increase) since the router consists of a single-layer MLP.

Table 4: Extra resource consumption (per device) CoMiGS-1G1S compared to standard FedAvg,
assuming base model is GPT-124M with bfloat16 training.

COMP. OVERHEAD MEMORY COMM. COSTS
/ FORWARD PASS / ROUND

+ 5 MFLOPS + 0.035 MB -1.41 MB
(+1.25%) (+1.25%) (-50%)

D MORE TABLES AND FIGURES

D.1 LEARNING CURVES OF DIFFERENT METHODS

See Fig. 7.

D.2 EXTENDED BASELINE COMPARISON

An extended version of Table 2 is presented in Table 5. In this extension, we incorporate two
additional ablations: 1) Integration of a routing mechanism, updated simultaneously with the expert
networks; 2) Iterative updates alternating between routing and expert parameters, with the routing
parameters updated using newly-sampled training batches instead of a dedicated validation set. 2) is
to address the scenario where a validation set is not available.

Moreover, we include two other baseline methods – FFA-LoRA from Sun et al. (2024) and FedSA
from Guo et al. (2024). FFA-LoRA keeps the LoRA A matrices fixed at initialization, while FedSA
always aggregates LoRA A matrices but leave LoRA B matrices localized.

Notably, the comparison between scenarios ii) and iii) reveals minimal disparity, underscoring the
significance of having an independent validation set exclusively for routing parameter updates.

D.3 HETLORA

Analogously to the baseline experiment comparison in FlexLoRA (Bai et al., 2024), we use γ = 0.99
as pruning strength and sweep the regularization parameter in {5× 10−2, 5× 10−3, 5× 10−4}.
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Figure 7: Test Perplexity during training (base model: GPT2-124M): our method closely follows the
best performing method
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Figure 8: Expert Scores for the generalist expert and the specialist expert from our CoMiGS-1G1S
method, averaged across all tokens and multiple batches for the in-distribution task, with x-axis being
the number of iterations. Darker colors represent deeper layers.

D.4 IS THE STANDARD LOAD BALANCING LOSS SUFFICIENT?

The standard load balancing loss encourages equal assignment of tokens to each expert. When the
number of experts gets larger, there might not be enough tokens routed to the generalists, which
might lead to a under-developed general knowledge. We will verify if this is indeed true.

To encourage enough tokens to be routed to the generalist expert such that more general knowledge
can be developed, we modify our load-balancing loss by introducing importance weighting. As we
separate the 0-th expert to be the generalist expert and conduct Top-2 routing, the modified load
balancing loss is as follows:

LLB
i =

1

(ni − 1)2 + 1
· f0 · P0 +

ni−1∑
j=1

ni − 1

(ni − 1)2 + 1
· fj · Pj (6)
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Table 5: Mean test perplexity over users with homogenous models, averaged across 3 seeds. Mean
(std) with a rank locator for the mean (the lower the better). Green denotes the best performing
methods and red denotes our method.

IN DISTRIBUTION OUT OF DISTRIBUTION
Multilingual SlimPajama AG News

I) WITHOUT ROUTING

Pretrained 156.12 37.19 90.65
Centralized 55.41 (0.12) 19.53 (0.14) 28.19 (0.52)
Local 54.38 (0.32) 26.95 (0.14) 41.46 (0.06)
FedAvg 58.80 (0.34) 23.27 (0.05) 31.84 (0.02)
FFA-LoRA 66.80 (0.20) 22.85 (0.12) 33.13 (0.09)
FedSa-LoRA 57.60 (0.14) 23.40 (0.13) 31.57 (0.10)
PCL 54.53 (0.19) 26.99 (0.19) 32.25 (0.12)

II) UPDATE ROUTING AND EXPERT PARAMS SIMULTANEOUSLY ON TRAINING LOSS

Local-MoE 55.27 (0.40) 27.16 (0.16) 41.49 (0.01)
FedAvg-MoE 56.77 (0.37) 23.32 (0.07) 32.24 (0.08)
pFedMoE 52.27 (0.17) 22.91 (0.18) 38.72 (0.21)

III) ALTERNATING UPDATE ROUTING PARAMS ON NEWLY SAMPLED BATCHES FROM TRAINING SET

Local-MoE - tr 53.78 (0.33) 27.78 (0.06) 41.46 (0.03)
FedAvg-MoE - tr 59.39 (0.13) 23.00 (0.01) 31.70 (0.16)
CoMiGS - tr 50.86 (0.14) 25.45 (0.01) 38.93 (0.08)

IV) ALTERNATING UPDATE ROUTING PARAMS ON A VALIDATION SET

CoMiGS - 2S 46.36 (0.16) 22.51 (0.08) 35.81 (0.13)
CoMiGS - 2G 58.31 (0.17) 21.36 (0.01) 31.18 (0.05)
CoMiGS - 1G1S 47.19 (0.10) 21.79 (0.04) 33.53 (0.03)

Table 6: Test perplexity with different load balancing terms with (hetero) or without (homo) resource
heterogeneity.

No LB LB (uniform) LB (generalist-favored)

AG News (homo) 33.69 (0.21) 33.53 (0.03) 33.53 (0.03)
AG News (hetero) 34.31 (0.05) 34.28 (0.11) 34.22 (0.09)
Multi-Wiki (homo) 47.31 (0.15) 47.19 (0.10) 47.19 (0.10)
Multi-Wiki (hetero) 46.36 (0.16) 46.15 (0.04) 46.48 (0.16)
SlimPajama (homo) 21.77 (0.02) 21.79 (0.04) 21.79 (0.04)
SlimPajama (hetero) 22.15 (0.07) 22.10 (0.11) 22.10 (0.17)

where

fj =
1

T

∑
x∈B

1{j ∈ Top2 indices of p(x)} Pj =
1

T

∑
x∈B

pj(x) (7)

j is the expert index and p(x) = [pj(x)]
ni
j=1 is the logit output from the routing network for a specific

token x. The idea is that one of the top 2 tokens should always be routed to the generalist expert, i.e.
the 0-th expert. Thus, p0

1/2 should be equal to pi

1/2(ni−1) for i ̸= 0. As the original load balancing loss
encourages uniform distribution, this modification encourages the generalist expert to have a routing
probability of 0.5 on expectation. Note that when ni = 2, this LLB

i is the same as the original load
balancing loss as proposed in Fedus et al. (2022).

We present the results in Table 6: in both scenarios, whether users have the same or different numbers
of experts, including a load-balancing term leads to a slight improvement compared to omitting
it. However, encouraging more tokens to be routed to the generalists does not make a significant
difference.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

E ADDITIONAL EXPERIMENTS

We replicate the experiments in Section 3.2 with the SlimPajama dataset, where we assign four times
as many tokens to ArXiv User and Book User as to Stack Exchange User and Codes User.

More Specialists Help with Higher Data Quantity. From Fig. 9, it is evident that ArXiv User and
Book User, with abundant local data, benefit from having more local experts.
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Figure 9: Test Perplexity during training for the SlimPajama setup. ArXiv User and Book User have
more local data and thus benefit from having more experts. The numbers in the legend indicate the
number of experts ni within each user. Top-2 routing is performed.

Generalists Help to Prevent Redundant Specialists from Over-Fitting? From Fig. 10, we observe
more prominent overfitting than in Fig. 5, likely because the tasks are objectively easier, as indicated
by lower test perplexity from the beginning of fine-tuning. Generalists have limited power to prevent
overfitting with easy tasks.

0 200 400

13.0

13.5

14.0

14.5

Te
st

 P
er

pl
ex

ity

StackEx User (low)

0 200 400
9

10

11
Codes User (low)

0 200 400

18

20

22

ArXiv User (high)

0 200 400

33

34

35

Book User (high)

1GXS: 4,4,2,2 1GXS: 8,8,2,2 1GXS: 2,2,2,2

Figure 10: In this SlimPajama setup, Stack Ex User and Codes User despite having low resources
locally, overfit slightly on their small-sized local data. Numbers in the legend denote the number of
experts ni within each user. Top2 routing is performed.

Specialists Can Benefit Generalists. Low-resourced users that can only support a single expert
setup still benefit from collaboration, as the generalist knowledge is refined through a more detailed
distinction between specialist and generalist roles via other high-resourced users. This is indicated by
the enhanced performances for Stack Exchange and Codes Users.
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Figure 11: In this SlimPajama setup, Stack Ex User and Codes User, despite having only one
expert locally, still benefit from other users having more experts, thereby enhancing the generalist’s
performance. The numbers in the legend indicate the number of experts, ni, within each user. Top-2
routing is applied when ni ≥ 2
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Figure 12: Visualization of token-level routing results for CoMiGS-1G1S trained on SlimPajama.
Tokens are colored with the first expert choice at the 0th (first) layer. Orange denotes the generalist
and blue denotes the specialist. Diagonal entries are in-distribution texts and off-diagonal entries are
out-of-distribution texts. Texts are generated by ChatGPT.

F VISUALIZATION OF EXPERT SPECIALIZATION

To visualize which tokens are routed to the generalist and specialist experts for our CoMiGS-1G1S
model trained on SlimPajama, we ask ChatGPT to generate texts in the style of StackExchange,
Python Codes, ArXiv Paper and Books. We then feed those texts to the user-specific models and color
the token with the Top1 routed index. The routing results after the very first layer (0th), a middle
layer (5th), and the very last layer (11th) are presented in Fig. 12, 13 and 14.

We perform the same experiments on AG News, asking ChatGPT to generate News text on the topics
World, Sports, Business, and Sci/Tech. The routing results after the very first layer (0th), a middle
layer (5th), and the very last layer (11th) are presented in Fig. 15, 16 and 17.

For all the plots, diagonal entries are in-distribution texts and off-diagonal entries are out-of-
distribution texts.
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Figure 13: Visualization of token-level routing results for CoMiGS-1G1S trained on SlimPajama.
Tokens are colored with the first expert choice at the 5th layer. Orange denotes the generalist and
blue denotes the specialist. Diagonal entries are in-distribution texts and off-diagonal entries are
out-of-distribution texts. Texts are generated by ChatGPT.
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Figure 14: Visualization of token-level routing results for CoMiGS-1G1S trained on SlimPajama.
Tokens are colored with the first expert choice at the 11th (last) layer. Orange denotes the generalist
and blue denotes the specialist. Diagonal entries are in-distribution texts and off-diagonal entries are
out-of-distribution texts. Texts are generated by ChatGPT.
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Figure 15: Visualization of token-level routing results for CoMiGS-1G1S trained on AG News.
Tokens are colored with the first expert choice at the 0th (first) layer. Orange denotes the generalist
and blue denotes the specialist. Diagonal entries are in-distribution texts and off-diagonal entries are
out-of-distribution texts. Texts are generated by ChatGPT.
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Figure 16: Visualization of token-level routing results for CoMiGS-1G1S trained on AG News.
Tokens are colored with the first expert choice at the 5th (middle) layer. Orange denotes the generalist
and blue denotes the specialist. Diagonal entries are in-distribution texts and off-diagonal entries are
out-of-distribution texts. Texts are generated by ChatGPT.
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Figure 17: Visualization of token-level routing results for CoMiGS-1G1S trained on AG News.
Tokens are colored with the first expert choice at the 11th (last) layer. Orange denotes the generalist
and blue denotes the specialist. Diagonal entries are in-distribution texts and off-diagonal entries are
out-of-distribution texts. Texts are generated by ChatGPT.
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G ALTERNATING MINIMIZATION CONVERGENCE

G.1 NOTATION

Let f1(Θ,Φ) ≡ fvalid(Θ,Φ) and f2(Θ,Φ) ≡ ftrain(Θ,Φ). We denote partial minimization opera-
tors from (1) by

Φk+1 = argmin
Φ∈Ω

f1(Θk,Φ),

Θk+1 = argmin
Θ∈Q

f2(Θ,Φk+1).
(8)

and their compositions by T := u2 u1 and P := u1 u2. Note that both T and P act on the
corresponding spaces of Θ and Φ: T : R|Θ| → R|Θ| and P : R|Φ| → R|Φ|.

Assumption 1 (Shared Optima). There exist Θ⋆ and Φ⋆ such that

Θ⋆ = T (Θ⋆) and Φ⋆ = P (Φ⋆). (9)
Remark 1. Eq. (9) means that fvalid and ftrain share the same global optima, which is reasonable
when the train and validation data are similar, X train

i ∼ Xvalid
i , and, hence, fvalid ≈ ftrain. It also

holds for overparametrized models, such as LLMs.

G.2 CONTRACTION AND CONVERGENCE

As we will see, it is natural to assume that operators u1 and u2 are contractions. We will provide a
working example of our setting in the next section, where this condition will hold. We assume to
have some norms fixed on Q and Ω, that are not necessarily Euclidean. For simplicity, and when it is
clear from the context, we will use the same symbol ∥ · ∥ for both norms, even though they can be
different for spaces of Θ and Φ.

Assumption 2 (Contraction Property). Let u1 and u2 be Lipschitz with some constants λ1, λ2 > 0,
for any Θ, Θ̄ and Φ, Φ̄:

∥u1(Θ)− u1(Θ̄)∥ ≤ λ1∥Θ− Θ̄∥,

∥u2(Φ)− u2(Φ̄)∥ ≤ λ2∥Φ− Φ̄∥.
(10)

Under these assumptions we can show the convergence of the sequence {Θk}k≥0. Indeed, for every
k ≥ 0, we have

∥Θk+1 −Θ⋆∥ = ∥T (Θk)−Θ⋆∥ Assump.1
= ∥T (Θk)− T (Θ⋆)∥

= ∥u2(u1(Θk))− u2(u1(Θ
⋆))∥

(9)

≤ λ2∥u1(Θk)− u1(Θ
⋆)∥

(10)

≤ λ1λ2∥Θk −Θ⋆∥,

and we see that Θk → Θ⋆ with the linear rate. The same reasoning can be applied to the sequence
{Φk}k≥1. Thus, we have established the following general convergence result.

Theorem G.1 (Theorem 2.1). Let Assumptions 1, 2 hold and λ1 · λ2 < 1. Then, the sequence
(Θk,Φk)k≥0 generated by alternating process (8) converges to (Θ⋆,Φ⋆) linearly, for every k ≥ 0:

∥Θk −Θ⋆∥ ≤ (λ1λ2)
k∥Θ0 −Θ⋆∥,

∥Φk −Φ⋆∥ ≤ (λ1λ2)
k∥Φ0 −Φ⋆∥.

(11)

Example 1. Consider the following quadratic objective

f(Θ,Φ) = 1
2 ⟨AΘ,Θ⟩+ 1

2 ⟨BΦ,Φ⟩+ ⟨CΘ,Φ⟩,

where A = A⊤ ∈ R|Θ|×|Θ| and B = B⊤ ∈ R|Φ|×|Φ| are symmetric matrices, and C ∈ R|Φ|×|Θ|.
We assume that f is strictly convex, which means

H =

[
A C⊤

C B

]
≻ 0.
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Clearly, for this objective, we have Θ⋆ = 0 and Φ⋆ = 0. Then

u1(Θ) := argmin
Φ

f(Θ,Φ) = −B−1CΘ and

u2(Φ) := argmin
Θ

f(Θ,Φ) = −A−1C⊤Φ.

Hence, the composition operator T := u2 ◦ u1 is linear:

T (Θ) = A−1C⊤B−1CΘ, (12)

and it holds
∥T (Θ)−Θ⋆∥ ≤ ∥A−1C⊤B−1C∥ · ∥Θ−Θ⋆∥.

Now, denoting by µ > 0 and L ≥ µ the smallest and the largest eigenvalues of matrix H correspond-
ingly, and using the Schur complement, we conclude that

µI ⪯ A ⪯ LI, and µI ⪯ A−C⊤B−1C ⪯ LI, (13)

from which we are able to bound the norm of our matrix as follows:

∥A−1C⊤B−1C∥ = ∥A−1/2(C⊤B−1C)A−1/2∥
(13)

≤ L−µ
L < 1,

which proves the contraction property.

Example 2. Note that for a general differentiable function f , using the Taylor expansion, the operator
T = u2 ◦ u1, where u1(Θ) := argmin

Φ
f(Θ,Φ) and u2(Φ) := argmin

Θ
f(Θ,Φ), can be expressed

as follows (compare with (12)):

T (Θ)−Θ⋆ = H−1
11 H12H

−1
22 H21(Θ−Θ⋆),

where

H11 =
1∫
0

∂2f
∂Θ2 (Θ

⋆ + τ(T (Θ)−Θ⋆),Φ⋆ + τ(u1(Θ)−Φ⋆))dτ,

H12 =
1∫
0

∂2f
∂Θ∂Φ (Θ⋆ + τ(T (Θ)−Θ⋆),Φ⋆ + τ(u1(Θ)−Φ⋆))dτ,

H22 =
1∫
0

∂2f
∂Φ2 (Θ

⋆ + τ(Θ−Θ⋆),Φ⋆ + τ(u1(Θ)−Φ⋆))dτ,

H21 =
1∫
0

∂2f
∂Φ∂Θ (Θ⋆ + τ(Θ−Θ⋆),Φ⋆ + τ(u1(Θ)−Φ⋆))dτ.

Therefore, assuming that the Hessian is strictly positive definite and Lipschitz continuous in a
neighborhood of the solution, localizing the current point to the neighborhood, Θ ≈ Θ⋆ and
Φ ≈ Φ⋆, we can obtain the contraction property, as in the previous example (see, e.g., Theorem 1.2.5
in Nesterov (2018) for the local analysis of Newton’s method).

G.3 LINEAR MODELING AND DECOUPLING

In this section, let us study an important example of linear models, applicable to both experts and the
router. As we will show, in this case and under very mild assumptions we can justify all conditions
from the previous section and therefore obtain the global linear convergence for our alternating
process.

Problem Formulation For simplicity, we consider the case of one client and assume that training
and validation datasets are the same, X train = Xvalid. However, our observations can be generalized
to a more general case of several clients, and different but statistically similar datasets X train ∼ Xvalid.
Hence, we have, f1 ≡ f2 ≡ f . Note that in this case, our bi-level formulation is also equivalent to
joint minimization of f w.r.t. all variables.
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We assume that our client has one generalist expert model, that we denote by θ0 ∈ Rd, and N ≥ 0
specialist experts, that we denote by θ1, . . .θN ∈ Rd. We compose these models together as matrix
Θ = (θ0, . . . ,θN ). In principle, different models can have different expressivity, which we take into
account in our modeling by a convex set of constraints: Θ ∈ Q ⊆ Rd×(N+1).

We denote by ϕ0, . . . ,ϕN ∈ Rd the parameters of our Router, composed together as matrix Φ =
(ϕ0, . . . ,ϕN ), which can also be constrained by a convex set: Φ ∈ Ω ⊆ Rd×(N+1). For a given data
input x ∈ Rd, the Router decides which experts to use with the SoftMax operation x 7→ πΦ(x) ∈
∆N+1, where

∆N+1 :=
{
y ∈ RN+1

+ :
N∑
j=0

y(j) = 1
}

is the standard Simplex, and

π
(j)
Φ (x) := exp(⟨ϕj ,x⟩)∑N

k=0 exp(⟨ϕk,x⟩) . (14)

Under these assumptions, we set the following structure of our optimization objective,

f(Θ,Φ) = 1
n

n∑
i=1

ℓi

(
N∑
j=0

π
(j)
Φ (xi) · ⟨θj ,xi⟩

)
+ α

2

(
∥Θ∥2F + ∥Φ∥2F

)
, (15)

where x1, . . . ,xn are given data vectors, and ℓi(·), 1 ≤ i ≤ n are the corresponding convex losses
(e.g. the logistic loss for binary classification, or the quadratic loss for regression problem). We use
α ≥ 0 as a regularization parameter, which can also be seen as the weight decay, and ∥ · ∥F is the
Frobenius norm of a matrix.

Decoupling Let us introduce the auxiliary variables, λi ∈ ∆N+1, 1 ≤ i ≤ n, and Λ =
(λ1, . . . ,λn) ∈ ∆n

N+1 ⊆ R(N+1)×n, which is a column-stochastic matrix. Employing the ma-
trix notation, we can rewrite our problem in the following form:

min
Θ∈Q,Φ∈Ω
Λ∈∆n

N+1

{
1
n

n∑
i=1

ℓi

(
⟨λi,Θ⊤xi⟩

)
+ α

2

(
∥Θ∥2F + ∥Φ∥2F

)
: λi = πΦ(xi), 1 ≤ i ≤ n

}
. (16)

Now, we apply the relaxation of constrained problem (16) by the following decouple of λi from
πΦ(xi), with some parameter µ ≥ 0 and a distance function V : ∆N+1 ×∆N+1 → R+ between
distributions:

min
Θ∈Q,Φ∈Ω
Λ∈∆n

N+1

{
Fµ(Θ,Φ,Λ) := 1

n

n∑
i=1

ℓi

(
⟨λi,Θ⊤xi⟩

)
+ α

2

(
∥Θ∥2F + ∥Φ∥2F

)
+ µ

2n

n∑
i=1

V (λi;πΦ(xi))

}
.

(17)

A natural choice for V is the Kullback–Leibler divergence, which gives, for every 1 ≤ i ≤ n:

V (λi;πΦ(xi)) :=
N∑
j=0

[
λi

](j)
ln
[
λi

](j) − N∑
j=0

[
λi

](j)
ln
[
πΦ(xi)

](j)
(14)
=

N∑
j=0

[
λi

](j)(
ln
[
λi

](j) − ⟨ϕj ,xi⟩
)
+ ln

( N∑
j=0

exp
(
⟨ϕj ,xi⟩

))
= d(λi)− ⟨λi,Φ⊤xi⟩+ s(Φ⊤xi),

where

d(λ) :=
N∑
j=0

λ(j) lnλ(j), λ ∈ ∆N+1,

is the negative entropy, and

s(y) := ln
( N∑
j=0

exp y(j)
)
, y ∈ RN+1
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is the log-sum-exp function. Note that both d(·) and s(·) are convex functions on their domains.
Moreover, it is well known that d(·) is srongly convex w.r.t. ℓ1-norm (see, e.g., Example 2.1.2 in
Nesterov (2018)):

⟨∇2d(λ)h,h⟩ ≥ ∥h∥21, λ ∈ ∆N+1,h ∈ RN+1. (18)

Therefore, we obtain the following decoupled optimization formulation:

min
Θ∈Q,Φ∈Ω
Λ∈∆n

N+1

{
Fµ(Θ,Φ,Λ)

= 1
n

n∑
i=1

[
ℓi

(
⟨λi,Θ⊤xi⟩

)
+ µ

(
d(λi) + s(Φ⊤xi)− ⟨λi,Φ⊤xi⟩

)]
+α

2

(
∥Θ∥2F + ∥Φ∥2F

)}
.

(19)

It is clear that setting parameter µ := +∞, we obtain that (19) is equivalent to our original prob-
lem (16). However, for µ < +∞ we obtain more flexible formulation with auxiliary distributions
λi ∈ ∆N+1, each for every data sample 1 ≤ i ≤ n, that makes it easier to treat the problem.
Parameters (λi) has an interpretation of latent variables, which makes our approach similar to the
classical EM-algorithm Jordan & Jacobs (1994).

It is clear that function Fµ(Θ,Φ,Λ) is partially convex: it is convex w.r.t (Θ,Φ) when Λ is fixed,
and it is also convex w.r.t. Λ when (Θ,Φ) is fixed.

In what follows, we show that under very mild conditions and choosing regularization parameter
α, µ ≥ 0 sufficiently large, we can ensure that Fµ(·) is jointly strongly convex, regardless of non-
convex cross terms: ℓi

(
⟨λi,Θ⊤xi⟩

)
and ⟨λi,Φ⊤xi⟩. Our theory generalizes a recent approach

to soft clustering Nesterov (2020). With this technique, we will be able to show the global linear
convergence rate for the alternating minimization approach that we discussed in the previous sections.

Joint Strong Convexity Let us consider the i-th term of our objective (19) that correspond to the
data sample with index 1 ≤ i ≤ n. Omitting extra indices, we obtain the following function,

F (Θ,Φ,λ) = ℓ
(
⟨λ,Θ⊤x⟩

)
− µ⟨λ,Φ⊤x⟩+ α

2

(
∥Θ∥2F + ∥Φ∥2F

)
+ µd(λ) + µs(Φ⊤x),

(20)
where Θ ∈ Q, Φ ∈ Ω, λ ∈ ∆N+1. Our goal is to ensure that (20) is strongly convex w.r.t to the
standard Euclidean norm of the joint variable. Namely, we establish the following result.

Proposition 1. Let the loss function ℓ(·) be convex and assume that its first derivative is bounded:
ρ ≥ maxt ℓ

′(t). Assume that the regularization coefficient is sufficiently large:

α ≥ 2∥x∥2 max
{
µ, ρ2

µ

}
. (21)

Then the objective in (20) is strongly convex.

Proof. Note that the log-sum-exp function s(·) is convex. Therefore, it is sufficient to prove that both
functions

g1(Θ,λ) := ℓ
(
⟨λ,Θ⊤x⟩

)
+ α

4 ∥Θ∥2F + µ
4 d(λ) and

g2(Φ,λ) := µ⟨λ,Φ⊤x⟩+ α
4 ∥Θ∥2F + µ

4 d(λ)
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are convex. Computing the second derivative of g1 and applying it to an arbitrary direction z = [H;h]
of corresponding shapes, we get

⟨∇2g1(Θ,λ)z, z⟩ = α
2 ∥H∥2F + µ

4 ⟨∇
2d(λ)h,h⟩

+ ℓ′′(⟨λ,Θ⊤x⟩) ·
[
⟨h,Θ⊤x⟩2 + ⟨λ,H⊤x⟩2 + ⟨h,Θ⊤x⟩ · ⟨λ,H⊤x⟩

]
︸ ︷︷ ︸

≥0

+ ℓ′(⟨λ,Θ⊤x⟩) · ⟨h,H⊤x⟩

≥ α
2 ∥H∥2F + µ

4 ∥h∥
2
1 − ρ∥h∥1 · ∥H∥F · ∥x∥

(∗)
≥ ∥h∥1 · ∥H∥F ·

(√
αµ
2 − ρ∥x∥

) (21)

≥ 0,

where we used Young’s inequality in (∗). The bound for g2 follows by the same reasoning, substituting
ℓ(t) := µt and therefore setting ρ := µ.

For the decoupled optimization formulation (19) it is natural to organize iterations in the following
sequential order, starting from an arbitrary Θ0 ∈ Q and Φ0 ∈ Ω, for some µ > 0:

Λk+1 = argmin
Λ∈∆n

N+1

Fµ(Θk,Φk,Λ),

Φk+1 = argmin
Φ∈Ω

Fµ(Θk,Φ,Λk+1),

Θk+1 = argmin
Θ∈Q

Fµ(Θ,Φk+1,Λk+1).

(22)

Note that each minimization subproblem in (22) is convex and can be implemented very efficiently
by means of linear algebra and convex optimization. At the same time, due to decoupling of variables
and strong convexity we are able to ensure the global convergence of this process to the solution
of (19).

G.4 CONVERGENCE FOR FUNCTIONAL RESIDUAL

Note that in our decoupled optimization formulation (19), variables Θ and Φ are independent of each
other, when Λ is fixed. Therefore, the second and third step in iteration process (22) can be done
independently.

For the sake of notation, let us denote X ≡ Λ, concatenated variable Y ≡ (Θ,Φ), and the objective
in new variables as f(X,Y ) ≡ Fµ(Θ,Φ,Λ). By our previous analysis, we can assume that f is
strongly convex. We denote by µ the parameter of strong convexity and by L the constant of Lipschitz
continuity of the gradient of f . Its global minimum is denoted by (X⋆,Y ⋆), and correspondingly
f⋆ := f(X⋆,Y ⋆).

Then, iteration process (22) can be rewritten simply as the following alternating iterations, for k ≥ 0:

Xk+1 = argmin
X∈X

f(X,Yk),

Yk+1 = argmin
Y ∈Y

f(Xk+1,Y ),

where X and Y are the corresponding convex domains (X ≡ ∆n
N+1 and Y ≡ Ω×Q).

Then, the stationary condition for Yk+1 (see, e.g., Theorem 3.1.23 in Nesterov (2018)) gives

⟨ ∂f
∂Y (Xk,Yk+1),Y − Yk+1⟩ ≥ 0, ∀Y ∈ Y. (23)

Choosing
γ := µ

L ≤ 1, (24)
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we obtain

γf(X⋆,Y ⋆) + (1− γ)f(Xk,Yk+1)

(∗)
≥ γ

[
f(Xk,Yk+1) + ⟨ ∂f

∂X (Xk,Yk+1),X
⋆ −Xk⟩+ ⟨ ∂f

∂Y (Xk,Yk+1),Y
⋆ − Yk+1⟩+

µ
2 ∥X

⋆ −Xk∥2
]
+ (1− γ)f(Xk,Yk+1)

(23),(24)

≥ f(Xk,Yk+1) + ⟨ ∂f
∂X (Xk,Yk+1), γ(X

⋆ −Xk)⟩+ L
2 ∥γ(X

⋆ −Xk)∥2

≥ min
X∈X

{
f(Xk,Yk+1) + ⟨ ∂f

∂X (Xk,Yk+1),X −Xk⟩+ L
2 ∥X −Xk∥2

}
(∗∗)
≥ min

X∈X

{
f(X,Yk+1)

}
= f(Xk+1,Yk+1),

where in (∗) we used strong convexity, and in (∗∗) we used the Lipschitz continuity of the gradient.
Thus, we get the following inequality:

f(Xk+1,Yk+1)− f⋆ ≤
(
1− γ

)(
f(Xk,Yk+1)− f⋆

)
,

and using the same reasoning for Yk 7→ Yk+1 update, we obtain

f(Xk+1,Yk+1)− f⋆ ≤
(
1− γ

)2(
f(Xk,Yk)− f⋆

)
,

which is the global linear rate. Thus, we have established formally the following convergence result.
Theorem G.2. Let f be strongly convex with constant µ > 0, and let its gradient be Lipschitz
continuous with constant L > 0. Then, for k ≥ 0 iteration of the alternating minimization process,
we have

f(Xk,Yk)− f⋆ ≤
(
1− µ

L

)2k(
f(X0,Y0)− f⋆

)
.

Note that this result is directly applicable for our linear models from previous sections, f(X,Y ) ≡
Fµ(Θ,Φ,Λ), as we show that objective (19) is jointly strongly convex, when the regularization
parameter is sufficiently large.
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