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Figure 1: PolyPose is a locally-rigid framework for sparse-view deformable 2D/3D registration.
(A) PolyPose can deformably align a high-resolution preoperative 3D volume to as few as two
intraoperative 2D X-rays without the need of expensive regularizers or hyperparameter optimization.
(B) To tackle this highly ill-posed problem, we estimate the poses (__) of rigid bodies in the volume
and smoothly interpolate them in space to produce a topologically consistent locally-rigid warp.
(C) Using the estimated warps, PolyPose provides 3D volumetric guidance to procedures where only
minimal supervision is available from intraoperative 2D X-rays.

Abstract

Determining the 3D pose of a patient from a limited set of 2D X-ray images
is a critical task in interventional settings. While preoperative volumetric
imaging (e.g., CT and MRI) provides precise 3D localization and visualization of
anatomical targets, these modalities cannot be acquired during procedures, where
fast 2D imaging (X-ray) is used instead. To integrate volumetric guidance into
intraoperative procedures, we present PolyPose, a simple and robust method for
deformable 2D/3D registration. PolyPose parameterizes complex 3D deformation
fields as a composition of rigid transforms, leveraging the biological constraint that
individual bones do not bend in typical motion. Unlike existing methods that either
assume no inter-joint movement or fail outright in this under-determined setting,
our polyrigid formulation enforces anatomically plausible priors that respect the
piecewise-rigid nature of human movement. This approach eliminates the need
for expensive deformation regularizers that require patient- and procedure-specific
hyperparameter optimization. Across extensive experiments on diverse datasets
from orthopedic surgery and radiotherapy, we show that this strong inductive bias
enables PolyPose to successfully align the patient’s preoperative volume to as few
as two X-rays, thereby providing crucial 3D guidance in challenging sparse-view
and limited-angle settings where current registration methods fail. Additional
visualizations, tutorials, and code are available at https://polypose.csail.mit.edu.
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Figure 2: Illustration of polyrigid deformation fields. We visualize 2D slices of the rigid motion
acting on every articulated structure. Linearly combining these transforms in the tangent space yields
a smooth and invertible deformation field, which we color by the relative contribution from every
structure. PolyPose enables the recovery of this 3D deformation field via differentiable rendering.

1 Introduction

Estimating the 3D position of anatomical structures from 2D X-ray images is a critical task for clinical
interventions that require millimeter-level precision, such as image-guided surgery [1-5] or the deliv-
ery of radiotherapy in cancer treatment [6—10]. The number of 2D X-rays available for 3D volumetric
pose estimation is directly proportional to the radiation exposure to the patient and clinical team, as
well as the time available for the procedure, thereby reducing the number of X-rays acquired [1 1, 12].
Furthermore, the geometry of X-ray scanners limits the angular range of acquisitions, introducing spa-
tial ambiguities along the projection direction and challenges for 3D localization [13]. While patients
undergoing surgery and radiotherapy typically have previously acquired 3D volumes, such as com-
puted tomography (CT) scans, their use is confounded by their misalignment with the intraoperative
2D X-rays as patients move between acquisitions (see the misaligned outlines in Figure 1A).

Several parameterizations of 2D/3D motion have been proposed to align these modalities. For
example, rigid 2D/3D registration methods align global structure [14—17], but do not account for
the soft tissue deformation or articulated inter-joint motion that occurs during procedures and creates
localization challenges. Other work estimates point-wise displacement fields using either deep learn-
ing [ 8-22] or optimization [23-25]. However, given the minimal supervision available for estimating
3D deformations in 2D sparse-view and limited-angle settings, deformable models require extensive
application-specific regularization to generate anatomically faithful warps, thereby introducing new
modeling decisions and hyperparameter tuning for every subject, procedure, and anatomical region.

Our approach is instead motivated by a generic anatomical prior: bones are rigid bodies. We parame-
terize deformable 2D/3D registration using a low-dimensional polyrigid model with limited degrees of
freedom (Figure 2), where transformations are composed from individually estimated rototranslations
of multiple articulated structures that are linearly combined in the tangent space se(3) [26]. This
reduces the number of optimizable parameters from the order of voxels in the CT volume to the
order of the number of rigid components. Furthermore, unlike other low-dimensional deformation
models (e.g., splines [27] or linear bases [ 8]), polyrigid transforms have several desirable properties
by construction, such as smoothness, invertibility, and coordinate frame invariance [26].

Our method, PolyPose, enables the estimation of highly accurate non-rigid deformations that are
anatomically plausible and topologically consistent. We do this via differentiable X-ray rendering,
providing piece-wise 2D/3D registration targets from which to construct a polyrigid warp. Empirically,
across diverse datasets, PolyPose is robust even for a small number of input views from limited angles.
Furthermore, given its strong inductive priors, PolyPose does not require any regularization and has
no tunable hyperparameters other than the step size of the optimizer. Our method outperforms both
deep learning and optimization-based 2D/3D registration methods and enables the 3D localization of
critical structures during medical interventions from intraoperative 2D images.

Contributions. To summarize, PolyPose contributes:

* A regularization-free framework for deformable 2D/3D registration that estimates polyrigid
deformation fields using differentiable X-ray rendering.



* A hyperparameter-free weighting function for linearly combining multiple rigid transforma-
tions, providing out-of-the-box generalization to new surgical and therapeutic procedures.

* An anatomically motivated motion model that is robust in sparse-view and limited-angle
settings and produces smooth, invertible, and accurate deformation fields by construction.

2 Related Work

Rigid 2D/3D registration. Given a 2D X-ray and a 3D CT volume, rigid registration methods estimate
a global rigid transformation in SE(3) that optimally aligns the two images [28, 29]. While state-of-
the-art methods can now determine the pose of rigid bodies with less than a millimeter of error [15, 16]
(which, in a different reference frame, is equivalent to estimating the extrinsic matrix of the image),
they fail to describe the motion of volumes subject to non-rigid deformable transformations.

Deformable 2D/3D registration. Non-rigid deformable 2D/3D registration is crucial to radiation
oncology, where a dense displacement field is needed to align a preoperative planning CT volume
with multiple intraoperative X-ray images [20, 23]. As deformably aligning a 3D volume to a set of
sparse 2D X-rays is severely ill-posed, deformable 2D/3D methods rely on complex regularization
schemes (e.g., diffusion [30], total variation [31], elastic penalties [32]), introducing numerous
hyperparameters that must be carefully tuned for every procedure, subject, and anatomical region.

Deformable 3D/3D registration. Many methods exist to reconstruct 3D cone-beam computed tomog-
raphy (CBCT) volumes from multiple 2D X-rays [33]. As such, one could reformulate multi-view
2D/3D registration as a 3D/3D registration task, an active research area, and use recent foundation
models for multimodal 3D/3D registration [34—-36] or improved solvers for iterative deformable
3D/3D registration [37-39]. Unfortunately, the reconstructed CBCTs produced from sparse (< 10)
X-rays have very low SNR and suffer severe streaking artifacts [40, 41], complicating their use as
registration targets. In parallel, the broader vision literature has proposed several alternative represen-
tations of 3D deformation fields for large deformations. For instance, methods such as Nerfies [32]
and RAFT-3D [42] estimate dense SE(3) fields in which each spatial location is assigned an inde-
pendent rigid transformation. While expressive, these dense deformation models are severely under-
constrained in clinical settings characterized by sparse-view and limited-angle X-ray acquisitions.

Learning-based deformable 2D/3D registration. To avoid solving an expensive optimization
problem for every new pair of 2D X-rays and 3D volume, numerous deep learning methods have
been proposed for deformable 2D/3D registration. For example, methods like LiftReg [18] and
2D3D-RegNet [19] rely on convolutional architectures that directly regress parameterizations of 3D
deformation fields from imaging. While some of these methods can be trained in a self-supervised
fashion, they require longitudinal datasets with multiple CT volumes for every patient and/or proce-
dure, which is infeasible for many clinical and surgical settings.

Marker-based multi-component tracking. Unlike the registration methods described above, some
animal biomechanics studies use implanted fiducial markers to track and study the motion of bony
structures in X-ray videos [43, 44]. However, this technique is impractical in clinical settings due to
the invasive nature of implanting markers, as well as its inability to track deformable soft tissue.

3 Methods

Let L°(R¥) define the set of bounded and compact functions g : R¥ — R and V € LZ(R?)
represent a 3D CT volume of a patient. Additionally, let I = {I,, € L3°(R?)})_, represent a set
of N 2D X-ray images of the same patient at a different time point (we assume all images in I are
acquired simultaneously). Specifically, assume the patient is in different positions for the acquisitions

of V and I (e.g., supine vs. standing).

The geometry underlying X-ray image formation can be modeled using a pinhole camera [45]. Let
each image I,, be associated with a camera matrix IT,, = K,, [R,, | t,,], where K,, and [R,, | t,,] are
the intrinsic and extrinsic matrices, respectively. We model the relationship between V and I as

I, =P(II,)oVod, (D
where P(I1,,) : L (R3) — L°(R?) is the X-ray projection operator whose geometry is defined by
the camera matrix IT,,, and ® : R® — R3 is a 3D deformation field. Given V and I, our goal is to
solve for the camera matrices {II;, ..., Iy} and the deformation field ®.
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Figure 3: Overview of PolyPose. (A) We estimate the camera pose IT for each X-ray by registering
the structure S, chor across all input views (Section 3.2). (B) Using these camera matrices, we jointly
optimize the poses of the rigid bodies in V by producing a locally linear polyrigid warp field and
maximizing the similarity of warped differentiably rendered and real X-rays (Section 3.3).

3.1 Preliminaries

Differentiable X-ray rendering. Given the camera matrix IT,, = K,, [R,, | t,] € R®*4, the location
of the X-ray source in world coordinates is given by S = —RZI't, [46, p. 158]. For a pixel in I,,
with coordinates p € R?, its location on the X-ray detector plane is given by P = fII,p, where f is
the X-ray machine’s focal length (derived from K, [46, p. 162]), T is the pseudoinverse, and p € P?
is p in homogeneous coordinates. A construction of the intrinsic matrix K,, is given in Appendix A.

The 3D ray back-projected from p to the camera center can be parameterized as ¥(\) = S+ A(P —S)
for all A € [0, 1]. The negative log-intensity measured at p is given by the Beer-Lambert law [47]:
1 1
L.(p) = / V(x)dx = / V(EN)IE(N)]ldA = [P -S| / V(S+AP-8)dr, 2
PSS 0 0
where V (-) represents the linear attenuation coefficient (LAC) at every point in space, a physical

property proportional to the density. The line integral in Eq. (2) defines the first-order continuous
approximation of the X-ray projection operator P(II,,), i.e., no scattering, beam hardening, etc.

We implement Eq. (2) by modeling V with a discrete CT volume (i.e., a voxelgrid of LACs). This
discrete line integral can be approximated with interpolating quadrature as

M-—1
L(p) = [P =S| Y VIS+An(P=8)] (Ams1 — Am), 3)

m=1

where A, 11 — Ay, is the distance between adjacent samples on ¥ and V-] represents a sampling
operation (e.g., trilinear interpolation) on the discrete volume [48, 49]. Here, we rely on open-source
implementations of the rendering equation (3) as a series of vectorized tensor operations [50].

Parameterizing the deformation field. Let {S1,..., Sk} C V represent a set of disjoint binary
masks for the articulated rigid bodies within the volume (e.g., the bones of the skeleton). Each
structure Sy, is associated with a corresponding rigid transformation T, € SE(3) that represents the
displacement of Sy, between the acquisitions of V and I. In the polyrigid framework, the deformation



field ® is parameterized as a convex combination of the K rigid transforms represented in the tangent
space se(3) [26]. Specifically, the polyrigid deformation at any point x € R? is computed as

K
Y ko1 Wr(x)log Ty
K
2 W(x)
is the locally-rigid transformation at x (represented as a 4 x 4 matrix), X € P2 is the representation

of x € R? in homogeneous coordinates, wy,(x) is the weight of structure Sy, at x, and log(-) and
exp(-) are the logarithm and exponential maps for SE(3), respectively.

®[Ty,..., Tk|(x) = T(x)X, where T(x)= exp < > €SE(33) &)

By fusing log-transformed versions of the pose for each structure, as opposed to simply averaging their
associated displacements, the resulting polyrigid warp is diffeomorphic, anatomically constrained,
and well-suited to our ill-posed setting. Eq. (4) can also be efficiently computed using closed forms
for log(+) and exp(-) maps on SE(3), which are provided in Appendix B.

3.2 Estimating the Camera Matrices

Given a preoperative 3D volume V and intraoperative 2D X-ray images I;,...,Iy, we aim to
estimate the camera matrices II;, . .., IIy. While patients move non-rigidly between the acquisitions
of V and I, there exists a global rigid transform for an individual articulated structure. Therefore,
using a rigid 2D/3D registration framework (xvr [16]), we anchor pose representations by first rigidly
aligning a structure S, chor that is reliably visible across all views in I, such as the pelvis in Figure 3A.
Using S.nchor, We estimate the extrinsic matrix for every X-ray image [Rn | t,,]. Finally, as X-ray
imaging systems used in clinical practice are calibrated, the intrinsic parameters K, ..., Ky can
easily be obtained from each image’s metadata, yielding camera matrices I, =K, [f{n | fn].

3.3 Constructing the Polyrigid Deformation Field

Constructing the weight field. Prior formulations of 3D/3D polyrigid registration [5 ] have proposed
defining the weight of each structure Sy, at any point x € R? using the reciprocal distance function

1

T ltedi(x)’ ©)

w(x)
where dj, is the minimum Euclidean distance from x to Sy, and € < 1 is a hyperparameter controlling
the rate of decay of wy, as x moves further away from S;. However, we found that Eq. (5) produced
inaccurate deformation fields for volumes containing articulated bodies with very different sizes (Ta-
ble 3). To our knowledge, Eq. (5) has largely only been used when the constituent substructures have
comparable volumes, such as certain brain regions [51] or the carpal bones [52, 53].

Instead, loosely inspired by the influence of mass in gravitational attraction [54], we define the weight

field for each structure as
mg

=1L 2w
1+di(x)’

where my, is the normalized mass of Sy, relative to all structures. We estimate my, using the volume

of S (i.e., assuming a constant density for all bones). This formulation eliminates challenging

hyperparameter optimization while still producing topologically valid deformations (Table 3). An
example of our proposed weight field is visualized in Figure 3B (left).

(©)

w(x)

Joint optimization. Given the camera matrices fIl, . ,f[ N estimated in Section 3.2, we jointly
optimize the pose for every rigid body by maximizing an image similarity metric £ (e.g., normalized
cross correlation, mutual information, etc.) between the rendered and real X-ray images:

N
N ~ 1 N
(T1,....Tx) = argmax — > £ (In,P(Hn) oVod[T,... ,TK]) : %
T, Tx N —_
where @ is constructed from T, ..., Tk via Eq. (4).

Efficient computation with a vectorized forward model. Let X € R**?3 be the coordinates of
every voxel in V where M is the number of voxels. For each structure Sj, we evaluate Eq. (6) to
precompute wi(x) at every x € X. Concatenating the structure-specific weights, we construct the



discretized weight field W € RMXK with its rows normalized to sum to 1. Additionally, since the
codomain of the logarithm map log : SE(3) — se(3) is homeomorphic to RS (see Appendix B), we

succinctly represent all structure-specific transformations T+, ..., T s with the matrix
—log T,—
T = : € REX6, ®)
—log Tyx—

Then, using batched matrix multiplication, we construct the polyrigid warp at all voxel coordinates:
B (X) = exp(WIT)X € RM*3 )

where exp(W‘i) C SE(3) represents a set of M rigid transforms computed with a vectorized imple-
mentation of the exponential map. The computational flow in PolyPose is illustrated in Figure 3B.

3.4 Implementation Details

To measure the similarity between rendered and real X-rays (£ in Figure 3), we use a variant of
the patch-wise normalized cross correlation loss [55] that computes the similarity between raw
and Sobel-filtered images at multiple scales [15, 56]. For both camera and structure-specific pose
estimation, we perform gradient-based optimization on rigid transforms parameterized in the tangent
space s¢(3). Across all experiments, we use the Adam optimizer [57] with step sizes fBo; = 1072
and Byy, = 10° for the rotational and translational components of se(3), respectively. PolyPose and
all baseline methods were trained (if applicable) and evaluated using a single NVIDIA RTX A6000.
All further implementation details are provided in Appendix C.

4 Experiments

4.1 Datasets and Experimental Setup

Head&Neck. We first perform experiments on a longitudinal dataset of CT scans of 31 patients
undergoing radiotherapy for head and neck squamous cell carcinoma [58] using a 10/2/19 subject-
wise training, validation, and testing split. Each patient had one CT volume from the pre-, peri-,
and post-treatment periods, respectively [59]. To simulate a deformable 2D/3D registration task,
we generated a small set of synthetic X-ray images (2-9 images) in a 180° orbit from either the
peri- or post-treatment CTs (fixed image) to be registered to the preoperative CT (moving image).
To assess registration accuracy, we measure the 3D volume overlap between the warped labelmaps
of rigid and soft tissue structures and their corresponding ground truth labelmaps in the peri- or
post-treatment CT. The poses of soft tissue structures are not optimized, thereby serving to assess
PolyPose’s extrapolation outside rigid bodies.

DeepFluoro. To measure performance on real X-ray images, we use DeepFluoro, a cadaveric ortho-
pedic surgery dataset of six preoperative CT volumes with associated intraoperative X-ray images
(between 24-111 per subject) [60]. As is typical in image-guided interventions, the intraoperative
X-ray images were acquired from a limited viewing angle (approximately 30°) as unconventional
oblique views are often not useful for human operators. Additionally, DeepFluoro provides manual
segmentations of the femurs and pelvis in the real X-ray images. As such, for each subject, we
estimate a deformation field using two X-rays capturing the left and right femurs, and quantitatively
evaluate registration accuracy using 2D segmentation metrics computed on X-ray images not used to
estimate the deformation field.

4.2 Baselines

We evaluate several 2D/3D and 3D/3D registration approaches as points of reference with implemen-
tation details provided in Appendix D. We first compare against xvr [16], the current state-of-the-art
method for estimating a single global rigid transformation. Next, we evaluate two convolutional
deep learning methods for deformable 2D/3D registration: LiftReg [18] and 2D3D-RegNet [19].
LiftReg regresses the coefficients for a low-rank approximation of the deformation field whose basis
is obtained via PCA on a training set of ground truth 3D/3D warps, while 2D3D-RegNet directly
estimates a dense translation field using a VoxelMorph-style approach [61].
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Figure 4: Qualitative evaluations of sparse-view 2D/3D registration on Head&Neck. (A) Re-
sulting warped CT volumes by different registration methods. (B) We visualize registration error by
overlaying the warped CT (green) on the ground truth CT (red). Baseline methods incur registration
errors in the skull, spine, and surrounding soft tissue. (C) 2D/3D registration methods take stacks of
X-ray images as input, while 3D/3D registration methods require a reconstructed volume. (D) Visual-
izations of the estimated deformation fields, superimposed on renderings of the warped CT volumes.
PolyPose estimates smooth, localized deformations with minimal topological errors. Visualizations
of the deformation fields for all other baselines are provided in Appendix E.1.

As 3D volumes can be rapidly reconstructed from intraoperative 2D X-rays to serve as registration
targets, we also compare PolyPose to four 3D/3D registration methods [34, 35, 37, 38]. To match
the speed requirements of intraoperative settings, we reconstruct 3D volumes using the FDK
algorithm [62] implemented in the ASTRA Toolbox [33]. Both uniGradICON (uGI) [34] and
multiGradICON (mGI) [35], a pair of foundation models for unimodal and multimodal image
registration, contain variants with post-hoc iterative optimization (+I0). For each experiment, we
report the two best-performing variants from uGI, uGI+IO, mGI, and mGI+IO. FireANTs [37] and
anatomix [38] are iterative solvers that provide state-of-the-art 3D/3D registration via improved
optimization techniques and feature representations, respectively.

4.3 Results

Sparse-view registration. Figure 4 visualizes the warped CT volumes and deformation fields esti-
mated from three input views distributed across a 180° viewing angle range and Figure 5 reports quan-
titative evaluation metrics for the Head&Neck dataset. Of all evaluated methods, PolyPose estimates
the most accurate deformation fields across all numbers of input X-rays available as registration tar-
gets. PolyPose achieves the highest 3D Dice on both rigid structures and important soft tissue organs,
even though the pose of these organs was not directly estimated during optimization. This is crucial as
non-target organs are to be avoided as much as possible in the delivery of radiotherapy. Of particular
note, PolyPose outperforms both deep learning-based 2D/3D methods [ 18, 19], suggesting that train-
ing on the limited datasets available in interventional settings produces models that fail to generalize.

PolyPose also estimates deformation fields with minimal topological defects. Our construction from a
small number of rigid components yields interpretable deformation fields that are more anatomically
plausible than baselines. For example, in a subject with only minimal head motion, PolyPose recovers
the exact underlying deformation (Figure 4D), whereas anatomix [38], the second-most accurate
method, produces topologically-defective and irregular warps as measured by the percentage of folds
in the deformation, %Folds, and the standard deviation of volume changes, o (log |J|) [63].
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Figure 5: Quantitative results of sparse-view 2D/3D registration on the Head&Neck dataset.
We evaluated the accuracy of estimated deformation fields by computing the 3D Dice on 21 rigid
structures (L/R humerus, L/R scapula, L/R clavicles, thoracic and cervical vertebrae, and skull) and
five soft tissue structures (thyroid, spinal cord, brain, esophagus, and trachea). PolyPose is the most
accurate registration method and also exhibits the most regular deformable warps for almost all
numbers of views. 2D/3D and 3D/3D registration methods are shown with solid and dashed lines,

respectively. Lastly, we report the average runtime for each method.

Limited-angle registration. Certain baselines are not applicable to the DeepFluoro dataset. The
deep learning methods LiftReg [18] and 2D3D-RegNet [ 19] cannot be trained on this dataset since
they require multiple CTs from each patient, while each subject in DeepFluoro only has a single
volume. Therefore, we also evaluate a regularized dense deformation model from radiotherapy, which
optimizes a displacement vector for every voxel [23]. In Figure 3, we visualize a preoperative CT and
two intraoperative X-rays spaced about 30° apart and the deformation field estimated by PolyPose.

Visualizations of the estimated deformation fields and warped CTs show that PolyPose produces
interpretable warps, e.g., modeling the external rotation of the femurs (Figure 6A and B). In contrast,
the dense parameterizations yield anatomically implausible and unintelligible deformations as their
objective prioritizes memorizing the appearance of the training views. Additionally, dense deforma-
tion models can only influence voxels on which they have direct pixel supervision (see the broken
femurs in Figure 6B), whereas PolyPose extrapolates to unsupervised anatomy via piecewise-rigidity.

To measure the accuracy of the estimated deformation fields, we warp the input CTs, render synthetic
X-rays from them, and compare the positions of bones in the rendered X-rays with their ground
truth segmentations in the real X-rays (Figure 6D). Table 1 reports the 2D Dice and 95th percentile
Hausdorff Distance (HD95) for the pelvis, left femur, and right femur, as well as the %Folds in the
estimated deformation fields. We used the pelvis as the anchor when estimating the camera poses for
the X-ray images (Figure 3A). As such, nearly all baselines (evaluated using our camera matrices)
exhibit high accuracy on the pelvis. However, for the femurs, PolyPose produces the highest accuracy.
Additional visualizations of all baselines in Table 1 are provided in Appendix E.2.

4.4 Ablations and Analyses

Choice of deformation parameterization. In Table 2, we compare our polyrigid formulation to per-
voxel translations [23] and SE(3) transformations [32, 42], also optimized via differentiable rendering.
Given minimal supervision, only our low-dimensional deformation model enables the localization of

Table 1: Quantitative results on limited-angle registration with the DeepFluoro dataset. Given
only two X-ray images with 30° of separation, PolyPose recovers the most accurate 3D deformation
field relative to all baselines, while also having no topological defects. We color the best and
second-best methods and report all metrics as mean(sd).

Pelvis Femur (L) Femur (R)
Dice (1) HD95 (|) Dice (1) HD95 (1) Dice (1) HD95 (|) % Folds ()
PolyPose (ours) 0.99(0.00) 1.00(0.00) 0.98(0.01) 1.48(1.09) 0.98(0.01) 1.56(1.02) 0.00(0.00)%
Dense R3 [23] 0.98(0.01) 3.60(5.47) 0.97(0.02) 3.29(2.62) 0.96(0.02) 3.43(2.78) 0.44(0.12)%
xvr [16] 0.99(0.00) 1.01(0.07) 0.96(0.02)  4.03(3.07)  0.94(0.02) 6.51(4.21)  0.00(0.00) %
FireANTs [37] 0.99(0.00) 1.01(0.07)  0.96(0.02) 3(3.07)  0.93(0.02) 9.63(4.26)  0.00(0.00) %

4.
anatomix [38] 0.95(0.01) 3.63(0.50) 0.93(0.02) 5.
multiGradICON [35]  0.83(0.05) 16.37(6.75) 0.86(0.04) 8.
uniGradICON [34] ~ 0.66(0.07) 21.98(4.57) 0.50(0.12) 28.

4(2.77) 0.92(0.2)  6.89(4.13)  3.01(1.21)%
?24.84) 0.77(0.08)  15.18(3.54) ' 0.00(0.00) %

0
6
51(12.71)  0.83(0.04) 13.74(0.98) = 0.00(0.00) %
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Figure 6: Qualitative evaluations of limited-angle 2D/3D registration on DeepFluoro. (A and B)
PolyPose’s anatomical priors recover realistic motion even without direct supervision. (C) Dense
deformation parameterizations [23, 32] estimate warps that reproduce the appearance of the training
X-rays, yielding near-perfect image similarity metrics (NCC = 0.99/1). (D) However, the dense
deformations do not generalize to held-out views, as demonstrated by the misalignment of the ground
truth (red) and estimated (white) segmentation labels in unseen images.

the misaligned femurs without topological defects. PolyPose has only O(K) optimizable parameters
and is thus well suited for ill-posed settings, whereas the under-constrained dense representations
have O(M) parameters with K < M. Here, K = 3 and M = 398 x 197 x 398 ~ 107.

Choice of weight function. In Table 3, we compare different parameterizations of the weight field.
Our hyperparameter-free weighting function in Eq. (6) outperforms the widely used formulation
in Eq. (5). Note that the optimal performance for the left and right femurs is achieved for vastly
different hyperparameter values (e = 10° vs. € = 10~%) when using Eq. (5). Thus, Eq. (5) has
a large hyperparameter search space, requiring a different e for every rigid body. In contrast, our
hyperparameter-free function in Eq. (6) uses the mass of each rigid body as an effective heuristic.

Number of rigid components. PolyPose is memory-efficient, capable of jointly optimizing the poses
of 26 rigid bodies in a large CT scan on a single GPU with 48 GB of vRAM. However, this may
be too computationally expensive for resource-limited medical settings. We therefore perform an
ablation on the Head&Neck dataset where we systematically increase the number of structures whose
poses we optimize. Starting from rigid pre-alignment (i.e., without PolyPose), we progressively
add structures until reaching the full configuration used in Figure 5. Including the skull, cervical
spine, and thoracic spine stabilizes the deformation fields estimated by PolyPose (Figure 7A). Adding
further rigid bodies yields only marginal improvements, demonstrating that PolyPose is expressive
even when constrained to a subset of rigid bodies in an anatomical region.

Table 2: Performance of different deformation parameterizations on DeepFluoro. PolyPose
successfully recovers the position of the femurs, while the dense representations fail to do so.

Pelvis Femur (L) Femur (R)
Dice (1) HD95 (1) Dice (1) HD95 (1) Dice (1) HD95 (]) % Folds ()

PolyPose (ours) 0.99(0.00) 1.00(0.00) 0.98(0.01) 1.48(1.09) 0.98(0.01) 1.56(1.02)  0.00(0.00)%
Dense R® [23] 0.98(0.01) 3.60(5.47) 0.97(0.02) 3.29(2.62) 0.96(0.02) 3.43(2.78)  0.44(0.12)%
Dense SE(3) [32]  0.93(0.02) 9.42(5.69) 0.90(0.02) 6.07(2.01) 0.88(0.03) 9.29(3.41) 44.08(00.00)%




Table 3: Performance of different weight functions on DeepFluoro. Our hyperparameter-free
weighting function (6) outperforms the previously proposed Eq. (5), which achieves optimal perfor-
mance for various anatomical structures at different hypermeter values.

Weight Pelvis Femur (L) Femur (R)
function € Dice (1) HD95 () Dice (1) HD95 (1) Dice (1) HD95 () % Folds ()
Eq. (6) - 0.99(0.00) 1.00(0.00) 0.98(0.01) 1.48(1.09) 0.98(0.01) 1.56(1.02) 0.00(0.00)%

Eq.(5) 10°  0.99(0.00) 1.38(0.41) 0.93(0.02) 5.60(3.29) 0.96(0.01) 3.29(3.48) 0.03(0.01)%
Eq.(5) 1071 0.99(0.00) 1.58(0.41) 0.93(0.02) 5.31(3.27) 0.96(0.01) 3.53(3.55) 0.02(0.01)%
Eq.(5) 1072  0.99(0.00) 1.49(0.37) 0.94(0.01) 4.24(2.45) 0.95(0.01) 4.27(3.75) | 0.00(0.00)%
Eq.(5) 1073 0.98(0.00) 1.62(0.36) 0.95(0.01) 2.87(1.18) 0.95(0.01) 4.34(3.71) 0.00(0.01)%

Robustness to label corruption. PolyPose requires segmentations of the relevant rigid bodies in a
CT scan to construct the weight field. While there exist numerous (semi-)automated tools that make
CT segmentation a relatively straightforward task [64—06], they can make notable errors and miss
fine details. We therefore analyze PolyPose’s performance as a function of segmentation accuracy.
To simulate typical annotation errors, we systematically corrupt the ground truth segmentations in the
DeepFluoro dataset with increasing radii of erosion (Figure 7B). A radius of 0 mm corresponds to no
erosion and is equivalent to the experimental setting in Table 1. We find that PolyPose is robust to
extreme segmentation corruption, even outperforming the baselines in Table 1 over a range of erosion
radii from 1 mm to 3 mm, both in terms of Dice and Hausdorff Distance.

5 Discussion

Limitations and future work. PolyPose’s ability to generalize to extreme deformations in soft
tissue far away from skeletal structures remains to be fully evaluated. Preliminary experiments in
Appendix E.3 show that PolyPose successfully models free-breathing respiratory motion between
maximum inhalation and maximum expiration acquisitions. However, PolyPose may fail to generalize
to settings where there are insufficient rigid bodies to constrain the deformation of soft tissues (e.g.,
within the abdomen). Additionally, while our method produces diffeomorphisms by construction
(typically a highly desirable property), this does not cover every type of deformation. For example,
separating a rigid body into two (e.g., opening the jaw) cannot be represented by a diffeomorphism and
thus cannot be modeled by PolyPose. We visualize such a failure case in Appendix F. This limitation
could be mitigated by the incorporation of a kinematic chain into the rigid body parameterization.

Conclusion. Deformable 2D/3D registration holds immense promise in localizing critical organs
from intraoperative images. However, the accuracy of previous methods fails to meet the standards for
clinical deployment. We present PolyPose, an optimization-based method that solves this extremely
under-determined registration problem with a polyrigid field. Throughout extensive experiments on
publicly available datasets from diverse clinical specialties, PolyPose estimated the most accurate
and topologically correct warps in both sparse-view and limited-angle settings. In addition to its high
performance, PolyPose’s lack of need for regularization and near-absence of hyperparameters make
it generically applicable across a broad set of medical procedures.

(A) Ablation on number of rigid components. (B) Ablation on corruption of the given 3D segmentation.

Dice (1) 0.99 6
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Erosion radius (mm) Erosion radius (mm)

Figure 7: PolyPose is robust to label restriction and corruption. (A) PolyPose remains expressive
even when optimizing a limited subset of the rigid bodies in an anatomical region. (B) PolyPose’s
performance is relatively stable up to 3 mm of label erosion (corresponding to a 40-60% volume
reduction), beyond which registration accuracy degrades gracefully.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our experimental results demonstrate the accuracy and topological consistency
of our estimated deformation fields in sparse-view and limited-angle settings (Section 4.3),
as well as universally improved performance over all baselines.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations and future work in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We carefully list the minor assumptions we make in Section 3.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section 3, we provide all necessary technical details for the proposed
PolyPose algorithm, including the theoretical framework and our vectorized implementation.
We also provide closed-form formulas for the log and exp maps on SE(3), necessary to
implement Eq. (4) in Appendix B. A PyTorch implementation of PolyPose, along with data
preprocessing, training, and testing scripts, is provided in the Supplement. The datasets we
analyze in this work (Head&Neck and DeepFluoro) are publicly available.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: A pip-installable version of PolyPose, along with all training and testing
scripts, are provided in the attached code repository. All our experiments are performed
using publicly available datasets.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
/Imips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details of the train/test splits, optimizer, and optimizer hyperparameters
can be found in the descriptions of the datasets (Section 4.1) and in our implementation
details (Section 3.4 and Appendix C).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We specify in Table 1 that all metrics are reported as mean(standard deviation).
Guidelines:

* The answer NA means that the paper does not include experiments.
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* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In our implementation details (Appendix C), we specify that all experiments
were conducted on a single NVIDIA RTX A6000. We provided memory and speed analyses
of our methods in Appendix E.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and determined that
our research is in accordance with the outlined standards.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

19


https://neurips.cc/public/EthicsGuidelines

11.

12.

Justification: This work proposes a state-of-the-art algorithm for delivering 3D image
guidance during challenging image-guided surgeries and interventions. The utility of our
method in real-world clinical settings is discussed in Section 5.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The research herein poses no risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and benchmark methods analyzed in this work have been appro-
priately cited in accordance with their respective licenses.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This work does not release new assets besides documented code.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This research does not involve crowdsourcing. All analyses were retrospec-
tively performed on publicly available datasets.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We retrospectively analyze publicly available datasets. The collection of these
datasets was approved by IRBs at their original institutions.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This research does not involve LLMs in any manner.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Projective X-ray Geometry

To complete the derivation of the forward model for the negative log-intensity at a pixel p in an X-ray
image, we must specify how to construct the intrinsic matrix K from the image’s metadata.

The intrinsic matrix represents the mapping from camera to pixel coordinates [46]. This can be
decomposed as a first mapping from camera to image coordinates and a second mapping from image
to pixel coordinates:

Vs, 0 WHI[f 0 o,
K = [ 0 s, H/z] [o f oy] , (10)
o o 1]lo o0 1

where f is the camera’s focal length, (o,,0,) is the camera’s optical center, (s, s,) is the pixel
spacing, and (H, W) is the image’s height and width, respectively [16].

These intrinsic parameters for each X-ray image can readily be identified from the image’s metadata
encoded in the DICOM (Digital Imaging and Communications in Medicine) header. Specifically,
* The focal length f is given by the DistanceSourceToDetector (0018,1110) attribute.
* The optical center (o, 0,) is given by the DetectorActiveOrigin (0018,7028) attribute.
* The pixel spacing (s, s,) is the given by the ImagerPixelSpacing (0018,1164) attribute.

* The image dimensions (H, W) are given by the Rows (0028,0010) and Columns (0028,0011)
attributes, respectively.

B Lie Theory for Polyrigid Transforms

We summarize the Lie theory of SE(3) from Blanco [67] needed to implement PolyPose. We start
by defining the logarithmic map, which maps any rigid transformation

T— FO{ ﬂ € SE(3), where R € SO(3)andt € R?, an

to the vector v = [w u]T € se(3) = RS, This vector corresponds to the matrix

0 —w3 w2  Up
N w3 0 —W1 U2
og(T)= | °5 0 0wl (12)

0 0 0 0

which itself is the generator of an infinitesimal rototranslation about the axis defined by w.

To efficiently write the formulas for w and w, it is convenient to first define the exponential map:

[w]x (9]
_le u
exp(v) = [ 0 1 } , (13)
where
sin 0 0 — cosf
elwlx — 14 [w]x + T[W]QX , (14)
1—cosf 0 —sinf
Q:I-l—T[w]X—FT[w]i, (15)
and 6 = ||w|| and [-]x constructs a skew-symmetric matrix from a 3-vector.
Then, w is given by Rodrigues’ rotation formula
Rss — R
1 32 23 t R)-1
w=— [ng — R:ﬂ] ,  where 6 = arccos (race()) , (16)
2sin 6 Ry, — Rys 2
and u = Q7 1t.
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C Additional Implementation Details

C.1 Estimating Camera Poses

To recover camera poses in an accurate and automatic manner, we use Xvr, a patient-specific machine
learning framework for state-of-the-art rigid 2D/3D registration [16]. Specifically, given V, we
train a patient-specific convolutional network fy : I — [R | t] to predict an initial camera pose
estimate for a given X-ray image using self-supervised synthetic pretraining. At inference time,
we refine these initial pose estimates using differentiable rendering, a protocol known as test-time
optimization (Figure 3A). However, we modify the original test-time optimization protocol and
instead optimize the pose of a single anatomical structure Saychor € {S1, . - ., Sk }. We anchor our
representation of the camera poses by rigidly registering the left clavicle in the Head&Neck dataset
and the pelvis in the DeepFluoro dataset.

Optimization problem. Given an image similarity loss function £ (e.g., normalized cross correlation,
mutual information, etc.), we estimate the extrinsic parameters of each X-ray image by independently
solving the following optimization problem:

R, |t.]= argmax c(Imp(Kn[Rn|tn])o(sanchor@V)) (17)
[Ro|t.,]ESE(3)

where © is element-wise multiplication used to mask the CT volume and render the structure S,y chor-
This optimization is performed in the tangent space of SE(3) using gradient descent. Finally,

I, = K,[R, | t,]. (18)

We use the hybrid loss function gradient multiscale normalized cross correlation (gmNCC) to
guide 2D/3D rigid registration. This composite loss function is the average of multiscale NCC
(mNCC) [15], which averages NCC across the global and local scales, and gradient NCC (gNCC) [60],
which computes NCC on Sobel-filtered versions of the image. This image similarity metric is
advantageous for 2D/3D registration tasks as mNCC encourages global alignment while gNCC
encourages alignment of edges of bones.

C.2 Polyrigid Pose Optimization

Weight field. Given a labelmap for the preoperative CT scan, we first compute structure-specific
Euclidean distance transforms for each rigid body whose pose we will optimize. Examples of these
per-structure distance fields are illustrated for a subject in the DeepFluoro dataset (Figure 8). Finally,
these distance transform are combined using Eq. (6). Since the weights are fixed during optimized in
PolyPose, this field can be precomputed before estimating the warp field.

Optimization. We represent the poses of every rigid body in the tangent space se(3). Since
translational parameters (u) in units of millimeters are typically two orders of magnitude larger than
angular parameters (w) in units of radians, we use two separate step sizes. Specifically, we use the
Adam optimizer with step sizes Syot = 102 for rotations and Bxyz = 10° for translations across all
experiments, which is the same optimizer setup we use for estimating camera poses in Eq. (17). We
use the same gmNCC metric to compute image similarity in the objective function (7).

Per-structure Euclidean distance field (d,) Weight field (w,)

Yr
Femur (R) Pelvis Femur (L)

Figure 8: A slice of the weight field produced by Eq. (6). We visualize the weight field as the
relative contribution of each structure at every pixel in the slice.

Segmentations (S;)
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D Implementations of Baselines

Below, we detail the implementation of all baselines compared to in this work. Note that all baselines,
except for xvr, depend on accurate camera pose estimates, but do not specify protocols for calibrating
the input X-ray images. Therefore, all methods (including our own) were evaluated using the same
camera poses that we estimated using PolyPose.

xvr [16] is a rigid 2D/3D registration framework comprising (1) a patient-specific neural network
pretrained on synthetic data to produce accurate initial pose estimates and (2) a test-time optimization
protocol to refine initial pose estimates. We train patient-specific neural networks and perform
test-time optimization for each subject using the default architecture and training hyperparameters.

LiftReg [18] is a deep dictionary learning method for deformable 2D/3D registration. It uses PCA to
construct a low-rank vector space of 3D deformations given a dataset of patients with multiple CTs.
Since patients in DeepFluoro do not have multiple CT scans, we can only evaluate LiftReg on the
Head&Neck dataset. Specifically, we use FireANTs [37] to compute ground truth 3D deformations
from pairs of CTs in the training set of Head&Neck. Then, we train a CNN to regress coefficients of
the basis vectors, reconstruct the resulting deformation field, warp the moving CT, and compute the
loss using 3D MSE and a diffusion regularizer.

2D3D-RegNet [19] uses a VoxelMorph-style [61] architecture to directly estimate a 3D deformation
field given a moving CT and a fixed CBCT reconstructed from the input 2D X-rays. It is supervised
using an image similarity loss on X-rays rendered from the warped CTs and the real X-rays, as well
as an inverse consistency regularizer and an energy regularizer.

uniGradICON [34] and multiGradICON [35] are foundation models for intra- and inter-modality
registration, respectively, trained on large datasets. We use the pretrained models available in their
repositories in our experiments. These neural networks do not have any hyperparameters, and we
optimize hyperparameters for their iterative variants on the validation set.

FireANTs [37] and anatomix [38] are improved solvers for 3D/3D registration that leverage
novel optimization techniques and feature representations. We install the binaries available in their
respective repositories and optimize the requisite hyperparameters on the validation set.

Dense R3 [23] places an optimizable displacement vector at every voxel in the moving CT scan.
Similarly, Dense SE(3) [32] places an optimizable rototranslation generator at every voxel. We
optimize both dense parameterizations with the same differentiable rendering setup as in PolyPose.

E Additional Results

We present further visualizations of the Head&Neck and DeepFluoro datasets and a new analysis of a
lung radiotherapy dataset with extreme soft tissue deformation.

E.1 Head&Neck

In Figure 9, we render the deformation fields produced by 2D3D-RegNet [ 19] and multiGrad[CON
(with and without 10) [35] for the same subject visualized in Figure 4. The warps produced by
2D3D-RegNet are well-behaved from a topological perspective, but fail to accurately capture the
inter-scan motion of the patient’s head. Deformations produced by the multiGradICON variants
display an interesting failure mode, with the warp field radiating away from the isocenter of the CT
scan. This dilation results in the anatomically implausible warped volumes visualized in Figure 4A.
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P~
2D3D-RegNet
% Folds = 0.11//
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Figure 9: 3D renderings of the deformation fields produced by 2D3D-RegNet [19] and multi-
GradICON [35]. These visualizations are complementary to the examples shown in Figure 4.
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xvr [16] Dense R3 [23] Dense SE(3) [32] PolyPose (ours)

FireANTs [37] anatomix [38] uniGradICON [34] multiGradICON [35]

Figure 10: Visualizations of the warped CTs produced by various methods on the same subject.
The top rows visualize central slices of the warped CTs and the bottom rows visualize maximum
intensity projections along the coronal direction. Only PolyPose successfully recovers the anatomical
motion (external rotation of the femurs) from minimal supervision (two X-ray images).

E.2 DeepFluoro

In Figure 10, we visualize central slices and maximum intensity projections of the warped CTs
produced by PolyPose as well as the baseline methods. This figure exemplifies many of the common
failure modes for previous 2D/3D and 3D/3D registration methods:

* Dense parameterizations of the deformation field, such as R3 [23] and SE(3) [32, 42], can
only influence voxels on which they have direct pixel supervision. As such, both of these
methods break the femurs, outlining the bounded subregion of the preoperative volume that
can be deformed.

* Both FireANTs [37] and anatomix [38] produce very small deformations, failing to capture
the inter-scan motion of the patient. While the deformations these methods produce are not
physiologically implausible, they are inaccurate and not useful in real-world settings.

* While uniGradICON [34] comes the closest of all the baselines to recovering the motion of
the femurs, both it and multiGradICON [35] are affected by the streaking artifacts present
in sparse-view CBCT reconstructions and produce dramatic dilations of the preoperative
volume. This is analogous to the dilating warps produced by multiGradICON in the
Head&Neck dataset (Figures 4 and 9).
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E.3 ThoraxCBCT

We perform additional experiments on a dataset of 13 patients undergoing chemoradiotherapy for
advanced, non-small cell lung cancer [68]. Each patient had one pre-therapeutic fan-beam CT
(FBCT) volume, used to plan the radiotherapy, and two intra-interventional cone-beam CT (CBCT)
volumes, used to reorient the plan to the patient’s current position and morphology [69]. Specifically,
we registered pre-therapeutic FBCTs to synthetic X-rays generated from interventional CBCTs.
This dataset is particularly challenging given the significant non-rigid respiratory motion between
maximum inhalation (FBCT) and maximum expiration (CBCT) acquisitions.

Figure 11 visualizes exemplar registrations for the ThoraxCBCT dataset and reports quantitative
evaluation metrics. Despite the substantial non-rigid deformation present in these volumes, PolyPose
achieved superior registration accuracy compared to state-of-the-art 2D/3D and 3D/3D baselines.
Notably, by modeling the motion of rigid bodies, PolyPose successfully captured the deformation
of the soft tissue structures in the scene, including the liver, heart, aorta, trachea, esophagus, and all
lobes of the lungs. This evaluation further demonstrates that the skeleton provide sufficient geometric
constraints for accurate soft tissue registration, even under extreme respiratory conditions.

FireANTs [37] anatomix [38]
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Dice (Rigid Bodies / Soft Tissues)

Figure 11: PolyPose accurately models extreme deformations, including respiratory motion.
PolyPose achieves the highest 3D Dice for both rigid bodies and soft tissue, respectively.

F Failure Cases

By construction, PolyPose produces diffeomorphisms. While this is intentional and generally a
desirable property (the majority of human motion is smooth and invertible), diffeomorphisms do
not represent all types of motion. We visualize this failure mode using a CT scan from an internal
dataset of neurosurgical patients where the patient’s mouth is closed in the preoperative CT, while it
is open in the intraoperative X-rays. To represent opening the jaw, PolyPose repositions the patient’s
mandible in the warped CT. However, as the patient’s top and bottom rows of teeth were touching in
the preoperative CT, this downward warp creates an anatomically implausible stretching of the teeth
in the lower jaw (see the red box in Figure 12). This is because, as diffeomorphisms are invertible,
they cannot model the creation of empty space as occurs when the mouth opens. This defect results
in the creation of a third row of teeth, as seen in the volume rendering.

Preoperative CT Warped CT from PolyPose (ours)

Figure 12: An exemplar failure mode of diffeomorphisms. The diffeomorphisms produced by
PolyPose cannot represent certain motions, such as the opening of the mouth, as the top and bottom
rows of teeth are touching in the preoperative CT scan and would require the creation of topologically-
inconsistent empty space to match the target intraoperative X-rays.
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