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ABSTRACT

Perception is crucial in the realm of autonomous driving systems, where bird’s
eye view (BEV)-based architectures have recently reached state-of-the-art perfor-
mance. The desirability of self-supervised representation learning stems from the
expensive and laborious process of annotating 2D and 3D data. Although previous
research has investigated pretraining methods for both LiDAR and camera-based
3D object detection, a unified pretraining framework for multimodal BEV per-
ception is missing. In this study, we introduce CALICO, a novel framework that
applies contrastive objectives to both LiDAR and camera backbones. Specifically,
CALICO incorporates two stages: point-region contrast (PRC) and region-aware
distillation (RAD). PRC better balances the region- and scene-level representation
learning on the LiDAR modality and offers significant performance improvement
compared to existing methods. RAD effectively achieves contrastive distillation on
our self-trained teacher model. CALICO’s efficacy is substantiated by extensive
evaluations on 3D object detection and BEV map segmentation tasks, where it
delivers significant performance improvements. Notably, CALICO outperforms the
baseline method by 10.5% and 8.6% on NDS and mAP. Moreover, CALICO boosts
the robustness of multimodal 3D object detection against adversarial attacks and
corruption. Additionally, our framework can be tailored to different backbones and
heads, positioning it as a promising approach for multimodal BEV perception.

1 INTRODUCTION

The pursuit of on-road autonomous driving has sparked the study of various perception methods,
necessitating a more in-depth understanding of the driving environment. A critical component in
this landscape is bird’s eye view (BEV) perception, an approach that presents a top-down 360◦

view, offering a comprehensive and intuitive understanding of the vehicle’s surroundings. Pioneering
works (Lang et al., 2019; Huang et al., 2021; Liu et al., 2023) have explored BEV perception for
various modalities including LiDAR (Lang et al., 2019; Zhou & Tuzel, 2018), camera (Li et al., 2022e;
Huang et al., 2021), and sensor fusion (Liu et al., 2023; Bai et al., 2022a). Despite the remarkable
progress achieved in this domain, challenges still persist in optimizing the efficiency (Yin et al., 2022)
and robustness (Sun et al., 2020a) of BEV perception systems. The development of these models has
been predominantly reliant on massive labeled datasets, which are not only costly and laborious to
acquire but also subject to inherent annotation biases (Chen & Joo, 2021).

Self-supervised learning (SSL) is a promising approach to harness the potential of unlabeled
data (Jaiswal et al., 2020) that improves model training efficiency. It generally involves design-
ing a pretext task in which supervision signals can be autonomously generated from the data itself,
thus facilitating representation learning. When supplemented with a modest amount of labeled data
for subsequent tasks, the learned representations can be finetuned, resulting in superior performance.
The recent progress in SSL is largely attributable to the emergence of contrastive learning (He et al.,
2020). Existing studies in this field have been devoted to classic 2D vision tasks (Chen et al., 2020b;a).
The inter-instance discrimination pretext typically assumes objects of interest are centered in the
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images, implying that global consistency suffices for effective representation learning. However,
this assumption is not applicable in autonomous driving perception, which may include 10+ objects
scattered in the BEV space per frame (Yin et al., 2022). Recent studies have delved into region-level
contrastive learning, utilizing more granular intra-instance discrimination (Yin et al., 2022; Bai et al.,
2022b; Xie et al., 2021; Wei et al., 2021) to enhance object detection representation learning. Yet,
partitioning regions presents an inherent challenge in these methods as it requires to be label-free.
Random assignments might obscure semantics for objects of different sizes (Wei et al., 2021; Xie
et al., 2021), leading to suboptimal performance. Conversely, heavy reliance on heuristic assignments
risks overfitting during finetuning (Bai et al., 2022b; Yin et al., 2022).

Besides unimodal contrastive pretraining, CLIP (Radford et al., 2021) first introduced contrastive
objectives to multimodal feature embeddings, i.e., images and texts, thereby enabling zero-shot
recognition. The pretrained backbones are also demonstrated to be robust against various distribution
shifts. GLIP (Li et al., 2022a) subsequently extended multimodal contrastive learning to object
detection by grounding phrases in the textual input. While SimIPU (Li et al., 2022d) initially
attempted contrastive pretraining across camera and LiDAR modalities in autonomous driving
perception, its design is limited to the pixel space for the image input. We demonstrate it struggles to
scale to prevalent BEV perception models due to the implicit pixel-to-BEV space transformation.
Additionally, it solely concentrates on global invariant representation learning, neglecting object-level
semantics. Therefore, devising a pretraining framework for multimodal BEV perception remains an
open research problem.

In this paper, we propose a novel contrastive pretraining paradigm, CALICO, to address these
challenges. This approach consists of two key components: point-region contrast (PRC) and region-
aware distillation (RAD). Our preliminary analysis suggests that the region partitioning in previous
studies inadequately captures object-level semantics. Consequently, we introduce a simple yet
effective semantic pooling method for top-down region clustering to better encapsulate the object-
aligned assignments. We further augment the pooled LiDAR points with their region assignment and
consider the remaining ones as semantic-less points (§ 2.2). Our PRC adopts the finegrained point-
wise operation on the LiDAR backbone to achieve both scene- and region-level contrast. Specifically,
we first enhance the design in (Bai et al., 2022b) by employing semantic-less points as negative pairs
to boost efficacy. Additionally, we introduce another loss term to balance scene- and region-level
representation learning (§ 2.3). Once the LiDAR backbone is pretrained by PRC, we then apply
RAD to the camera backbone. Our analysis reveals that the implicit transformation from the pixel
to BEV space renders the initial embedding from the camera feature map meaningless. Hence, we
propose to leverage contrastive distillation, i.e., to stop gradient propagating to the LiDAR backbone,
to train the camera backbone. We introduce a new objective that normalizes the weights of point-wise
feature embeddings within the same region during distillation, which particularly is optimized for our
self-supervised pretrained teacher models (Chen et al., 2022b) (§ 2.4).

Furthermore, we perform thorough evaluations of CALICO on 3D object detection and BEV map
segmentation tasks using the nuScenes dataset (Caesar et al., 2020). The experimental results clearly
show that our PRC achieves a significant 8.6% and 5.1% improvement on the LiDAR-only modality in
terms of nuScene detection score (NDS) and mean average precision (mAP), respectively, compared
to the baseline method, when fine-tuned on a small annotated subset. CALICO further extends this
improvement to 10.5% and 8.6% on NDS and mAP, respectively. For the BEV map segmentation
task, CALICO consistently surpasses the baseline methods by 5.7% in the mean intersection of union
(mIoU) when finetuning on 5% of the labeled data. We also assess the robustness of models finetuned
with our methods. We additionally leverage Waymo (Sun et al., 2020b) datasets to demonstrate the
generalizability and transferability of our CALICO. Notably, CALICO enhances resistance against
adversarial LiDAR spoofing attacks and distribution shifts by 45.3% and 12.8%, respectively. The
ensuing sections of this paper will review several related topics, delve into more details of our
methodology and extensive evaluation with ablation studies of our method with existing approaches,
and highlight potential directions for future work in the field of autonomous driving perception.

2 METHODOLOGY

In this section, we comprehensively introduce our CALICO pretraining framework. In § 2.1, we
briefly describe the existing designs and motivate the proposal of CALICO. We present the overview
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of CALICO in § 2.2. Then, the two major components point-region contrast (PRC) and region-aware
distillation (RAD) of CALICO are detailed in § 2.3 and § 2.4, respectively.

2.1 EXISTING DESIGNS AND MOTIVATION

Due to space limits, we put the thorough related work review in Appendix A and discuss the most
relevant studies in this section. A few prior studies proposed contrastive pretraining frameworks
for 3D object detection, including PointContrast (Xie et al., 2020), GCC-3D (Liang et al., 2021),
ProposalContrast (Yin et al., 2022), and SimIPU (Li et al., 2022d), as introduced in § A. In this
section, we aim to categorize these existing methodologies, providing a structured overview of their
designs. This taxonomy will elucidate the motivation behind our proposal of CALICO, highlighting
our unique attributes and improvements.

Scene-Level Contrast. PointContrast (Xie et al., 2020) is a pioneering study in enabling self-
supervised pretraining for 3D point cloud architectures. Given the original point cloud X = {xi}Ni=0,
PointContrast employs the InfoNCE loss (He et al., 2020) to contrastively learn point-wise features
{z1

i }Ni=0 and {z2
i }Ni=0, which are extracted from two augmented views of the input point cloud, X 1

and X 2, respectively. Point-wise operation offers a finegrained and intuitive method for 3D point
cloud learning, as it aligns seamlessly with the native representation of point clouds. However,
PointContrast is fundamentally a scene-level contrast design, as it can be reduced to global invariant
representation learning. This approach tends to overemphasize localization, which consequently
leads to a limited perspective of objects of interest within a point cloud.

Region-Level Contrast. The concept of a region is crucial in object detection tasks. GCC-3D (Liang
et al., 2021) employs temporal heuristics to extract moving points that cluster into meaningful
regions. GCC-3D then applies RoIAlign (He et al., 2017) to the flattened 2D feature map, extracting
region-level features for contrastive pretraining. This approach represents each region using a single,
aggregated vector embedding for loss computation (Bai et al., 2022b). However, due to imperfect
partitioning, object-level localization is often overlooked, as we have empirically demonstrated in
Appendix B.

Proposal-Aware Point Contrast. ProposalContrast (Yin et al., 2022) aims to combine point-
wise operation and region-level pretraining. It first randomly samples anchor points and then
uses ball-queried neighbor points to aggregate “proposals” for anchors (Qi et al., 2017). A cross-
attention module is applied to obtain proposal-aware features for each anchor point for contrastive
pretraining. ProposalContrast achieves SOTA performance in the 3D object detection task on several
benchmarks (Sun et al., 2020b; Mao et al., 2021). However, we discovered that ProposalContrast
randomly samples anchor points and utilizes a fixed, deterministic radius for the ball query, resulting
in proposals that lack object-level semantics.

Camera-LiDAR Contrast. In addition to pretraining on a single LiDAR modality, SimIPU (Li
et al., 2022d) pioneers camera-LiDAR contrastive learning, which simultaneously applies point-level
contrast pretraining to both intra and inter-modalities. We found that SimIPU underperforms in
BEV perception architectures, as the transformation from pixel to BEV space is implicit, causing
the initialized features from the camera modality are insignificant. As the gradients computed by
the contrastive loss will flow to both LiDAR and camera backbones, we demonstrate that SimIPU
pretraining results in performance degradation in downstream multimodal BEV perception tasks.

2.2 OVERVIEW OF CALICO
To address the limitations of existing designs, we propose CALICO, which consists of two key stages:
point-region contrast (RPC) and region-aware distillation (RAD), as shown in Figure 1. PRC achieves
a more finegrained and balanced formulation of both point- and region-level contrastive pretraining
on LiDAR point clouds. RAD is a dense distillation framework from LiDAR to camera feature maps,
which takes into account the assigned region for each distilled point-level embedding.

Specifically, let X denote the pristine point cloud, where each element x ∈ R3 represents a point
coordinate in the 3D space. We first develop an unsupervised semantic pooling. After applying
ground removal to eliminate redundant ground points, our critical observation shows that most objects
become isolated in the 3D space. Consequently, we utilize DBSCAN (Ester et al., 1996) to cluster
the remaining points, filtering out clusters that are too large or high to be semantically meaningful
using simple yet effective heuristics. Unlike the bottom-up proposal generation method that blindly
clusters points with a predefined distance (ball query) or number (kNN), such as ProposalContrast
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Figure 1: Illustration of our CALICO framework, where PPLRC, PRAPC, and PRAD denote the
projectors. fLiDAR is firstly pretrained by PRC using LPLRC and LRAPC. fCamera is then pretrained
by contrastive distillation using LRAD.

(§ 2.1) which may lose object-level semantics, our semantic pooling is performed in a top-down
manner to better capture object-level information. We augment every point with its belonging region
in the 4-th dimension, forming X ′ = {x′ ∈ R4}. We denote the 4-th dimension, i.e., x′[3] = −1 and
x′[3] ∈ Z+

0 as semantic-less and semantic-rich points, respectively. The value in a semantic-rich
point represents which semantic cluster it belongs to.

Subsequently, we apply two sets of spatial augmentations to X ′, resulting in X ′1 = T1(X ′) and
X ′2 = T2(X ′). The augmentation, a combination of randomly sampled rotation, flip, and scaling, is
only applied to the LiDAR input coordinates. We then employ our RPC (§ 2.3) to train the LiDAR
backbone fLiDAR. Given the image input X ∈ RN×H×W , where N represents the number of
cameras, we use the camera backbone fCamera to generate the feature map FCamera. Finally, we
apply RAD (§ 2.4) to FCamera = fCamera(X) and F LiDAR = fLiDAR(X ) to train fCamera.

2.3 POINT-REGION CONTRAST

Point-Level Region Contrast. PLRC (Bai et al., 2022b) is the SOTA-pertaining method for 2D
object detection, which partitions an image into grids and conducts intra- and inter-image contrastive
learning. We adapt PLRC to 3D object detection for LiDAR point clouds. Specifically, we sample
N corresponding semantic-rich points that belong to NR regions and M semantic-less points in
X ′1 and X ′2. We use ri = rj to show that point i and j belong to the same region We further
leverage bilinear interpolation BI() to extract the N +M point-level embedding from the feature
map. An MLP projector is attached to fLiDAR to generate features for contrastive learning, i.e.,
{z1

i }
N+M
i=1 = {PPLRC(BI(F 1LiDAR

, i))}N+M
i=1 . Different from (Bai et al., 2022b), we leverage the

semantic-less points to enrich the negative pairs, which relieves the class collision problems, where
the objective is formulated as:

LPLRC = − 1

N

∑
i

1

C

∑
ri=rj

log
exp(z1

i · z2
j /τ)∑N+M

j=1 exp(z1
i · z2

j /τ)
, (1)

where C is a normalization factor that denotes the number of positive pairs. The key improvements
are from our finegrained semantic pooling and novel design to enrich the negative pairs, which signif-
icantly distinguish our proposal. We find that our PLRC could boost the performance of downstream
tasks when the finetuning data is limited. However, due to the imperfect region assignment, PLRC is
prone to overfitting when the finetuning dataset becomes larger, which is detailed in § 3.

Point-Region Contrast. We further improve our design by introducing a new region-aware point
contrast (RAPC) scheme. Different from ProposalContrast that uses complex cross-attention modules,
we concatenate region-level features with the point embedding. Specifically, we leverage another
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MLP projector to generate {p1
i } and {p2

i }. The region feature is extracted by channel-wise max
pooling pr = MaxPool{pi|i ∈ r} and the final representation is point feature pi = [pi;pr]. The
objective is then formulated as:

LRAPC = − 1

N

∑
i

log
exp(p1

i · p2
i /τ)∑N+M

j=1 exp(p1
i · p2

j/τ)
, LPRC = αLPLRC + (1− α)LRAPC (2)

PLRC, fundamentally a region contrast, emphasizes consistent representation learning within the
same region. Conversely, RAPC aims for equivalent global representation learning with regional
awareness. Both objectives balance localization and object-level semantics for improved overall
performance when combined.

2.4 REGION-AWARE DISTILLATION

The second module of CALICO is region-aware LiDAR-to-camera distillation (RAD). As introduced
in § 2.1, LiDAR-to-camera distillation has been intensively studied in the past year due to the rapid
progress in 2D and 3D BEV perception. However, prior works suppose an existing expertly-trained
teacher model from the LiDAR modality. In our setup, the LiDAR backbone is trained with our PRC in
a self-supervised manner. Therefore, the feature map from the LiDAR backbone cannot be viewed as
an oracle. Drawing inspiration from BEVDistill (Chen et al., 2022b) and contrastive distillation (Tian
et al., 2019), we propose a distillation scheme that operates under fully self-supervised learning
conditions. Our approach intuitively focuses on distilling features within our semantically pooled
area in a contrastive manner, as these features have been well-learned through PRC. Moreover, we
introduce a paradigm to achieve regional awareness. A key observation here is that our unsupervised
semantic pooling may generate numerous meaningful foreground objects, but the number of points
within a region is nondeterministic. Consequently, smaller but critical objects are less weighted,
and there are objects like buildings or bushes that contain many points but lack the information we
are interested in. In RAD, we assign region-wise weight to every point-level embedding. The loss
function is thus formulated as:

LRAD = − 1

NR

∑
S∈R

1

NS

∑
i∈S

log
exp(ci · li/τ)∑
j exp(ci · lj/τ)

(3)

where NR and NS are the number of pooled regions and sampled points in the region S , respectively.
l denotes the interpolated feature from F LiDAR directly and c is projected feature from FCamera.
As shown in the formulation, the weight for each point-level feature is normalized based on the
number of points S . Different from existing studies that generate center-based masks for groundtruth
objects (Chen et al., 2022b), we treat every point in one region the same as the region assignments
are from heuristics.

3 EXPERIMENTS AND RESULTS

In this section, we introduce the evaluation of CALICO with a breakdown of contributions from
different components. We first describe the experimental setup in § 3.1 and detail the evaluation
results in § 3.2 and § 3.3. Lastly, we conduct a comprehensive analysis and ablation studies of
CALICO in § 3.4 and § 3.5.

3.1 EXPERIMENTAL SETUPS

Dataset and Tasks. We adopt the widely used experimental setups for CALICO, i.e., first pretraining
the backbone with massive unlabeled data and then fine-tuning the model on a significantly smaller
amount of annotated data. We utilize the nuScenes dataset (Caesar et al., 2020) to evaluate our
method. This large-scale self-driving dataset is released under the CC BY-NC-SA 4.0 license and has
been employed in the settings of BEVFusion (Liu et al., 2023). The nuScenes dataset provides diverse
annotations to support various tasks, such as 3D object detection/tracking and BEV map segmentation.
Each of the 40,157 annotated samples includes six monocular camera images with a 360◦ field of
view (FoV) and a 32-beam LiDAR scan. In our study, we aim to tackle both 3D object detection
and BEV map segmentation tasks. Our 3D object detection task focuses on 10 foreground classes
and the BEV map segmentation task considers 6 background classes. We additionally incorporate
the Waymo dataset for 3D object detection, adhering to the common protocol outlined in (Yin et al.,
2022). We finetune our CALICO pretrained model using 20% of labeled examples from the training
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Table 1: NuScenes Evaluation Results of CALICO with Baselines on the 3D Object Detection Task.
Rand. Init. (C) means that only fCamera is randomly initialized and fLiDAR is pretrained by PRC.

Training Data Method Modality NDS ↑ mAP ↑

5%

Rand. Init. L 37.4 33.1
PointContrast L 43.0 36.7
ProposalContrast L 43.1 37.0
PLRC (Ours) L 46.3 38.2
PRC (Ours) L 46.0 38.2
PRC+Rand. Init. (C) L+C 46.1 40.2
SimIPU L+C 45.8 39.1
PRC+BEVDistill L+C 47.5 41.0
CALICO (Ours) L+C 47.9 41.7

10%

Rand. Init. L 48.0 41.1
PointContrast L 51.2 42.3
ProposalContrast L 51.1 42.1
PLRC (Ours) L 51.9 43.3
PRC (Ours) L 53.1 44.1
PRC+Rand. Init. (C) L+C 52.9 48.9
SimIPU L+C 52.4 47.5
PRC+BEVDistill L+C 53.6 49.7
CALICO (Ours) L+C 53.9 50.0

20%

Rand. Init. L 56.7 47.1
PointContrast L 57.5 48.3
ProposalContrast L 57.4 48.0
PLRC (Ours) L 57.8 48.6
PRC (Ours) L 58.9 49.5
PRC+Rand. Init. (C) L+C 59.0 54.0
SimIPU L+C 58.9 53.4
PRC+BEVDistill L+C 59.2 54.4
CALICO (Ours) L+C 59.5 54.8

50%

Rand. Init. L 61.0 53.2
PointContrast L 61.4 53.5
ProposalContrast L 61.0 53.1
PLRC (Ours) L 60.8 53.2
PRC (Ours) L 62.1 54.1
PRC+Rand. Init. (C) L+C 62.1 58.9
SimIPU L+C 62.0 58.6
PRC+BEVDistill L+C 62.3 59.6
CALICO (Ours) L+C 62.7 60.1

set using 30 epochs and evaluate the performance on the validation set. We detailed the task-specific
settings in § 3.2 and § 3.3.

Network Architectures and Implementations. We adopt the architecture of BEVFusion (Liu et al.,
2023) throughout our evaluation. In our main evaluation, we use the PointPillars (Lang et al., 2019)
backbone for fLiDAR and Swin-T (Liu et al., 2021) for fCamera. An LSS (Philion & Fidler, 2020)
view transformer is prepended to fLiDAR to transform the image from the perspective to BEV space.
We by default leverage CenterPoint (Yin et al., 2021) and ConvNet heads for 3D object detection
and BEV map segmentation. Following (Liu et al., 2023; Lang et al., 2019), we aggregate each
LiDAR point cloud with up to 10 consecutive frames, which is a standard procedure for nuScenes.
The DBSCAN in our semantic pooling has a minimum of 5 points and a distance of 0.75 meters
for clustering. We implement all three projectors with two linear layers, where only the first layer
consists of batch normalization and ReLU layers. The output dimension of the projectors is set as 128.
Our view augmentation T () includes random rotation of [−90◦, 90◦], random scaling of [0.9, 1.1],
and random flipping along the X or Y axis. The temperature factor in Equations 1 and 2 are set
τ = 0.07. During pretaining, we sample N = 1024 semantic-rich and M = 1024 semantic-less
points and set α = 0.5. We pretrain the fLiDAR and fCamera using PRC and RAD both for 20 epochs
on the entire training set. We leverage {5%, 10%, 20%, 50%} of the training set with annotations
to further finetune the model with detection or segmentation head attached for another 20 epochs.
Other baselines are trained with the same number of epochs for fair comparisons. All experiments
are conducted on 4 V100 GPUs with 32GB memory (v10, 2023).

3.2 3D OBJECT DETECTION EVALUATION

Settings. Our main metrics for nuScenes evaluation are mean average precision (mAP) and nuScenes
distance error (NDS). For Waymo evaluation, we follow the existing studies to report the Level-
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2 average precision (AP) and APH, a customized metric defined by Waymo (Sun et al., 2020b),
incorporating the heading information.

NuScenes Results. Table 1 presents a comparison of the evaluation results for CALICO and other
baseline methods in the context of 3D object detection. Notably, PRC achieves state-of-the-art
(SOTA) results for LiDAR-only perception. Compared to the randomized initialization baseline, PRC
demonstrates an improvement of 8.6% and 5.1% in mAP and NDS, respectively, when fine-tuning
with 5% of the training data. Furthermore, PRC surpasses PointContrast and ProposalContrast by a
considerable margin. The performance gains of PRC do not diminish as the fine-tuning data increases,
such as when 50% of the labeled data is utilized; in this case, PRC achieves enhancements of 1.1%
and 0.9% in mAP and NDS compared to the baseline method. It is worth noting that region-focused
approaches, including ProposalContrast and our PLRC, tend to be susceptible to overfitting due
to the imperfect assignment of regions from heuristics. Nevertheless, PRC generally outperforms
other methods across 5 additional metrics, albeit with minor fluctuations. Additionally, CALICO, i.e.,
PRC+RAD, achieves SOTA performance in 3D object detection under multimodal settings, where
outperforms PRC by 1.8% and 1.5% in mAP and NDS. Although SimIPU outperforms the vanilla
randomized initialization, it cannot beat PRC with randomly initialized fCamera. As introduced
before, the transformation from the perspective space to BEV is implicit, hindering the optimization
for fLiDAR. In contrast, our two-stage optimization enables more stable pretraining for both fCamera

and fLiDAR. RAD consistently exhibits tangible improvements over BEVDistill, primarily due to our
specific optimization for the semantically pooled regions. Note that all the BEVDistill results are
based on our PRC for pretrained fLiDAR, and the camera-only results can be found in Appendix B.

Table 2: Waymo Evaluation Results of CALICO with
Baselines on the 3D Object Detection Task.

Training Data Method Modality AP ↑ APH ↑

20%

Rand. Init. L 63.2 61.0
PointContrast L 65.2 62.6
ProposalContrast L 66.3 63.7
PRC (Ours) L 68.6 65.5
SimIPU L+C 68.4 65.5
CALICO (Ours) L+C 71.6 68.0

Waymo Results. We present our experimen-
tal results on the Waymo 3D object detec-
tion benchmark in Table 2. As shown, our
PRC consistently outperforms the previous
SOTA method, ProposalContrast, register-
ing a more pronounced improvement on the
Waymo dataset compared to nuScenes when
only pretrained using the LiDAR modality.
Additionally, CALICO also achieves the best
results in performance for sensor-fusion per-
ception, which are 8.4% and 3.2% improve-

ments than the baseline and previous SOTA methods, respectively. The results fairly demonstrate the
generalization of our proposal on different benchmarks.

Table 3: Cross-Dataset Evaluation Results of CALICO
with Baselines on the 3D Object Detection Task.

Training Data Method Modality NDS ↑ mAP ↑

10%

Rand. Init. L 48.0 41.1
PointContrast L 47.9 41.1
ProposalContrast L 48.5 41.8
PRC (Ours) L 50.6 42.7
SimIPU L+C 50.8 44.7
CALICO (Ours) L+C 51.9 47.9

Cross-Dataset Results. We also report the
evaluation results of our cross-data exper-
iment. Specifically, we leverage the back-
bones pretrained on the Waymo dataset and
finetune them on the 10% data setting in
nuScenes. As Table 3 presents, our PRC and
CALICO consistently deliver the best perfor-
mance, outperforming the previous methods
by a significant margin, which further illus-
trates the effectiveness of our proposal.

3.3 BEV MAP SEGMENTATION EVALUATION

Settings. We use the intersection-over-union (IoU) and mean IoU as the main metrics in this
evaluation. we evaluate the binary segmentation performance for every class and select the highest
IoU across different thresholds (Xu et al., 2022). The target area is a [−50, 50]× [−50, 50] m2 plane
in the ego vehicle’s coordinate, following prior studies (Philion & Fidler, 2020; Xu et al., 2022). We
adopt other settings in BEVFusion to jointly perform binary segmentation for all classes to accelerate
the training and inference.

Results. Table 4 presents the evaluation results of BEV map segmentation. We only evaluate the
pretraining methods for multimodal perception as the presence of texture information in the multiview
images is essential for this task (Liu et al., 2023). Our CALICO, consistently outperforms other
methods in terms of mIoU across most categories. Notably, CALICO shows an improvement of
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Figure 2: Attack Success Rates (↓) of Black-box
Adversarial Attacks with Various Spoofing Points
on Models Pretrained with Different Methods.

Figure 3: Corruption Errors (↓) of Different Cor-
ruption Types on Models Pretrained with Differ-
ent Methods.

5.7% over baseline approaches when finetuning on the 5% of the training set. The improvement,
1.3%, remains tangible when finetuning 50% of the training data. Although SimIPU beats the
model finetuned from scratch, it still cannot perform better than PRC trained fLiDAR with randomly
initialized fCamera. As the target area typically belongs to the background—less the focus compared
to objects like vehicles and pedestrians—the performance enhancement from pretraining is not
as pronounced as in the 3D object detection task, though we are the first to study the pretraining
framework for BEV map segmentation.

Table 4: IoU (↑) Evaluation Results of CALICO with Baseline Methods on BEV Map Segmentation.

Training Data Method Drivable Ped. Cross Walkway Stop Line Carpark Driver Average

5%

Rand. Init. (L+C) 67.5 33.2 43.9 19.1 24.3 30.0 36.3
PRC+Rand. Init. (C) 70.1 36.0 45.8 23.5 26.9 31.6 39.0
SimIPU 68.9 35.5 45.8 22.9 26.6 31.5 38.5
PRC+BEVDistill 72.1 37.9 48.0 24.5 29.3 33.3 40.9
CALICO (Ours) 73.1 39.2 49.3 26.0 30.6 33.8 42.0

10%

Rand. Init. (L+C) 73.2 40.6 50.4 28.5 34.9 35.2 43.8
PRC+Rand. Init. (C) 74.8 42.0 51.4 30.6 36.3 36.8 45.3
SimIPU 74.4 41.8 51.2 30.6 36.0 36.5 45.1
PRC+BEVDistill 75.8 43.1 52.0 31.8 37.5 38.1 46.4
CALICO (Ours) 76.5 44.0 53.1 32.5 38.8 39.0 47.3

20%

Rand. Init. (L+C) 77.3 49.2 56.1 34.4 43.1 39.8 50.0
PRC+Rand. Init. (C) 78.2 50.4 57.0 35.6 44.8 40.5 51.1
SimIPU 78.0 50.4 56.7 35.4 44.6 40.2 50.9
PRC+BEVDistill 78.8 50.9 57.7 36.0 45.3 41.1 51.6
CALICO (Ours) 79.4 51.5 58.3 36.7 45.9 41.9 52.3

50%

Rand. Init. (L+C) 81.1 55.2 61.8 40.2 50.4 43.7 55.4
PRC+Rand. Init. (C) 81.6 55.8 62.3 41.0 50.9 44.4 56.0
SimIPU 81.6 55.5 62.2 40.8 51.0 44.3 55.9
PRC+BEVDistill 82.0 56.5 62.7 41.3 51.3 44.5 56.4
CALICO (Ours) 82.4 57.0 63.1 41.3 51.6 44.9 56.7

3.4 ROBUSTNESS EVALUATION

In this section, we conduct two sets of robustness evaluations, i.e., LiDAR spoofing attacks and
common corruptions, of CALICO with other baseline methods.

Adversarial Robustness. 3D object detection is known to be vulnerable to LiDAR spoofing at-
tacks (Sun et al., 2020a), where adversaries are capable of physically injecting malicious points into
the LiDAR sensors to create driving hazards like emergency braking and steering. In this section,
we leverage the black-box adversarial attacks in (Sun et al., 2020a) to evaluate the robustness of the
models pretrained by CALICO and other methods. Specifically, we leverage attack traces with 60,
100, and 200 points to spoof fake objects 10 meters in front of the ego vehicle. We follow the same
settings in (Sun et al., 2020a) to set up the digital attacks. As the black-box attack requires models
that are ready to be deployed on the road, we choose models fine-tuned on the 50% training data
which deliver satisfactory performance. Figure 2 shows the attack success rates (ASR) on different
methods. We find that CALICO is able to reduce the ASR by 45.3% on average compared to models
trained from scratch. A similar performance is achieved by BEVDistill as it depends on our PRC
trained fLiDAR. Our results consolidate the findings in (Sun et al., 2020a), where the 3D LiDAR
modality dominates the 3D object detection model during standard training. CALICO helps to achieve
more balanced pretraining on both modalities.
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Corruption Robustness. Autonomous vehicles inherently face challenges posed by shifts in the
distribution of input data, such as changes in weather conditions. In light of recent findings from
nuScenes-C (Kong et al., 2023), we evaluate the robustness of various pretraining methods in the face
of such corruptions by distorting the LiDAR input with snow, fog, and motion blur. This experiment
employs models fine-tuned on 10% of the training data. The mean corruption error (mCE) of each
model is depicted in Figure 3. For the calculation of mCE, we establish the model trained from
scratch as the baseline (100%). Detailed information regarding the experimental setup is provided in
Appendix B. The results reveal that CALICO outperforms all other baseline models, achieving the
lowest mCE at 78.2%. It is worth noting that both PointContrast and ProposalContrast only pretrain
fLiDAR, thereby overemphasizing this modality, which results in higher mCEs than those trained
from scratch.
3.5 ABLATION STUDIES

Table 5: Ablation Study of α in PRC.

α 5% NDS 5% mAP 50% NDS 50% mAP
0.1 44.8 37.2 62.2 54.4
0.25 45.2 37.6 62.2 54.3
0.5 46.0 38.2 62.1 54.1
0.75 46.1 38.1 61.4 53.6
0.9 46.3 38.2 60.8 53.2

Architecture. In our exploration, we employ sparse
VoxelNet (Yan et al., 2018) as fLiDAR and TransFu-
sion (Bai et al., 2022a) as the detection head. This
approach allows us to assess the adaptability of our
PRC across diverse architectures and heads. For the
evaluation of the downstream 3D object detection
task, we use 5% and 10% of the training set. As de-
picted in Figure 4, our PRC approach demonstrates
a universal improvement in mAP and NDS. Notably,

the sparse VoxelNet with the TransFusion head consistently outperforms the PointPillars with the
CenterPoint head, exhibiting an average improvement of 2.3%. This superior performance, however,
comes with a trade-off in inference speed, attributable to the increased complexity of the model.

Figure 4: NDS and mAP (↑) of 3D Ob-
ject Detection on the model architecture:
fLiDAR =VoxelNet with the Transfusion head.

Hyperparameters.We investigate the impact of α
in Eq.2. Our findings suggest that α serves as a bal-
ance between the performance of PRC on limited
and ample labeled finetuning data. As delineated in
Table5, the enhancement on 5% finetuning data is
markedly pronounced when α = 0.9. Conversely,
an α = 0.1 effectively mitigates the overfitting
issue on 50% of the finetuning data. PLRC pri-
oritizes region-level representation learning, which
could supply more valuable heuristics when the fine-
tuning data are scarce. However, during pretraining,
the model may excessively fit into the assigned re-
gion. As the volume of annotated data increases,
PLRC independently falls short compared to the baseline method. In contrast, RAPC emphasizes
global invariant representation learning, which can help alleviate the overfitting problem in PRC. In
the meanwhile, α = 0.5 achieves a better balance between the detection performance on both limited
and sufficient annotated data.

4 CONCLUSION

In conclusion, we have introduced CALICO, a novel pretraining framework for multimodal BEV
perception in this paper. CALICO applies contrastive objectives on both LiDAR and camera modal-
ities, including two innovative stages: point-region contrast (PRC) and region-aware distillation
(RAD). It significantly outperforms baseline methods, with improvements of 10.5% and 8.6% on
NDS and mAP, respectively. Additionally, it boosts the robustness of multimodal 3D object detection
against adversarial attacks and common corruptions. The flexibility of CALICO allows for adaptation
to various backbones and heads as well, rendering it a promising approach for multimodal BEV
representation learning.
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A RELATED WORK

In this section, we review two topics related to our study: autonomous driving perception and
contrastive pretraining for deep learning.

Autonomous Driving Perception. Perception remains a cornerstone of autonomous vehicles,
primarily facilitated through LiDAR and camera sensors. LiDAR-based 3D object detection can be
classified into point-wise (Shi et al., 2019; 2021; 2020; 2023) and voxel-based (Lang et al., 2019; Yan
et al., 2018; Zhou et al., 2020; Zhou & Tuzel, 2018; Choy et al., 2019) representations. The two-stage
PointRCNN (Shi et al., 2019) initially segments the object from the point cloud before estimating the
bounding box. Despite directly extracting lossless features, point-wise methods are computationally
expensive (Geiger et al., 2013). To counter this, voxel-based methods like VoxelNet (Zhou & Tuzel,
2018) and PointPillars (Lang et al., 2019) transform point clouds into BEV pseudo-images, suitable
for 2D ConvNets (Liu et al., 2022) and ViT (Dosovitskiy et al., 2020) processing. Detection heads
like CenterPoint (Yin et al., 2021) have also been introduced for enhanced end-to-end performance.
Camera-based BEV perception methods can be divided into two categories based on their depth
estimation approach. Models like BEVDet (Huang et al., 2021) and BEVDepth (Li et al., 2022c)
explicitly estimate depth, transforming perspective views into BEV using a dedicated depth estimation
branch (Philion & Fidler, 2020). BEVerse (Zhang et al., 2022b) expands on this with a unified multi-
task learning framework. In contrast, DETR3D (Wang et al., 2022) and ORA3D (Roh et al., 2022)
utilize the DETR (Carion et al., 2020) framework to represent 3D objects as queries and perform
cross-attention via a Transformer decoder. BEVFormer (Li et al., 2022e) and PolarFormer (Jiang et al.,
2022) introduce novel methods for feature extraction and 3D target prediction. As advancements in
both modalities of BEV perception continue, sensor fusion methods such as BEVFusion (Liu et al.,
2023) have been proposed to further enhance performance. UVTR (Li et al., 2022b) generates a
unified representation in the 3D voxel space. Meanwhile, query-based methods like FUTR3D (Chen
et al., 2022a) use 3D reference points as queries and sample features directly from the coordinates of
projected planes. Transfusion (Bai et al., 2022a) employs a two-stage pipeline, initially generating
proposals using LiDAR features, then refining them by querying image features.

Contrastive Pretraining for Deep Learning. Contrastive pretraining has emerged as a significant
advancement in the field of deep learning, particularly in self-supervised learning scenarios. It has
shown remarkable success across various tasks, demonstrating its effectiveness in learning meaningful
representations without relying on labeled data. One of the earliest applications of contrastive learning
is the word2vec model by Mikolov et al. (Mikolov et al., 2013), which uses a contrastive loss function
to learn word embeddings, which has inspired a new wave of research in contrastive learning for
other data modalities, including images (Park et al., 2020; He et al., 2020; Chen et al., 2020b; Grill
et al., 2020; Bai et al., 2022b; Wu et al., 2023), audio (Wang & Oord, 2021; Saeed et al., 2021;
Manocha et al., 2021), and 3D data (Xie et al., 2020; Yin et al., 2022; Liang et al., 2021). In the
realm of computer vision, contrastive learning has been studied extensively. He et al. (He et al.,
2020) introduced the Momentum Contrast (MoCo) for unsupervised visual representation learning,
which constructs a dynamic dictionary with a queue and a moving-averaged encoder. Chen et
al. (Chen et al., 2020a) proposed the SimCLR framework, which uses simple data augmentations to
learn visual representations effectively. Contrastive pretraining has also been applied to multimodal
learning, where the goal is to learn a joint representation of different data modalities. For instance,
CLIP by Radford et al. (Radford et al., 2021) applies contrastive learning to connect images and
text in a shared embedding space. GLIP (Li et al., 2022a; Zhang et al., 2022a) further extended
CLIP to 2D object detection. In the context of 3D point clouds, contrastive learning has been used
to learn representations from LiDAR data. Works including PointContrast (Xie et al., 2020) and
ProposalContrast (Yin et al., 2022) have utilized contrastive pretraining for 3D object detection tasks,
which are detailed in § 2.1.

B EXPERIMENTS

Detailed Experimental Setups. In this section, we delineate the comprehensive experimental setups
employed in our research. For the Sparse VoxelNet and PointPillars backbones, we have utilized
voxel sizes of [0.075, 0.075, 0.2] and [0.2, 0.2, 8] respectively, and each voxel is regulated to contain a
maximum of 10 points. The ensuing feature maps for F LiDAR and FCamera are sized [180, 180, 256]
and [180, 180, 80], respectively. To derive maximal advantage from multimodal pretraining, we have
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Table 7: Ablation Studies on RAD and CALICO with Camera-only Methods.

Method Modality NDS ↑ mAP ↑

10%

Original PLRC L 51.1 42.0
PRC (Ours) L 53.1 44.1
BEVDet C 29.5 24.1
BEVFormer C 31.0 26.4
Vanilla Distillation C 31.5 26.9
Original BEVDistill C 33.2 27.3
RAD (Ours) C 34.7 29.1
CALICO (Ours) L+C 53.9 50.0

50%

Original PLRC L 60.3 52.7
PRC (Ours) L 62.1 54.1
BEVDet C 36.1 30.2
BEVFormer C 36.5 30.7
Vanilla Distillation C 37.0 30.9
Original BEVDistill C 39.0 32.3
RAD (Ours) C 40.2 34.0
CALICO (Ours) L+C 62.7 60.1

restructured the BEVFusion architecture. Specifically, we employed separate decoders for fLiDAR

and fCamera, and relocated the fusion layer further along the backbone. Additionally, the fusion
decoder has been reengineered as a simple convolution layer that merges the feature maps from both
modalities. This change ensures the utmost utilization of the pretraining to train a maximum number
of parameters and positions the pretrained feature map closer to the heads for various downstream
tasks. All projectors feature a middle layer with 256 channels and output a channel dimension of
128. We have observed that the baseline can be enhanced using a higher weight decay of 0.2 to avert
overfitting when fine-tuning with a limited amount of annotated data. We employed the AdamW
optimizer with a cyclic scheduler and a starting learning rate of 2× 10−4. A gradient maximum clip
of 35 was used. All other settings remain consistent with the BEVFusion experiments.

Table 6: Comparison with GCC-3D, RoIAlign-
based Constrast, and BEV-MAE. * denotes the
results reported in Lin & Wang (2022).

Method 5% NDS 5% mAP 100% NDS 100% mAP
Rand. Init. 37.4 33.1 64.5∗ 56.2∗

GCC-3D - - 65.0∗ 57.3∗

RoIAlign-Contrast 45.4 37.4 64.1 55.9
BEV-MAE - - 65.1∗ 57.2∗

PRC 46.0 38.2 65.1 57.5

Additional Experiments. We have compared
our PRC with a masked-autoencoder pretrain-
ing method, BEV-MAE Lin & Wang (2022).
Table 6 presents the results of our PRC with
other baselines reported in Lin & Wang (2022).
It is worth noting that BEV-MAE is not yet pub-
lished. GCC-3D Liang et al. (2021), on the other
hand, requires temporal information to pool se-
mantic areas. We have also compared our PRC
with RoIAlign Liang et al. (2021)-based method

mentioned in § 2.1. When fine-tuning using 100% of the training data, our PRC model achieves a
similar performance increase as GCC-3D and BEV-MAE. However, when fine-tuning with only 5%
of the training data, the performance gain with PRC is substantially more pronounced, underlining its
superior efficiency in learning from limited labeled data, which is also an important challenge in deep
learning Zheng et al. (2023a;b).

Table 8: Ablation Studies on ResNet as fCamera.

Method NDS ↑ mAP ↑

10%

PRC+Rand. Init. (C) 52.0 47.9
SimIPU 51.4 46.6
PRC+BEVDistill 52.5 48.5
CALICO (Ours) 53.1 49.0

Table 9: Ablation Studies on Semantic Pooling.

Method NDS ↑ mAP ↑

10%

Original PLRC 50.9 41.9
+Semantic Pooling 51.5 42.8
+Negative Sample

Augmentation 51.9 43.3

50%

Original PLRC 60.0 52.5
+Semantic Pooling 60.5 53.0
+Negative Sample

Augmentation 60.8 53.2
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Figure 5: Qualitative Analysis of Evaluation Results in Table 1.

Comparison with Camera-only Methods. As shown in Table 7, the improvements of RAD and
CALICO compared to the original BEVDistill (camera-only) are significant under both 10% and 50%
data settings in the nuScenes dataset.

Ablation on the Camera Backbones. we have integrated ResNet as an alternative backbone for the
camera modality. Specifically, we use our PRC pretrained LiDAR backbone as the teacher model and
leverage the 10% finetuning data setting in this experiment. This further step is taken to demonstrate
the adaptability and generalizability of our framework across different backbone architectures. As
presented in Table 8, our CALICO delivers a consistent trend in performance between Swint-T (Liu
et al., 2021) and ResNet (He et al., 2016) as image backbones, which consistently achieves the best
performance compared to other baseline methods.

Ablation on Our Semantic Pooling. We also conducted experiments specifically focusing on the
impact and necessity of our negative sample augmentation strategy within our semantic pooling
operation. As presented in Table 9, these results clearly demonstrate the effectiveness of our negative
sample augmentation method in improving the overall model performance.

B.1 QUALITATIVE ANALYSIS

As we have presented a significant amount of quantitative results in the main body of our paper,
we therefore show some qualitative analysis and insights in this section. In particular, we plot the
results of Table 1 with different pretraining methods. As shown in Figure 5, we observe that the
benefits of pretraining diminish with the increase in fine-tuning data. This highlights the nuanced
trade-off between pretraining and fine-tuning in model performance. Furthermore, when comparing
our proposed PRC method (augmented with the RAPC component) to the PLRC approach, it becomes
evident that our method demonstrates more significant improvements, especially when finetuning
on 50% of the dataset. This finding underscores the efficacy of our approach in scenarios with
limited fine-tuning data, an aspect that we believe contributes significantly to the field. Moreover,
our ablation study in Table 5 also showcases that the RAPC component in our design serves as a
good regularization term to balance the performance of our framework among different levels of
availability in finetuning data.

C VISUALIZATIONS

We visualized both sampled semantic pooling and intermediate feature maps from our CALICO
framework. As shown in Figures 6 and 9. The feature maps from CALICO are sharper than the ones
from previous studies.
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Figure 6: Sampled Visualizations of Our Semantic Pooling. Sub-plots on the two sides represent the
ground truth, respectively.

Pool a tree and a 
car together as a 
single cluster.

Pool a small bush 
as a semantic-rich 
region.

Figure 7: Sampled Visualizations of Failure Cases from Our Semantic Pooling.
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Successfully pool 
garbage cans and 
pedestrians.

Figure 8: Sampled Visualizations of Special Cases from Our Semantic Pooling.

As shown in Figure 6, we found that our semantic pooling could extract most of the objects of
interest accurately. While we acknowledge potential errors due to the heuristic nature of unsupervised
pooling, we firmly believe that its efficacy meets the requirements of self-supervised pretraining. We
also reported the results from vanilla dense distillation methods in Table 7 using the 10% and 50%
data settings, due to time constraints. The results fairly demonstrate that RAD significantly improves
performance.

In our exploration of the unsupervised nature of our semantic pooling operation in the CALICO
framework, we encountered certain limitations. For instance, the semantic pooling sometimes
erroneously clusters tree points as semantic-rich, as shown in Figure 7. Nonetheless, these instances
did not significantly impact overall performance. The primary objective during the pretraining
phase is to learn robust and prominent representations within the model’s backbone, a process
that remains largely independent from downstream tasks. Mispooling a small number of random
objects as semantic-rich does not detrimentally affect the contrastive pretraining for the model
backbone because the objective is to learn the correspondence between regions. Furthermore, the
core concept of semantic pooling is pivotal, transcending the specifics of its implementation. Our
current implementation utilized a basic approach to achieve region partitioning in LiDAR BEV space
relying on independent LiDAR frames. Enhancements to semantic pooling could include integrating
temporal data to refine point aggregation or to better aggregate points and identify moving points.
However, such an approach necessitates temporally continuous data, introducing an additional layer
of assumption and complexity. CALICO is designed to be versatile with respect to the choice of
clustering algorithms, as long as the region partitioning is reasonable, as the core of CALICO is the
following contrastive learning design based on the partitioned regions.

We also visualized the feature map from the camera modality with/without using CALICO in Figure 10.
As we mentioned in the rebuttal, camera features trained from scratch are not salient to contribute to
robustness improvement.

D DISCUSSION AND BROADER IMPACT

While our CALICO exhibits considerable potential in enhancing the performance of downstream
tasks for BEV perception, several challenges persist in this field. One major hurdle is the definition
of “positive” and “negative” pairs in the 3D space. We have devised point-wise pairs to balance both
region- and scene-level contrasts. Additionally, the implicit transformation from pixel to BEV presents
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Figure 9: Sampled Visualizations of Intermediate Feature Maps.

Figure 10: Sampled Visualizations of Camera Feature Maps.

another challenge. We envision a more principled and unified design as a promising area of future
research. Furthermore, CALICO introduces additional computational and memory consumption, so
enhancing efficiency also constitutes a promising future direction.

D.1 LIMITATION

Theoretical Understanding: Our framework, CALICO, is based on empirical design and data-driven
analysis. The current pretraining methods, however, face significant limitations regarding theoretical
understanding. One of the primary issues is that these methods often operate as “black boxes”.
This opacity makes it challenging to develop a deep theoretical understanding of the underlying
mechanics of these algorithms. Another limitation is the reliance on empirical results over theoretical
foundations. While pretraining methods have shown remarkable success in various applications, this
success is often benchmarked through performance metrics on specific tasks rather than grounded in
theoretical principles. This approach can lead to a lack of generalizability, where models perform
well on certain types of data or tasks but fail in others. We have diligently endeavored to showcase
the effectiveness and generalizability of CALICO across a diverse array of benchmarks. Moreover,
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the complexity and scale of pretraining models pose a significant hurdle. These models often have
millions, if not billions, of parameters, making it incredibly difficult to dissect and understand the role
and interaction of each component. This complexity hinders the development of a robust theoretical
framework that can predict model behavior under different conditions. We believe that building
theoretical frameworks is a promising avenue in this field and empirical contributions like ours can
lay the groundwork for future theoretical advancements.

Robustness against Calibration Errors: Our current CALICO operates under the premise of
accurate alignment between LiDAR and camera data. This alignment is pivotal for the efficacy of
our pretraining methodology, particularly due to the necessity of data synchronization for successful
knowledge distillation in RAD. Therefore, our method demonstrates similar performance to other
baseline approaches when we intentionally altered the calibration matrix between the two modalities.
On one hand, we acknowledge that in real-world scenarios, misalignments due to calibration errors
can occur, potentially impacting the performance of systems like ours. Although our current study
did not specifically focus on this aspect, we recognize its importance in the broader context of
autonomous driving. On the other hand, evaluating calibration errors is challenging, as misalignments
result in differing localization ground truths for both modalities. Therefore, determining a method
and metric to quantify the evaluation is controversial.

D.2 BROADER IMPACT

Our proposed CALICO methodology holds substantial potential to improve the safety and efficiency
of autonomous driving systems. This broader impact can be articulated along several lines of thought.

Enhanced Perception Accuracy: By facilitating a deeper understanding of diverse and complex
driving scenarios, the contrastive pretraining method could significantly enhance the perception
accuracy of autonomous driving systems. This will allow vehicles to more precisely identify and in-
terpret environmental elements such as pedestrians, other vehicles, traffic signals, and road conditions.
Improved accuracy will in turn reduce the likelihood of perceptual errors leading to accidents.

Reliable Interpretation of Ambiguous Situations: Contrastive pretraining enables the model to
learn more effectively from less labeled data. This will help in interpreting ambiguous situations by
generalizing the acquired knowledge. As a result, autonomous vehicles can respond appropriately to
unexpected or rare traffic scenarios, further enhancing safety.

Increased Robustness: Our proposed method could lead to autonomous driving systems that are
more robust to adversarial attacks and natural distribution shifts. By learning a rich, discriminative
feature space, the system can better differentiate between genuine signals and potential threats or
anomalies. This robustness contributes to an overall increase in system resilience and safety.
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