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Abstract

In-context learning (ICL) using large pre-001
trained autoregressive language models (LLMs,002
e.g. GPT-3) has demonstrated effective clas-003
sification performance at a variety of natural004
language tasks. Using LLMs for intent detec-005
tion is challenging due to the large label space006
and limited context window, such that it is diffi-007
cult to fit a sufficient number of examples in the008
prompt to allow the use of in-context learning.009
In this paper, dense retrieval is used to bypass010
this limitation, giving the model only a par-011
tial view of the full label space. We show that012
retriever-augmented large language models are013
an effective way to tackle intent detection, by-014
passing context window limitations effectively015
through the retrieval mechanism. Comparing016
the LLaMA and OPT model families at differ-017
ent scales, we set new state of the art perfor-018
mance in the few-shot setting with zero training019
for two of the three intent classification datasets020
that we consider, while achieving competitive021
results on the third one. This work demon-022
strates that the Retriever+ICL framework is a023
strong zero-training competitor to fine-tuned in-024
tent detection approaches. In addition, a small025
study on the number of examples provided at026
different model scales is done, showing that027
larger models are needed to make effective use028
of more examples in-prompt.029

1 Introduction030

In-context learning using large autoregressive nat-031

ural language has recently exploded in popularity.032

Models pre-trained on massive amounts of textual033

data are able to reach reasonable performance on034

a wide variety of tasks with only a few examples035

of input and output for a given task provided in the036

model’s input prompt in natural language (Brown037

et al., 2020) (Rae et al., 2022) (Chowdhery et al.,038

2022). In this work, we seek to push ICL to its lim-039

its as we tackle the problem of intent classification,040

to which ICL has not been directly applied before.041

Under ordinary ICL with a static set of examples,042

intent classification would not be possible, as the 043

limited context window of these models would re- 044

sult in overflowing the context window if it were 045

attempted to put at least one example from every 046

class in the prompt. By augmenting the LLM with 047

a dense retrieval model (Reimers and Gurevych, 048

2019) (Karpukhin et al., 2020) that retrieves the 049

K nearest examples to the given input at a time, 050

intent detection becomes possible to tackle directly 051

with ICL. We evaluate LLMs in this setting with 052

three intent classification datasets: BANKING77 053

(Casanueva et al., 2020), HWU64 (Liu et al., 2021), 054

and CLINC150 (Larson et al., 2019) 1. Experi- 055

ments are done using the LLaMA models (Touvron 056

et al., 2023) and the OPT models (Zhang et al., 057

2022). We compare the performance achieved 058

against adapter-based fine-tuning of MLM models 059

(DeBERTa-v2-XXLarge with the “Pfeiffer” adapter 060

(Pfeiffer et al., 2020b) implemented with Adapter- 061

Hub (Pfeiffer et al., 2020a)) and the previous SoTA 062

for intent detection. 063

The contributions of this work are: 064

1. Showing that Retrieval-Augmented ICL is an 065

effective way to tackle intent detection with 066

zero training, either matching or outperform- 067

ing fine-tuned adapter-based and contrastive- 068

pre-training-based methods, 069

2. Analyzing ICL performance with different 070

models and different numbers of examples, 071

as well as performing a small ablation study 072

based on resampling examples to determine 073

what aspects of the inputs and outputs the 074

model is using for ICL. 075

1HWU and CLINC made available under license CC-BY-
SA 3.0, BANKING under CC-BY-4.0, use consistent with
intended use
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2 Related Work076

2.1 Nearest neighbor selection of in-context077

examples078

One of the earliest studies of the role of example se-079

lection in ICL is “KATE” (Liu et al., 2022). In this080

paper, the authors probe the performance of GPT-081

3 on NLP tasks using KNN retrieval (RoBERTa)082

for example selection. They compare this method083

against random selection and using the retrieval084

model directly (plain KNN). They also examine the085

effect of example ordering on performance and con-086

clude that the most performant ordering (least-to-087

most and most-to-least similar orderings are tested)088

depends on the dataset. In our work, we also ex-089

periment with example ordering, and conclude that090

least-to-most ordering is the most effective on all091

intent detection datasets tested.092

Another paper examining the effect of example093

ordering with regards to in-context learning is (Lu094

et al., 2022). The authors show that GPT-3 is ex-095

tremely sensitive to example ordering, to the extent096

that certain permutations bring near SoTA perfor-097

mance on certain tasks while others perform at near098

random guessing.099

2.2 Few-shot intent detection100

The current state of the art in few-shot intent de-101

tection is the ConvFit method (Vulić et al., 2021).102

ConvFit uses a pre-trained LM in a dual-encoder103

configuration (e.g. BERT or RoBERTa) with two104

training stages. The first stage is a conversational105

fine-tuning stage using a generic conversational106

corpus with a retrieval task (using tuples of (con-107

text, response) retrieve the correct response for108

each context). The second stage is fine-tuning on109

the specific intent classification dataset with a con-110

trastive loss, allowing the resulting LM to be used111

in a KNN fashion.112

Another way LLMs have been used for intent de-113

tection is for data augmentation (Sahu et al., 2022).114

In this regime, LLMs are used to augment the few-115

shot datasets to train stronger traditional fine-tuned116

models (e.g. BERT).117

3 Experimental Setup118

For our sentence encoder/retriever, we use the Sen-119

tenceTransformers library (Reimers and Gurevych,120

2019), and use the pre-trained “all-mpnet-base-v2”121

model (pre-trained on over 1 billion training pairs)122

in frozen mode so that the entire pipeline is training-123

free. Experiments with contrastively fine-tuning 124

the retriever model are also done. 125

All experiments were performed on a single 126

A100 80GB GPU. For LLaMA 33B and 65B Hug- 127

gingface 8-bit quantization was used. The main 128

difference between the OPT and LLaMA models is 129

the amount of pre-training data used. The LLaMA 130

models were trained on 1T-1.4T tokens, while the 131

OPT models were only trained on 180B tokens (see 132

(Zhang et al., 2022) and (Touvron et al., 2023) for 133

more details). 134

To reduce computational load and make infer- 135

ence easier, instead of using the logits of the LLM 136

to rank our many classes (requiring multiple for- 137

ward passes), we let the LLM generate freely, and 138

encode the output to compare with our classes via 139

our dense retriever model (SBERT). This allows us 140

to restrict the model output to the set of classes we 141

want without incurring additional inference cost. 142

4 Results 143

For direct comparison with previous works, espe- 144

cially ConvFit, we use the same 5-shot and 10-shot 145

sets as DialoGLUE (Mehri et al., 2020). Experi- 146

ments are run 3 times and the accuracies are aver- 147

aged, except the zero-training LLM setups, which 148

are deterministic. The contrastively fine-tuned re- 149

triever was trained for one epoch to avoid overfit- 150

ting, using three times as many negative pairs as 151

positive pairs (roughly 5-10 mins depending on 152

the dataset). Otherwise default library parameters 153

were used. The baseline “Pre-trained SBERT KNN” 154

refers to using only the dense retriever to make pre- 155

dictions using 1-nearest-neighbor. 156

We provide a brief study regarding how to order 157

examples in-prompt by similarity, since previous 158

work has been inconclusive on this front. A brief 159

analysis of ordering is provided in Appendix A. 160

Table 1 shows the performance comparison of 161

all methods. Performance of the Retriever+ICL 162

pipeline on BANKING and HWU is state of the art 163

in the 10-shot setting. Not only this, but to match 164

or surpass the previous state of the art for these 165

datasets only LLaMA 7B is necessary, which with 166

8-bit quantization can be run on consumer hard- 167

ware. In the case of CLINC, the DeBERTa baseline 168

is slightly stronger than the Retriever+ICL. In the 169

most challenging evaluation setting (the highly- 170

specialized intent classes of the BANKING dataset 171

in the most data-scarce 5-shot setting), the margin 172

between DeBERTa and LLaMA 65B is 6.26%. In 173
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Table 1: Performance comparison between all methods.

Model BANKING 77 HWU 64 CLINC 150

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

Pre-trained SBERT KNN 78.41 85.39 69.89 75.46 82.51 84.84
ConvFit (reported) - 87.38 - 85.32 - 92.89
DeBERTa (Pfeiffer) 81.47 ± 1.6 88.41 ± 0.19 79.80 ± 0.81 86.93 ± 0.052 91.86 ± 0.66 95.05 ± 0.33

OPT 13B (20-ex) 81.23 85.65 78.90 83.64 85.27 89.24
OPT 175B (20-ex) 81.30 86.14 83.74 84.94 90.96 93.09
LLaMA 7B (20-ex) 84.42 87.63 85.87 87.55 88.58 91.73
LLaMA 13B (20-ex) 85.39 88.93 86.25 87.83 90.31 93.00
LLaMA 33B (20-ex) 87.37 90.52 86.71 88.75 92.02 94.13
LLaMA 65B (20-ex) 87.73 90.71 89.03 90.06 91.89 94.47

Table 2: Comparison of Models with Fine-tuned Re-
triever (20 examples in prompt), compared against non-
fine-tuned performance

Model BANKING HWU CLINC

10-shot 10-shot 10-shot

SBERT KNN 87.40 ± 0.21 83.05 ± 0.47 91.48 ± 0.13

vs. frozen + 2.0% + 7.6% + 6.64%

OPT 13B 87.71 ± 0.18 83.83 ± 0.83 91.83 ± 0.22

vs. frozen + 2.06% + 0.19% + 2.59%

LLaMA 7B 87.39 ± 0.081 87.98 ± 0.75 94.17 ± 0.32

vs. frozen - 0.24% + 0.43% + 2.44%

LLaMA 65B 88.93 ± 0.056 90.12 ± 0.51 95.62 ± 0.17

vs. frozen - 1.79% + 0.062% + 1.16%

general the DeBERTa model struggled in the 5-shot174

scenarios, likely due to the extremely limited data.175

We also provide a study of how performance176

changes given the number of examples provided177

in-context. Figures 1 and 2 show this performance.178

The x-axis value of 110 indicates a fully saturated179

context window, which is on average this number180

of examples.181

A small ablation study is done to test if the near-182

est examples are actually necessary for effective183

performance, or if the LLMs are primarily using184

distributional information (e.g. the most frequent185

label in the prompt) or just the class label subset186

to perform well. By resampling from the classes187

initially retrieved by the retriever model, we pre-188

serve the distribution of labels but change the input189

examples themselves so that they are no longer190

the nearest in the embedding space. The result is191

shown in Figure 3. The ablation study was done192

on a different split (selected randomly) than the193

DialoGLUE split for each dataset.194

Figure 1: BANKING performance as a function of the
number of examples in prompt

Figure 2: HWU performance as a function of the num-
ber of examples in prompt

3



Figure 3: HWU performance when randomly resam-
pling from the retrieved classes

5 Discussion195

5.1 ICL at different scales196

One trend noticeable from the performance graph197

as a function of the number of examples for BANK-198

ING and HWU (see Figures 1 and 2) is that there199

seems to be a difference in how effectively the200

models can use additional examples in relation to201

their size. The smaller OPT model is unable to202

effectively make use of the entire context window203

when it is filled (around 110 demonstrations) and204

remains at relatively low performance. In contrast,205

OPT 175B starts at a similar performance as OPT206

13B at 10 demonstrations, but shows drastic im-207

provement with more examples. With more exam-208

ples, OPT 175B is able to match the performance209

of LLaMA 7B despite being trained on the same210

amount of data as OPT 13B (however is still un-211

able to match LLaMA 65B). This seems to indicate212

a difference in ICL ability tied to scale. A simi-213

lar trend is visible for the LLaMA models, where214

the performance of the 7B model does not change215

significantly (see 2), but the 65B model is able to216

continously improve, especially when going from217

20 to 50 examples. All large models show non-218

negligible improvement from the 20 to 50 example219

regime, while none of the small models do. In220

general the LLaMA models have much stronger221

performance than the OPT models, which lines222

up with what we expect from LLaMA’s stronger223

semantic priors/additional training data.224

5.2 Fine-tuned Retriever 225

We note large improvements in the pure KNN mode 226

accuracy, as expected, as we are optimizing a met- 227

ric that is directly correlated with KNN perfor- 228

mance. With fine-tuning, the pure KNN setup be- 229

comes near-competitive with ConvFit, the previous 230

SoTA. In terms of Retriever+ICL performance, we 231

see mixed results. In general the performance delta 232

is quite small, suggesting that there is no significant 233

retrieval quality bottleneck. LLaMA 65B with the 234

fine-tuned retriever becomes the highest 10-shot 235

CLINC score. In general, the fine-tuned CLINC 236

retriever provides the most boost, which is also the 237

least data-scarce scenario (retriever fine-tuning is 238

expected to be more effective with more data). 239

5.3 Resampling Ablation 240

In the resampling ablation (see Figure 3) we see 241

that resampling from the initial class distribution 242

provided by the retriever model greatly hurts the 243

performance across both OPT 175B and LLaMA 244

7B. This supports the strong performance numbers 245

of the LLMs, showing that they are doing more 246

than just selecting the most common class, using 247

other distributional information, or just using the 248

shortlist of class labels from the full set of classes 249

to select in a more zero-shot fashion. 250

6 Conclusion 251

In this work, retriever-augmented in-context learn- 252

ing is shown to be a strong performer in the space 253

of intent detection. State of the art accuracy is 254

achieved in two of three datasets tested, and com- 255

petitive accuracy is shown in the third. A frozen re- 256

triever is used to achieve this SoTA accuracy, mak- 257

ing this pipeline as a whole training-free. A briefly 258

fine-tuned retriever leads to somewhat stronger 259

performance in certain cases. We also show how 260

model performance changes as a function of the 261

number of examples provided in-prompt, provid- 262

ing evidence that larger models are able to more 263

effectively make use of many examples. Through a 264

small ablation study, we demonstrate that the LLMs 265

specifically make use of the most similar examples, 266

rather than using the distributional information or 267

just the class label set. 268

7 Limitations 269

One limitation of the research in this paper is that 270

the experiments of this paper use the pre-existing 271
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DialoGLUE few-shot splits for each dataset, fol-272

lowing the example of prior works and to remain273

comparable to them (with the exception of the ab-274

lation study, which uses a separate split). However,275

since experiments were done only on this split, it276

is not necessarily the case that the results/model277

rankings are transferable to other splits as well278

(although it is worth noting from Figure 3 that per-279

formance on the separate split is very similar to the280

DialoGLUE split, and the model ranking remains281

the same).282

8 Risks283

This work is based on the use of large autoregres-284

sive language models (LLMs). LLMs have been285

trained on massive amounts of text data taken from286

the internet, which contain many representations of287

human biases. As such, these models frequently en-288

code these same biases in their parameters and their289

predictions. They can sometimes perpetuate these290

harmful biases and stereotypes. As well, the envi-291

ronmental footprint of running these large models292

is not insignificant.293
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A Appendix 461

A.1 Ordering 462

As expected, least-to-most similar was the most 463

effective ordering across all three datasets. Larger 464

models are less sensitive to ordering, with a smaller 465

delta between the two orderings. See Table 3 for 466

more details. 467

Table 3: Comparison of LLaMA 7B and OPT 13B
model prompt orderings (20 examples in prompt, 10-
shot)

Model BANKING HWU CLINC

MTL LTM MTL LTM MTL LTM

OPT 13B 73.64 85.65 76.39 83.64 81.11 89.24
LLaMA 7B 83.64 87.63 86.99 87.55 90.20 91.73
LLaMA 65B 88.08 90.71 89.03 90.06 93.47 94.47
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