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ABSTRACT

Large Language Model (LLM)-based multi-agent systems represent a promising
paradigm with broad applicability, exemplified by general-purpose Artificial In-
telligence (Al) assistants capable of performing multiple tasks. Nevertheless, joint
optimization across functionally distinct agents remains challenging due to diver-
gent working modes and reward functions. To address this issue, we introduce
JoyAgents-R1, a framework that accelerates multi-agent evolution with a novel
Variance-Reduction Group Relative Policy Optimization (VR-GRPO), integrat-
ing efficient sampling and update strategies. Specifically, VR-GRPO performs
Monte Carlo sampling based on an initial reasoning trajectory to avoid the ex-
ponential explosion of the joint action space while maintaining policy diversity.
Then, the method selects the top-K sampling groups with maximal reward fluctu-
ations based on the marginal benefit principle, thereby enabling cost-effective pa-
rameter updates. To further complement evolution, an adaptive memory evolution
mechanism that repurposes GRPO rewards as cost-free supervisory signals is de-
signed to eliminate repetitive reasoning and accelerate convergence. Experiments
on multi-task Al assistant datasets across both general and e-commerce scenarios
demonstrate that JoyAgents-R1, built upon smaller 3B/7B open-source models,
achieves performance comparable to that of larger LLMs, such as DeepSeek-R1,
and surpasses DeepSeek-V3 by an average of 6%.

1 INTRODUCTION

The rapid advancement of LLMs |Achiam et al.| (2023)); |Anthropic| (2024)); |Grattafiori et al.| (2024));
Bai et al.| (2023); |[Yang et al.| (2024) has revolutionized agent-based systems, empowering agents
with the ability to perform reasoning, planning, and natural language interaction across diverse
domains |Guo et al.| (2024)); (Gao et al| (2025). Compared to single agents with specialized func-
tionalities [Li et al.| (2023); Ruan et al.| (2023)); (Qin et al.| (2024); [Dong et al.| (2024)), multi-agent
systems|Wan et al.[(2025)); Liao et al.|(2025)); Dang et al.| (2025 demonstrate superior flexibility and
scalability in tackling complicated tasks such as general-purpose Al assistants [Fu et al.|(2024) and
emergency responder management Sivagnanam et al.| (2024)), among which Multi-Agent Reinforce-
ment Learning (MARL) is a key technique of the community |Ning & Xie|(2024).

Since Reinforcement Learning (RL) has demonstrated remarkable efficacy in aligning models with
human preferences|Ouyang et al.[(2022), LLM-based MARL methods have flourished and achieved
certain results in sophisticated task decomposition [Igbal et al.|(2022); Tian et al.[(2023) and adaptive
coordination [Fu et al|(2022); [Li et al.| (2024). In MARL, the behavior of one agent may affect
the rewards of other agents, which may cause environmental instability and lead to low system
efficiency and performance Hernandez-Leal et al.|(2017). While methods like Multi-Agent Proximal
Policy Optimization (MAPPO) [Yu et al.|(2022) have advanced MARL by adapting PPO [Schulman
et al.| (2017) to multi-agent settings, their reliance on additional value functions introduces critical
limitations. Moreover, the decoupling of policy and value updates in actor-critic architecture often
leads to training instability, particularly when coordinating heterogeneous agents with functionally
distinct roles and potentially misaligned reward structures Zhong et al.|(2024b)), which poses severe
challenges to the dynamics of multi-agent evolution.



Under review as a conference paper at ICLR 2026

o —0—0—--.
; ‘ 7 (Initial)

| | |
| N T T T T S S S

(a) Naive sampling leads to an exponential explosion (b) Monte Carlo sampling based on an initial reasoning trajectory

Figure 1: Different sampling strategies for multi-agents. Green circles indicate nodes sampling
multiple actions via GRPO, while gray circles involve no additional sampling. Compared to naive
sampling in (a), (b) could avoid the exponential explosion of the multi-agent joint action space.

Recently, DeepSeek-R1 |Guo et al| (2025) introduced Group Relative Policy Optimization
(GRPO) |Shao et al.| (2024), a novel RL framework that improves LLM decision-making by replac-
ing critic models with population-based comparisons. GRPO generates multiple responses per input
and selects actions based on relative group advantages, significantly reducing computational cost.
While GRPO has shown strong performance in single or homogeneous agents |[Deng et al.| (2024));
Xia & Luo| (2025); [Lu et al.| (2025) and vision-language models [Huang et al.| (2025)), directly ap-
plying it to multi-agent systems remains challenging. As shown in Fig.|l|(a), the joint action space
grows exponentially with the number of agents and creates far more complex action spaces than
those in single-agent scenarios Hernandez-Leal et al.| (2020); Liu et al.| (2024b), requiring tailored
sampling and update strategies. Furthermore, updating all agents with diverse architectures and
dynamic reasoning paths simultaneously is also challenging and remains unsolved.

To address the above issues, we introduce JoyAgents-R1, a novel framework that accelerates multi-
agent evolution through Variance-Reduction Group Relative Policy Optimization (VR-GRPO). To
the best of our knowledge, this is the first work to apply GRPO in heterogeneous multi-agent joint
evolution, which will offer novel insights to the community. JoyAgents-R1 integrates efficient sam-
pling, update strategies, and adaptive memory evolution to enable faster convergence and improved
system performance. As shown in Fig. [I] (b), VR-GRPO utilizes Monte Carlo sampling based on
an initial reasoning trajectory, thereby avoiding the exponential explosion of the joint action space
while maintaining policy diversity. In addition, we follow the marginal benefit principle Kauder
(2015) to update agents associated with the top-K sampling groups exhibiting the largest variance
of intra-group rewards, maximizing joint utility at minimal computational cost. To facilitate multi-
agent training, we design a memory evolution mechanism harnessed from GRPO rewards as a “free
lunch” based on the insight that these rewards are inherently coupled to memory. Through direct uti-
lization of GRPO rewards to update reasoning-associated memory, the decision-making and memory
modules achieve synchronous optimization, effectively alleviating the difficulty of joint evolution.

To sum up, the main contributions of this work can be listed as follows:

* We introduce JoyAgents-R1, a novel joint evolution framework for multi-agent systems. To the
best of our knowledge, this is the first work to adapt GRPO for functionally distinct multi-agents,
enabling synergistic enhancement of their decision-making and memory capabilities.

* We propose VR-GRPO tailored for multi-agent training. It integrates a new Monte Carlo sam-
pling strategy to efficiently navigate the joint action space, and a selection strategy to guide joint
GRPO updates. With the marginal benefit principle, it maximizes the joint utility with minimal
computational overhead.

* We design a simple yet effective memory mechanism derived from GRPO rewards to facilitate the
multi-agent evolution. During LLM parameter updates, agents’ memories evolve synchronously
based on action rewards, significantly accelerating training and boosting reasoning performance.

* We conduct extensive experiments on multi-task Al assistant benchmarks, including both general
and domain-specific scenarios. JoyAgents-R1, built upon smaller open-source models, demon-
strates performance comparable to or exceeding that of significantly larger state-of-the-art LLMs,
such as DeepSeek-R1 and DeepSeek-V3.

Due to length limitations, the full review of related work is provided in Section|A.1
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Figure 2: The multi-agent architecture and a reasoning example of JoyAgents-R1.
2 METHOD

We introduce JoyAgents-R1, a novel joint evolution dynamics for multi-agent reinforcement learn-
ing. First, a hierarchical architecture is designed to integrate functionally distinct multi-agents for
collaborative tasks (Section @) Then, a variance-reduction GRPO including efficient Monte Carlo
sampling and marginal benefit-driven updating is constructed for joint training (Section 2.2). Fi-
nally, an adaptive memory evolution mechanism leveraging GRPO rewards as cost-free supervisory
signals is proposed for synchronized optimization of agent decision modules (Section[2.3).

2.1 THE ARCHITECTURE OF JOYAGENTS-R1

As illustrated in Fig. [2] the proposed JoyAgents-R1 adopts a hierarchical architecture, consisting of
a master agent and multiple sub-agents as follows:

» Master agent first analyzes the query, then orchestrates sub-agents (e.g., question answering) or
tools (e.g., intention recognition) in each step, and determines the final response to the user.

* Question-answering agent performs general and domain-specific (e.g., e-commerce) question
answering by retrieving and summarizing the recalled information from external knowledge bases.

* Function-call agents include general-purpose and domain-specific (e.g., e-commerce) agents.
These agents either execute the function call directly via memory-driven prompts or invoke a tool
retriever and make further selections from the recalled APIs.

* Math agent is specialized for solving mathematical problems.

Fig. 2] shows an example of a reasoning chain during inference. Upon receiving a query, the master
agent analyzes the user intent and assigns tasks to specialized sub-agents, which execute iterative
operations using contextual inputs transmitted by the master until completion. Then, the results are
relayed back to the master for subsequent planning cycles until termination. Each agent executes
in a ReAct manner |Yao et al.| (2023 and dynamically retrieves validated strategies from memory
to minimize redundant reasoning and enhance decision efficiency. On the other hand, since the
inherent complexity of actor-critic frameworks with critic models, JoyAgents-R1 employs GRPO
for policy optimization during training, which foregoes the value function and computes advantages
in a group-relative manner [Shao et al.| (2024). However, its direct application in multi-agent joint
evolution faces the following challenges:
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Figure 3: VR-GRPO for joint evolution in the Multi-Agent Systems (MAS) comprises three steps:
(1) Efficient Monte Carlo sampling to sequentially sample agent actions along an initial trajectory,
mitigating action space explosion. (2) Action reward calculation, incorporating accuracy, format,
and efficiency rewards based on trajectory output. (3) Marginal benefit-driven updating, which
prioritizes the top- K agents with the highest reward variance to accelerate policy evolution.

* Low sampling efficiency. Since multiple actions are sampled for each agent throughout the rea-
soning chain, the number of trajectories explodes exponentially as shown in Fig. [I]

¢ Inefficient parameter updates. Sequential policy updates for all agents in the chain will lead to
inefficient parameter optimization. Furthermore, decoupled policy adjustments struggle to coor-
dinate inter-agent dependencies for overall performance enhancement.

* Slow training convergence. Diverse architectures and outputs hinder policy synchronization,
making functionally distinct multi-agents prone to convergence difficulties during training.

2.2 VARIANCE-REDUCTION GROUP RELATIVE POLICY OPTIMIZATION

To address the above challenges, we propose Variance-Reduction Group Relative Policy Optimiza-
tion (VR-GRPO), tailored for multi-agent systems (Fig.3), including the following parts:

Efficient Monte Carlo sampling. For a multi-agent system (MAS) consisting of N agents {m; } ,,
each agent m; has an action space including G; possible actions. Therefore, when GRPO is directly
applied to MAS in a naive way, a reasoning trajectory of length k& will generate G ngive = G1 X
Gs - -+ X Gy sampling paths in an exponential explosion (Fig. [1] (a)). Different from that, VR-
GRPO performs efficient Monte Carlo sampling as shown in Fig. [3|(1). Specifically, given a query
q obtained from the dataset, VR-GRPO first produces an initial trajectory of length k, and then
sequentially samples (G; — 1) actions for each node m; in the trajectory. To facilitate comparative
calculations and address the exponential explosion problem, the reasoning path from the query to
the sampling node (e.g., m;) remains along the original trajectory. After m;, no more sampling is
conducted, and reasoning continues until the end. In this way, atotal of Gy = G14+ G2 - -+ Gy
trajectories are generated. This addition operation is much smaller than the multiplication one, which
effectively improves the sampling efficiency, especially for MAS with long trajectories.

Marginal benefit-driven updating. For the k groups of sampled trajectories, the model parameters
of corresponding agents {m; }¥_, are © = {6, }*_,. Given a query-answer pair (g, a), the old policy
To,0ld Of each agent m; samples a group of outputs {0, }JG:1 Then, the policy model 7y, is optimized
by maximizing the objective as follows:

Jarpro(0;) =Elg ~ P(Q),{0;}52, ~ 70,01a(0lq)]

G
1 <[ . ([ mo(05]q) . < 7o, (0]q) ) )) )
in [ — LA clip | ——2F— 1—¢e1+¢€]A;
G; JZ:; < (W@iold(0j|Q) e 70,01d(04]q) ’
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Algorithm 1 Dynamic Memory Updating from GRPO Rewards

Input: Planning chain P, Trajectory output O, Trajectory reward R r¢, Upper bound U, Lower bound L,
Set of n recalled memories Recallq given query ¢, Hyperparameters o and 3, Timestamp ¢
1: for each memory M; € Recall, do
2:  Compute similarity: sim; < Sim(O, O;) (Direct answer mode) or Sim(P, P;) (Tool call mode)
3 if Ro« > U then
4: Update timestamp: ¢; < t;
5 Compute time and reward differences: At <— —|t — ¢;| and As < s; - [Ram — U|
6
7
8

else if R o4 < L then
Compute time and reward differences: At «— —|t — ¢;| and As < —s; - |[Rm — LJ;
: Update timestamp: ¢; < ¢
9:  endif

10:  Update recalled memory scores: R aq; < R + @At + BAs
11: end for

12: for each memory M; ¢ Recall, do

13:  Compute time difference: At «— —|t — t;];

14:  Update timestamp: ¢; < t;

15:  Update recalled memory scores: Raq; < Rt + oAt
16: end for

where € is a hyper-parameter for the clipped objective. A; denotes the advantage of the j-th response
by normalizing the group-wise rewards with the average and standard deviation. To foster the dy-
namic strategy adaptation crucial for multi-agent coordination, the standard KL penalty is eliminated
for greater policy divergence, without the computational overhead of maintaining multiple reference
models. Therefore, the objective for updating all models straightforwardly is as follows:

Imuiti—-arro(©) ={Jerpro(6:) | i=1,--- k} 2

Furthermore, to accelerate the policy update and enable the perception of global states, VR-GRPO
implements a variance-reduction objective based on the marginal benefit principle Kauder| (2015):

Jvr-carpo(©) = {Jarpo(8;) | i € argtopK (Var(R;), K)} 3)

where R; = {r; }]Gzil is the reward set obtained after sampling GG; actions from m; to the end of
trajectory. argtopK () returns the index set of the first K nodes with the largest reward variance.
To this end, VR-GRPO prioritizes updating model parameters for the top-K agents exhibiting the
largest performance fluctuations among all reasoning trajectory participants. Compared to updat-
ing all agents sequentially as shown in Equation 2] this variance-aware selection strategy minimizes
computational overhead while maximizing the joint benefit, efficiently steering multi-agent param-
eter updates through GRPO rewards in a dynamic paradigm.

Action rewards. As shown in Fig.[3|(2), given the final answer a corresponding to ¢ as the ground
truth, the reward R (i.e., r; in the above text) of each agent action consists of three terms as follows:

R=Ra+Rr—Re “4)

* Accuracy reward (R 4). The accuracy reward is calculated end-to-end from the final trajectory an-
swer. The metrics are tailored for tasks’ distinct settings and output formats. For instance, seman-
tic similarity assesses alignment with ground truth for question answering and function calling,
while mathematical operations require exact-match validation against predefined solutions.

» Format reward (R ). Since each agent infers in the RaAct style, the model output is formatted
using HTML tags for thinking (i.e., < think > --- < /think > ) and tool calling (i.e.,
< tool_call > --- < /[tool_call > ). Format rewards could guide the model to generate
structured results, improving clarity and enhancing the reasoning ability of LLMs.

* Efficiency reward (R¢). For the j-th node in a trajectory of length k, its efficiency score is
computed as Rg = k% which imposes a penalty proportional to the distance of the node from
the trajectory endpoint, where the efficiency score is quantified by number of subsequent decision
steps required, showing how the current node’s plan impacts downstream computational cost.
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2.3  FREE LUNCH IN GRPO REWARDS FOR MEMORY EVOLUTION

For functionally distinct multi-agents, memory modules are introduced to accelerate model training
and reduce redundant reasoning. To improve the efficiency of joint evolution, the agent memory
is designed to undergo dynamic adaptation alongside LLMs’ updates during training. Different
from previous methods that require training dedicated models or utilizing LLMs to evolve memory,
JoyAgents-R1 creates a simple yet effective memory updating mechanism that leverages GRPO
rewards as a cost-free supervisory signal and mainly consists of the following three steps:

Adaptive reward thresholding. The memory of each agent along a trajectory is updated using a
unified reward without efficiency score (i.e., Ror = R4 + Rr), which ensures consistent update
criteria and enables independent memory modules to perceive the overall performance. For G /¢
trajectories sampled from query q, the mean p and standard deviation o of corresponding rewards
are first computed, then the 2.5% and 97.5% percentiles of the approximate normal distribution are
selected as the lower (L = p — 1.960) and upper (U = i + 1.960) bounds for memory updates.

Dynamic memory updating. The algorithm first determines whether to add a new memory based
on the upper bound U. Then, it dynamically updates the memories recalled by the query g. For other
memories, they are updated only according to time decay as shown in Algorithm T}

Memory overflow handling. To ensure memory quality and save storage space, the memory will
be deleted either when its final reward (R ;) falls below a predefined threshold D or when the
memory capacity exceeds upper bounds and the memory’s reward rank is relatively low.

To this end, the memory module is synergistically updated with model parameters through trajectory
rewards, accelerating training convergence and boosting reasoning performance.

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

In this work, we opt for the Qwen2.5 series model|Yang et al.|(2024) as the agent backbone to ensure
technical reproducibility. The experiment consists of two main stages. In the first stage, the base
models are fine-tuned with a learning rate of 5e-6 for 5 epochs. In the second stage, the multi-agent
system is trained via reinforcement learning at a learning rate of le-6 for 5 epochs. Specifically, each
agent from an initial trajectory is sampled GG; = 5 actions with a temperature of 1.2. Subsequently,
the top-5 nodes are selected for model updates. Similar to DeepSeek-R1 |Guo et al.| (2025), the
iterative RL with GRPO is executed for 2 iterations. Regarding memory evolution, the deletion
threshold is set to D = 0, with hyperparameters & = 8 = 1. The models are trained on 8 NVIDIA
H200 GPUs, and the best results are reported. More details are provided in the Appendix [A.2]

3.2 DATASETS AND SETUP

To verify the effectiveness of the proposed method, we construct a multi-task dataset for multi-agent
Al assistant scenarios, including general and e-commerce fields, as follows:

Supervised fine-tuning datasets. The input integrates diverse elements, such as user queries, re-
trieved memory, optional tools, historical dialogues, and tool-generated responses. The target com-
prises the reasoning processes, tool calling, or final answers. The master agent, responsible for dy-
namic reasoning and orchestrating four sub-agents, is trained on 13,000 samples: 10,000 individual
sub-agent calls (2,500 per agent) and 3,000 collaborative calls. The QA agent uses 1,000 samples,
including 700 real-world e-commerce cases and 300 open-domain instances from COIG|[Zhang et al.
(2023). Regarding function-calling, the e-commerce agent is trained on 12 common e-commerce
APIs with 2,000 samples, while the general-purpose agent uses 1,000 API calls from ToolBench|Qin
et al.|(2024), totaling 3,500 instances. For the math agent, we use GSM8K |Cobbe et al.[(2021)). More
dataset configurations are provided in the Appendix [A.5]

Reinforcement learning datasets. The RL dataset contains query-response pairs with ground-
truth annotations. The training set includes 100 samples per sub-agent task (i.e., math, e-
commerce/general function calls, QA) and 200 collaborative instances. The test set has 500 samples,
including 100 instances for each independent task and 100 cases for the collaborative task.
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Table 1: Accuracies (%) of multi-tasks with methods based on larger closed- or open-source models.
‘EFC’ and ‘GFC’ are e-commerce and general function calls. Under the open-source setting, bold is
the optimal and ‘_’ is the suboptimal value. Closed-source methods (x) are only used for reference.

Model Math QA EFC GFC Cooperation Average
Claude3.5-sonnet * 98.0 38.0 1.0 62.5 2.0 40.3
GPT-40 mini * 470 31.0 0.0 655 0.0 28.7
GPT-4o0 850 350 56.0 83.0 6.0 53.0
DeepSeek-R1 98.0 37.0 240 720 7.0 47.6
DeepSeek-V3 96.0 32.0 10.0 68.0 2.0 41.6
Qwen2.5-32B 720 38.0 3.0 720 2.0 374
Qwen2.5-14B 80.0 290 00 420 1.0 304
Multiagent Debate (14B with 3 roles) 95,0 33.0 00 40.6 1.0 339
Qwen2.5-3B (Single agent with RL) 560 9.0 0.0 585 1.0 249
Qwen2.5-7B (Single agent with RL) 8§1.0 110 00 672 1.0 32.0
Qwen2.5-14B (Single agent with RL) 82.0 270 20 636 1.0 35.1
JoyAgents-SFT (7B Master + 3B Sub agents) 65.0 13.0 42.0 73.0 3.0 39.2
JoyAgents-R1 (3B Master + 3B Sub agents) 68.0 220 48.0 76.0 6.0 44.0
JoyAgents-R1 (7B Master + 3B Sub agents) 75.0 350 460 73.1 9.0 47.6

3.3 COMPARATIVE EXPERIMENTS

Comparison rules. Comparisons on the multi-task benchmark and more evaluations on the publicly
available ToolBench dataset are conducted. Detailed settings are provided in the Appendix [A.3]

Comparisons on the multi-task benchmark. Multiple comparisons demonstrate the effective-
ness of our approach: (1) While state-of-the-art closed-source models like GPT-40 exhibit the
highest overall performance, our JoyAgents-R1 (7B Master + 3B Sub agents) achieves a competi-
tive average accuracy of 47.6%, matching DeepSeek-R1 and significantly surpassing DeepSeek-V3
(41.6%). Notably, our method excels in the specialized E-commerce Function Call (EFC) task,
achieving scores up to 48.0%, which are substantially higher than those of DeepSeek-R1 (24.0%)
and DeepSeek-V3 (10.0%). This highlights the effectiveness of our domain-specific optimization
on a compact architecture, which can outperform larger generalist models in targeted domains. All
prompts used here are presented in the Appendix[A.6] (2) When compared with open-source mod-
els, JoyAgents-R1 consistently surpasses the entire Qwen?2.5 series on the average score, including
the larger 32B variant, underscoring its superior parameter efficiency. Due to the limited size of
our math and QA agents (3B), competing with larger models is challenging. However, through
joint optimization, our approach (75% and 35%) significantly outperforms the SFT trained 7B+3B
JoyAgents variant (65% and 13%). (3) We also compare with Multiagent Debate |Du et al.| (2024)),
which is implemented based on Qwen2.5-14B with three roles. Even so, our method (47.6%) sig-
nificantly outperforms its performance (33.9%), further showing the efficiency and effectiveness of
our proposed framework. (4) In addition, we trained individual Qwen2.5-3B/7B/14B models using
reinforcement learning. For most metrics, performance improved with increasing model scale, with
the exception of GFC, where the 14B model slightly underperformed the 7B variant. Nevertheless,
the fine-tuned 14B model still surpassed the original 14B baseline. Under RL settings with similar
model parameters, our JoyAgents-R1 (3B Master + 4 x 3B Subagents, 44.0%) is significantly better
than a single Qwen2.5-14B with RL (35.1%) on average, verifying the superiority of multi-agent
reinforcement learning. (5) Finally, our 7B master-base method overall outperforms the 3B one,
demonstrating the approach’s scalability. Increasing only the master agent’s size improves summa-
rization and planning, but does not guarantee performance improvements for all sub-agents.

More comparisons on the Toolbench dataset. Table 2] shows consistent results across in-domain
and out-of-domain settings. Under in-domain, JoyAgents-R1 outperforms both DeepSeek-R1 and
DeepSeek-V3 in Plan_ACC, Act_EM, hard_F1, F1, and Average scores with notable improvements.
For instance, its average score (51.2%) is much larger than DeepSeek-R1’s (47.1%) and DeepSeek-
V3’s (43.1%). Remarkably, JoyAgents-R1 achieves these results with just 3B parameters, while
DeepSeek models use over 37B parameters. Compared to larger Qwen2.5 models, JoyAgents-R1
demonstrates that smaller models can achieve competitive performance through multi-agent training.
Additionally, it surpasses GPT-40 in Hard_F1 and F1 scores, both in-domain (31.5% and 39.0%) and
out-of-domain (37.0% and 48.9%). In comparison with baseline methods, enabling the think process
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Table 2: Comparative results (%) on the Toolbench dataset. Bold represents the optimal score, and
‘_” represents the suboptimal value. ‘JoyAgents-SFT-no’ means training without a thinking process.

Method Plan. ACC ActEM Easy F1 Hard F1 F1 No_Hallu Avg
In the domain
GPT-40 82.5 57.0 31.1 222 373 99.9 55.0
DeepSeek-R1 72.3 45.2 18.7 18.2 28.5 100.0 47.1
DeepSeek-V3 68.4 38.0 14.9 14.3 23.6 99.4 43.1
Qwen2.5-32B 72.7 43.7 15.1 21.0 28.8 99.3 46.8
Qwen2.5-14B 422 15.0 3.7 7.1 10.1 100.0 29.7
JoyAgents-SFT-no (7B+3B) 55.7 33.0 10.1 20.5 26.5 95.7 40.3
JoyAgents-SFT (7B+3B) 73.3 47.0 16.3 29.6 36.8 94.5 49.6
JoyAgents-R1 (3B+3B) 73.5 48.5 17.6 31.5 39.0 96.7 51.2
Out of the domain
GPT-40 83.9 63.2 42.9 223 441 99.8 59.3
DeepSeek-R1 74.6 52.0 28.3 20.4 35.6 99.8 51.8
DeepSeek-V3 71.2 56.1 32.0 21.9 38.2 100.0 542
Qwen2.5-32B 28.6 0.0 0.0 0.0 0.0 100.0 214
Qwen2.5-14B 43.9 16.6 7.2 6.2 12.3 99.9 31.0
JoyAgents-SFT-no (7B+3B) 59.7 41.1 19.7 259 36.5 97.3 46.7
JoyAgents-SFT (7B+3B) 72.3 57.0 323 36.1 48.7 96.3 57.1
JoyAgents-R1 (3B+3B) 73.4 57.5 31.1 37.0 48.9 96.9 57.5

Table 3: Ablation study for multi-agent reasoning on multiple tasks. From left to right, whether to
train with RL (vs. SFT), whether to generate the think process, whether to update top- K models (vs.
update all models), whether to use efficiency rewards, and whether to integrate memory modules.
‘Update Steps’ corresponds to the best-performing model. ‘Rounds’ are reasoning rounds.

Method RL Think Top-K  Efficiency Memory Update Steps] Accuracy? Rounds]

M X X - - - - 17.2 54
M, X v - - - - 35.0 7.1
M; v v X v v 1380 40.0 7.4
M, v Vv v X 4 1750 424 8.1
M v Vv v v X 2464 40.0 7.7
Ms v v v v v 1112 44.0 7.8

in JoyAgents-SFT—no(think improves the average score from 40.3% to 49.6%, with a further 3.2%
relative gain through multi-agent reinforcement learning. These results highlight the framework’s
strengths in advancing agent planning and API calling through coordinated policy adaptation.

3.4 ABLATION STUDY

Table 3]illustrates the ablation results based on Qwen2.5-3B models for multi-agents as follows:

Effectiveness of generating the think process. M separately trains each agent’s base model via
SFT, yielding the lowest accuracy (17.2%). Compared to M, M, further incorporates think process
generation and significantly improves accuracy to 35.0%, demonstrating the indispensable role of
explicit reasoning in agent decision-making.

Effectiveness of training with reinforcement learning. Different from M,, Mg integrates GRPO
for the joint evolution of multi-agents and enhances the accuracy by 25.7% relatively. Furthermore,
the results from M3 to Mg using RL are much better than Mo, indicating the effectiveness of global
perception and preference alignment in joint training with reinforcement learning.

"Unless specified otherwise, the experimental results for JoyAgents-SFT are based on implementations that
integrate training with the thinking process by default.
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Table 4: Ablation results (%) in updating top-K' Taple 5: Ablation results (%) on the number of

models. ‘Avg’ is the average score. sub-agents. ‘Coop’ is the cooperation task.
Method Math QA EFC GFC Coop Avg Method Q A EFC Math C oop
Top-1 670 160 480 750 40 420
Top2 570 120 410 750 60 382 Master + 2sub  26.0  55.0 - -
Top-All 640 170 440 720 3.0 400 Master + 3sub 250 51.0 69.0 5.0
Top-5 680 220 480 760 60  44.0 Master +4sub  22.0 430 630 6.0

Effectiveness of utilizing efficiency rewards. Since M, excludes R¢ in Eq. 4] during training, it
exhibits suboptimal accuracy (42.4%) and a larger number of training steps (1750), with a max-
imum reasoning round of 8.1, demonstrating that efficiency constraints are critical for balancing
performance and computational cost. In contrast, M; consumes the fewest inference rounds as in-
sufficient reasoning capacity, which forces premature termination from ineffective decision-making.

Effectiveness of updating top-X models. M3 sequentially updates all models (Eq. [2), while Mg
improves accuracy by 10% relatively through targeted updates of top-K nodes with maximal reward
fluctuations and requires the least number of update steps (1112). Inspired by marginal benefit, Mg
prioritizes models requiring the most optimization to achieve the maximum benefit with the min-
imum cost, thereby improving performance and accelerating training convergence. Table 4] shows
that the optimal top-k is 5, with further analysis in Appendix[A.4]

Ablation on the number of sub-agents. Table [5]compares different numbers of sub-agents. For
non-collaborative tasks, fewer sub-agents are more efficient due to reduced complexity and interfer-
ence. For collaborative tasks, the full set of 4 sub-agents outperforms the others, benefiting from
a broader range of data and interactions, highlighting the effectiveness of our multi-agent system
design. More discussion is available in the Appendix [A.4]

Effectiveness of integrating memory mod-

ules. M5 disables memories across all agents, Master—3b without Hemory
relying solely on decision modules. This leads Waster=3b with Memory
to a relative decrease of 10.0% in accuracy :
compared to Mg and a maximum update steps
(2464), highlighting the crucial role of mem-
ory modules. In Fig. [l JoyAgents-R1 with |
memory exhibits greater stability and reaches [
peak performance faster during training. The

method using memory reaches its peak at step

140, while the one without memory reaches at

step 168, showing that our memory module en- Figure 4: JoyAgents-R1 with memory achieves
hances convergence speed. More case analyses higher reward peaks faster during training.

are provided in the Appendix

Mean Reward

ATrain'iryig Stéb

4 CONCLUSION AND DISCUSSION

Conclusion. This paper introduces JoyAgents-R1, a framework that accelerates multi-agent evo-
Iution dynamics through VR-GRPO. By integrating initial trajectory-based Monte Carlo sampling
with marginal benefit-driven evolution strategies, we enhance sampling efficiency and training con-
vergency across functionally distinct multi-agents. The adaptive memory evolution mechanism
leveraging GRPO rewards further reduces redundant reasoning and accelerates convergence. Com-
parative experiments demonstrate that JoyAgents-R1, built on smaller open-source models, sur-
passes DeepSeek-V3 by 6%. Extensive ablation studies confirm that VR-GRPO and memory mod-
ules effectively accelerate model training and improve performance.

Limitations. Due to computational constraints, the proposed method currently focuses on multi-
agent systems based on small open-source models. In addition, existing training frameworks lack
compatibility with heterogeneous multi-agent joint training. Future work will focus on scaling up
LLMs to achieve performance gains and cross-domain robustness, while engineering a dedicated
framework optimized for heterogeneous multi-agent co-evolution with computational efficiency.
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A APPENDIX

This supplementary material details the proposed method and presents additional experimental re-
sults. Section [A.T]is related work. Section [A.2] presents more implementation details for experi-
ments. Section [A.3|reports extra comparative results, and Section [A.4]introduces more analysis for
ablation studies. Section[A.5|describes dataset configurations. Section|A.6|includes all prompts used
in baselines and our multi-agent architecture. Section[A.7]provides extended case analyses. Finally,
Section [A.8]introduces the usage of LLMs. The code is included in JoyAgents_R1_Code.zip.

A.1 RELATED WORK

A.1.1 LLM-BASED MULTI-AGENT PLANNING

Recent breakthroughs in LLMs have transformed the landscape of agent planning [Huang et al.
(2024). Autonomous agents can implement iterative self-reflection mechanisms, dynamically in-
tegrate external information via structured prompts Yao et al.| (2023); [Shinn et al| (2023); Zhou
et al.| (2024); Lin et al.| (2023); (Q1ao et al.| (2024), and perceive environments to plan tasks through
sophisticated reasoning and decision-making processes|Ghallab et al.|(2004). Compared with single-
agent approaches that struggle with inefficiency and environmental adaptability, multi-agent systems
achieve robust performance through decentralized decision-making and collaborative mechanisms,
enabling the coordination of agents with distinct capabilities and objectives to pursue shared goals
in fields like robotics [Kannan et al.|(2024), tool calling [Shen et al.|(2024), and Al assistants Fu et al.
(2024). However, few multi-agent systems can achieve multi-domain tasks. Moreover, open-source
LLMs |Grattafiori et al.| (2024)); |Yang et al.| (2024)) lag significantly behind state-of-the-art models,
which are either closed-source with opaque mechanisms |Achiam et al.| (2023)); |Anthropic| (2024) or
overly complex for multi-agent deployment|Guo et al.[(2025). Recent work has modeled agents as
computational graphs, such as GPTSwarm [Zhuge et al.| (2024)), which optimizes orchestration via
prompt refinement and graph connectivity, while AFLOW Zhang et al.|(2024b) automates workflow
generation with Monte Carlo Tree Search. In addition, Multiagent Debate |Du et al.[ (2024} and its
variants prompt multiple LLMs to iterate the debate to improve reasoning. This work introduces a
hierarchical multi-agent architecture to interpret user queries and perform dynamic planning. Based
on the smaller open-source LLMs, our framework implements diverse capabilities, including ques-
tion answering, mathematical computation, and tool calling, revealing the mechanisms that drive
effective heterogeneous multi-agent collaboration in resource-constrained environments.

A.1.2 MULTI-AGENT REINFORCEMENT LEARNING

MARL has witnessed substantial advancements, rendering it an ideal approach for tackling complex
and challenging tasks |Yuan et al|(2025). This work focuses on cooperative MARL tasks where
various agents share a common goal, which has been successfully applied in many fields such as
game playing Wang et al.| (2021); 'Yu et al.| (2022), task allocation |Igbal et al.[ (2022), skill discov-
ery [Yang et al.| (2023), and circuit design |Wang et al.| (2024). Typical MARL methods employ an
actor-critic framework, where actors generate actions based on observations, and critics evaluate
their long-term efficacy |Sun et al. (2024). There are policy-based methods like MADDPG |Lowe
et al.| (2017) and MAPPO |Yu et al.| (2022) and value-based ones like VDN |Sunehag et al.|(2018)) and
QMIX Rashid et al.|(2020). Although recent studies have explored LLM-based MARL frameworks
for problem-solving |Chen et al.| (2023); Hong et al.| (2024) and embodied intelligence Mandi et al.
(2024); |Zhang et al.| (2024a); Kannan et al.| (2024)), these approaches primarily focus on enhanc-
ing inter-agent communication and cooperative decision-making, with limited emphasis on the joint
evolution of multi-agent systems. In addition, many methods adopt parameter sharing across agents,
which restricts their applicability to homogeneous scenarios |[Deng et al.| (2024); |Grammel et al.
(2020); (Christianos et al.|(2021) and fails to address heterogeneous systems [Zhong et al.| (2024b).
Recently, GRPO Shao et al.[(2024)) has eliminated the value function and relies on observed rewards,
which is suitable for joint training of heterogeneous multi-agents Ke et al.|(2025)). Based on GRPO,
MLPO [Estornell et al.|(2025) trains the leader in multi-agent systems, but there are few attempts to
train all agents jointly. Since the dynamic and changeable reasoning paths in multi-agents, direct
sampling based on GRPO will lead to an exponential explosion. Therefore, we propose VR-GRPO
that combines efficient Monte Carlo sampling with marginal benefit optimization to guide reasoning
path sampling and agent updating.
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Table 6: Training settings for supervised fine-tuning.

Hyperparameter \ Value
learning_rate 5e-6
max_length 16384
num-_train_epochs 5
max_grad_norm 1
weight_decay 0.01
warmup_ratio 0.03
Ir_scheduler_type cosine
optim adamw _torch
gradient_accumulation_steps 4
dataloader_num_workers 8
per_device_train_batch_size 1

Table 7: Training settings for reinforcement learning.

Hyperparameter \ Value
learning_rate le-6
max_length 16384
num_train_epochs 5
max_grad_norm 1
adam_epsilon le-5
num-groups 5
topk_groups 5
kl_coef 0
grpo_epoch 2
policy _clip_eps 0.2
temperature 1.2
per_device_train_batch_size 1

A.1.3 LLM-BASED AGENT MEMORY

Agent memory can be divided into RAG-based and embodied categories Huang et al|(2024). The
former is typically stored in additional storage, while the latter embeds memories into model pa-
rameters by fine-tuning LLMs. In this work, we focus on RAG-based long-term memory mecha-
nisms. Recent works have explored diverse strategies |[Packer et al.| (2023); [Lu et al.| (2023)); Wang
et al.[ (2023)); [Huang et al.|(2023)). Methods such as MoT |Li & Qiuf (2023)), TiM [Liu et al.| (2023)),
and RAP |[Kagaya et al.| (2024) aim to improve LLM reasoning and planning by leveraging mem-
ories after selection or thinking. MemoryBank |Zhong et al.| (2024a)) draws inspiration from the
Ebbinghaus forgetting curve [Ebbinghaus| (2013) to design a selective information retention mecha-
nism. HELPER [Sarch et al.| (2023)), ExpeL [Zhao et al.|(2024), RET-LLM Modarressi et al.| (2024),
Synapse|Zheng et al.|(2024), and A-mem Xu et al.|(2025) adopt different approaches for knowledge
aggregation, storage, and retrieval, enhancing LLMs’ adaptability to novel tasks. Moreover, there
are several memory mechanisms tailored for multi-agent systems [Zhang et al.| (2024c), exploring
the memory synchronization (Chen et al.| (2024), communication Mandi et al.| (2024)), and the infor-
mation asymmetry [Light et al.[(2023) among agents. Nevertheless, existing memory modules often
struggle to keep pace with LLM updates, thereby limiting system efficacy. In contrast, we present
the joint evolution dynamics where agent memory and decision-making modules evolve synergisti-
cally with LLMs optimization. This mechanism leverages GRPO rewards as cost-free supervisory
signals, eliminating the need for dedicated model training while enhancing convergence efficiency.

A.2 IMPLEMENTATION DETAILS

To improve the reproducibility of the experiments, more training settings for supervised fine-tuning
(SFT) and reinforcement learning (RL) are provided in Table[6|and Table[7] respectively. To compare
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the SFT and RL methods fairly, the former is trained for a total of 10 epochs, while the latter
is trained with SFT for 5 epochs followed by RL for 5 epochs. For RL training, the models are
deployed on the TRL jvon Werra et al.|(2020) framework on 2 NVIDIA H200 GPUs for accelerated
inference via vLLM Kwon et al.[(2023)) and real-time weight updates, while allocating 6 GPUs for
joint training.

A.3 COMPARATIVE EXPERIMENTS

Evaluation metrics The metrics are categorized into accuracy and efficiency. For accuracy, the
calculations vary across task types. In question-answering tasks, accuracy is measured by the se-
mantic similarity between the predicted and ground truth answers, with a threshold of 0.6. For math-
ematical problems, accuracy is binary (0 or 1) based on exact numerical matching. For function-call
tasks, a response with correct function names is scored 1, otherwise 0. Regarding efficiency, it
is quantified by the average number of steps required to complete a task, reflecting the reasoning
efficiency of the method.

Experimental setup for the multi-task benchmark. To verify the effectiveness of the proposed
method, a comprehensive comparison is conducted with agents based on closed-source and open-
source models. All baselines run under a consistent set of prompts, and each model is assessed as a
single agent through React-based multi-turn interactions. For the proposed multi-agent method, the
model parameters activated for each query typically range from 6B (master plus a single sub-agent)
to a maximum of 15B (master plus 4 sub-agents).

Experimental setup for the Multiagent Debate. We have implemented and compared the Mul-
tiagent Debate with our method. We opt for Qwen2.5-14B as the backbone and expand it into three
with different roles. As stated on Lines 140-143 of the supplementary material, modifications are
made based on the original system prompt for the single agent as follows:

* The first role is changed as: You are a customer service expert of an e-commerce platform, spe-
cializing in answering user questions based on retrieved e-commerce knowledge.

* The second role is changed as: ..., specializing in selecting appropriate tools to solve user prob-
lems based on user questions.

* The third role retains its original role as: ..., specializing in selecting appropriate tools or retriev-
ing relevant e-commerce knowledge to solve user problems. Moreover, add the rule at the end
as: Here are two responses from agents regarding the current issue or a call to a specific tool.
Please analyze the correctness of these responses and, based on your understanding, select one
or generate a new action. agent 1: {agent_1_response}, agent 2: {agent_2_response}.

* In each round of reaction, modify the original single LLM response generation to: use the first
two roles to generate two responses, then pass these two responses to the third role to obtain the
final response, which serves as the think and action for that round.

Experimental setup for the Toolbench dataset. To validate the effectiveness of the proposed
JoyAgents-R1, more comparative experiments are conducted on ToolBench |Qin et al.| (2024). The
benchmark involves integrating API calls to accomplish tasks, where the agent should select the
correct API and compose necessary API requests accurately. In this section, the test set is divided
into in- and out-of-domain based on whether the tools used in the test instances have been seen
during training. This setup enables us to evaluate both the learning and generalization capabilities
of the method. Moreover, the proposed method is compared with two baseline approaches, namely
Single-think-SFT and Single-nothink-SFT. They are based on the Qwen2.5-3B model and fine-tuned
on the toolbench training set. The former outputs the reasoning process and final results, while the
latter directly generates the final response without the reasoning process. We also evaluate the
performance of the larger open- and closed-source LLMs|Yang et al. (2024); |Guo et al.| (2025); [Liu
et al.|(20244a);|Achiam et al.|(2023) are also used to build agents for comparisons without fine-tuning.

More metrics on the Toolbench dataset. To comprehensively compare the model performance,
a variety of evaluation indicators are used as follows:

* Plan_ACC: The accuracy of the agent’s planning decisions at each step of the tool calling.
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Table 8: Accuracies (%) of multi-tasks with agents based on larger SOTA closed-source or open-
source models. ‘FC’ is the function call.

Model Math QA E-commerce FC  General FC  Cooperation  Average
GPT-40 84.3 1.2 35.0 2.0 50.3 £4.9 76.2 +o.1 5.0 £1.0 50.2 £1.3
DeepSeek-R1 98.0+1.0 34.7 3.2 19.3 +4.2 72.4 %18 5.3 £3.2 45.9 1.5
DeepSeek-V3 95.7 415 323 %55 6.3 +3.2 77.2 +1.3 3.0 +35 42.9 2.3
Qwen2.5-32B 71.0£1.7 34.2 436 3.0%1.0 68.9 0.5 1.7 0.6 35.8 0.9
Qwen2.5-14B 80.0 £4.0 30.3 %15 0.3 +o.6 43.0 £1.1 2.0 0.0 31.2+1.2
JoyAgents-SFT (7B+3B)  65.0 1.0 19.3 £5.7 39.3 £2.1 63.5 1.1 5.0 £1.0 38.4 fo0.9
JoyAgents-R1 (3B+3B) 70.0 £1.7  20.7 £2.3 48.3 +o.6 73.9 0.7 7.0 £1.7 44.0 +o.8

* Act_EM: The proportion of predicted API names that exactly match the real API names.

Easy_F1: The predicted argument F1 score when the ground truth argument is empty.

Hard_F1: The predicted argument F1 score when the ground truth argument is not empty.

* F1: The predicted argument F1 score across all conditions.

No_Hallu: The frequency of predicted API names that do not have hallucinations.
* Avg: The average value of the above indicators.

More comparative results on the multi-task benchmark. We have conducted 5 runs on Table
to calculate the mean and error bars as shown in Table 8] For the mean value, the proposed method
still shows superior performance compared with the open source model-based methods similar to
Table|1|in the main text. JoyAgents-R1 (44.0%) still has better average performance than the larger
DeepSeek-V3 (42.9%) and achieves the best performance in the collaborative task. For the standard
deviation, JoyAgents-R1 has the smallest fluctuation in average accuracy, with only 0.82. These
results further verify the effectiveness of the proposed method.

A.4 MORE ANALYSIS FOR ABLATION STUDY

Ablation on updating top-/X models. Table [ presents the performance outcomes of updating
varying numbers of nodes along a trajectory. The empirical results reveal that updating the top-5
nodes yields optimal performance, outperforming alternative strategies. Specifically, compared to
updating only the top-1 node, the top-5 update achieves a 37.5% improvement on the QA dataset
and a 50% gain in collaborative tasks. Relative to updating top-2 nodes, the top-5 approach delivers
a 19.3% boost on the math dataset and an 83.3% enhancement on QA tasks. compared to updating
all nodes, updating the top-5 nodes results in a 29.4% improvement on QA and a 100% increase in
collaborative task success rates. These findings demonstrate that merely updating the top-1 or top-2
nodes is insufficient for holistic system optimization, as such localized adjustments fail to address
systemic weaknesses. Conversely, updating all nodes lacks global awareness and focus, leading to
redundant computations. Our top-5 strategy, however, employs global trajectory analysis to identify
and update the weakest nodes, i.e., those most limiting system performance, thereby maximizing
efficiency and efficacy. This selective updating mechanism ensures that optimization efforts are
concentrated on critical bottlenecks, yielding superior overall performance.

Ablation on the number of sub-agents. Table [3] presents the performance of the master agent
when integrated with varying numbers of sub-agents across different datasets. Specifically, the
configurations include:

* 2 sub-agents: QA agent and e-commerce function-call agent.

* 3 sub-agents: The aforementioned two plus the math agent, with the addition of collabora-
tive tasks.

The results indicate that for individual tasks, configurations with fewer sub-agents (2 or 3) out-
perform the full set of sub-agents. For instance, on the QA dataset, the 2-sub-agent setup yields
an 18.2% improvement, while the 3-sub-agent setup achieves a 13.6% gain. Similarly, on the e-
commerce function-call dataset, the 2-sub-agent and 3-sub-agent configurations exhibit 14.6% and
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6.2% improvements, respectively. These findings align with our intuition that fewer sub-agents are
more effective for non-collaborative tasks, due to reduced complexity and interference. Conversely,
in collaborative tasks, the full set of 4 sub-agents demonstrates superior performance, attributed to
their exposure to a broader range of data and interactions. This outcome underscores the efficacy
of our multi-agent system design, which is specifically tailored to address collaborative challenges.
The enhanced performance in collaborative scenarios validates the structural design of our system,
highlighting the benefits of a comprehensive multi-agent framework in handling complicated and
interdependent tasks.

A.5 DATASETS AND SETUP

The datasets used in this paper can be divided into two categories: SFT and RL. Since the RL stage
is trained end-to-end, this type of data only contains the initial query and the final response. More
details of the SFT dataset used for each agent are introduced as follows:

Master agent datasets. As shown in Table[J] the case for the master agent includes user queries, op-
tional tools, invoked agents, retrieved memories, historical dialogues, and tool-generated responses.
In addition, the reasoning processes (i.e., < think > --- < /think > ), tool calling (ie.,
< tool_call > --- < [tool_call >), and final answers are provided in the dataset.

Function-call agent datasets. Regarding function-calling, the e-commerce agent incorporates 12
prevalent APIs of e-commerce platforms, while the general agent draws from 1,000 diverse function
calls from ToolBench Qin et al.|(2024). Table [_115] illustrates a case for the e-commerce function-call
agent, which is called the ‘rody agent’ in our multi-agent system for easy reference in code and
expressions.

Question-answering agent datasets. The question-answering agent includes ‘tool_retrievals’ and
‘tool_summary’ as demonstrated in Table [IT} Its data covers open-domain [Zhang et al| (2023) and
e-commerce scenarios. In this work, the QA agent has an alias called ‘expert agent’ to show its
professionalism.

Math agent datasets. The dataset for the math agent is constructed from GSMS8K |Cobbe et al.
(2021). The last part of Table[9] shows the thinking process and answers of math agents.

Table 9: A case of the master agent in a collaborative task.

Case #1 of the master agent in a collaborative task

User: I want to open a small personal store on [e-commerce platform A] to sell educational
toys. How much deposit do I need to pay? If I open two stores, how much deposit will I need
to pay in total?

{Role} from Template #1 in SectionlA_.6|

Specialized Retrieval Tools/Memory:

< tools >

[{’name”: “math_agent”, “description”: "When the user puts forward a clear
request to give a solution or answer to a specific mathematical problem, the
agent needs to be called. If it is only about a mathematically related topic, the
agent cannot be called”, “parameters”: {}}, ...]

< [tools >

< memory >

[{”ID”: 1620, ”Query”: ” Calculate how many times Danny folded his picnic
blankets given the initial and final area.”, ”Plan”: [’math_agent”], ”Answer”:
”How many square feet are each blanket? ** The total area of each blanket is
8%8=;8*8=04;64. How many square feet are the blankets? ** Their total area
is 192 square feet because 3 x 64 = |;{3*64=192;;192. How many times did
he fold them? ** He folded them 4 times because 192 / 48 = {;192/48=4; ;4.
it 47, " Time”: 72025-03-26 11:41:13”, ”Score™: 6} ...]

< /memory >

{Problem Resolution Framework} from Template #1 in Section|[A.6|

System
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Assistant

< tool_call >

“name”: “rody_agent”, “arguments”: {”intention”: [“Query the deposit re-
quired for opening a small personal store on [e-commerce platform A] to sell
educational toys.”]}}

Tool

< /tool_call >

Pass calling {”api_name”: “check_shop_expenses”, ”parameter”: {”keyword”:
["Educational Toys”], “shop_body”: [“Individual”], “’shop_type”: [’small
shops”]}}, the API call was successful.

Results are as follows:

1. Specific amount of margin per year: 6000 yuan.

2. Transaction service fee rate per transaction: 0.25%.

3. Technical service fee rate per transaction: 0.41%.

Assistant

< tool_call >

“name”: “tool_retrievals”, “arguments”: {”intention”: [“Calculate the total
deposit required for opening two small personal stores on [e-commerce plat-
form A] to sell educational toys, based on the queried deposit information of
6000 yuan per store.”]} }
< /tool call >

Tool

[{"name”: “expert_agent”, “description”: “When users chat, greet, abuse,
make jokes, discuss music/games/current politics/military/entertainment/food
and other daily topics, or consult the rules of the e-commerce platform, the
agent needs to be invoked ”, ”parameters”: {}},

“name”: “math_agent”, “description”: “When the user puts forward a clear
request to give a solution or answer to a specific mathematical problem, the
agent needs to be called. If it is only about a mathematically related topic, the
agent cannot be called ”, ”parameters™: {}},

“name”: “toolbench_agent”, ”description”: “function-0: This is the subfunc-
tion for tool “football_xg_statistics” and its function is ”seasons list by tour-
namentid for football xg statistics”, you can use this tool. The description
of this function is: Football (soccer) xG statistics. We provide statistics for
more than 80 leagues. There are more than 90,000 games and 2 million shots
in our database. The method is used to get a list of seasons by the league
ID; function-1: This is the subfunction for the tool “mailslurp_email_testing”
and its function is ”getbouncedrecipients for mailslurp email testing”, you can
use this tool. The description of this function is: Email sandbox testing API.
Bounced recipients are email addresses that you have sent emails to that did
not accept the email. Once a recipient is bounced, you cannot send emails to
that address.” }]

Assistant

< tool_call >

“name”: “math_agent”, “arguments”: {”intention”: [’Calculate the total de-
posit required for opening two small personal stores on [e-commerce platform
A] to sell educational toys, based on the queried deposit information of 6000
yuan per store.”]} }

< /tool call >

Tool

The user wants to open a small personal store on [e-commerce platform A] to
sell educational toys. The deposit required for one store is 6000 yuan per year.
If the user opens two stores, the total deposit will be 6000 yuan multiplied by
2.

12000
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Assistant
Final

< think >

The user’s issue is to calculate the total deposit required for opening two small
personal stores on [e-commerce platform A] to sell educational toys. The tool
rody_agent was initially called to query the deposit information, which returned
that the deposit for one store is 6000 yuan per year. The user then asked for
the total deposit for two stores. The tool math_agent was called to perform the
calculation, which returned the result of 6000 yuan multiplied by 2, resulting
in 12000 yuan. Since the tool math_agent successfully calculated the total
deposit, the final solution can be directly provided based on the tool’s response.
Therefore, the final solution is 12000,

< [think >

12000
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Table 10: A case of the function-call agent in an e-commerce task.

Case #2 of the function-call agent in an e-commerce function-call task

User: Hello, I found that some orders may have the label of door-to-door replacement, what
information should be provided in this case?

System

{Role} from Template #2 in Section|A_.6|

Specialized Retrieval Tools/Memory:

< tools >

[{"name”: “search_payment_method”, description”: “Inquire the settlement
method of the user’s shop, such as B2B settlement, C2B settlement, bank card

99 93

settlement, online banking wallet settlement.”,’parameters”: {}}, {"name”:
search_order_code”, “description”: ”...”, ’parameters”™: {...}}, ...]

< [tools >

< memory >

[{"ID”: ”1254”, ”Query”: “Hello, I found that some orders may have
the label of door-to-door replacement, what information should be pro-
vided in this case?”, ”Plan”: [], "Answer”: “Pass calling {’api_name’:
"search_order_code’, *parameter’: {’order_service_mix_tag’: [’door-to-door re-
placement’], ’search_keys’: [’order label’]}}, the API call was successful.
Results are as follows:

We have retrieved the relevant order information for you.”, ”Time”: 72025-04-
29 02:20:30”, ”Score™: 10}, ...]

< /memory >

{Problem Resolution Framework} from Template #2 in Section ’R‘

Assistant

< tool_call >
“name”:”search_order_code”, “arguments”:{order_service_mix_tag’:
[’door-to-door replacement”], ”search_keys”: [“order label”]}}

< /tool_call >

Tool

Pass calling {”api-name”: ”search_order_code”, ’parame-
ter”:{”order_service_mix_tag”: [’door-to-door replacement”], “search_keys™:
[“order label”]}}, the API call was successful.

Results are as follows:

We have retrieved the relevant order information for you.

Assistant
Final

< think >

The Input issue is about retrieving information for orders with the la-
bel “door-to-door replacement.” The Output is the result of calling the
“search_order_code” tool with the parameters ‘{”order_service_mix_tag”:
[“door-to-door replacement”], ”search_keys”: [“order label”]}’. The Output
indicates that the API call was successful and relevant order information has
been retrieved. This matches the reference information in jmemory,;, where a
similar query was resolved by calling the same tool with the same parameters.
Therefore, the Output is directly derived from the reference information, and
the reasoning process is consistent with the provided solution.

< [think >
Pass calling {”api_name”: ”search_order_code”, “parameter”:
{”order_service_mix_tag”:  [’door-to-door replacement”], “search _keys’:

[“order label”]}}, the API call was successful.
Results are as follows: We have retrieved the relevant order information for
you.
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Table 11: A case of the question-answering agent in a QA task.

Case #3 of the question-answering agent in a QA task

User: Where to open the LCL service?

{Role} from Template #4 in SectionM

Specialized Retrieval Tools/Memory:

< tools >

[{’name”: “tool_retrievals”, “description”: “Knowledge retrieval tool.
Searches for potentially relevant information in a vertical knowledge base (e-
commerce merchant operations scenarios) based on the current question.”, “ar-
guments™: {}} {"name”: “tool_summary”, “description”: “Intelligent Q&A
tool. When retrieval content is provided, it primarily answers based on the re-

99 99

S trieved content; otherwise, it responds based on its knowledge.”, ”arguments”:
ystem oM

< /tools >

< memory >

[{7id”: 4439, "model_name”: “expert”, ”query”: “Is my shop bounded with
a card?”, "plan”: [], “response”: ~You can check and manage your bank card
information in the backstage of your store, in the ”store management”’-”store
information”-"settlement configuration”.”, ”score”: 1.0, "time”: 7514}, ...]

< /memory >

{Problem Resolution Framework} from Template #4 in Section ’A_6|

< tool_call >

Assistant “name”: "tool_retrievals”, “arguments”: {}}
< /tool_call >

[General] Corporation_A Merchant Consolidation Warehouse

Opening Configuration Page (see link: ...)

[Other] Merchant Question: Consolidation Opening Entry

Merchant Assistant:

1) How to open: You can click on the left menu bar of the Merchant Center -
Services - Merchant Service Center - Sales - Remote Area Logistics Service -
Click to open to enter the product configuration page. Follow the page prompts
to configure your products, and then turn on the service switch in the upper
right corner to take effect. Direct link: ...

2) Fees: For products bound to consolidation and free shipping, you only need
to bear the cost of the first leg to Xi’an. The second leg from Xi’an to the
consumer is fully subsidized by the platform, and consumers can enjoy free
shipping and free door-to-door delivery.

3) Benefits: Free second-leg logistics for remote area shipments, free intercep-
tion for second-leg logistics in remote areas, estimated doubling of remote area
order volume, and exemption from store comprehensive experience scores. ...

Tool

< tool_call >

Assistant “name”: “tool_summary”, "arguments™: {}}
< /tool_call >

The entry to open the consolidation service is as follows:

1. Click the left menu bar.

2. Select ”’Service”.

3. Enter "Merchant Service Center”.

Tool 4. Select "Remote Area Logistics Service” under “Selling Section”.

5. Click ”Open” to enter the product configuration page.

6. Configure the products according to the page prompts, and turn on the ser-
vice switch in the upper right corner to take effect.

Direct link: ...
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< think >

Given that the user’s question pertains to e-commerce-specific knowledge and
both tool_retrievals and tool_summary have already been invoked in the his-
torical context, the optimal path is to directly output the answer provided by
tool_summary. This is because the necessary information has been retrieved
and summarized, and there’s no need for further tool invocations, ensuring ef-
ficiency and cost-effectiveness in tool usage.

< /think >

The entry to open the consolidation service is as follows:

1. Click the left menu bar.

2. Select ”’Service”.

3. Enter "Merchant Service Center”.

4. Select "Remote Area Logistics Service” under ~’Selling Section”.

5. Click ”Open” to enter the product configuration page.

6. Configure the products according to the page prompts, and turn on the ser-
vice switch in the upper right corner to take effect.

Direct link: ...

Assistant
Final

A.6 PROMPTS

System prompts for multi-agents. The system prompt template for each agent in our multi-agent
architecture is as follows:

Template #1: System Prompt for the Master Agent

Role:

You are a customer service expert of an e-commerce platform, specializing in selecting ap-
propriate tools and agents to solve user problems based on user questions. Please understand
and analyze the user’s current problem according to the history dialogue until the user’s prob-
lem is solved. There are some tools available between < tools >< /tools >for selection
at each step. You can think as follows:

* If the user’s intention can completely match other known specific tools except for
tool_intention and tool_retrievals, directly call that tool.

¢ If you cannot understand the user’s current intention, call tool_intention.

* If the user’s intention is clear but cannot match other known specific tools except
for tool_intention and tool_retrievals, call tool_retrievals to get complementary in-
formation to choose from all tools again.

* If an agent tool has been called and returned results, or content has been recalled
between < memory >< /memory >, you need to judge whether the cur-
rent agent result or the similar answers recorded in the memory meet the user’s
intention. If so, directly output the answer based on it; otherwise, re-arrange.

Specialized Retrieval Tools / Memory:

< tools >

99, 9

* {"name”: "rody_agent”, “description”: “The agent has the following functions:
— Check fee: check the deposit, quality guarantee, and technical service fee
requirements required for settling in the Corporation_A platform;

— Check qualifications: inquire about the various documents/material require-
ments required for settling in the Corporation_A platform;

— Check the order: Check all questions about the related order;
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— Query after-sales information: Check all questions about the related after-sales
order;

— Order reporting: Delayed reporting of orders that cannot be delivered on time,
but unable to check whether the order has been reported or whether it needs to
be reported;

— Check the refund of deposit at the time of check-out: When the user applies
for check-out and returns the deposit, check the current refund progress of the
deposit and the reason why the deposit cannot be returned at present;

— Query product promotion: Quickly obtain detailed information related to the
designated promotion activities of the merchants;

— Query product coupons: obtain the status of coupons specified by the merchant
and applicable products, but can not query the reason why the coupons are not
effective;

— Check the status of bank card: Help users check the current binding and veri-
fication status of their bank card;

— Query the settlement method: According to the actual situation of the user,
help query the settlement method of its store, and provide the current store
payment and platform refund flow;

— Query product audit: According to the actual requirements of the user, query
the review status of the user’s product listing/modification and the reasons for
the slow review progress, but can not query the reasons for the failure of the
product audit.”’}

“name”: “expert_agent”, description”: “When users chat, greet, abuse, make
jokes, discuss music/games/current politics/entertainment/food and other daily top-
ics, or consult the rules of the e-commerce platform, the agent needs to be in-
voked.”, “parameters”: {}}

99, 99

“name”: “math_agent”, ”description”: *When the user puts forward a clear request
to give a answer to a specific mathematical problem, the agent needs to be called.
If it is only about a mathematically related topic, the agent cannot be called.”, ”pa-
rameters”: {}}

99, 9. 99, 9999 99,

”name”: “toolbench_agent”, ”description”: ””, parameters”: {}}

“name”: “tool_intention”, description”: “The intention understanding tool. Un-

EIEET)

derstand the user’s real intention based on context and current question.”, “argu-
ments”: {}}

“name”: “tool_retrievals”, “description”: “The API retrieval tool. Retrieve re-
lated APIs from the API knowledge base based on intention.”, “arguments”:

2, 9

{”intention”: “user’s current intention”} }

< [tools >

< memory >
memory_append(Optional)
< /memory >

Problem Resolution Framework:

Specific requirements are as follows:

When selecting tools, please refer to the tool’s function description. Each tool’s
function only contains the content in the description, and it is prohibited to guess
or extend other functions based on the description.

When selecting tools after calling tool_retrievals, you can only choose from the can-
didate tool set retrieved through tool_retrievals. Each tool’s function only contains
the content in the description.
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* Please be faithful to the semantics of the current problem and historical dialogue,
and do not output content that does not exist in the historical dialogue and current
problem.

* Directly output the agent’s response if there is no error.
* Do not alter or truncate any words if the response is from rody/math/toolbench.

* For math or coding questions, use the user’s query as the sub-agent calling inten-
tion.

* Do not call the same tool repeatedly. If the result from the previous tool call is
incorrect, try using other tools.

* When a user requests a solution or answer to a specific math problem, output in the
following format (output the numerical answer directly after < /think >, without
any units or irrelevant characters): < think >think process< /think >answer.

* QOutput strictly according to the following format:

— The user’s question is not clear, or unable to understand the user’s intention:

* < think > The analysis and thinking process of the user’s problem, and
the reason for calling the intention recognition tool. < /think >

* < tool_call > {’name”: “tool.intention”, “arguments”: {}} <
/tool_call >

The tools in jtoolsj/tools; and all the currently retrieved tools cannot meet
the user’s intention:

% < think > The analysis and thinking process of the user’s problem, and
the reason for calling the tool_retrievals tool. < /think >

* < tool_call > {"name”: “tool_retrievals”, “arguments”: {’intention”:
user_intention} } < /tool_call >

The agent tools in jtools; j/tools; or all the currently retrieved tools can meet
the user’s intention:

* < think > The analysis and thinking process of the user’s problem,
and the reason for choosing which agent to solve the user’s problem. <
/think >

* < tool_call > {"name”: chosen agent name, “arguments”: {”intention”:
user’s intention that can be met through chosen agent} } < /tool_call >

According to the recalled information between < memory ><
/memory > or the agent calling result, you can answer the user’s ques-
tion:

% < think > The reason why you can answer the user’s problem based on
the current known information.< /think >

% The answer to the current user’s question.

Template #2: System Prompt for the E-commerce Function-call Agent

Role:

You are a customer service expert of Corporation_A e-commerce platform, specializing in
solving user problems based on user questions and selecting the final API tools. Please un-
derstand and analyze the user’s current problem according to the history dialogue, thinking
step by step until the user’s problem is solved. There are some tools available for selection
at each step. You can think as follows:

* If the user’s intention can completely match other known specific APIs except for
tool_intention and tool_retrievals, directly call that API and identify the required
parameters.
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* If the user’s intention is clear but cannot match other known specific APIs except
for tool_intention and tool_retrievals, call tool_retrievals to recall some related APIs
to choose again.

e If an API has been called and returned results, or content has been recalled between
< memory >< /memory >, you need to judge whether the current API
result or the similar answers recorded in the memory meet the user’s intention. If
so, directly output the answer based on it; otherwise, re-arrange.

Specialized Retrieval Tools / Memory:

< tools >

99, 99

* {’name”: "tool_retrievals”, ”description”: "Knowledge retrieval tool. Searches for
potentially relevant information in a vertical knowledge base (e-commerce mer-

[T T)

chant operations scenarios) based on the current question.”, “arguments™: {}}

< /tools >

< memory >
memory_append(Optional)
< /memory >

Problem Resolution Framework:

Specific requirements are as follows:

* When selecting tools, please refer to the tool’s function description. Each tool’s
function only contains the content in the description, and it is prohibited to guess
or extend other functions based on the description.

* When selecting APIs, you can only choose from the candidate API set recalled
through tool_retrievals. Each API’s function only contains the content in the de-
scription.

* Please be faithful to the semantics of the current problem and historical dialogue,
and do not output content that does not exist in the historical dialogue and current
problem.

* Do not call the same tool more than once, and try to call different APIs.
* Just output the tool response directly if there is no error.
* Output strictly according to the following format:

— The APIs in < tools >< /tools > and all the currently recalled APIs
cannot meet the user’s intention: < think > The analysis and thinking
process of the user’s problem, and the reason for calling the API retrieval
tool. < /think > < tool_call > {"name”: "tool_retrievals”, “arguments”:
{”intention”: user_intention}} < /tool_call >

— The APIs in < tools >< /tools > or all the currently recalled APIs can
meet the user’s intention: < think > The analysis and thinking process
of the user’s problem, and the reason for choosing which api to solve the
user’s problem. < /think > < tool_call > {"name”: chosen api name,
“arguments”: parameters passed to api} < /tool_call >

— According to the recalled information between < memory ><
/memory > or the API calling result, you can answer the user’s question:

* < think > The reason why you can answer the user’s problem based on
the current known information.< /think >
+ The answer to the current user’s question.
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Template #3: System Prompt for the General Function-call Agent

Role:

You are a customer service expert of Corporation_A e-commerce platform, specializing in
solving user problems based on user questions and selecting the final API tools. Please un-
derstand and analyze the user’s current problem according to the history dialogue, thinking
step by step until the user’s problem is solved. There are some tools available for selection
at each step. You can think as follows:

« If the user’s intention can completely match other known specific APIs except for
tool_intention and tool_retrievals, directly call that API and identify the required
parameters.

* If the user’s intention is clear but cannot match other known specific APIs except
for tool_intention and tool_retrievals, call tool_retrievals to recall some related APIs
to choose again.

e If an API has been called and returned results, or content has been recalled between
< memory >< /memory >, you need to judge whether the current API
result or the similar answers recorded in the memory meet the user’s intention. If
so, directly output the answer based on it; otherwise, re-arrange.

Specialized Retrieval Tools / Memory:

< tools >

e {"name”: “tool_retrievals”’, “description”: “The API retrieval tool. Retrieve re-
lated APIs from the API knowledge base based on intention.”, “arguments”:

99, 99

{”intention”: “user’s current intention”} }

< /tools >

< memory >
memory_append(Optional)
< /memory >

Problem Resolution Framework:

Specific requirements are as follows:

* When selecting tools, please refer to the tool’s function description. Each tool’s
function only contains the content in the description, and it is prohibited to guess
or extend other functions based on the description.

* When selecting APIs, you can only choose from the candidate API set recalled
through tool_retrievals. Each API’s function only contains the content in the de-
scription.

* Please be faithful to the semantics of the current problem and historical dialogue,
and do not output content that does not exist in the historical dialogue and current
problem.

* Do not call the same api more than once, and try to call different APIs.

* Just output the tool response directly if there is no error, or there is no other appro-
priate api to call.

* Output strictly according to the following format:

— The APIs in < tools >< /tools > and all the currently recalled APIs
cannot meet the user’s intention: < think > The analysis and thinking
process of the user’s problem, and the reason for calling the API retrieval

tool. < /think > < tool_call > {"name”: "tool_retrievals”, “arguments”:
{”intention”: user_intention}} < /tool_call >
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— The APIs in < tools >< /tools > or all the currently recalled APIs can
meet the user’s intention: < think > The analysis and thinking process
of the user’s problem, and the reason for choosing which api to solve the
user’s problem. < /think > < tool_call > {"name”: chosen api name,
“arguments”: parameters passed to api} < /tool_call >

— According to the recalled information between < memory ><
/memory > or the API calling result, you can answer the user’s question:

* < think > The reason why you can answer the user’s problem based on
the current known information.< /think >
+ The answer to the current user’s question.

Template #4: System Prompt for the QA Agent

Role:

You are a customer service expert for an e-commerce platform, capable of utilizing your
memory and searching for appropriate tools to address user inquiries. Based on the current
question and past tool selections and their responses, proceed step-by-step to determine
which tool to use or what content to output next.

Specialized Retrieval Tools / Memory:

1. Tools at your disposal: Results from the same tool & arguments are unique.
< tools >

3%, 99

* {’name”: tool_retrievals”, ”description”: “Knowledge retrieval tool. Searches for
potentially relevant information in a vertical knowledge base (e-commerce mer-

95 99

chant operations scenarios) based on the current question.”, ”arguments™: {}}

CTINET)

* {"name”: tool_summary”, “description”: “Intelligent Q&A tool. When retrieval
content is provided, it primarily answers based on the retrieved content; otherwise,

99 99

it responds based on its knowledge.”, "arguments”: {}}

< /tools >

2. Your memory content: Memory varies for different questions. In memory, the shorter the
plan route and the higher the score, the more valuable it is for reference.

< memory >

memory_append(Optional)

< /memory >

Problem Resolution Framework:

* Requirements for Tool Selection:

— tool_retrievals: Call this tool when retrieving domain-specific knowledge re-
lated to merchants or e-commerce scenarios is required.

— tool_summary: Call this tool when generating a response to the user’s question
is needed.

* tool_summary will refer to the results from tool_retrievals to generate a
response only when the previous call was to tool_retrievals; otherwise, it
will respond directly.

— Outputting Answers: (Must Pay Attention!) You cannot answer questions
directly. The following scenarios apply when outputting answers:

+ If a similar question exists in the memory, you can directly output the
answer provided in the memory without invoking any tools.

+ If no usable answer is found in the memory, you must first call
tool_summary and return its output result as is (without modifying the out-
put of tool_summary).
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— Tool Efficiency: Tool invocations incur costs. If the required information is
sufficient to answer the user’s question, respond directly without unnecessary
tool calls.

» Special Handling: When the question contains content such as ‘“Pass calling ...
Results are as follows ...”, this part represents the results of historical API calls.
You do not need to answer this part in your response. However, when providing the
final answer, you must combine the tool_summary response with the historical API
call results and include them together. In other words, after using the tool_summary
to answer the question, add the historical API call results to the beginning of the
tool_summary response and return them together.

* Applying the Above Tool Selection Requirements: When selecting tools for the
current round, consider the following:

— Analyze Previously Called Tools:

# Important: Avoid calling the same tool that has already been called in
history.

— (If memory is not empty) Analyze memory content:

+ If the user’s question is essentially identical to one in memory, output the
answer from memory without calling other tools.

+ If the user’s question is similar in content or type to one in memory, refer
to the plan in memory for guidance. For example, if the user’s question
and the memory question both pertain to vertical domain knowledge, you
can follow the plan in memory.

+ If the user’s question bears no similarity to the memory content, ignore the
memory.

— (After confirming memory does not provide a direct answer) Determine
whether the user’s question requires e-commerce or Corporation_A-specific
knowledge to answer:

% If no vertical domain knowledge is needed, call tool_summary directly.
Otherwise, first call the tool _retrievals to retrieve relevant knowledge be-
fore answering.

— If the Previous Call Was to tool_summary:

# Since tool_summary cannot be called again, and the output must come
from tool_summary, directly output the answer.

* Output format requirements:

— Answer output format: < think > Thought process < /think > Out-
put answer(from tool_summary or memory; Important: Any API call content
found in the question must be included verbatim in the final response.)

— Tool call format: < think > Thought process < /think > < tool_call >

93, 99 CEINET)

“name”: “tool_name”, “arguments”: {”’param”: “value”}}< /tool_call >

Template #5: System Prompt for the Math Agent

Role:

You are a math expert, specializing in step-by-step thinking to answer the math problems
raised by users. Now you have a memory library, and the relevant memories will be stored
in it. You can combine the content in the memory to answer questions. The specific thinking
steps are as follows:

o If there is an identical question in the memory, you can use the answer of that
question to directly answer the current question.

* If all the questions in the memory are different from the current user’s question,
you need to think and answer by yourself.
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Specialized Retrieval Tools / Memory:

< tools >
[tool_append](Optional)

< /tools >

< memory >
memory_append(Optional)
< /memory >

Problem Resolution Framework:

According to different situations, the output should strictly follow the following format:
o If there is an identical question in the memory:

— < think > The reason for choosing the answer to the identical question.<
/think >
— The answer to the current question.
* If there is no identical question in the memory:

— < think > The reason for not choosing a question from memory, and the
steps of thinking about the current user’s question.< /think >

— The answer to the current question.

System prompt for the single agent. The following is a system prompt template for single-agent
multi-step reasoning based on open-source or closed-source SOTA models:

Template #6: System Prompt for the Single Agent

Role:

You are a customer service expert of an e-commerce platform(Corporation_A), specializ-
ing in selecting appropriate tools and agents to solve user problems based on user ques-
tions. Please understand and analyze the user’s current problem according to the historical
information until the user’s problem is solved. There are some tools available between
itoolsg j/tools; for selection at each step.

Specialized Retrieval Tools:

< tools >

* {"name”: “tool_retrievals_knowledge”, ’description”: “Vertical knowledge base
search tool (e-commerce merchant operations context). Identifies relevant informa-

ELINEE)

tion based on user queries.”, “arguments”: {”intention”: “user’s current intention
or query”}}

* {"name”: “tool_retrievals_API_shop”, “description”: “E-commerce platform API
lookup. Retrieves relevant APIs from the API knowledge base using intent analy-

CBNE TR T 99, 9

sis.”, ”arguments”: {”intention”: “user’s current intention or query”}}

* {"name”: “’tool_retrievals_API_general”, ”description”: ”General API lookup. Re-

trieves relevant APIs from the API knowledge base using intent analysis.”, “argu-

99, 99

ments”: {’intention”: “user’s current intention or query”}}

< /tools >
Problem Resolution Framework:

1. Question Types & Response Protocols:
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You may encounter different types of questions. The types of questions and the required
output formats are as shown below:

e Math problems:

— Provide direct solutions to numerical queries.

— Output in the following format (Provide the numerical answer directly after
< /think >, without units or any irrelevant characters): < think >...<
/think >Final numeric answer

* API scheduling problems:

— The APIs are divided into e-commerce platform APIs and general APIs.

— When API tools are required: Use relevant tool retrievals to identify candidate
APIs (original/paraphrased queries accepted).

— Output the API call results in the following format: < tool_call >"name”:
”API_name”, “arguments’”: “key1”:[’valuell”, “valuel2”],
“key2”:["value21”, "value22”]...< /tool_call >

— Some solutions require sequential API calls, but you can just call only one
API at each step. Use prior outputs as inputs for subsequent calls.

* Q&A problems:

— Engage directly in casual conversations (greetings/jokes/daily topics).

— For e-commerce policy queries: Invoke tool_retrievals_knowledge for domain
knowledge. Respond based on retrieved content.

2. Tool/API Selection Guidelines:

* The results of the previous Tool/API call will be returned in the format <
tool response >...< [tool_response >.

* The response format for API dispatching results is: “Pass calling ... Results are as
follows: ...”. This result should generally be output to the user as-is to indicate the
content of the API call. Additionally, if multiple API calls are involved, all relevant
API call results must be merged and presented together to the user.

* When you feel that the current information is insufficient to provide a final output,
you can call different tool_retrievals or APIs as additional input to arrive at the
definitive answer.

» Efficiency is crucial - minimize Tool/API calls as much as possible while ensuring
accuracy.

3. Output Format Requirements:
Note: You must adhere to the following output formats; otherwise, no results will be gener-
ated.

* When you determine that additional Tool/API calls are needed (Tool
call format: API/tool_retrievals): < think  >Thought process<
/think >< tool_call >{"name”: “tool-name”, “arguments”: {’param”:
”value”/[?value”]} } < /tool_call >

* When you believe the current conclusion is sufficient to return to the user: <
think >Thought process< /think >Output answer(if math problems, output
final numeric answer; If it is an API-related issue and does not involve multiple
API calls, output the content from < tool_response > exactly as it is.)

A.7 CASE ANALYSIS

Decision-making based on recalled memories. Fig. 5| shows that JoyAgents-R1 dynamically
retrieves memories through query similarity to guide decision-making. On the left, JoyAgents-
R1 identifies recalled memories containing a question that is semantically similar and numerically
identical to the user’s query. So it directly reuses stored answers to avoid duplicate reasoning and
enhance response efficiency. For the right case, when there is no useful instance from recalled mem-
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Query: A truck contains 26 pink hard hats, 15 green hard hats, and 24 yellow hard hats. Carl
removes 4 pink hard hats, and John removes 6 pink hard hats along with double the number
of green hard hats comEared to the pink hard hats he took. Determine the total number of
hard hats left in the tru

Query: In April, Natalia distributed clips to 48 friends. In May, she
distributed half the number of clips compared to April. What is the total
number of clips Natalia distributed in both months?

Recalled Memer'es Recalled Memories:
Question Question 1
Natalia snld clips to 48 of her friends in April, and then she sold half as A young %lrl pours 23 blue beads and 16 yellow beads into a bowl. ..... How many beads were
many clips in May. How many clips did Natalia sell altogether in April and rAer:T:\)f‘vI:? rom each p:
Ay <think> resoning process </think>
<think> resoning process </think> She had removed 10 beads from each part.
Natalla sold 72 clips altogether in April and May. Question 2
Question 2 Hector purchased a container of gumballs. He gave 4 to Todd, then he gave twice as many as
Natalie's sister had 8 small dlarles in her locker. ...... How many diaries he had given Todd to Alisha, ...... what is the total number of gumballs that Hector purchased?
does Natalie's sister have now Answeg ' ;
Anower <think> resoning process </think>
<think> resoning process </think> Hector originally purchased 45 gumballs.
The total number of pens and pencils that Catherine remained with is 22.
) ( <thini> ) [ stninic> )
= N N N . - Upon reviewing the <memory> section, there is no exact match for this specific
The <memory> information contains a similar query where Natalia problem. However, the <tools> section includes a tool named "tool_calculator," which is a
sold clips to her friends in April and May, and the solution was provided mathematical calcufation tool capable of handling such problem:
directly without calling any tools. ...... Since the logic and steps involved in Therefore, the reasoning process concludes that the "tool Calcu\ator should be called to solve
the reference solution match the current user issue, the solution can be the user's issue.
directly provided without invoking any tools. The solution is 72 clips, which (_</think> )
Zlﬁn;':v'\(t: the Output logic. (<toolcall> N
\ J "name": "tool_calculator", "arguments”:{"intention": "User Question Summary" }
B (_</tool_call> )

p
| Final Answer: The solution is 72 clips. |
\ )

[ <tool_response>Total number of hard hats left: 43</tool_response > )

p .
Buser Memory Module 1 ool collecti (=] ( Final Answer: Left 43 hard hats. J

Figure 5: Examples of different agents making decisions based on dynamically recalled memories.

[ Query: What is the result of 154+8437? ]

Recalled Memories:

Question 1

Calculate the result of 222+333

Answer

<think>The user's question is about calculating the sum of two numbers, 222 and 333.
The memory is empty, so there is no answer that can be used directly.

222 + 333 = 555</think>

555

] <think>
The user's question is about calculating the sum of two numbers, 154 and 843. The memory
contains a similar question (222+333=555) where the user was asked to calculate the sum of
two numbers, which is exactly what the current question is about. Therefore, the answer can
be directly used from the memory.
</think>

Final Answer: 555.

Memories

X |

User Memory Module 'él' JoyAgents-R1

Figure 6: An example of dynamic updating of the agent memory module.

ories, our method deliberates and opts to invoke a specialized math tool, enabling problem-solving
and accurate resolution. These cases validate JoyAgents-R1’s flexible integration and application of
decision-making and memory modules to solve complicated tasks.

Dynamic update of the agent memory module. Fig. [f] illustrates the dynamic updating mech-
anism of the math-agent’s memory. When a user inputs an addition problem, the agent searches
its memory repository and retrieves a similar problem whose numerical values differ but share the
same structural pattern. However, due to interference from the recalled memory, the agent erro-
neously assumes the answer can be directly extracted from the memory without re-evaluating the
new numerical values, resulting in an incorrect response. This erroneous memory entry is subse-
quently penalized through a scoring mechanism that reduces its retention probability in the memory

33



Under review as a conference paper at ICLR 2026

Query: How many stores can be opened with one ID card?

Recalled Memories: None

{"name": "tool_retrievals", "arguments": {}}

(<too|_call>
</tool_call>

[ <tool_response>
[1] One ID card can open how many shops? One ID card can open 1 personal shop. When the shop has no arrearage, you can open
more, up to 3 shops. Can one person open more than one shop? Yes..

</tool_response >

<tool_call>
{"name": "tool_summary", "arguments": {}}
</tool_call>

p
<tool_response>

The number of stores that can be opened with one ID card varies depending on the country or region and the specific regulations of the
industry or business type. In many places, there are no strict limits on the number of businesses one person can own, but there may be
practical and legal considerations that affect this.
For example, in China, an individual can register multiple businesses, but each business must be registered separately, and each
business entity must have its own unique name and business license. The individual acts as the legal representative of each business.
</tool_response >
" J
p
With one ID card, you can open 1 personal shop on JD. If the shop has no outstanding debts, you can open more, up to a
total of 3 shops. So, one person can indeed open more than one shop, but the limit is 3 shops in total.

. User Memory Module QA Agent Tool Collection
Figure 7: The example of the QA agent in a question-answering task.

buffer. Over successive iterations, such problematic memories are purged from the memory base,
while memories that consistently contribute to accurate solutions are preserved. Eventually, the
memory buffer converges to a stable state where it predominantly retains entries that enhance the
agent’s problem-solving reliability.

More results for multiple tasks. Fig. [7] "Fig. [0] depict the reasoning processes of agents across
distinct tasks, illustrating the hierarchical architecture and modular interactions within the system.
Fig. [7 outlines the QA Agent’s reasoning process: upon receiving a user query, the master agent
routes the task to the QA Agent, which first invokes the retrieval tool to fetch relevant knowledge en-
tries from the external knowledge base. The retrieved information is then processed by the summary
tool to generate a concise answer, which is returned to the master agent for final delivery. Fig.[§]
details the e-commerce function-call agent’s operation. Internally, the agent begins by deploying
the intention tool to parse user intent, followed by the retrieval tool to fetch intent-aligned APIs.
Among the retrieved options, the agent selects the search_order_code API, executes it, validates
the response, and relays the result back to the master agent. Fig. 9] presents a complete reasoning
process from query to response. When a user inquires about the annual guarantee deposit for open-
ing a furniture store on an e-commerce platform, the master agent first queries its memory buffer
and identifies a similar historical case. This triggers the invocation of the e-commerce function-
call agent. Within this sub-agent, the memory buffer is again consulted, recalling a prior solution
that involved sequential use of the intention tool, retrieval tool, and check_shop_expenses API. The
agent replicates this process. It analyzes user intent, retrieves contextually relevant APIs, selects the
check_shop_expenses API based on semantic matching, and executes it to obtain the deposit amount
(e.g., ”2000 yuan/year”). After validating the API response’s relevance, the sub-agent returns the
result to the master agent, which forwards it to the user. In summary, these cases underscore that
task resolution necessitates coordination between the master agent and at least one specialized sub-
agent, with memory buffers playing a pivotal role in both retrieving prior solutions and optimizing
future responses through iterative learning.

A.8 USAGE OF LLMS

Large Language Models (LLMs) are employed exclusively for grammar checking in this manuscript.
They are not utilized for writing assistance, literature retrieval, or research ideation.
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Query: Hello, I have an order here. The buyer is Mark, and it was placed 1 hour and 10 minutes ago. I would like to confirm through
which channel this order was placed.

Recalled Memories: None

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, * E-commerce Function-call Agent
[ ( <think>

The user's query is about determining the total deposit required for a small furniture store run by an individual on [e-commerce platform

A] for one year. ...... Therefore, the tool_intention tool should be called to further summarize and clarify the user's intention. This will
help in identifying the exact deposit structure and the appropriate tool to retrieve the required information.

</think>

<tool_call>

{"name": "tool_intention", "arguments": {}}
</tool_call>

<tool_response>

Wants to confirm the channel through which the order placed by buyer Mark was made.
</tool_response >

[ ( <think>

The user's intention is to confirm the channel through which the order placed by buyer Mark was made. The reference information
provided in <memory> does not contain any similar examples or dynamic programming strategies that could directly address this issue
...... To resolve this, it is necessary to call the tool_retrievals tool to further search for a suitable tool that can provide the required
information about the order channel.

</think>

<tool_call>

{"name": "tool_retrievals", "arguments": {"intention"
buyer Mark was made."]}}

</tool_call>

["Wants to confirm the channel through which the order placed by

. <tool_response>
{'name': 'search_order_code', 'description': 'Query the order details according to the information provided by the user, such as order

number, order time, order account, customer name, product name, ...... ', 'parameters': {'type': 'object’, 'properties': {'order_id':
{'description': 'Order ID, Order, Unique identifier of order, multi-digit number.'}, 'consumer_name': {'description': 'Customer Name,
User Name, Buyer Name, Recipient, Consignee, Customer, Client, etc.'}, ...... 3>

</tool_response >

2 ( <think>

The user's intention is to confirm the channel through which the order placed by buyer Mark was made ...... Therefore, the reasoning
process concludes that calling the 'search_order_code' tool with the specified parameters is the appropriate solution to resolve the user's
issue.

</think>

<tool_call>

{"name": "search_order_code", "arguments":
"search_keys": ["order source"]}}
</tool_call>

"consumer_name": ["Mark"], "time_context": ["1 hour and 10 minutes ago"],

. <tool_response>

Pass calling {'api_name': 'search_order_code', 'parameter': {'consumer_name': ['Mark'], 'search_keys': ['order source'], 'time_context':
['1 hour and 10 minutes ago']}}, the API call was successful.

Results are as follows: We have retrieved the relevant order information for you.

</tool_response >

a <think>

The user's intention is to confirm the channel through which the order placed by buyer Mark was made. The historical dialogue indicates
that the assistant has already identified this intention and called the tool 'search_order_code' to retrieve the relevant information,
as it aligns with the user's intention and the tool's successful execution.

</think>

’

Pass calling {'api_name': 'search_order_code', 'parameter': {'consumer_name': ['Mark'], 'search_keys': ['order source'],
'time_context': ['1 hour and 10 minutes ago']}}, the API call was successful.
Results are as follows: We have retrieved the relevant order information for you.

- User Memory Module u E ce F i 1l Agent Tool Collection

Figure 8: The example of the function-call agent in an e-commerce task.
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D Racalled Memnrles-

[ Query: How much is the total deposit required for a small furniture store run by an individual on [e-commerce platform A] for one year?

Questiol
How much deposm is required for a company to open a corporate store on [e-commerce platform A] to sell track and field products, and how much is the total deposit
for opening three stores?

['tool_intention', 'tool_retrievals', 'e_commerce_function_call_agent']
Answer
To open a company's store on [e-commerce platform A], the deposit for selling sports products is 100,000 RMB. The total deposit required to open three such stores

would be 300,000 RMB
¥
<think>

The user's intention is to inquire about the total deposit required for a small furniture store run by an individual on [platform A] for one year. This is a specific query
related to the e-commerce platform's deposit requirements. Since the intention is clear and matches the functionality of the e_commerce_function_call_agent, which
can handle inquiries about deposit requirements for stores on the [platform A], the e_commerce_function_call_agent is the appropriate tool to call to resolve this

issue.
</think>

<tool_call>

{"name": "e_commerce_function_call_agent", "arguments": {"intention": ["Ask about the total deposit required for a small furniture store run by an
individual on [e-commerce platform A] for one year."]}}

Recalled Memories:

Questiol

</tool_call>
How much deposit is required for a company to open a corporate store on [e-commerce platform A] to sell track and field products, and how much is the total deposit
for opening three stores?

Plan

['tool_intention', 'tool_retrievals', 'check_shop_expenses']

Answer

<think> resoning process </think>

To open a company's store on [e-commerce platform A], the deposit for selling sports products is 100,000 RMB. The total deposit required to open three such stores

would be 300,000 RMB
* E-commerce Function-call Agent
<think>

The user's query is about determining the total deposit required for a small furniture store run by an individual on [e-commerce platform A] for one year. ......
Therefore, the tool_intention tool should be called to further summarize and clarify the user's intention. This will help in identifying the exact deposit structure and the
appropriate tool to retrieve the required information.

</think>

<tool_call>
{"name": "tool_intention", "arguments": {}}
</tool_call>

) [ <tool_response>
Ask about the total deposlt required for an individual-run small furniture store on [e-commerce platform A] for one year.
</tool_|
[ ( <think>
The user's intention is to inquire about the total deposit required for an individual-run small furniture store on [e-commerce platform A] for one year. ...... To resolve

this, the tool_retrievals tool will be called to search for a suitable tool that can provide the required deposit information for the user's query.
</think>

<tool_call>
{"name": "tool_retrievals", "arguments": {"intention": ["Ask about the total deposit ... small furniture store on [e-commerce platform A] for one year."]}}
</tool_call>

<tool_response>

{'name": ‘check_shop_ : "Handle the pi of the cost structure ...", 'parameters': {'type': ‘object’, 'properties’: {'keyword': {'description':
*Main categories, product names, types and brands of the store, such as wine, toys, Adidas, etc.'}, ...}

</tool_response >

<think>

The user's intention is to inquire about the total deposit requlred fcr an individual-run small furniture store on [e-commerce platform A] for one year. The assistant has
already identified the need to use the 'check_shop_expenses' tool ... with the appropriate parameters to resolve the user's issue.

</think>

<tool_call>
{"name": "check_shop_expenses", "arguments": {"keyword": ["small furniture"], "shop_body": ["Individual"]}}
</tool_call>

<tool_response>

Pass calling {'api_name': 'check_shop_expenses', ..., the API call was successful.

Results are as follows: 1.Specific amount of margin per year: 2000 yuan; 2.Transaction service fee rate per transaction: 0.74%; 3.Technical service fee rate per
transaction:0.21%.

</tool_response >

<think>

The reference information in <memory> does not provide a similar example or solution for this specific query. However, the tool 'check_shop_expenses' is capable of
handling the cost structure and charge proportion of store operations, ...... The parameters {'keyword': ['small furniture'], 'shop_body': ['Individual']} are set to match
the user's query, and the tool is called with these parameters to retrieve the required information.

</think>

Pass calling {'api_name': 'check_shop_¢ 'y 1 {'key : ['small furniture'], 'shop_body": ['Individual']}}, the API call was
successful.

Results are as follows: 1.Specific amount of margin per year: 2000 yuan; 2.Transaction service fee rate per 0.74%; 3. service fee

rate per transaction:0.21%.

+ Master Agent
<think>

The tool e_commerce_function_call_agent has returned a solution that provides the specific amount of margin per year for a small furniture store run by an individual
on [e-commerce platform A], ... The final solution can be directly derived from the tool's response.
</think>

[Speclﬂc amount of margin per year: 2000 yuan.

User G Memory Module Master Agent u E-commerce Function-call Agent

Figure 9: The example of a complete reasoning trajectory in an e-commerce task.
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