
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

JOYAGENTS-R1: ACCELERATING MULTI-AGENT
EVOLUTION DYNAMICS WITH VARIANCE-REDUCTION
GROUP RELATIVE POLICY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model (LLM)-based multi-agent systems represent a promising
paradigm with broad applicability, exemplified by general-purpose Artificial In-
telligence (AI) assistants capable of performing multiple tasks. Nevertheless, joint
optimization across functionally distinct agents remains challenging due to diver-
gent working modes and reward functions. To address this issue, we introduce
JoyAgents-R1, a framework that accelerates multi-agent evolution with a novel
Variance-Reduction Group Relative Policy Optimization (VR-GRPO), integrat-
ing efficient sampling and update strategies. Specifically, VR-GRPO performs
Monte Carlo sampling based on an initial reasoning trajectory to avoid the ex-
ponential explosion of the joint action space while maintaining policy diversity.
Then, the method selects the top-K sampling groups with maximal reward fluctu-
ations based on the marginal benefit principle, thereby enabling cost-effective pa-
rameter updates. To further complement evolution, an adaptive memory evolution
mechanism that repurposes GRPO rewards as cost-free supervisory signals is de-
signed to eliminate repetitive reasoning and accelerate convergence. Experiments
on multi-task AI assistant datasets across both general and e-commerce scenarios
demonstrate that JoyAgents-R1, built upon smaller 3B/7B open-source models,
achieves performance comparable to that of larger LLMs, such as DeepSeek-R1,
and surpasses DeepSeek-V3 by an average of 6%.

1 INTRODUCTION

The rapid advancement of LLMs Achiam et al. (2023); Anthropic (2024); Grattafiori et al. (2024);
Bai et al. (2023); Yang et al. (2024) has revolutionized agent-based systems, empowering agents
with the ability to perform reasoning, planning, and natural language interaction across diverse
domains Guo et al. (2024); Gao et al. (2025). Compared to single agents with specialized func-
tionalities Li et al. (2023); Ruan et al. (2023); Qin et al. (2024); Dong et al. (2024), multi-agent
systems Wan et al. (2025); Liao et al. (2025); Dang et al. (2025) demonstrate superior flexibility and
scalability in tackling complicated tasks such as general-purpose AI assistants Fu et al. (2024) and
emergency responder management Sivagnanam et al. (2024), among which Multi-Agent Reinforce-
ment Learning (MARL) is a key technique of the community Ning & Xie (2024).

Since Reinforcement Learning (RL) has demonstrated remarkable efficacy in aligning models with
human preferences Ouyang et al. (2022), LLM-based MARL methods have flourished and achieved
certain results in sophisticated task decomposition Iqbal et al. (2022); Tian et al. (2023) and adaptive
coordination Fu et al. (2022); Li et al. (2024). In MARL, the behavior of one agent may affect
the rewards of other agents, which may cause environmental instability and lead to low system
efficiency and performance Hernandez-Leal et al. (2017). While methods like Multi-Agent Proximal
Policy Optimization (MAPPO) Yu et al. (2022) have advanced MARL by adapting PPO Schulman
et al. (2017) to multi-agent settings, their reliance on additional value functions introduces critical
limitations. Moreover, the decoupling of policy and value updates in actor-critic architecture often
leads to training instability, particularly when coordinating heterogeneous agents with functionally
distinct roles and potentially misaligned reward structures Zhong et al. (2024b), which poses severe
challenges to the dynamics of multi-agent evolution.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Input Input Output

Output 1

Output 2

Output 3

…
…
…
……

(a) Naive sampling leads to an exponential explosion (b) Monte Carlo sampling based on an initial reasoning trajectory
… …

(Initial)

Figure 1: Different sampling strategies for multi-agents. Green circles indicate nodes sampling
multiple actions via GRPO, while gray circles involve no additional sampling. Compared to naive
sampling in (a), (b) could avoid the exponential explosion of the multi-agent joint action space.

Recently, DeepSeek-R1 Guo et al. (2025) introduced Group Relative Policy Optimization
(GRPO) Shao et al. (2024), a novel RL framework that improves LLM decision-making by replac-
ing critic models with population-based comparisons. GRPO generates multiple responses per input
and selects actions based on relative group advantages, significantly reducing computational cost.
While GRPO has shown strong performance in single or homogeneous agents Deng et al. (2024);
Xia & Luo (2025); Lu et al. (2025) and vision-language models Huang et al. (2025), directly ap-
plying it to multi-agent systems remains challenging. As shown in Fig. 1 (a), the joint action space
grows exponentially with the number of agents and creates far more complex action spaces than
those in single-agent scenarios Hernandez-Leal et al. (2020); Liu et al. (2024b), requiring tailored
sampling and update strategies. Furthermore, updating all agents with diverse architectures and
dynamic reasoning paths simultaneously is also challenging and remains unsolved.

To address the above issues, we introduce JoyAgents-R1, a novel framework that accelerates multi-
agent evolution through Variance-Reduction Group Relative Policy Optimization (VR-GRPO). To
the best of our knowledge, this is the first work to apply GRPO in heterogeneous multi-agent joint
evolution, which will offer novel insights to the community. JoyAgents-R1 integrates efficient sam-
pling, update strategies, and adaptive memory evolution to enable faster convergence and improved
system performance. As shown in Fig. 1 (b), VR-GRPO utilizes Monte Carlo sampling based on
an initial reasoning trajectory, thereby avoiding the exponential explosion of the joint action space
while maintaining policy diversity. In addition, we follow the marginal benefit principle Kauder
(2015) to update agents associated with the top-K sampling groups exhibiting the largest variance
of intra-group rewards, maximizing joint utility at minimal computational cost. To facilitate multi-
agent training, we design a memory evolution mechanism harnessed from GRPO rewards as a “free
lunch” based on the insight that these rewards are inherently coupled to memory. Through direct uti-
lization of GRPO rewards to update reasoning-associated memory, the decision-making and memory
modules achieve synchronous optimization, effectively alleviating the difficulty of joint evolution.

To sum up, the main contributions of this work can be listed as follows:

• We introduce JoyAgents-R1, a novel joint evolution framework for multi-agent systems. To the
best of our knowledge, this is the first work to adapt GRPO for functionally distinct multi-agents,
enabling synergistic enhancement of their decision-making and memory capabilities.

• We propose VR-GRPO tailored for multi-agent training. It integrates a new Monte Carlo sam-
pling strategy to efficiently navigate the joint action space, and a selection strategy to guide joint
GRPO updates. With the marginal benefit principle, it maximizes the joint utility with minimal
computational overhead.

• We design a simple yet effective memory mechanism derived from GRPO rewards to facilitate the
multi-agent evolution. During LLM parameter updates, agents’ memories evolve synchronously
based on action rewards, significantly accelerating training and boosting reasoning performance.

• We conduct extensive experiments on multi-task AI assistant benchmarks, including both general
and domain-specific scenarios. JoyAgents-R1, built upon smaller open-source models, demon-
strates performance comparable to or exceeding that of significantly larger state-of-the-art LLMs,
such as DeepSeek-R1 and DeepSeek-V3.

Due to length limitations, the full review of related work is provided in Section A.1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: The multi-agent architecture and a reasoning example of JoyAgents-R1.

2 METHOD

We introduce JoyAgents-R1, a novel joint evolution dynamics for multi-agent reinforcement learn-
ing. First, a hierarchical architecture is designed to integrate functionally distinct multi-agents for
collaborative tasks (Section 2.1). Then, a variance-reduction GRPO including efficient Monte Carlo
sampling and marginal benefit-driven updating is constructed for joint training (Section 2.2). Fi-
nally, an adaptive memory evolution mechanism leveraging GRPO rewards as cost-free supervisory
signals is proposed for synchronized optimization of agent decision modules (Section 2.3).

2.1 THE ARCHITECTURE OF JOYAGENTS-R1

As illustrated in Fig. 2, the proposed JoyAgents-R1 adopts a hierarchical architecture, consisting of
a master agent and multiple sub-agents as follows:

• Master agent first analyzes the query, then orchestrates sub-agents (e.g., question answering) or
tools (e.g., intention recognition) in each step, and determines the final response to the user.

• Question-answering agent performs general and domain-specific (e.g., e-commerce) question
answering by retrieving and summarizing the recalled information from external knowledge bases.

• Function-call agents include general-purpose and domain-specific (e.g., e-commerce) agents.
These agents either execute the function call directly via memory-driven prompts or invoke a tool
retriever and make further selections from the recalled APIs.

• Math agent is specialized for solving mathematical problems.

Fig. 2 shows an example of a reasoning chain during inference. Upon receiving a query, the master
agent analyzes the user intent and assigns tasks to specialized sub-agents, which execute iterative
operations using contextual inputs transmitted by the master until completion. Then, the results are
relayed back to the master for subsequent planning cycles until termination. Each agent executes
in a ReAct manner Yao et al. (2023) and dynamically retrieves validated strategies from memory
to minimize redundant reasoning and enhance decision efficiency. On the other hand, since the
inherent complexity of actor-critic frameworks with critic models, JoyAgents-R1 employs GRPO
for policy optimization during training, which foregoes the value function and computes advantages
in a group-relative manner Shao et al. (2024). However, its direct application in multi-agent joint
evolution faces the following challenges:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: VR-GRPO for joint evolution in the Multi-Agent Systems (MAS) comprises three steps:
(1) Efficient Monte Carlo sampling to sequentially sample agent actions along an initial trajectory,
mitigating action space explosion. (2) Action reward calculation, incorporating accuracy, format,
and efficiency rewards based on trajectory output. (3) Marginal benefit-driven updating, which
prioritizes the top-K agents with the highest reward variance to accelerate policy evolution.

• Low sampling efficiency. Since multiple actions are sampled for each agent throughout the rea-
soning chain, the number of trajectories explodes exponentially as shown in Fig. 1.

• Inefficient parameter updates. Sequential policy updates for all agents in the chain will lead to
inefficient parameter optimization. Furthermore, decoupled policy adjustments struggle to coor-
dinate inter-agent dependencies for overall performance enhancement.

• Slow training convergence. Diverse architectures and outputs hinder policy synchronization,
making functionally distinct multi-agents prone to convergence difficulties during training.

2.2 VARIANCE-REDUCTION GROUP RELATIVE POLICY OPTIMIZATION

To address the above challenges, we propose Variance-Reduction Group Relative Policy Optimiza-
tion (VR-GRPO), tailored for multi-agent systems (Fig. 3), including the following parts:

Efficient Monte Carlo sampling. For a multi-agent system (MAS) consisting of N agents {mi}Ni=1,
each agent mi has an action space including Gi possible actions. Therefore, when GRPO is directly
applied to MAS in a naive way, a reasoning trajectory of length k will generate GNaive = G1 ×
G2 · · · × Gk sampling paths in an exponential explosion (Fig. 1 (a)). Different from that, VR-
GRPO performs efficient Monte Carlo sampling as shown in Fig. 3 (1). Specifically, given a query
q obtained from the dataset, VR-GRPO first produces an initial trajectory of length k, and then
sequentially samples (Gi − 1) actions for each node mi in the trajectory. To facilitate comparative
calculations and address the exponential explosion problem, the reasoning path from the query to
the sampling node (e.g., mj) remains along the original trajectory. After mj , no more sampling is
conducted, and reasoning continues until the end. In this way, a total of GNMC = G1+G2 · · ·+Gk

trajectories are generated. This addition operation is much smaller than the multiplication one, which
effectively improves the sampling efficiency, especially for MAS with long trajectories.

Marginal benefit-driven updating. For the k groups of sampled trajectories, the model parameters
of corresponding agents {mi}ki=1 are Θ = {θi}ki=1. Given a query-answer pair (q, a), the old policy
πθiold of each agent mi samples a group of outputs {oj}Gi

j=1. Then, the policy model πθi is optimized
by maximizing the objective as follows:

JGRPO(θi) = E[q ∼ P (Q), {oj}Gi
j=1 ∼ πθiold(O|q)]

1

Gi

Gi∑
j=1

(
min

(
πθi(oj |q)

πθiold(oj |q)
Aj , clip

(
πθi(oj |q)

πθiold(oj |q)
, 1− ϵ, 1 + ϵ

)
Aj

)) (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Dynamic Memory Updating from GRPO Rewards
Input: Planning chain P , Trajectory output O, Trajectory rewardRM, Upper bound U , Lower bound L,

Set of n recalled memories Recallq given query q, Hyperparameters α and β, Timestamp t

1: for each memoryMi ∈ Recallq do
2: Compute similarity: simi ← Sim(O,Oi) (Direct answer mode) or Sim(P,Pi) (Tool call mode)
3: ifRM > U then
4: Update timestamp: ti ← t;
5: Compute time and reward differences: ∆t← −|t− ti| and ∆s← si · |RM − U |
6: else ifRM < L then
7: Compute time and reward differences: ∆t← −|t− ti| and ∆s← −si · |RM − L|;
8: Update timestamp: ti ← t
9: end if

10: Update recalled memory scores: RMi ← RMi + α∆t+ β∆s
11: end for
12: for each memoryMi /∈ Recallq do
13: Compute time difference: ∆t← −|t− ti|;
14: Update timestamp: ti ← t;
15: Update recalled memory scores: RMi ← RMi + α∆t
16: end for

where ϵ is a hyper-parameter for the clipped objective. Aj denotes the advantage of the j-th response
by normalizing the group-wise rewards with the average and standard deviation. To foster the dy-
namic strategy adaptation crucial for multi-agent coordination, the standard KL penalty is eliminated
for greater policy divergence, without the computational overhead of maintaining multiple reference
models. Therefore, the objective for updating all models straightforwardly is as follows:

JMulti−GRPO(Θ) = {JGRPO(θi) | i = 1, · · · , k} (2)

Furthermore, to accelerate the policy update and enable the perception of global states, VR-GRPO
implements a variance-reduction objective based on the marginal benefit principle Kauder (2015):

JV R−GRPO(Θ) = {JGRPO(θi) | i ∈ argtopK (Var(Ri),K)} (3)

where Ri = {rj}Gi
j=1 is the reward set obtained after sampling Gi actions from mi to the end of

trajectory. argtopK (·) returns the index set of the first K nodes with the largest reward variance.
To this end, VR-GRPO prioritizes updating model parameters for the top-K agents exhibiting the
largest performance fluctuations among all reasoning trajectory participants. Compared to updat-
ing all agents sequentially as shown in Equation 2, this variance-aware selection strategy minimizes
computational overhead while maximizing the joint benefit, efficiently steering multi-agent param-
eter updates through GRPO rewards in a dynamic paradigm.

Action rewards. As shown in Fig. 3 (2), given the final answer a corresponding to q as the ground
truth, the reward R (i.e., ri in the above text) of each agent action consists of three terms as follows:

R = RA +RF −RE (4)

• Accuracy reward (RA). The accuracy reward is calculated end-to-end from the final trajectory an-
swer. The metrics are tailored for tasks’ distinct settings and output formats. For instance, seman-
tic similarity assesses alignment with ground truth for question answering and function calling,
while mathematical operations require exact-match validation against predefined solutions.

• Format reward (RF). Since each agent infers in the RaAct style, the model output is formatted
using HTML tags for thinking (i.e., < think > · · · < /think >) and tool calling (i.e.,
< tool call > · · · < /tool call >). Format rewards could guide the model to generate
structured results, improving clarity and enhancing the reasoning ability of LLMs.

• Efficiency reward (RE). For the j-th node in a trajectory of length k, its efficiency score is
computed as RE = k−j

k , which imposes a penalty proportional to the distance of the node from
the trajectory endpoint, where the efficiency score is quantified by number of subsequent decision
steps required, showing how the current node’s plan impacts downstream computational cost.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2.3 FREE LUNCH IN GRPO REWARDS FOR MEMORY EVOLUTION

For functionally distinct multi-agents, memory modules are introduced to accelerate model training
and reduce redundant reasoning. To improve the efficiency of joint evolution, the agent memory
is designed to undergo dynamic adaptation alongside LLMs’ updates during training. Different
from previous methods that require training dedicated models or utilizing LLMs to evolve memory,
JoyAgents-R1 creates a simple yet effective memory updating mechanism that leverages GRPO
rewards as a cost-free supervisory signal and mainly consists of the following three steps:

Adaptive reward thresholding. The memory of each agent along a trajectory is updated using a
unified reward without efficiency score (i.e., RM = RA + RF), which ensures consistent update
criteria and enables independent memory modules to perceive the overall performance. For GNMC

trajectories sampled from query q, the mean µ and standard deviation σ of corresponding rewards
are first computed, then the 2.5% and 97.5% percentiles of the approximate normal distribution are
selected as the lower (L = µ− 1.96σ) and upper (U = µ+ 1.96σ) bounds for memory updates.

Dynamic memory updating. The algorithm first determines whether to add a new memory based
on the upper bound U . Then, it dynamically updates the memories recalled by the query q. For other
memories, they are updated only according to time decay as shown in Algorithm 1.

Memory overflow handling. To ensure memory quality and save storage space, the memory will
be deleted either when its final reward (RMi) falls below a predefined threshold D or when the
memory capacity exceeds upper bounds and the memory’s reward rank is relatively low.

To this end, the memory module is synergistically updated with model parameters through trajectory
rewards, accelerating training convergence and boosting reasoning performance.

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

In this work, we opt for the Qwen2.5 series model Yang et al. (2024) as the agent backbone to ensure
technical reproducibility. The experiment consists of two main stages. In the first stage, the base
models are fine-tuned with a learning rate of 5e-6 for 5 epochs. In the second stage, the multi-agent
system is trained via reinforcement learning at a learning rate of 1e-6 for 5 epochs. Specifically, each
agent from an initial trajectory is sampled Gi = 5 actions with a temperature of 1.2. Subsequently,
the top-5 nodes are selected for model updates. Similar to DeepSeek-R1 Guo et al. (2025), the
iterative RL with GRPO is executed for 2 iterations. Regarding memory evolution, the deletion
threshold is set to D = 0, with hyperparameters α = β = 1. The models are trained on 8 NVIDIA
H200 GPUs, and the best results are reported. More details are provided in the Appendix A.2.

3.2 DATASETS AND SETUP

To verify the effectiveness of the proposed method, we construct a multi-task dataset for multi-agent
AI assistant scenarios, including general and e-commerce fields, as follows:

Supervised fine-tuning datasets. The input integrates diverse elements, such as user queries, re-
trieved memory, optional tools, historical dialogues, and tool-generated responses. The target com-
prises the reasoning processes, tool calling, or final answers. The master agent, responsible for dy-
namic reasoning and orchestrating four sub-agents, is trained on 13,000 samples: 10,000 individual
sub-agent calls (2,500 per agent) and 3,000 collaborative calls. The QA agent uses 1,000 samples,
including 700 real-world e-commerce cases and 300 open-domain instances from COIG Zhang et al.
(2023). Regarding function-calling, the e-commerce agent is trained on 12 common e-commerce
APIs with 2,000 samples, while the general-purpose agent uses 1,000 API calls from ToolBench Qin
et al. (2024), totaling 3,500 instances. For the math agent, we use GSM8K Cobbe et al. (2021). More
dataset configurations are provided in the Appendix A.5.

Reinforcement learning datasets. The RL dataset contains query-response pairs with ground-
truth annotations. The training set includes 100 samples per sub-agent task (i.e., math, e-
commerce/general function calls, QA) and 200 collaborative instances. The test set has 500 samples,
including 100 instances for each independent task and 100 cases for the collaborative task.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Accuracies (%) of multi-tasks with methods based on larger closed- or open-source models.
‘EFC’ and ‘GFC’ are e-commerce and general function calls. Under the open-source setting, bold is
the optimal and ‘ ’ is the suboptimal value. Closed-source methods (∗) are only used for reference.

Model Math QA EFC GFC Cooperation Average

Claude3.5-sonnet ∗ 98.0 38.0 1.0 62.5 2.0 40.3
GPT-4o mini ∗ 47.0 31.0 0.0 65.5 0.0 28.7
GPT-4o ∗ 85.0 35.0 56.0 83.0 6.0 53.0

DeepSeek-R1 98.0 37.0 24.0 72.0 7.0 47.6
DeepSeek-V3 96.0 32.0 10.0 68.0 2.0 41.6
Qwen2.5-32B 72.0 38.0 3.0 72.0 2.0 37.4
Qwen2.5-14B 80.0 29.0 0.0 42.0 1.0 30.4
Multiagent Debate (14B with 3 roles) 95.0 33.0 0.0 40.6 1.0 33.9
Qwen2.5-3B (Single agent with RL) 56.0 9.0 0.0 58.5 1.0 24.9
Qwen2.5-7B (Single agent with RL) 81.0 11.0 0.0 67.2 1.0 32.0
Qwen2.5-14B (Single agent with RL) 82.0 27.0 2.0 63.6 1.0 35.1
JoyAgents-SFT (7B Master + 3B Sub agents) 65.0 13.0 42.0 73.0 3.0 39.2
JoyAgents-R1 (3B Master + 3B Sub agents) 68.0 22.0 48.0 76.0 6.0 44.0
JoyAgents-R1 (7B Master + 3B Sub agents) 75.0 35.0 46.0 73.1 9.0 47.6

3.3 COMPARATIVE EXPERIMENTS

Comparison rules. Comparisons on the multi-task benchmark and more evaluations on the publicly
available ToolBench dataset are conducted. Detailed settings are provided in the Appendix A.3.

Comparisons on the multi-task benchmark. Multiple comparisons demonstrate the effective-
ness of our approach: (1) While state-of-the-art closed-source models like GPT-4o exhibit the
highest overall performance, our JoyAgents-R1 (7B Master + 3B Sub agents) achieves a competi-
tive average accuracy of 47.6%, matching DeepSeek-R1 and significantly surpassing DeepSeek-V3
(41.6%). Notably, our method excels in the specialized E-commerce Function Call (EFC) task,
achieving scores up to 48.0%, which are substantially higher than those of DeepSeek-R1 (24.0%)
and DeepSeek-V3 (10.0%). This highlights the effectiveness of our domain-specific optimization
on a compact architecture, which can outperform larger generalist models in targeted domains. All
prompts used here are presented in the Appendix A.6. (2) When compared with open-source mod-
els, JoyAgents-R1 consistently surpasses the entire Qwen2.5 series on the average score, including
the larger 32B variant, underscoring its superior parameter efficiency. Due to the limited size of
our math and QA agents (3B), competing with larger models is challenging. However, through
joint optimization, our approach (75% and 35%) significantly outperforms the SFT trained 7B+3B
JoyAgents variant (65% and 13%). (3) We also compare with Multiagent Debate Du et al. (2024),
which is implemented based on Qwen2.5-14B with three roles. Even so, our method (47.6%) sig-
nificantly outperforms its performance (33.9%), further showing the efficiency and effectiveness of
our proposed framework. (4) In addition, we trained individual Qwen2.5-3B/7B/14B models using
reinforcement learning. For most metrics, performance improved with increasing model scale, with
the exception of GFC, where the 14B model slightly underperformed the 7B variant. Nevertheless,
the fine-tuned 14B model still surpassed the original 14B baseline. Under RL settings with similar
model parameters, our JoyAgents-R1 (3B Master + 4 ∗ 3B Subagents, 44.0%) is significantly better
than a single Qwen2.5-14B with RL (35.1%) on average, verifying the superiority of multi-agent
reinforcement learning. (5) Finally, our 7B master-base method overall outperforms the 3B one,
demonstrating the approach’s scalability. Increasing only the master agent’s size improves summa-
rization and planning, but does not guarantee performance improvements for all sub-agents.

More comparisons on the Toolbench dataset. Table 2 shows consistent results across in-domain
and out-of-domain settings. Under in-domain, JoyAgents-R1 outperforms both DeepSeek-R1 and
DeepSeek-V3 in Plan ACC, Act EM, hard F1, F1, and Average scores with notable improvements.
For instance, its average score (51.2%) is much larger than DeepSeek-R1’s (47.1%) and DeepSeek-
V3’s (43.1%). Remarkably, JoyAgents-R1 achieves these results with just 3B parameters, while
DeepSeek models use over 37B parameters. Compared to larger Qwen2.5 models, JoyAgents-R1
demonstrates that smaller models can achieve competitive performance through multi-agent training.
Additionally, it surpasses GPT-4o in Hard F1 and F1 scores, both in-domain (31.5% and 39.0%) and
out-of-domain (37.0% and 48.9%). In comparison with baseline methods, enabling the think process

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparative results (%) on the Toolbench dataset. Bold represents the optimal score, and
‘ ’ represents the suboptimal value. ‘JoyAgents-SFT-no’ means training without a thinking process.

Method Plan ACC Act EM Easy F1 Hard F1 F1 No Hallu Avg

In the domain

GPT-4o 82.5 57.0 31.1 22.2 37.3 99.9 55.0
DeepSeek-R1 72.3 45.2 18.7 18.2 28.5 100.0 47.1
DeepSeek-V3 68.4 38.0 14.9 14.3 23.6 99.4 43.1
Qwen2.5-32B 72.7 43.7 15.1 21.0 28.8 99.3 46.8
Qwen2.5-14B 42.2 15.0 3.7 7.1 10.1 100.0 29.7
JoyAgents-SFT-no (7B+3B) 55.7 33.0 10.1 20.5 26.5 95.7 40.3
JoyAgents-SFT (7B+3B) 73.3 47.0 16.3 29.6 36.8 94.5 49.6
JoyAgents-R1 (3B+3B) 73.5 48.5 17.6 31.5 39.0 96.7 51.2

Out of the domain

GPT-4o 83.9 63.2 42.9 22.3 44.1 99.8 59.3
DeepSeek-R1 74.6 52.0 28.3 20.4 35.6 99.8 51.8
DeepSeek-V3 77.2 56.1 32.0 21.9 38.2 100.0 54.2
Qwen2.5-32B 28.6 0.0 0.0 0.0 0.0 100.0 21.4
Qwen2.5-14B 43.9 16.6 7.2 6.2 12.3 99.9 31.0
JoyAgents-SFT-no (7B+3B) 59.7 41.1 19.7 25.9 36.5 97.3 46.7
JoyAgents-SFT (7B+3B) 72.3 57.0 32.3 36.1 48.7 96.3 57.1
JoyAgents-R1 (3B+3B) 73.4 57.5 31.1 37.0 48.9 96.9 57.5

Table 3: Ablation study for multi-agent reasoning on multiple tasks. From left to right, whether to
train with RL (vs. SFT), whether to generate the think process, whether to update top-K models (vs.
update all models), whether to use efficiency rewards, and whether to integrate memory modules.
‘Update Steps’ corresponds to the best-performing model. ‘Rounds’ are reasoning rounds.

Method RL Think Top-K Efficiency Memory Update Steps↓ Accuracy↑ Rounds↓

M1 % % - - - - 17.2 5.4
M2 % " - - - - 35.0 7.1

M3 " " % " " 1380 40.0 7.4
M4 " " " % " 1750 42.4 8.1
M5 " " " " % 2464 40.0 7.7

M6 " " " " " 1112 44.0 7.8

in JoyAgents-SFT-no(think)1 improves the average score from 40.3% to 49.6%, with a further 3.2%
relative gain through multi-agent reinforcement learning. These results highlight the framework’s
strengths in advancing agent planning and API calling through coordinated policy adaptation.

3.4 ABLATION STUDY

Table 3 illustrates the ablation results based on Qwen2.5-3B models for multi-agents as follows:

Effectiveness of generating the think process. M1 separately trains each agent’s base model via
SFT, yielding the lowest accuracy (17.2%). Compared to M1, M2 further incorporates think process
generation and significantly improves accuracy to 35.0%, demonstrating the indispensable role of
explicit reasoning in agent decision-making.

Effectiveness of training with reinforcement learning. Different from M2, M6 integrates GRPO
for the joint evolution of multi-agents and enhances the accuracy by 25.7% relatively. Furthermore,
the results from M3 to M6 using RL are much better than M2, indicating the effectiveness of global
perception and preference alignment in joint training with reinforcement learning.

1Unless specified otherwise, the experimental results for JoyAgents-SFT are based on implementations that
integrate training with the thinking process by default.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation results (%) in updating top-K
models. ‘Avg’ is the average score.

Method Math QA EFC GFC Coop Avg

Top-1 67.0 16.0 48.0 75.0 4.0 42.0
Top-2 57.0 12.0 41.0 75.0 6.0 38.2
Top-All 64.0 17.0 44.0 72.0 3.0 40.0

Top-5 68.0 22.0 48.0 76.0 6.0 44.0

Table 5: Ablation results (%) on the number of
sub-agents. ‘Coop’ is the cooperation task.

Method QA EFC Math Coop

Master + 2 sub 26.0 55.0 - -
Master + 3 sub 25.0 51.0 69.0 5.0
Master + 4 sub 22.0 48.0 68.0 6.0

Effectiveness of utilizing efficiency rewards. Since M4 excludes RE in Eq. 4 during training, it
exhibits suboptimal accuracy (42.4%) and a larger number of training steps (1750), with a max-
imum reasoning round of 8.1, demonstrating that efficiency constraints are critical for balancing
performance and computational cost. In contrast, M1 consumes the fewest inference rounds as in-
sufficient reasoning capacity, which forces premature termination from ineffective decision-making.

Effectiveness of updating top-K models. M3 sequentially updates all models (Eq. 2), while M6

improves accuracy by 10% relatively through targeted updates of top-K nodes with maximal reward
fluctuations and requires the least number of update steps (1112). Inspired by marginal benefit, M6

prioritizes models requiring the most optimization to achieve the maximum benefit with the min-
imum cost, thereby improving performance and accelerating training convergence. Table 4 shows
that the optimal top-k is 5, with further analysis in Appendix A.4.

Ablation on the number of sub-agents. Table 5 compares different numbers of sub-agents. For
non-collaborative tasks, fewer sub-agents are more efficient due to reduced complexity and interfer-
ence. For collaborative tasks, the full set of 4 sub-agents outperforms the others, benefiting from
a broader range of data and interactions, highlighting the effectiveness of our multi-agent system
design. More discussion is available in the Appendix A.4.

Figure 4: JoyAgents-R1 with memory achieves
higher reward peaks faster during training.

Effectiveness of integrating memory mod-
ules. M5 disables memories across all agents,
relying solely on decision modules. This leads
to a relative decrease of 10.0% in accuracy
compared to M6 and a maximum update steps
(2464), highlighting the crucial role of mem-
ory modules. In Fig. 4, JoyAgents-R1 with
memory exhibits greater stability and reaches
peak performance faster during training. The
method using memory reaches its peak at step
140, while the one without memory reaches at
step 168, showing that our memory module en-
hances convergence speed. More case analyses
are provided in the Appendix A.7.

4 CONCLUSION AND DISCUSSION

Conclusion. This paper introduces JoyAgents-R1, a framework that accelerates multi-agent evo-
lution dynamics through VR-GRPO. By integrating initial trajectory-based Monte Carlo sampling
with marginal benefit-driven evolution strategies, we enhance sampling efficiency and training con-
vergency across functionally distinct multi-agents. The adaptive memory evolution mechanism
leveraging GRPO rewards further reduces redundant reasoning and accelerates convergence. Com-
parative experiments demonstrate that JoyAgents-R1, built on smaller open-source models, sur-
passes DeepSeek-V3 by 6%. Extensive ablation studies confirm that VR-GRPO and memory mod-
ules effectively accelerate model training and improve performance.

Limitations. Due to computational constraints, the proposed method currently focuses on multi-
agent systems based on small open-source models. In addition, existing training frameworks lack
compatibility with heterogeneous multi-agent joint training. Future work will focus on scaling up
LLMs to achieve performance gains and cross-domain robustness, while engineering a dedicated
framework optimized for heterogeneous multi-agent co-evolution with computational efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. 2024. URL https://api.
semanticscholar.org/CorpusID:268232499.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Huaben Chen, Wenkang Ji, Lufeng Xu, and Shiyu Zhao. Multi-agent consensus seeking via large
language models. arXiv preprint arXiv:2310.20151, 2023.

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas Roy, and Chuchu Fan. Scalable multi-robot
collaboration with large language models: Centralized or decentralized systems? In ICRA, 2024.

Filippos Christianos, Georgios Papoudakis, Muhammad A Rahman, and Stefano V Albrecht. Scal-
ing multi-agent reinforcement learning with selective parameter sharing. In ICML, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Yufan Dang, Chen Qian, Xueheng Luo, Jingru Fan, Zihao Xie, Ruijie Shi, Weize Chen, Cheng Yang,
Xiaoyin Che, Ye Tian, et al. Multi-agent collaboration via evolving orchestration. arXiv preprint
arXiv:2505.19591, 2025.

Yue Deng, Weiyu Ma, Yuxin Fan, Ruyi Song, Yin Zhang, Haifeng Zhang, and Jian Zhao. Smac-r1:
The emergence of intelligence in decision-making tasks. arXiv preprint arXiv:2410.16024, 2024.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Baobao Chang, et al. A survey on in-context learning. In EMNLP, 2024.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-
tuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2024.

Hermann Ebbinghaus. Memory: A contribution to experimental psychology. Annals of Neuro-
sciences, 2013.

Andrew Estornell, Jean-Francois Ton, Muhammad Faaiz Taufiq, and Hang Li. How to train a leader:
Hierarchical reasoning in multi-agent llms. arXiv preprint arXiv:2507.08960, 2025.

Wei Fu, Chao Yu, Zelai Xu, Jiaqi Yang, and Yi Wu. Revisiting some common practices in coopera-
tive multi-agent reinforcement learning. In ICML, 2022.

Yicheng Fu, Raviteja Anantha, and Jianpeng Cheng. Camphor: Collaborative agents for multi-input
planning and high-order reasoning on device. arXiv preprint arXiv:2410.09407, 2024.

Huan-ang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong
Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, et al. A survey of self-evolving agents: On path to artificial
super intelligence. arXiv preprint arXiv:2507.21046, 2025.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and practice. Elsevier,
2004.

Nathaniel Grammel, Sanghyun Son, Benjamin Black, and Aakriti Agrawal. Revisiting parameter
sharing in multi-agent deep reinforcement learning. arXiv preprint arXiv:2005.13625, 2020.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

10

https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. In IJCAI, 2024.

Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz De Cote. A sur-
vey of learning in multiagent environments: Dealing with non-stationarity. arXiv preprint
arXiv:1707.09183, 2017.

Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. A very condensed survey and critique
of multiagent deep reinforcement learning. In AAMAS, 2020.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for a
multi-agent collaborative framework. In ICLR, 2024.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Yao Hu, and Shaohui
Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models. arXiv
preprint arXiv:2503.06749, 2025.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. arXiv
preprint arXiv:2402.02716, 2024.

Ziheng Huang, Sebastian Gutierrez, Hemanth Kamana, and Stephen MacNeil. Memory sandbox:
Transparent and interactive memory management for conversational agents. In UIST, 2023.

Shariq Iqbal, Robby Costales, and Fei Sha. Alma: Hierarchical learning for composite multi-agent
tasks. In NeurIPS, 2022.

Tomoyuki Kagaya, Thong Jing Yuan, Yuxuan Lou, Jayashree Karlekar, Sugiri Pranata, Akira Ki-
nose, Koki Oguri, Felix Wick, and Yang You. Rap: Retrieval-augmented planning with contextual
memory for multimodal llm agents. In NeurIPS Workshop, 2024.

Shyam Sundar Kannan, Vishnunandan LN Venkatesh, and Byung-Cheol Min. Smart-llm: Smart
multi-agent robot task planning using large language models. In IROS, 2024.

Emil Kauder. History of marginal utility theory. Princeton University Press, 2015.

Zixuan Ke, Fangkai Jiao, Yifei Ming, Xuan-Phi Nguyen, Austin Xu, Do Xuan Long, Minzhi Li,
Chengwei Qin, Peifeng Wang, Silvio Savarese, et al. A survey of frontiers in llm reasoning:
Inference scaling, learning to reason, and agentic systems. arXiv preprint arXiv:2504.09037,
2025.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In SOSP, 2023.

Huao Li, Hossein Nourkhiz Mahjoub, Behdad Chalaki, Vaishnav Tadiparthi, Kwonjoon Lee, Ehsan
Moradi Pari, Charles Lewis, and Katia Sycara. Language grounded multi-agent reinforcement
learning with human-interpretable communication. In NeurIPS, 2024.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms. arXiv
preprint arXiv:2304.08244, 2023.

Xiaonan Li and Xipeng Qiu. Mot: Memory-of-thought enables chatgpt to self-improve. In EMNLP,
2023.

Junwei Liao, Muning Wen, Jun Wang, and Weinan Zhang. Marft: Multi-agent reinforcement fine-
tuning. arXiv preprint arXiv:2504.16129, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jonathan Light, Min Cai, Sheng Shen, and Ziniu Hu. From text to tactic: Evaluating llms playing
the game of avalon. arXiv preprint arXiv:2310.05036, 2023.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brahman, Shiyu Huang, Chandra Bhagavatula,
Prithviraj Ammanabrolu, Yejin Choi, and Xiang Ren. Swiftsage: A generative agent with fast
and slow thinking for complex interactive tasks. In NeurIPS, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Lei Liu, Xiaoyan Yang, Yue Shen, Binbin Hu, Zhiqiang Zhang, Jinjie Gu, and Guannan Zhang.
Think-in-memory: Recalling and post-thinking enable llms with long-term memory. arXiv
preprint arXiv:2311.08719, 2023.

Qihan Liu, Jianing Ye, Xiaoteng Ma, Jun Yang, Bin Liang, and Chongjie Zhang. Efficient multi-
agent reinforcement learning by planning. In ICLR, 2024b.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in neural informa-
tion processing systems, 30, 2017.

Junru Lu, Siyu An, Mingbao Lin, Gabriele Pergola, Yulan He, Di Yin, Xing Sun, and Yunsheng
Wu. Memochat: Tuning llms to use memos for consistent long-range open-domain conversation.
arXiv preprint arXiv:2308.08239, 2023.

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Guanjing Xiong, and
Hongsheng Li. Ui-r1: Enhancing action prediction of gui agents by reinforcement learning. arXiv
preprint arXiv:2503.21620, 2025.

Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with large
language models. In ICRA, 2024.

Ali Modarressi, Ayyoob Imani, Mohsen Fayyaz, and Hinrich Schuetze. Ret-llm: Towards a general
read-write memory for large language models. In ICLR Workshop, 2024.

Zepeng Ning and Lihua Xie. A survey on multi-agent reinforcement learning and its application.
JAI, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. In NeurIPS, 2022.

Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G Patil, Ion Stoica, and Joseph E
Gonzalez. Memgpt: Towards llms as operating systems. arXiv preprint arXiv:2310.08560, 2023.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou, Yuchen Eleanor Jiang,
Huajun Chen, et al. Autoact: Automatic agent learning from scratch for qa via self-planning. In
ICLR Workshop, 2024.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. In ICLR, 2024.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 2020.

Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu, Tianpeng Bao, Guoqing Du, Shiwei Shi,
Hangyu Mao, Ziyue Li, Xingyu Zeng, et al. Tptu: Large language model-based ai agents for task
planning and tool usage. arXiv preprint arXiv:2308.03427, 2023.

Gabriel Sarch, Yue Wu, Michael Tarr, and Katerina Fragkiadaki. Open-ended instructable embod-
ied agents with memory-augmented large language models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming Yan, Xiaojun Quan, Hehong Chen, Ji Zhang,
and Fei Huang. Small llms are weak tool learners: A multi-llm agent. In EMNLP, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. In NeurIPS, 2023.

Amutheezan Sivagnanam, Ava Pettet, Hunter Lee, Ayan Mukhopadhyay, Abhishek Dubey, and Aron
Laszka. Multi-agent reinforcement learning with hierarchical coordination for emergency respon-
der stationing. arXiv preprint arXiv:2405.13205, 2024.

Chuanneng Sun, Songjun Huang, and Dario Pompili. Llm-based multi-agent reinforcement learn-
ing: Current and future directions. arXiv preprint arXiv:2405.11106, 2024.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning based on team reward. In AAMAS, 2018.

Zikang Tian, Ruizhi Chen, Xing Hu, Ling Li, Rui Zhang, Fan Wu, Shaohui Peng, Jiaming Guo,
Zidong Du, Qi Guo, et al. Decompose a task into generalizable subtasks in multi-agent reinforce-
ment learning. In NeurIPS, 2023.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020.

Ziyu Wan, Yunxiang Li, Xiaoyu Wen, Yan Song, Hanjing Wang, Linyi Yang, Mark Schmidt, Jun
Wang, Weinan Zhang, Shuyue Hu, et al. Rema: Learning to meta-think for llms with multi-agent
reinforcement learning. arXiv preprint arXiv:2503.09501, 2025.

T Wang, T Gupta, B Peng, A Mahajan, S Whiteson, and C Zhang. Rode: learning roles to decompose
multi- agent tasks. In ICLR, 2021.

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu, Xifeng Yan, Jianfeng Gao, and Furu Wei. Aug-
menting language models with long-term memory. 2023.

Zhihai Wang, Jie Wang, Dongsheng Zuo, Ji Yunjie, Xilin Xia, Yuzhe Ma, Jianye Hao, Mingxuan
Yuan, Yongdong Zhang, and Feng Wu. A hierarchical adaptive multi-task reinforcement learning
framework for multiplier circuit design. In ICML, 2024.

Xiaobo Xia and Run Luo. Gui-r1 : A generalist r1-style vision-language action model for gui agents.
arXiv preprint arXiv:2504.10458, 2025.

Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan, and Yongfeng Zhang. A-mem: Agentic
memory for llm agents. arXiv preprint arXiv:2502.12110, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Mingyu Yang, Yaodong Yang, Zhenbo Lu, Wengang Zhou, and Houqiang Li. Hierarchical multi-
agent skill discovery. In NeurIPS, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In ICLR, 2023.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. In NeurIPS, 2022.

13

https://github.com/huggingface/trl

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lei Yuan, Yuqi Bian, Lihe Li, Ziqian Zhang, Cong Guan, and Yang Yu. Efficient multi-agent offline
coordination via diffusion-based trajectory stitching. In ICLR, 2025.

Ge Zhang, Yemin Shi, Ruibo Liu, Ruibin Yuan, Yizhi Li, Siwei Dong, Yu Shu, Zhaoqun Li, Zekun
Wang, Chenghua Lin, et al. Chinese open instruction generalist: A preliminary release. arXiv
preprint arXiv:2304.07987, 2023.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tian-
min Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
models. In ICLR, 2024a.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow genera-
tion. arXiv preprint arXiv:2410.10762, 2024b.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong,
and Ji-Rong Wen. A survey on the memory mechanism of large language model based agents.
arXiv preprint arXiv:2404.13501, 2024c.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel:
Llm agents are experiential learners. In AAAI, 2024.

Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar
prompting with memory for computer control. In ICLR, 2024.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing
large language models with long-term memory. In AAAI, 2024a.

Yifan Zhong, Jakub Grudzien Kuba, Xidong Feng, Siyi Hu, Jiaming Ji, and Yaodong Yang.
Heterogeneous-agent reinforcement learning. JMLR, 2024b.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning, acting, and planning in language models. In ICML, 2024.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

This supplementary material details the proposed method and presents additional experimental re-
sults. Section A.1 is related work. Section A.2 presents more implementation details for experi-
ments. Section A.3 reports extra comparative results, and Section A.4 introduces more analysis for
ablation studies. Section A.5 describes dataset configurations. Section A.6 includes all prompts used
in baselines and our multi-agent architecture. Section A.7 provides extended case analyses. Finally,
Section A.8 introduces the usage of LLMs. The code is included in JoyAgents R1 Code.zip.

A.1 RELATED WORK

A.1.1 LLM-BASED MULTI-AGENT PLANNING

Recent breakthroughs in LLMs have transformed the landscape of agent planning Huang et al.
(2024). Autonomous agents can implement iterative self-reflection mechanisms, dynamically in-
tegrate external information via structured prompts Yao et al. (2023); Shinn et al. (2023); Zhou
et al. (2024); Lin et al. (2023); Qiao et al. (2024), and perceive environments to plan tasks through
sophisticated reasoning and decision-making processes Ghallab et al. (2004). Compared with single-
agent approaches that struggle with inefficiency and environmental adaptability, multi-agent systems
achieve robust performance through decentralized decision-making and collaborative mechanisms,
enabling the coordination of agents with distinct capabilities and objectives to pursue shared goals
in fields like robotics Kannan et al. (2024), tool calling Shen et al. (2024), and AI assistants Fu et al.
(2024). However, few multi-agent systems can achieve multi-domain tasks. Moreover, open-source
LLMs Grattafiori et al. (2024); Yang et al. (2024) lag significantly behind state-of-the-art models,
which are either closed-source with opaque mechanisms Achiam et al. (2023); Anthropic (2024) or
overly complex for multi-agent deployment Guo et al. (2025). Recent work has modeled agents as
computational graphs, such as GPTSwarm Zhuge et al. (2024), which optimizes orchestration via
prompt refinement and graph connectivity, while AFLOW Zhang et al. (2024b) automates workflow
generation with Monte Carlo Tree Search. In addition, Multiagent Debate Du et al. (2024) and its
variants prompt multiple LLMs to iterate the debate to improve reasoning. This work introduces a
hierarchical multi-agent architecture to interpret user queries and perform dynamic planning. Based
on the smaller open-source LLMs, our framework implements diverse capabilities, including ques-
tion answering, mathematical computation, and tool calling, revealing the mechanisms that drive
effective heterogeneous multi-agent collaboration in resource-constrained environments.

A.1.2 MULTI-AGENT REINFORCEMENT LEARNING

MARL has witnessed substantial advancements, rendering it an ideal approach for tackling complex
and challenging tasks Yuan et al. (2025). This work focuses on cooperative MARL tasks where
various agents share a common goal, which has been successfully applied in many fields such as
game playing Wang et al. (2021); Yu et al. (2022), task allocation Iqbal et al. (2022), skill discov-
ery Yang et al. (2023), and circuit design Wang et al. (2024). Typical MARL methods employ an
actor-critic framework, where actors generate actions based on observations, and critics evaluate
their long-term efficacy Sun et al. (2024). There are policy-based methods like MADDPG Lowe
et al. (2017) and MAPPO Yu et al. (2022) and value-based ones like VDN Sunehag et al. (2018) and
QMIX Rashid et al. (2020). Although recent studies have explored LLM-based MARL frameworks
for problem-solving Chen et al. (2023); Hong et al. (2024) and embodied intelligence Mandi et al.
(2024); Zhang et al. (2024a); Kannan et al. (2024), these approaches primarily focus on enhanc-
ing inter-agent communication and cooperative decision-making, with limited emphasis on the joint
evolution of multi-agent systems. In addition, many methods adopt parameter sharing across agents,
which restricts their applicability to homogeneous scenarios Deng et al. (2024); Grammel et al.
(2020); Christianos et al. (2021) and fails to address heterogeneous systems Zhong et al. (2024b).
Recently, GRPO Shao et al. (2024) has eliminated the value function and relies on observed rewards,
which is suitable for joint training of heterogeneous multi-agents Ke et al. (2025). Based on GRPO,
MLPO Estornell et al. (2025) trains the leader in multi-agent systems, but there are few attempts to
train all agents jointly. Since the dynamic and changeable reasoning paths in multi-agents, direct
sampling based on GRPO will lead to an exponential explosion. Therefore, we propose VR-GRPO
that combines efficient Monte Carlo sampling with marginal benefit optimization to guide reasoning
path sampling and agent updating.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Training settings for supervised fine-tuning.

Hyperparameter Value

learning rate 5e-6
max length 16384

num train epochs 5
max grad norm 1
weight decay 0.01
warmup ratio 0.03

lr scheduler type cosine
optim adamw torch

gradient accumulation steps 4
dataloader num workers 8

per device train batch size 1

Table 7: Training settings for reinforcement learning.

Hyperparameter Value

learning rate 1e-6
max length 16384

num train epochs 5
max grad norm 1
adam epsilon 1e-5
num groups 5
topk groups 5

kl coef 0
grpo epoch 2

policy clip eps 0.2
temperature 1.2

per device train batch size 1

A.1.3 LLM-BASED AGENT MEMORY

Agent memory can be divided into RAG-based and embodied categories Huang et al. (2024). The
former is typically stored in additional storage, while the latter embeds memories into model pa-
rameters by fine-tuning LLMs. In this work, we focus on RAG-based long-term memory mecha-
nisms. Recent works have explored diverse strategies Packer et al. (2023); Lu et al. (2023); Wang
et al. (2023); Huang et al. (2023). Methods such as MoT Li & Qiu (2023), TiM Liu et al. (2023),
and RAP Kagaya et al. (2024) aim to improve LLM reasoning and planning by leveraging mem-
ories after selection or thinking. MemoryBank Zhong et al. (2024a) draws inspiration from the
Ebbinghaus forgetting curve Ebbinghaus (2013) to design a selective information retention mecha-
nism. HELPER Sarch et al. (2023), ExpeL Zhao et al. (2024), RET-LLM Modarressi et al. (2024),
Synapse Zheng et al. (2024), and A-mem Xu et al. (2025) adopt different approaches for knowledge
aggregation, storage, and retrieval, enhancing LLMs’ adaptability to novel tasks. Moreover, there
are several memory mechanisms tailored for multi-agent systems Zhang et al. (2024c), exploring
the memory synchronization Chen et al. (2024), communication Mandi et al. (2024), and the infor-
mation asymmetry Light et al. (2023) among agents. Nevertheless, existing memory modules often
struggle to keep pace with LLM updates, thereby limiting system efficacy. In contrast, we present
the joint evolution dynamics where agent memory and decision-making modules evolve synergisti-
cally with LLMs optimization. This mechanism leverages GRPO rewards as cost-free supervisory
signals, eliminating the need for dedicated model training while enhancing convergence efficiency.

A.2 IMPLEMENTATION DETAILS

To improve the reproducibility of the experiments, more training settings for supervised fine-tuning
(SFT) and reinforcement learning (RL) are provided in Table 6 and Table 7, respectively. To compare

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

the SFT and RL methods fairly, the former is trained for a total of 10 epochs, while the latter
is trained with SFT for 5 epochs followed by RL for 5 epochs. For RL training, the models are
deployed on the TRL von Werra et al. (2020) framework on 2 NVIDIA H200 GPUs for accelerated
inference via vLLM Kwon et al. (2023) and real-time weight updates, while allocating 6 GPUs for
joint training.

A.3 COMPARATIVE EXPERIMENTS

Evaluation metrics The metrics are categorized into accuracy and efficiency. For accuracy, the
calculations vary across task types. In question-answering tasks, accuracy is measured by the se-
mantic similarity between the predicted and ground truth answers, with a threshold of 0.6. For math-
ematical problems, accuracy is binary (0 or 1) based on exact numerical matching. For function-call
tasks, a response with correct function names is scored 1, otherwise 0. Regarding efficiency, it
is quantified by the average number of steps required to complete a task, reflecting the reasoning
efficiency of the method.

Experimental setup for the multi-task benchmark. To verify the effectiveness of the proposed
method, a comprehensive comparison is conducted with agents based on closed-source and open-
source models. All baselines run under a consistent set of prompts, and each model is assessed as a
single agent through React-based multi-turn interactions. For the proposed multi-agent method, the
model parameters activated for each query typically range from 6B (master plus a single sub-agent)
to a maximum of 15B (master plus 4 sub-agents).

Experimental setup for the Multiagent Debate. We have implemented and compared the Mul-
tiagent Debate with our method. We opt for Qwen2.5-14B as the backbone and expand it into three
with different roles. As stated on Lines 140-143 of the supplementary material, modifications are
made based on the original system prompt for the single agent as follows:

• The first role is changed as: You are a customer service expert of an e-commerce platform, spe-
cializing in answering user questions based on retrieved e-commerce knowledge.

• The second role is changed as: ..., specializing in selecting appropriate tools to solve user prob-
lems based on user questions.

• The third role retains its original role as: ..., specializing in selecting appropriate tools or retriev-
ing relevant e-commerce knowledge to solve user problems. Moreover, add the rule at the end
as: Here are two responses from agents regarding the current issue or a call to a specific tool.
Please analyze the correctness of these responses and, based on your understanding, select one
or generate a new action. agent 1: {agent 1 response}, agent 2: {agent 2 response}.

• In each round of reaction, modify the original single LLM response generation to: use the first
two roles to generate two responses, then pass these two responses to the third role to obtain the
final response, which serves as the think and action for that round.

Experimental setup for the Toolbench dataset. To validate the effectiveness of the proposed
JoyAgents-R1, more comparative experiments are conducted on ToolBench Qin et al. (2024). The
benchmark involves integrating API calls to accomplish tasks, where the agent should select the
correct API and compose necessary API requests accurately. In this section, the test set is divided
into in- and out-of-domain based on whether the tools used in the test instances have been seen
during training. This setup enables us to evaluate both the learning and generalization capabilities
of the method. Moreover, the proposed method is compared with two baseline approaches, namely
Single-think-SFT and Single-nothink-SFT. They are based on the Qwen2.5-3B model and fine-tuned
on the toolbench training set. The former outputs the reasoning process and final results, while the
latter directly generates the final response without the reasoning process. We also evaluate the
performance of the larger open- and closed-source LLMs Yang et al. (2024); Guo et al. (2025); Liu
et al. (2024a); Achiam et al. (2023) are also used to build agents for comparisons without fine-tuning.

More metrics on the Toolbench dataset. To comprehensively compare the model performance,
a variety of evaluation indicators are used as follows:

• Plan ACC: The accuracy of the agent’s planning decisions at each step of the tool calling.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Accuracies (%) of multi-tasks with agents based on larger SOTA closed-source or open-
source models. ‘FC’ is the function call.

Model Math QA E-commerce FC General FC Cooperation Average

GPT-4o 84.3±1.2 35.0±2.0 50.3±4.9 76.2±0.1 5.0±1.0 50.2±1.3

DeepSeek-R1 98.0±1.0 34.7±3.2 19.3±4.2 72.4±1.8 5.3±3.2 45.9±1.5

DeepSeek-V3 95.7±1.5 32.3±5.5 6.3±3.2 77.2±1.3 3.0±3.5 42.9±2.3

Qwen2.5-32B 71.0±1.7 34.2±3.6 3.0±1.0 68.9±0.5 1.7±0.6 35.8±0.9

Qwen2.5-14B 80.0±4.0 30.3±1.5 0.3±0.6 43.0±1.1 2.0±0.0 31.2±1.2

JoyAgents-SFT (7B+3B) 65.0±1.0 19.3±5.7 39.3±2.1 63.5±1.1 5.0±1.0 38.4±0.9

JoyAgents-R1 (3B+3B) 70.0±1.7 20.7±2.3 48.3±0.6 73.9±0.7 7.0±1.7 44.0±0.8

• Act EM: The proportion of predicted API names that exactly match the real API names.
• Easy F1: The predicted argument F1 score when the ground truth argument is empty.
• Hard F1: The predicted argument F1 score when the ground truth argument is not empty.
• F1: The predicted argument F1 score across all conditions.
• No Hallu: The frequency of predicted API names that do not have hallucinations.
• Avg: The average value of the above indicators.

More comparative results on the multi-task benchmark. We have conducted 5 runs on Table 1
to calculate the mean and error bars as shown in Table 8. For the mean value, the proposed method
still shows superior performance compared with the open source model-based methods similar to
Table 1 in the main text. JoyAgents-R1 (44.0%) still has better average performance than the larger
DeepSeek-V3 (42.9%) and achieves the best performance in the collaborative task. For the standard
deviation, JoyAgents-R1 has the smallest fluctuation in average accuracy, with only 0.82. These
results further verify the effectiveness of the proposed method.

A.4 MORE ANALYSIS FOR ABLATION STUDY

Ablation on updating top-K models. Table 4 presents the performance outcomes of updating
varying numbers of nodes along a trajectory. The empirical results reveal that updating the top-5
nodes yields optimal performance, outperforming alternative strategies. Specifically, compared to
updating only the top-1 node, the top-5 update achieves a 37.5% improvement on the QA dataset
and a 50% gain in collaborative tasks. Relative to updating top-2 nodes, the top-5 approach delivers
a 19.3% boost on the math dataset and an 83.3% enhancement on QA tasks. compared to updating
all nodes, updating the top-5 nodes results in a 29.4% improvement on QA and a 100% increase in
collaborative task success rates. These findings demonstrate that merely updating the top-1 or top-2
nodes is insufficient for holistic system optimization, as such localized adjustments fail to address
systemic weaknesses. Conversely, updating all nodes lacks global awareness and focus, leading to
redundant computations. Our top-5 strategy, however, employs global trajectory analysis to identify
and update the weakest nodes, i.e., those most limiting system performance, thereby maximizing
efficiency and efficacy. This selective updating mechanism ensures that optimization efforts are
concentrated on critical bottlenecks, yielding superior overall performance.

Ablation on the number of sub-agents. Table 5 presents the performance of the master agent
when integrated with varying numbers of sub-agents across different datasets. Specifically, the
configurations include:

• 2 sub-agents: QA agent and e-commerce function-call agent.
• 3 sub-agents: The aforementioned two plus the math agent, with the addition of collabora-

tive tasks.

The results indicate that for individual tasks, configurations with fewer sub-agents (2 or 3) out-
perform the full set of sub-agents. For instance, on the QA dataset, the 2-sub-agent setup yields
an 18.2% improvement, while the 3-sub-agent setup achieves a 13.6% gain. Similarly, on the e-
commerce function-call dataset, the 2-sub-agent and 3-sub-agent configurations exhibit 14.6% and

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

6.2% improvements, respectively. These findings align with our intuition that fewer sub-agents are
more effective for non-collaborative tasks, due to reduced complexity and interference. Conversely,
in collaborative tasks, the full set of 4 sub-agents demonstrates superior performance, attributed to
their exposure to a broader range of data and interactions. This outcome underscores the efficacy
of our multi-agent system design, which is specifically tailored to address collaborative challenges.
The enhanced performance in collaborative scenarios validates the structural design of our system,
highlighting the benefits of a comprehensive multi-agent framework in handling complicated and
interdependent tasks.

A.5 DATASETS AND SETUP

The datasets used in this paper can be divided into two categories: SFT and RL. Since the RL stage
is trained end-to-end, this type of data only contains the initial query and the final response. More
details of the SFT dataset used for each agent are introduced as follows:

Master agent datasets. As shown in Table 9, the case for the master agent includes user queries, op-
tional tools, invoked agents, retrieved memories, historical dialogues, and tool-generated responses.
In addition, the reasoning processes (i.e., < think > · · · < /think >), tool calling (i.e.,
< tool call > · · · < /tool call >), and final answers are provided in the dataset.

Function-call agent datasets. Regarding function-calling, the e-commerce agent incorporates 12
prevalent APIs of e-commerce platforms, while the general agent draws from 1,000 diverse function
calls from ToolBench Qin et al. (2024). Table 10 illustrates a case for the e-commerce function-call
agent, which is called the ‘rody agent’ in our multi-agent system for easy reference in code and
expressions.

Question-answering agent datasets. The question-answering agent includes ‘tool retrievals’ and
‘tool summary’ as demonstrated in Table 11. Its data covers open-domain Zhang et al. (2023) and
e-commerce scenarios. In this work, the QA agent has an alias called ‘expert agent’ to show its
professionalism.

Math agent datasets. The dataset for the math agent is constructed from GSM8K Cobbe et al.
(2021). The last part of Table 9 shows the thinking process and answers of math agents.

Table 9: A case of the master agent in a collaborative task.

Case #1 of the master agent in a collaborative task

User: I want to open a small personal store on [e-commerce platform A] to sell educational
toys. How much deposit do I need to pay? If I open two stores, how much deposit will I need
to pay in total?

System

{Role} from Template #1 in Section A.6
Specialized Retrieval Tools/Memory:
< tools >
[{”name”: ”math agent”, ”description”: ”When the user puts forward a clear
request to give a solution or answer to a specific mathematical problem, the
agent needs to be called. If it is only about a mathematically related topic, the
agent cannot be called”, ”parameters”: {}}, ...]
< /tools >
< memory >
[{”ID”: 1620, ”Query”: ” Calculate how many times Danny folded his picnic
blankets given the initial and final area.”, ”Plan”: [”math agent”], ”Answer”:
”How many square feet are each blanket? ** The total area of each blanket is
8*8=¡¡8*8=64¿¿64. How many square feet are the blankets? ** Their total area
is 192 square feet because 3 x 64 = ¡¡3*64=192¿¿192. How many times did
he fold them? ** He folded them 4 times because 192 / 48 = ¡¡192/48=4¿¿4.
4”, ”Time”: ”2025-03-26 11:41:13”, ”Score”: 6} ...]
< /memory >
{Problem Resolution Framework} from Template #1 in Section A.6

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Assistant

< tool call >
{”name”: ”rody agent”, ”arguments”: {”intention”: [”Query the deposit re-
quired for opening a small personal store on [e-commerce platform A] to sell
educational toys.”]}}
< /tool call >

Tool

Pass calling {”api name”: ”check shop expenses”, ”parameter”: {”keyword”:
[”Educational Toys”], ”shop body”: [”Individual”], ”shop type”: [”small
shops”]}}, the API call was successful.
Results are as follows:
1. Specific amount of margin per year: 6000 yuan.
2. Transaction service fee rate per transaction: 0.25%.
3. Technical service fee rate per transaction: 0.41%.

Assistant

< tool call >
{”name”: ”tool retrievals”, ”arguments”: {”intention”: [”Calculate the total
deposit required for opening two small personal stores on [e-commerce plat-
form A] to sell educational toys, based on the queried deposit information of
6000 yuan per store.”]}}
< /tool call >

Tool

[{”name”: ”expert agent”, ”description”: ”When users chat, greet, abuse,
make jokes, discuss music/games/current politics/military/entertainment/food
and other daily topics, or consult the rules of the e-commerce platform, the
agent needs to be invoked ”, ”parameters”: {}},
{”name”: ”math agent”, ”description”: ”When the user puts forward a clear
request to give a solution or answer to a specific mathematical problem, the
agent needs to be called. If it is only about a mathematically related topic, the
agent cannot be called ”, ”parameters”: {}},
{”name”: ”toolbench agent”, ”description”: ”function-0: This is the subfunc-
tion for tool ”football xg statistics” and its function is ”seasons list by tour-
namentid for football xg statistics”, you can use this tool. The description
of this function is: Football (soccer) xG statistics. We provide statistics for
more than 80 leagues. There are more than 90,000 games and 2 million shots
in our database. The method is used to get a list of seasons by the league
ID; function-1: This is the subfunction for the tool ”mailslurp email testing”
and its function is ”getbouncedrecipients for mailslurp email testing”, you can
use this tool. The description of this function is: Email sandbox testing API.
Bounced recipients are email addresses that you have sent emails to that did
not accept the email. Once a recipient is bounced, you cannot send emails to
that address.”}]

Assistant

< tool call >
{”name”: ”math agent”, ”arguments”: {”intention”: [”Calculate the total de-
posit required for opening two small personal stores on [e-commerce platform
A] to sell educational toys, based on the queried deposit information of 6000
yuan per store.”]}}
< /tool call >

Tool

The user wants to open a small personal store on [e-commerce platform A] to
sell educational toys. The deposit required for one store is 6000 yuan per year.
If the user opens two stores, the total deposit will be 6000 yuan multiplied by
2.
12000

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Assistant
Final

< think >
The user’s issue is to calculate the total deposit required for opening two small
personal stores on [e-commerce platform A] to sell educational toys. The tool
rody agent was initially called to query the deposit information, which returned
that the deposit for one store is 6000 yuan per year. The user then asked for
the total deposit for two stores. The tool math agent was called to perform the
calculation, which returned the result of 6000 yuan multiplied by 2, resulting
in 12000 yuan. Since the tool math agent successfully calculated the total
deposit, the final solution can be directly provided based on the tool’s response.
Therefore, the final solution is ”12000”.
< /think >
12000

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 10: A case of the function-call agent in an e-commerce task.

Case #2 of the function-call agent in an e-commerce function-call task

User: Hello, I found that some orders may have the label of door-to-door replacement, what
information should be provided in this case?

System

{Role} from Template #2 in Section A.6
Specialized Retrieval Tools/Memory:
< tools >
[{”name”: ”search payment method”,”description”: ”Inquire the settlement
method of the user’s shop, such as B2B settlement, C2B settlement, bank card
settlement, online banking wallet settlement.”,”parameters”: {}}, {”name”:
”search order code”, ”description”: ”...”, ,”parameters”: {...}}, ...]
< /tools >
< memory >
[{”ID”: ”1254”, ”Query”: ”Hello, I found that some orders may have
the label of door-to-door replacement, what information should be pro-
vided in this case?”, ”Plan”: [], ”Answer”: ”Pass calling {’api name’:
’search order code’, ’parameter’: {’order service mix tag’: [’door-to-door re-
placement’], ’search keys’: [’order label’]}}, the API call was successful.
Results are as follows:
We have retrieved the relevant order information for you.”, ”Time”: ”2025-04-
29 02:20:30”, ”Score”: 10}, ...]
< /memory >
{Problem Resolution Framework} from Template #2 in Section A.6

Assistant

< tool call >
{”name”:”search order code”, ”arguments”:{”order service mix tag”:
[”door-to-door replacement”], ”search keys”: [”order label”]}}
< /tool call >

Tool

Pass calling {”api name”: ”search order code”, ”parame-
ter”:{”order service mix tag”: [”door-to-door replacement”], ”search keys”:
[”order label”]}}, the API call was successful.
Results are as follows:
We have retrieved the relevant order information for you.

Assistant
Final

< think >
The Input issue is about retrieving information for orders with the la-
bel ”door-to-door replacement.” The Output is the result of calling the
”search order code” tool with the parameters ‘{”order service mix tag”:
[”door-to-door replacement”], ”search keys”: [”order label”]}’. The Output
indicates that the API call was successful and relevant order information has
been retrieved. This matches the reference information in ¡memory¿, where a
similar query was resolved by calling the same tool with the same parameters.
Therefore, the Output is directly derived from the reference information, and
the reasoning process is consistent with the provided solution.
< /think >
Pass calling {”api name”: ”search order code”, ”parameter”:
{”order service mix tag”: [”door-to-door replacement”], ”search keys”:
[”order label”]}}, the API call was successful.
Results are as follows: We have retrieved the relevant order information for
you.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 11: A case of the question-answering agent in a QA task.

Case #3 of the question-answering agent in a QA task

User: Where to open the LCL service?

System

{Role} from Template #4 in Section A.6
Specialized Retrieval Tools/Memory:
< tools >
[{”name”: ”tool retrievals”, ”description”: ”Knowledge retrieval tool.
Searches for potentially relevant information in a vertical knowledge base (e-
commerce merchant operations scenarios) based on the current question.”, ”ar-
guments”: {}} {”name”: ”tool summary”, ”description”: ”Intelligent Q&A
tool. When retrieval content is provided, it primarily answers based on the re-
trieved content; otherwise, it responds based on its knowledge.”, ”arguments”:
{}}]
< /tools >
< memory >
[{”id”: 4439, ”model name”: ”expert”, ”query”: ”Is my shop bounded with
a card?”, ”plan”: [], ”response”: ”You can check and manage your bank card
information in the backstage of your store, in the ”store management”-”store
information”-”settlement configuration”.”, ”score”: 1.0, ”time”: 7514}, ...]
< /memory >
{Problem Resolution Framework} from Template #4 in Section A.6

Assistant
< tool call >
{”name”: ”tool retrievals”, ”arguments”: {}}
< /tool call >

Tool

[General] Corporation A Merchant Consolidation Warehouse
Opening Configuration Page (see link: ...)
[Other] Merchant Question: Consolidation Opening Entry
Merchant Assistant:
1) How to open: You can click on the left menu bar of the Merchant Center -
Services - Merchant Service Center - Sales - Remote Area Logistics Service -
Click to open to enter the product configuration page. Follow the page prompts
to configure your products, and then turn on the service switch in the upper
right corner to take effect. Direct link: ...
2) Fees: For products bound to consolidation and free shipping, you only need
to bear the cost of the first leg to Xi’an. The second leg from Xi’an to the
consumer is fully subsidized by the platform, and consumers can enjoy free
shipping and free door-to-door delivery.
3) Benefits: Free second-leg logistics for remote area shipments, free intercep-
tion for second-leg logistics in remote areas, estimated doubling of remote area
order volume, and exemption from store comprehensive experience scores. ...

Assistant
< tool call >
{”name”: ”tool summary”, ”arguments”: {}}
< /tool call >

Tool

The entry to open the consolidation service is as follows:
1. Click the left menu bar.
2. Select ”Service”.
3. Enter ”Merchant Service Center”.
4. Select ”Remote Area Logistics Service” under ”Selling Section”.
5. Click ”Open” to enter the product configuration page.
6. Configure the products according to the page prompts, and turn on the ser-
vice switch in the upper right corner to take effect.
Direct link: ...

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Assistant
Final

< think >
Given that the user’s question pertains to e-commerce-specific knowledge and
both tool retrievals and tool summary have already been invoked in the his-
torical context, the optimal path is to directly output the answer provided by
tool summary. This is because the necessary information has been retrieved
and summarized, and there’s no need for further tool invocations, ensuring ef-
ficiency and cost-effectiveness in tool usage.
< /think >
The entry to open the consolidation service is as follows:
1. Click the left menu bar.
2. Select ”Service”.
3. Enter ”Merchant Service Center”.
4. Select ”Remote Area Logistics Service” under ”Selling Section”.
5. Click ”Open” to enter the product configuration page.
6. Configure the products according to the page prompts, and turn on the ser-
vice switch in the upper right corner to take effect.
Direct link: ...

A.6 PROMPTS

System prompts for multi-agents. The system prompt template for each agent in our multi-agent
architecture is as follows:

Template #1: System Prompt for the Master Agent

Role:

You are a customer service expert of an e-commerce platform, specializing in selecting ap-
propriate tools and agents to solve user problems based on user questions. Please understand
and analyze the user’s current problem according to the history dialogue until the user’s prob-
lem is solved. There are some tools available between < tools >< /tools >for selection
at each step. You can think as follows:

• If the user’s intention can completely match other known specific tools except for
tool intention and tool retrievals, directly call that tool.

• If you cannot understand the user’s current intention, call tool intention.
• If the user’s intention is clear but cannot match other known specific tools except

for tool intention and tool retrievals, call tool retrievals to get complementary in-
formation to choose from all tools again.

• If an agent tool has been called and returned results, or content has been recalled
between < memory >< /memory >, you need to judge whether the cur-
rent agent result or the similar answers recorded in the memory meet the user’s
intention. If so, directly output the answer based on it; otherwise, re-arrange.

Specialized Retrieval Tools / Memory:

< tools >

• {”name”: ”rody agent”, ”description”: ”The agent has the following functions:

– Check fee: check the deposit, quality guarantee, and technical service fee
requirements required for settling in the Corporation A platform;

– Check qualifications: inquire about the various documents/material require-
ments required for settling in the Corporation A platform;

– Check the order: Check all questions about the related order;

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

– Query after-sales information: Check all questions about the related after-sales
order;

– Order reporting: Delayed reporting of orders that cannot be delivered on time,
but unable to check whether the order has been reported or whether it needs to
be reported;

– Check the refund of deposit at the time of check-out: When the user applies
for check-out and returns the deposit, check the current refund progress of the
deposit and the reason why the deposit cannot be returned at present;

– Query product promotion: Quickly obtain detailed information related to the
designated promotion activities of the merchants;

– Query product coupons: obtain the status of coupons specified by the merchant
and applicable products, but can not query the reason why the coupons are not
effective;

– Check the status of bank card: Help users check the current binding and veri-
fication status of their bank card;

– Query the settlement method: According to the actual situation of the user,
help query the settlement method of its store, and provide the current store
payment and platform refund flow;

– Query product audit: According to the actual requirements of the user, query
the review status of the user’s product listing/modification and the reasons for
the slow review progress, but can not query the reasons for the failure of the
product audit.”}

• {”name”: ”expert agent”, ”description”: ”When users chat, greet, abuse, make
jokes, discuss music/games/current politics/entertainment/food and other daily top-
ics, or consult the rules of the e-commerce platform, the agent needs to be in-
voked.”, ”parameters”: {}}

• {”name”: ”math agent”, ”description”: ”When the user puts forward a clear request
to give a answer to a specific mathematical problem, the agent needs to be called.
If it is only about a mathematically related topic, the agent cannot be called.”, ”pa-
rameters”: {}}

• {”name”: ”toolbench agent”, ”description”: ””, ”parameters”: {}}
• {”name”: ”tool intention”, ”description”: ”The intention understanding tool. Un-

derstand the user’s real intention based on context and current question.”, ”argu-
ments”: {}}

• {”name”: ”tool retrievals”, ”description”: ”The API retrieval tool. Retrieve re-
lated APIs from the API knowledge base based on intention.”, ”arguments”:
{”intention”: ”user’s current intention”}}

• ...

< /tools >
< memory >
memory append(Optional)
< /memory >

Problem Resolution Framework:

Specific requirements are as follows:

• When selecting tools, please refer to the tool’s function description. Each tool’s
function only contains the content in the description, and it is prohibited to guess
or extend other functions based on the description.

• When selecting tools after calling tool retrievals, you can only choose from the can-
didate tool set retrieved through tool retrievals. Each tool’s function only contains
the content in the description.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

• Please be faithful to the semantics of the current problem and historical dialogue,
and do not output content that does not exist in the historical dialogue and current
problem.

• Directly output the agent’s response if there is no error.
• Do not alter or truncate any words if the response is from rody/math/toolbench.
• For math or coding questions, use the user’s query as the sub-agent calling inten-

tion.
• Do not call the same tool repeatedly. If the result from the previous tool call is

incorrect, try using other tools.
• When a user requests a solution or answer to a specific math problem, output in the

following format (output the numerical answer directly after < /think >, without
any units or irrelevant characters): < think >think process< /think >answer.

• Output strictly according to the following format:
– The user’s question is not clear, or unable to understand the user’s intention:

* < think > The analysis and thinking process of the user’s problem, and
the reason for calling the intention recognition tool. < /think >

* < tool call > {”name”: ”tool intention”, ”arguments”: {}} <
/tool call >

– The tools in ¡tools¿¡/tools¿ and all the currently retrieved tools cannot meet
the user’s intention:

* < think > The analysis and thinking process of the user’s problem, and
the reason for calling the tool retrievals tool. < /think >

* < tool call > {”name”: ”tool retrievals”, ”arguments”: {”intention”:
user intention}} < /tool call >

– The agent tools in ¡tools¿¡/tools¿ or all the currently retrieved tools can meet
the user’s intention:

* < think > The analysis and thinking process of the user’s problem,
and the reason for choosing which agent to solve the user’s problem. <
/think >

* < tool call > {”name”: chosen agent name, ”arguments”: {”intention”:
user’s intention that can be met through chosen agent}}< /tool call >

– According to the recalled information between < memory ><
/memory > or the agent calling result, you can answer the user’s ques-
tion:

* < think > The reason why you can answer the user’s problem based on
the current known information.< /think >

* The answer to the current user’s question.

Template #2: System Prompt for the E-commerce Function-call Agent

Role:

You are a customer service expert of Corporation A e-commerce platform, specializing in
solving user problems based on user questions and selecting the final API tools. Please un-
derstand and analyze the user’s current problem according to the history dialogue, thinking
step by step until the user’s problem is solved. There are some tools available for selection
at each step. You can think as follows:

• If the user’s intention can completely match other known specific APIs except for
tool intention and tool retrievals, directly call that API and identify the required
parameters.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

• If the user’s intention is clear but cannot match other known specific APIs except
for tool intention and tool retrievals, call tool retrievals to recall some related APIs
to choose again.

• If an API has been called and returned results, or content has been recalled between
< memory >< /memory >, you need to judge whether the current API
result or the similar answers recorded in the memory meet the user’s intention. If
so, directly output the answer based on it; otherwise, re-arrange.

Specialized Retrieval Tools / Memory:

< tools >

• {”name”: ”tool retrievals”, ”description”: ”Knowledge retrieval tool. Searches for
potentially relevant information in a vertical knowledge base (e-commerce mer-
chant operations scenarios) based on the current question.”, ”arguments”: {}}

• ...

< /tools >
< memory >
memory append(Optional)
< /memory >

Problem Resolution Framework:

Specific requirements are as follows:

• When selecting tools, please refer to the tool’s function description. Each tool’s
function only contains the content in the description, and it is prohibited to guess
or extend other functions based on the description.

• When selecting APIs, you can only choose from the candidate API set recalled
through tool retrievals. Each API’s function only contains the content in the de-
scription.

• Please be faithful to the semantics of the current problem and historical dialogue,
and do not output content that does not exist in the historical dialogue and current
problem.

• Do not call the same tool more than once, and try to call different APIs.
• Just output the tool response directly if there is no error.
• Output strictly according to the following format:

– The APIs in < tools >< /tools > and all the currently recalled APIs
cannot meet the user’s intention: < think > The analysis and thinking
process of the user’s problem, and the reason for calling the API retrieval
tool. < /think > < tool call > {”name”: ”tool retrievals”, ”arguments”:
{”intention”: user intention}} < /tool call >

– The APIs in < tools >< /tools > or all the currently recalled APIs can
meet the user’s intention: < think > The analysis and thinking process
of the user’s problem, and the reason for choosing which api to solve the
user’s problem. < /think > < tool call > {”name”: chosen api name,
”arguments”: parameters passed to api} < /tool call >

– According to the recalled information between < memory ><
/memory > or the API calling result, you can answer the user’s question:

* < think > The reason why you can answer the user’s problem based on
the current known information.< /think >

* The answer to the current user’s question.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Template #3: System Prompt for the General Function-call Agent

Role:

You are a customer service expert of Corporation A e-commerce platform, specializing in
solving user problems based on user questions and selecting the final API tools. Please un-
derstand and analyze the user’s current problem according to the history dialogue, thinking
step by step until the user’s problem is solved. There are some tools available for selection
at each step. You can think as follows:

• If the user’s intention can completely match other known specific APIs except for
tool intention and tool retrievals, directly call that API and identify the required
parameters.

• If the user’s intention is clear but cannot match other known specific APIs except
for tool intention and tool retrievals, call tool retrievals to recall some related APIs
to choose again.

• If an API has been called and returned results, or content has been recalled between
< memory >< /memory >, you need to judge whether the current API
result or the similar answers recorded in the memory meet the user’s intention. If
so, directly output the answer based on it; otherwise, re-arrange.

Specialized Retrieval Tools / Memory:

< tools >

• {”name”: ”tool retrievals”, ”description”: ”The API retrieval tool. Retrieve re-
lated APIs from the API knowledge base based on intention.”, ”arguments”:
{”intention”: ”user’s current intention”}}

• ...
< /tools >
< memory >
memory append(Optional)
< /memory >

Problem Resolution Framework:

Specific requirements are as follows:
• When selecting tools, please refer to the tool’s function description. Each tool’s

function only contains the content in the description, and it is prohibited to guess
or extend other functions based on the description.

• When selecting APIs, you can only choose from the candidate API set recalled
through tool retrievals. Each API’s function only contains the content in the de-
scription.

• Please be faithful to the semantics of the current problem and historical dialogue,
and do not output content that does not exist in the historical dialogue and current
problem.

• Do not call the same api more than once, and try to call different APIs.
• Just output the tool response directly if there is no error, or there is no other appro-

priate api to call.
• Output strictly according to the following format:

– The APIs in < tools >< /tools > and all the currently recalled APIs
cannot meet the user’s intention: < think > The analysis and thinking
process of the user’s problem, and the reason for calling the API retrieval
tool. < /think > < tool call > {”name”: ”tool retrievals”, ”arguments”:
{”intention”: user intention}} < /tool call >

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

– The APIs in < tools >< /tools > or all the currently recalled APIs can
meet the user’s intention: < think > The analysis and thinking process
of the user’s problem, and the reason for choosing which api to solve the
user’s problem. < /think > < tool call > {”name”: chosen api name,
”arguments”: parameters passed to api} < /tool call >

– According to the recalled information between < memory ><
/memory > or the API calling result, you can answer the user’s question:

* < think > The reason why you can answer the user’s problem based on
the current known information.< /think >

* The answer to the current user’s question.

Template #4: System Prompt for the QA Agent

Role:

You are a customer service expert for an e-commerce platform, capable of utilizing your
memory and searching for appropriate tools to address user inquiries. Based on the current
question and past tool selections and their responses, proceed step-by-step to determine
which tool to use or what content to output next.

Specialized Retrieval Tools / Memory:

1. Tools at your disposal: Results from the same tool & arguments are unique.
< tools >

• {”name”: ”tool retrievals”, ”description”: ”Knowledge retrieval tool. Searches for
potentially relevant information in a vertical knowledge base (e-commerce mer-
chant operations scenarios) based on the current question.”, ”arguments”: {}}

• {”name”: ”tool summary”, ”description”: ”Intelligent Q&A tool. When retrieval
content is provided, it primarily answers based on the retrieved content; otherwise,
it responds based on its knowledge.”, ”arguments”: {}}

< /tools >
2. Your memory content: Memory varies for different questions. In memory, the shorter the
plan route and the higher the score, the more valuable it is for reference.
< memory >
memory append(Optional)
< /memory >

Problem Resolution Framework:

• Requirements for Tool Selection:
– tool retrievals: Call this tool when retrieving domain-specific knowledge re-

lated to merchants or e-commerce scenarios is required.
– tool summary: Call this tool when generating a response to the user’s question

is needed.
* tool summary will refer to the results from tool retrievals to generate a

response only when the previous call was to tool retrievals; otherwise, it
will respond directly.

– Outputting Answers: (Must Pay Attention!) You cannot answer questions
directly. The following scenarios apply when outputting answers:

* If a similar question exists in the memory, you can directly output the
answer provided in the memory without invoking any tools.

* If no usable answer is found in the memory, you must first call
tool summary and return its output result as is (without modifying the out-
put of tool summary).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

– Tool Efficiency: Tool invocations incur costs. If the required information is
sufficient to answer the user’s question, respond directly without unnecessary
tool calls.

• Special Handling: When the question contains content such as “Pass calling ...
Results are as follows ...”, this part represents the results of historical API calls.
You do not need to answer this part in your response. However, when providing the
final answer, you must combine the tool summary response with the historical API
call results and include them together. In other words, after using the tool summary
to answer the question, add the historical API call results to the beginning of the
tool summary response and return them together.

• Applying the Above Tool Selection Requirements: When selecting tools for the
current round, consider the following:

– Analyze Previously Called Tools:

* Important: Avoid calling the same tool that has already been called in
history.

– (If memory is not empty) Analyze memory content:

* If the user’s question is essentially identical to one in memory, output the
answer from memory without calling other tools.

* If the user’s question is similar in content or type to one in memory, refer
to the plan in memory for guidance. For example, if the user’s question
and the memory question both pertain to vertical domain knowledge, you
can follow the plan in memory.

* If the user’s question bears no similarity to the memory content, ignore the
memory.

– (After confirming memory does not provide a direct answer) Determine
whether the user’s question requires e-commerce or Corporation A-specific
knowledge to answer:

* If no vertical domain knowledge is needed, call tool summary directly.
Otherwise, first call the tool retrievals to retrieve relevant knowledge be-
fore answering.

– If the Previous Call Was to tool summary:

* Since tool summary cannot be called again, and the output must come
from tool summary, directly output the answer.

• Output format requirements:
– Answer output format: < think > Thought process < /think > Out-

put answer(from tool summary or memory; Important: Any API call content
found in the question must be included verbatim in the final response.)

– Tool call format: < think > Thought process < /think > < tool call >
{”name”: ”tool name”, ”arguments”: {”param”: ”value”}}< /tool call >

Template #5: System Prompt for the Math Agent

Role:

You are a math expert, specializing in step-by-step thinking to answer the math problems
raised by users. Now you have a memory library, and the relevant memories will be stored
in it. You can combine the content in the memory to answer questions. The specific thinking
steps are as follows:

• If there is an identical question in the memory, you can use the answer of that
question to directly answer the current question.

• If all the questions in the memory are different from the current user’s question,
you need to think and answer by yourself.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Specialized Retrieval Tools / Memory:

< tools >
[tool append](Optional)
< /tools >
< memory >
memory append(Optional)
< /memory >

Problem Resolution Framework:

According to different situations, the output should strictly follow the following format:

• If there is an identical question in the memory:

– < think > The reason for choosing the answer to the identical question.<
/think >

– The answer to the current question.

• If there is no identical question in the memory:

– < think > The reason for not choosing a question from memory, and the
steps of thinking about the current user’s question.< /think >

– The answer to the current question.

System prompt for the single agent. The following is a system prompt template for single-agent
multi-step reasoning based on open-source or closed-source SOTA models:

Template #6: System Prompt for the Single Agent

Role:

You are a customer service expert of an e-commerce platform(Corporation A), specializ-
ing in selecting appropriate tools and agents to solve user problems based on user ques-
tions. Please understand and analyze the user’s current problem according to the historical
information until the user’s problem is solved. There are some tools available between
¡tools¿¡/tools¿for selection at each step.

Specialized Retrieval Tools:

< tools >

• {”name”: ”tool retrievals knowledge”, ”description”: ”Vertical knowledge base
search tool (e-commerce merchant operations context). Identifies relevant informa-
tion based on user queries.”, ”arguments”: {”intention”: ”user’s current intention
or query”}}

• {”name”: ”tool retrievals API shop”, ”description”: ”E-commerce platform API
lookup. Retrieves relevant APIs from the API knowledge base using intent analy-
sis.”, ”arguments”: {”intention”: ”user’s current intention or query”}}

• {”name”: ”tool retrievals API general”, ”description”: ”General API lookup. Re-
trieves relevant APIs from the API knowledge base using intent analysis.”, ”argu-
ments”: {”intention”: ”user’s current intention or query”}}

< /tools >

Problem Resolution Framework:

1. Question Types & Response Protocols:

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

You may encounter different types of questions. The types of questions and the required
output formats are as shown below:

• Math problems:
– Provide direct solutions to numerical queries.
– Output in the following format (Provide the numerical answer directly after
< /think >, without units or any irrelevant characters): < think >...<
/think >Final numeric answer

• API scheduling problems:
– The APIs are divided into e-commerce platform APIs and general APIs.
– When API tools are required: Use relevant tool retrievals to identify candidate

APIs (original/paraphrased queries accepted).
– Output the API call results in the following format: < tool call >”name”:

”API name”, ”arguments”: ”key1”:[”value11”, ”value12”],
”key2”:[”value21”, ”value22”]...< /tool call >

– Some solutions require sequential API calls, but you can just call only one
API at each step. Use prior outputs as inputs for subsequent calls.

• Q&A problems:
– Engage directly in casual conversations (greetings/jokes/daily topics).
– For e-commerce policy queries: Invoke tool retrievals knowledge for domain

knowledge. Respond based on retrieved content.

2. Tool/API Selection Guidelines:

• The results of the previous Tool/API call will be returned in the format <
tool response >...< /tool response >.

• The response format for API dispatching results is: “Pass calling ... Results are as
follows: ...”. This result should generally be output to the user as-is to indicate the
content of the API call. Additionally, if multiple API calls are involved, all relevant
API call results must be merged and presented together to the user.

• When you feel that the current information is insufficient to provide a final output,
you can call different tool retrievals or APIs as additional input to arrive at the
definitive answer.

• Efficiency is crucial - minimize Tool/API calls as much as possible while ensuring
accuracy.

3. Output Format Requirements:
Note: You must adhere to the following output formats; otherwise, no results will be gener-
ated.

• When you determine that additional Tool/API calls are needed (Tool
call format: API/tool retrievals): < think >Thought process<
/think >< tool call >{”name”: ”tool name”, ”arguments”: {”param”:
”value”/[”value”]}}< /tool call >

• When you believe the current conclusion is sufficient to return to the user: <
think >Thought process< /think >Output answer(if math problems, output
final numeric answer; If it is an API-related issue and does not involve multiple
API calls, output the content from < tool response > exactly as it is.)

A.7 CASE ANALYSIS

Decision-making based on recalled memories. Fig. 5 shows that JoyAgents-R1 dynamically
retrieves memories through query similarity to guide decision-making. On the left, JoyAgents-
R1 identifies recalled memories containing a question that is semantically similar and numerically
identical to the user’s query. So it directly reuses stored answers to avoid duplicate reasoning and
enhance response efficiency. For the right case, when there is no useful instance from recalled mem-

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 5: Examples of different agents making decisions based on dynamically recalled memories.

Figure 6: An example of dynamic updating of the agent memory module.

ories, our method deliberates and opts to invoke a specialized math tool, enabling problem-solving
and accurate resolution. These cases validate JoyAgents-R1’s flexible integration and application of
decision-making and memory modules to solve complicated tasks.

Dynamic update of the agent memory module. Fig. 6 illustrates the dynamic updating mech-
anism of the math-agent’s memory. When a user inputs an addition problem, the agent searches
its memory repository and retrieves a similar problem whose numerical values differ but share the
same structural pattern. However, due to interference from the recalled memory, the agent erro-
neously assumes the answer can be directly extracted from the memory without re-evaluating the
new numerical values, resulting in an incorrect response. This erroneous memory entry is subse-
quently penalized through a scoring mechanism that reduces its retention probability in the memory

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 7: The example of the QA agent in a question-answering task.

buffer. Over successive iterations, such problematic memories are purged from the memory base,
while memories that consistently contribute to accurate solutions are preserved. Eventually, the
memory buffer converges to a stable state where it predominantly retains entries that enhance the
agent’s problem-solving reliability.

More results for multiple tasks. Fig. 7 ˜Fig. 9 depict the reasoning processes of agents across
distinct tasks, illustrating the hierarchical architecture and modular interactions within the system.
Fig. 7 outlines the QA Agent’s reasoning process: upon receiving a user query, the master agent
routes the task to the QA Agent, which first invokes the retrieval tool to fetch relevant knowledge en-
tries from the external knowledge base. The retrieved information is then processed by the summary
tool to generate a concise answer, which is returned to the master agent for final delivery. Fig. 8
details the e-commerce function-call agent’s operation. Internally, the agent begins by deploying
the intention tool to parse user intent, followed by the retrieval tool to fetch intent-aligned APIs.
Among the retrieved options, the agent selects the search order code API, executes it, validates
the response, and relays the result back to the master agent. Fig. 9 presents a complete reasoning
process from query to response. When a user inquires about the annual guarantee deposit for open-
ing a furniture store on an e-commerce platform, the master agent first queries its memory buffer
and identifies a similar historical case. This triggers the invocation of the e-commerce function-
call agent. Within this sub-agent, the memory buffer is again consulted, recalling a prior solution
that involved sequential use of the intention tool, retrieval tool, and check shop expenses API. The
agent replicates this process. It analyzes user intent, retrieves contextually relevant APIs, selects the
check shop expenses API based on semantic matching, and executes it to obtain the deposit amount
(e.g., ”2000 yuan/year”). After validating the API response’s relevance, the sub-agent returns the
result to the master agent, which forwards it to the user. In summary, these cases underscore that
task resolution necessitates coordination between the master agent and at least one specialized sub-
agent, with memory buffers playing a pivotal role in both retrieving prior solutions and optimizing
future responses through iterative learning.

A.8 USAGE OF LLMS

Large Language Models (LLMs) are employed exclusively for grammar checking in this manuscript.
They are not utilized for writing assistance, literature retrieval, or research ideation.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Figure 8: The example of the function-call agent in an e-commerce task.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Figure 9: The example of a complete reasoning trajectory in an e-commerce task.

36

	Introduction
	Method
	The architecture of JoyAgents-R1
	Variance-Reduction Group Relative Policy Optimization
	Free lunch in GRPO rewards for memory evolution

	Experiments
	Implementation details
	Datasets and setup
	Comparative experiments
	Ablation study

	Conclusion and Discussion
	Appendix
	Related Work
	LLM-based multi-agent planning
	Multi-agent reinforcement learning
	LLM-based agent memory

	Implementation details
	Comparative Experiments
	More Analysis for Ablation study
	Datasets and setup
	Prompts
	Case analysis
	Usage of LLMs

