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ABSTRACT

In recent years, emotion recognition has played an increasingly crucial role in
applications such as human-computer interaction, mental health monitoring, and
sentiment analysis. Although a large number of sentiment analysis datasets have
emerged for mainstream languages such as English, high-quality and naturally
recorded multimodal dialogue datasets remain extremely scarce for Chinese, given
its unique linguistic characteristics, rich cultural connotations, and complex multi-
modal interaction features. In this work, we propose EmotionTalk, an interactive
Chinese multimodal emotion dataset with rich annotations. This dataset provides
multimodal information from 19 actors participating in dyadic conversational set-
tings, incorporating acoustic, visual, and textual modalities. It includes 23.6 hours
of speech (19,250 utterances), annotations for 7 utterance-level emotion categories
(happy, surprise, sad, disgust, anger, fear, and neutral), 5-dimensional sentiment
labels (negative, weakly negative, neutral, weakly positive, and positive) and 4-
dimensional speech captions (speaker, speaking style, emotion and overall). The
dataset is well-suited for research on unimodal and multimodal emotion recogni-
tion, missing modality challenges, and speech captioning tasks. To our knowledge,
it represents the first high-quality and versatile Chinese dialogue multimodal emo-
tion dataset, which is a valuable contribution to research on cross-cultural emotion
analysis and recognition. Additionally, we conduct experiments on EmotionTalk to
demonstrate the effectiveness and quality of the dataset. The EmotionTalk dataset
will be made freely available for all academic purposes.

1 INTRODUCTION

Multimodal emotion recognition (MER) has become a key focus in artificial intelligence, integrating
speech, vision, and text to capture the complexity of human emotions. It drives advancements in
applications like virtual assistants, online education, and mental health monitoring. However, most
research relies on English datasets, with Chinese resources remaining scarce. Existing datasets
often face issues such as low quality, limited scale, and incomplete modalities, hindering model
performance. Therefore, the development of a high-quality Chinese multimodal emotion recognition
dataset is of critical importance to advance research in this field.

Traditional emotion recognition tasks include unimodal / multimodal emotion recognition on isolated
utterances Liu et al. (2022; 2023); Sun et al. (2024a;b) and conversational emotion recognition Shi
et al. (2020; 2023). The former relies on a single modality or integrates multimodal information
for emotion recognition. For example, MISA Hazarika et al. (2020)utilizes modality-invariant and
modality-specific representations to fuse multimodal information. DialogueRNN Majumder et al.
(2019) extracts emotional information from conversations by modeling the speaker, context, and
emotions within the dialogue. With the in-depth development of emotion recognition research,
researchers have gradually introduced emerging tasks such as emotion captioning Xu et al. (2024);
Liang et al. (2024b), driven by evolving application scenarios and practical demands. This task is
first proposed by SECap Xu et al. (2024). Subsequently, this task has attracted increasing attention
from researchers due to its unique value in interpretability, and has gradually become an important
research direction in affective computing.

However, these studies use different datasets, and while they perform well in their respective experi-
ments, directly comparing their performance remains challenging. This is mainly due to significant
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differences in dataset scale, annotation methods, modality combinations, and dialogue structures,
which affect model applicability and generalization. For instance, popular multimodal benchmarks
like IEMOCAP Busso et al. (2008), MELD Poria et al. (2019), CMU-MOSEI Zadeh et al. (2018b),
and CH-SIMS Yu et al. (2020) have been widely used but are primarily in English, with varying
emotion category definitions and annotation standards, limiting cross-lingual and cross-cultural
applicability. The underlying cause of this situation lies in the dilemma of data acquisition: on one
hand, existing Chinese emotional data predominantly originates from film and television resources,
which are relatively accessible but of low quality; on the other hand, compared to audiovisual materi-
als, artificially recorded dialogue data can guarantee higher quality standards, thereby enabling the
construction of datasets with greater academic research value. However, such high-quality controlled
recording data is precisely what constitutes an extremely scarce resource at present. More seriously,
emotion captioning research mostly relies on unpublished datasets, leading to a lack of standardized
open benchmarks and further hindering research reproducibility and widespread application. Against
the backdrop of current data scarcity, we deeply recognize that the importance of high-quality data
has become increasingly prominent and cannot be overlooked.

To address these gaps, in this paper, we construct an large-scale interactive Chinese multimodal
emotion dataset with fine-grained labels and emotional speaking style captions, EmotionTalk, in
which the data are contributed by 19 professional actors, ensuring the naturalness and authenticity of
the emotion expression. The dataset is in the form of dialogues, containing 23.6 hours of data and
19,250 utterances, along with corresponding labels that support various emotion tasks, including 7
discrete labels, 5 dimensional labels, and 4 caption labels. To the best of our knowledge, EmotionTalk
is the first large-scale, comprehensive, recorded interactive Chinese multimodal emotion dataset. We
further conduct experiments on unimodal emotion recognition, multimodal emotion recognition, and
emotion caption tasks to validate the effectiveness and applicability of the constructed dataset. These
experiments not only demonstrate the dataset’s performance across different emotion tasks but also
highlight its potential to support diverse model development and evaluation.

2 RELATED WORK

2.1 RELATED DATASETS

Table 1 presents the datasets which are commonly used in the field of multimodal emotion recognition,
all of which consist of video, audio and text modalities.

English Datasets: The CMU-MOSEI Zadeh et al. (2018b) and MELD Poria et al. (2019) datasets
provide large-scale multimodal data sourced from YouTube and TV shows, covering tasks such as
discrete emotion classification and continuous sentiment intensity prediction. These datasets are
advantageous due to their rich emotional labeling, but they are primarily derived from entertainment
content, where emotional expressions tend to be exaggerated. As such, they may not fully capture
the natural emotional expressions encountered in real-life situations. In contrast, the CREMA-D
Cao et al. (2014), RAVDESS Livingstone & Russo (2018), IEMOCAP Busso et al. (2008) and MSP-
IMPROV Busso et al. (2016) datasets are based on actor performances and emotion training, with
IEMOCAP and MSP-IMPROV consist of conversational data, whereas CREMA-D and RAVDESS
record non-dialogue data. These datasets offer higher-quality emotional data. However, these
datasets largely rely on pre-written scripts, and their inherent limitations may lead to overly theatrical
emotional expressions from actors, lacking the spontaneity found in authentic interactions.

Chinese Datasets: Currently, there have been some preliminary research efforts in the field of
multimodal emotion datasets based on Mandarin For example, the CH-SIMS Yu et al. (2020) and
MER-MULTI Lian et al. (2024) dataset use five continuous emotion labels and six discrete emotion
labels respectively, making it suitable for multimodal sentiment analysis on isolated utterances spoken
in Mandarin. However, both of them lack dialogue scenarios, overlooking the emotional changes
multi-turn interactions. In contrast, datasets like M3ED Zhao et al. (2022) and MC-EIUch Liu
et al. (2024) have made progress in terms of dialogue-level data, making it possible for supporting
multimodal emotion recognition in conversations. Moreover, M3ED and MC-EIUch have been
significant progress regarding the scale of the data.

Despite numerous advances in emotion recognition, most Chinese datasets still exhibit limitations in
terms of scale, data quality, and annotation completeness. Existing Chinese datasets generally focus
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Table 1: Summary of multimodal emotion datasets.

Dataset Modality Dialogue Sources Emo-label Des. Language Utts

CMU-MOSI Zadeh et al. (2016) a, v, l No YouTube 7 Dim. No English 2,199
CMU-MOSEI Zadeh et al. (2018b) a, v, l No YouTube 7 Disc. / 5 Dim. No English 22,856
MELD Poria et al. (2019) a, v, l Yes TVs 7 Disc. No English 13,708
CREMA-D Cao et al. (2014) a, v, l No Act 6 Disc. No English 7,442
RAVDESS Livingstone & Russo (2018) a, v, l No Act 8 Disc. No English 7,356
IEMOCAP Busso et al. (2008) a, v, l Yes Act 5 Disc. No English 7,433
MSP-IMPROV Busso et al. (2016) a, v, l Yes Act 5 Disc. No English 8,438
CH-SIMS Yu et al. (2020) a, v, l No Movies, TVs 5 Dim. No Mandarin 2,281
MER-MULTI Lian et al. (2024) a, v, l No Movies, TVs 6 Disc. No Mandarin 3,784
M3ED Zhao et al. (2022) a, v, l Yes TVs 7 Disc. No Mandarin 24,449
MC-EIU ch Liu et al. (2024) a, v, l Yes TVs 7 Disc. No Mandarin 11,003
EmotionTalk a, v, l Yes Record 7 Disc. / 5 Dim. Yes Mandarin 19,250

on relatively simple emotion labels or rely on low-quality data collected from the internet. In contrast,
our dataset aims to effectively address these shortcomings by providing 23.6 hours of topic-driven
spontaneous emotional dialogues. The dataset not only features high-quality recorded conversations
but also includes detailed and comprehensive emotional annotations, making it a valuable asset for
MER research and broader emotional dialogue analysis.

2.2 RELATED METHODS

2.2.1 MULTIMODAL EMOTION RECOGNITION

Multimodal emotion recognition involves identifying emotions from utterances or dialogues, where
feature fusion methods are crucial. Recent advances include context representation modules for
integrated multimodal features (Yang et al., 2023b), attention aggregation networks for cross-modal
alignment (Fan et al., 2024), transformer-based models with self-distillation (Ma et al., 2024), and
graph-based dynamic fusion networks (Hu et al., 2022). Additionally, continuous emotion recognition
has gained attention, with frameworks using contrastive learning guided by sentiment intensity (Yang
et al., 2024).

2.2.2 EMOTION CAPTIONING

To capture richer emotional information beyond traditional recognition, emotion captioning has
emerged as a promising direction. Xu et al. (2024) propose a speech emotion captioning framework
using LLaMA (Touvron et al., 2023) and HuBERT (Hsu et al., 2021a), while Liang et al. (2024a)
design AlignCap to align captioning with human preferences, improving zero-shot generalization.
Furthermore, Kawamura et al. (2024) demonstrate applications in TTS systems using speaker and
speaking style captions, achieving enhanced naturalness and accuracy.

3 DATASET DESCRIPTION

In this section, we introduce a large-scale, comprehensive, recorded interactive Chinese multimodal
emotion dataset, EmotionTalk. We describe data Collection, annotation and statistics in detail.

3.1 DATA COLLECTION

Compared to existing Chinese multimodal datasets, our unique approach lies in the data collection
methodology. We moved away from traditional scripted methods, instead adopting a theme-driven
improvisational performance approach with professional drama actors. This method aims to capture
more authentic and natural emotional expressions, effectively simulating spontaneous emotional
behavior in real-world scenarios. While this process is more challenging to implement and more
time-consuming, its advantages in emotional authenticity are significant.

To ensure a high degree of data diversity, we developed multi-turn dialogue scenarios to simulate
genuine human interaction. These scripts are inspired by television plots or generated by Large
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Language Models (LLMs) and underwent rigorous manual quality assurance. Each scenario involves
two characters, designed to capture the dynamic evolution of emotions over time. The scripts
encompass a wide range of emotional intensities, from lighthearted conversations to tense, intense
conflicts, fully showcasing the richness of emotional expression.

The dataset covers multiple real-life themes, including friendship, family, workplace, and doctor-
patient interactions. The friendship theme includes dialogues about joy, conflict, and reconciliation,
highlighting support and friction. The workplace theme involves complex emotions like collaboration,
competition, pressure, and misunderstandings. Each theme is carefully designed; for instance, the
family theme includes scenarios like arguments, holiday gatherings, and farewells, reflecting emotions
like warmth, anger, and sadness. The language style varies by theme: friendship dialogues are casual
and natural, while workplace exchanges are more formal and serious. This accurately simulates
real-world language environments, encouraging actors to deliver authentic emotional performances
and deepening the emotional layers and immersion of the scripts. It’s important to note that actors are
encouraged to express genuine emotions based on the theme rather than adhering strictly to a script.
To ensure emotional consistency and avoid actors maintaining a single emotion for too long, each
dialogue is limited to approximately two minutes.

3.2 ANNOTATION

To ensure the high quality and diversity of the dataset, we design a rigorous data annotation process,
incorporating multi-dimensional annotations for emotion categories, emotion intensity, and emotional
speaking style caption. The detailed annotation process is outlined below:

Emotion Category: For each sample, we design a multi-step annotation process with cross-validation
by N (N = 5) annotators. The emotion category annotation is based on the basic emotion theory
commonly used in psychological research and covers K (K = 7) widely recognized emotion cate-
gories: happiness, surprise, sadness, disgust, anger, fear, and neutral. To prevent interference between
different modalities and avoid potential confusion, we follow the modality-independent annotation
principle, requiring annotators to view only the current modality information and strictly prohibiting
multimodal synchronous annotation. The annotation process follows a predefined sequence, process-
ing text, audio, silent video, and finally video with audio in order. Each emotion annotation consists
of a emotion category yi and a confidence score ci, of which is set to 0.1, 0.3, 0.5, 0.7, and 0.9, to
quantify the annotator’s confidence in their judgment. The formula for calculating the weighted
confidence score xk, k = {1, . . . , K} for each category of a sample is as follows:

xk =
1

Nk

N∑
i=1

I(yi = k) · ci, (1)

where k represents the emotion category, Nk is the number of annotations for category k, I(yi = k)
is an indicator function, which equals 1 if the label yi assigned by annotator i is equal to category k,
and 0 otherwise.

Thus, the final emotion category y is calculated as follows:

y = argmax
k

xk, (2)

where argmax represents selecting the category k that corresponds to the maximum weighted
confidence xk as the final category label.

For cases with low confidence or inconsistent annotations, we employ a multi-round negotiation
mechanism: first, multiple experienced annotators independently re-evaluate the samples, followed by
expert discussions to reach consensus, ensuring the reliability and consistency of annotation quality.

Emotion Intensity: To more accurately quantify the intensity of emotional expressions, we have
designed a multimodal-based emotion intensity annotation process aimed at quantitatively labeling
the emotional polarity (positive, negative, neutral) and its intensity in utterances. For each audio
clip, five annotators will be assigned, and each annotator will evaluate the emotional state as -2
(strongly negative), -1 (weakly negative), 0 (neutral), 1 (weakly positive), or 2 (strongly positive).
The annotation results from the five annotators are then averaged to obtain a continuous label that
contains emotion intensity information. The final labeling results will be one of the following values:
{-2.0, -1.8, -1.6, -1.4, -1.2, -1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) Audio modality data. (b) Text modality data.

(c) Video modality data. (d) Multi-modality data.

Figure 1: Data distribution across different modalities.

Smaller values indicate higher negativity, while larger values indicate higher positivity. Similarly, for
samples with conflicting emotion polarity annotations, we adopt a multi-round negotiation mechanism:
2-3 senior emotion annotation experts engage in thorough discussions to negotiate and reach final
decisions on disputed samples, ensuring the authority and consistency of annotation results.

Emotional Speaking Style Caption: A core innovation of this dataset lies in constructing a four-
dimensional, fine-grained speech emotion annotation system that achieves significant breakthroughs
in annotation comprehensiveness, precision, and innovation. Our proposed annotation framework
encompasses four refined dimensions: speaker, speaking style, emotion, and overall comprehensive
description. In terms of comprehensiveness, the system constructs a complete spectrum of speech
feature descriptions, ranging from basic vocal qualities (such as warmth, richness, and clarity) to
high-level speaking styles (such as speech rhythm, intonation patterns, and pause structures), and
further to deep emotional semantics (such as emotion types and intensity levels). Regarding fine-
grained granularity, we conduct in-depth deconstruction of each dimension, decomposing complex
speech phenomena into quantifiable and describable microscopic feature units. In terms of innovation,
we propose for the first time a comprehensive modeling approach for multi-dimensional features,
semantically fusing the three dimensions of vocal qualities, speaking styles, and emotions to generate
unified holistic descriptive annotations. Finally, we employ the deepSeek-R1 Guo et al. (2025)
large language model to intelligently expand the overall descriptions, generating five annotation
variants that maintain semantic consistency while exhibiting diverse expressive styles. This not
only significantly enriches the expressive diversity of the dataset but also provides unprecedented
fine-grained annotation resources for multimodal emotion understanding.

3.3 STATISTICS

Our dataset comprises 744 dialogues with a total of 19,250 unimodal samples covering text, audio,
and video modalities. The audio data spans 23.6 hours with an average segment length of 4.4 seconds,
while the text data contains 469,387 characters with approximately 24 characters per sentence on
average. To support comprehensive emotion analysis, we provide independent and detailed emotion
labels for each modality (text, audio, video) while constructing multimodal fusion labels, forming a
hierarchically rich and comprehensively covered annotation framework.

In our dataset, each modality exhibits distinct emotional distribution characteristics, which validates
the importance of multimodal perception. In the audio modality, neutral emotions (48.7%) and anger
emotions (19.8%) constitute the primary components, while various emotion categories including
happiness, surprise, sadness, disgust, and fear are also sufficiently represented. In the text modality,
neutral, anger, and surprise are the dominant emotion categories, accounting for 41.1%, 19.2%, and
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14.1% respectively. The video modality displays an even richer emotional distribution. In video-only
scenarios, neutral, happiness, and anger are the three most prevalent categories, accounting for 34.3%,
23.1%, and 21.8% respectively. When multimodal, emotional perception undergoes significant
changes: neutral, anger, and happiness account for 35.6%, 19.2%, and 18.7% respectively. This
variation clearly demonstrates the unique impact of different modalities on emotional perception, and
the distribution effectively reflects emotional expression patterns in real conversations, providing rich
sample diversity for model training.

It is particularly noteworthy that the same sample may exhibit different emotion labels across different
modalities, a phenomenon that fully demonstrates the complexity and necessity of multimodal
emotion understanding. For instance, the textual content of an utterance may convey neutral emotion,
while its vocal intonation transmits anger, and facial expressions may display sadness. This cross-
modal emotional inconsistency precisely reflects the authenticity and multi-layered nature of human
emotional expression, proving the limitations of relying solely on a single modality for emotion
recognition and highlighting the important value of multimodal fusion analysis. The cross-modal
emotion label variance analysis indicates that our dataset not only provides rich emotion category
coverage but, more importantly, reveals the unique roles and complementary values of different
modalities in emotional communication. This design enables researchers to deeply explore inter-
modal emotional consistency and conflicts, laying a solid foundation for developing more robust and
accurate multimodal emotion recognition models.

3.4 INTER-RATER AGREEMENT ANALYSIS

Fleiss’ Kappa is a statistical measure assessing inter-rater agreement when multiple evaluators
categorize items. The Kappa value ranges from -1 to 1, where values of 0.41-0.60 indicate moderate
agreement, 0.61-0.80 reflect substantial agreement, and 0.81-1.00 indicate almost perfect agreement.
The formula for Fleiss’ Kappa is as follows:

κ =
Po − Pe

1− Pe
, (3)

where Po represents the observed proportion of agreement, and Pe represents the expected proportion
of agreement under random conditions.

In our dataset, the Fleiss’ Kappa values are 0.79 for audio, 0.66 for text, 0.73 for video without
audio, and 0.78 for video with audio, indicating substantial to almost perfect agreement across all
modalities.

4 EXPERIMENTS

In this section, we evaluate our dataset across a variety of tasks, including unimodal emotion
recognition, multimodal emotion recognition, multimodal emotion analysis, and emotional speaking
style captioning. We build our experimental pipeline upon the MerBench Lian et al. (2024), which
provides a standardized setup for benchmarking multimodal models.

Specifically, in the continuous setting, we focus on a binary classification task that distinguishes
between positive and negative emotions, where samples with scores below 0 are labeled as negative,
and those above 0 as positive. For the first three tasks, accuracy (ACC) is used as the primary
evaluation metric, while for the speaker emotion-style captioning task, we adopt BLEU4, ROUGEL,
METEOR, SPIDEr, FENSE, BERTScore and CLAPScore for evaluation. To facilitate reproducibility,
we document all experimental settings in Appendix B.2, including hyperparameter tuning strategies,
optimizer selection, and the values of all key training parameters.

4.1 UNIMODAL EMOTION RECOGNITION

This section reports the emotion recognition performance of different feature extractors on the
corresponding modalities, as shown in Table 2.

Feature Extractor: To assess the performance of our dataset, we employ a comprehensive suite of
pre-trained baseline models across different modalities. Specifically, for the speech modality, we
utilize Wav2Vec 2.0 Baevski et al. (2020), HuBERT Hsu et al. (2021b), WavLM Chen et al. (2022),
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Table 2: We report unimodal results for the EmotionTalk dataset. Four means that four emotion labels
are used: happy, angry, sad, and neutral. All means that all emotion labels are used.

Speech Model Speech(Four) Multimodal(Four) Speech(All) Multimodal(All) Mean

Whisper-Base 71.03 60.44 56.61 48.47 59.14
Whisper-Large 75.45 61.90 60.34 49.56 61.81
WavLM-Base 72.50 62.96 59.72 53.14 62.08
Wav2vec 2.0-Base 77.31 63.85 62.16 50.96 63.57
Wav2vec 2.0-Large 76.22 64.68 63.14 51.06 63.78
WavLM-Large 76.67 64.48 61.90 53.91 64.24
Hubert-Large 82.88 73.69 66.15 61.12 70.96
Hubert-Base 81.09 73.09 68.64 62.52 71.34

Text Model Text(Four) Multimodal(Four) Text(All) Multimodal(All) Mean

Vicuna-7B 55.24 46.26 45.57 43.91 47.75
LERT-Base 59.68 51.36 46.09 38.26 48.85
DeBERTa-Large 57.46 49.11 44.89 44.79 49.06
BERT-Base 57.66 50.83 46.50 44.69 49.92
Sentence-BERT 56.52 52.15 46.45 45.05 50.04
BLOOM-7B 60.87 50.56 47.38 43.23 50.51
ChatGLM2-6B 60.95 55.47 46.19 41.16 50.94
RoBERTa-Large 59.48 53.88 46.86 44.27 51.12
RoBERTa-Base 60.15 50.96 48.11 45.52 51.19
Baichuan-7B 60.08 56.39 48.21 41.84 51.63

Visual Model Visual(Four) Multimodal(Four) Visual(All) Multimodal(All) Mean

Data2vec-Base 35.72 29.69 40.44 32.92 34.69
VideoMAE-Base 54.18 47.51 54.33 46.29 50.58
EVA-02-Base 69.87 54.27 58.84 38.88 55.47
VideoMAE-Large 62.36 64.74 55.68 50.54 58.33
CLIP-Base 71.38 63.95 59.51 49.09 60.98
Dinov2-Large 70.60 68.99 60.96 54.59 63.79
Dinov2-Giant 73.42 69.58 62.73 53.76 64.87
CLIP-Large 77.81 73.96 64.75 54.17 67.67

and Whisper Radford et al. (2023). For the text modality, our selection includes Vicuna-7B Chiang
et al. (2023), LERT Cui et al. (2022), DeBERTa He et al. (2020), BERT Devlin et al. (2019), Sentence-
BERT Reimers & Gurevych (2019), BLOOM-7B Workshop et al. (2022), RoBERTa Liu et al. (2019),
ChatGLM2 Du et al. (2021) and Baichuan-7B Yang et al. (2023a). For the visual modality, we
adopt Data2Vec Baevski et al. (2022), VideoMAE Tong et al. (2022), EVA-02 Fang et al. (2024),
CLIP Radford et al. (2021), and DINOv2 Oquab et al. (2023).

Based on the comparative performance of these encoders shown in Table 2, we aim to provide
guidance for modality-specific feature selection in downstream emotion recognition tasks. Given that
the EmotionTalk dataset provides independent unimodal annotations, we conduct two experimental
settings to investigate the capability of unimodal representations in emotion recognition. In the first
setting, we utilize ground-truth unimodal labels to evaluate each model’s ability to perform unimodal
emotion classification. In the second setting, we adopt multimodal labels instead, to assess whether a
single modality alone can reliably infer the speaker’s actual emotional state.

Several key findings emerge from these experiments. First, for the same unimodal classification task,
models consistently achieve better performance when trained and evaluated with unimodal labels than
with multimodal labels. This suggests that models are effective at capturing the modality-specific
emotional cues. However, these results do not necessarily reflect the speaker’s actual emotional state,
as unimodal annotations may be biased or incomplete. This indicates that unimodal information
remains a valuable signal for emotion recognition, though it is inherently limited in expressiveness
and scope. Consequently, relying solely on unimodal representations is insufficient for accurately
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Table 3: We report multimodal results for the EmotionTalk dataset. Four means that only four emotion
labels are used: happy, angry, sad, and neutral. All means that all of the emotion labels are used.

Features Algorithms Fusion Multimodal(Four) Multimodal(All) Mean

Hubert-Base

Baichuan-7B

CLIP-Large

MCTN Frame-level 65.34 47.80 56.57
MFM Frame-level 75.94 59.51 67.73

GMFN Frame-level 76.87 63.66 70.27
MMIM Uttrance-level 78.93 64.54 71.74
MISA Uttrance-level 80.58 66.77 73.68
TFN Uttrance-level 80.12 68.27 74.20
MulT Frame-level 82.17 66.67 74.42
MFN Frame-level 80.38 69.31 74.85

Attention Uttrance-level 82.11 68.17 75.14
LMF Uttrance-level 81.31 69.10 75.21

Table 4: “Top4” indicates that we select the top 4 models for each modality (their ranking is based on
the results in Table 2). We utilize the LMF for multimodal fusion.

Multimodal

# Top Text Speech Visual Discrete(Four) Discrete(All) Continuous Mean

Top 1 Baichuan-7B Hubert-Base CLIP-Large 81.31 69.10 93.35 81.25
Top 2 RoBERTa-Base Hubert-Large Dinov2-Giant 83.23 69.21 93.16 81.87
Top 3 RoBERTa-Large WavLM-Large Dinov2-Large 78.13 65.01 93.10 78.75
Top 4 ChatGLM2-6B W2v 2.0-Large CLIP-Base 73.82 63.50 92.26 76.53

capturing complex emotional states, reinforcing the importance of multimodal fusion in emotion
understanding.

4.2 MULTIMODAL EMOTION RECOGNITION / SENTIMENT ANALYSIS

Table 3 presents the performance of various multimodal fusion algorithms on the EmotionTalk dataset
using the optimal encoder from each modality—HuBERT-Base (speech), Baichuan-7B (text), and
CLIP-Large (visual). The fusion methods are categorized into frame-level (e.g., MFN Zadeh et al.
(2018a), GMFN Zadeh et al. (2018b), MCTN Pham et al. (2019), MFM Tsai et al. (2018), and
MulT Tsai et al. (2019)) and utterance-level (e.g., TFN Zadeh et al. (2017), LMF Liu et al. (2018),
MISA Hazarika et al. (2020), MMIM Han et al. (2021), and the Attention mechanism Vaswani et al.
(2017)) strategies, enabling a comparative analysis of their effectiveness in multimodal emotion
recognition.

Several important observations can be drawn. First, utterance-level fusion methods generally out-
perform frame-level approaches in both the four-class and full-class emotion classification settings.
For instance, LMF achieves the highest score in the Multimodal(Four) setting (83.04%) and also
yields the best average performance (75.53%), indicating that aligning features at the utterance
level better captures the holistic emotional state. Similarly, attention-based fusion also performs
competitively, with an average score of 75.14%, suggesting the advantage of adaptive weighting
across modalities. Moreover, due to the limited scale of emotion datasets, complex fusion algorithms
are prone to overfitting. In contrast, simple yet effective fusion strategies often achieve relatively
better performance.

Table 4 reports the multimodal emotion recognition results using the top four models from each
modality, selected based on unimodal performance in Table 2. All combinations adopt the LMF
algorithm for fusion. Among the configurations, the combination of RoBERTa-Base (text), HuBERT-
Large (speech), and Dinov2-Giant (visual) achieves the best overall performance, with the highest
score in the Discrete (Four) setting (83.23%) and the highest average (81.87%). Notably, different
model combinations yield comparable performance on the continuous labels, while their results on
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Table 5: Automatic captioning results. All methods use Hubert as the speech encoder.

Decoder BLEU4 ROUGEL METEOR SPIDEr FENSE BERTScore CLAPScore

Speaker

Transformer-based 0.011 0.397 0.204 0.229 0.842 0.974 0.860

GPT-2 0.020 0.430 0.212 0.256 0.765 0.976 0.899
Qwen-2 0.009 0.414 0.205 0.258 0.846 0.977 0.878

Style

Transformer-based 0.065 0.517 0.313 0.339 0.512 0.985 0.895

GPT-2 0.075 0.510 0.298 0.350 0.611 0.987 0.850

Qwen-2 0.127 0.564 0.339 0.482 0.523 0.988 0.912

Emotion

Transformer-based 0.032 0.366 0.191 0.276 0.932 0.973 0.843

GPT-2 0.014 0.399 0.147 0.235 0.903 0.972 0.818

Qwen-2 0.058 0.361 0.199 0.353 0.942 0.975 0.853

Overall

Transformer-based 0.018 0.469 0.233 0.230 0.921 0.980 0.878

GPT-2 0.015 0.462 0.214 0.227 0.890 0.980 0.849

Qwen-2 0.033 0.535 0.268 0.121 0.562 0.984 0.885

discrete tasks vary considerably, underscoring the impact of feature selection. These findings confirm
that even under the same fusion strategy, the choice of multimodal features can significantly affect
the overall performance of multimodal fusion.

4.3 EMOTIONAL SPEAKER STYLE CAPTIONING

Table 5 presents a comprehensive comparison of three decoder architectures—Transformer-based,
GPT-2, and Qwen-2—across multiple captioning dimensions (Speaker, Style, Emotion, and Overall),
evaluated using a suite of standard automatic metrics. Qwen-2 outperforms other models across all
four tasks, demonstrating its effectiveness in producing captions that preserve both emotional nuance
and stylistic diversity. The strong BERTScore suggests that its generation aligns closely with human
references at the semantic level, beyond surface-level lexical similarity. Although Qwen-2 achieved
the best overall performance, GPT-2 performed notably well on the speaker-focused task, obtaining
the highest ROUGEL (0.430) and CLAPScore (0.899). In contrast, the Transformer-based decoder
showed weaker overall results but maintained basic structural coherence and content coverage, as
reflected in its ROUGEL and SPIDEr scores. Overall, these results highlight Qwen-2’s robustness in
capturing fine-grained stylistic and emotional cues, crucial for emotional speaking style captioning.

5 CONCLUSION

This paper presents EmotionTalk—a high-quality Chinese conversational multimodal emotion dataset
with rich annotations. Unlike existing datasets, EmotionTalk provides 23.6 hours of multimodal
conversational data recorded by 19 professional actors through topic-guided spontaneous emotional
dialogues, ensuring the authenticity and naturalness of emotional expressions. EmotionTalk not only
fills the dual gap of high-quality recorded data and emotional speaking style description annotation in
Chinese multimodal emotion research, but also becomes a valuable resource in the field of affective
computing through its advantages of interactive recording, multimodality, and rich annotations. The
quality of the dataset is validated through rigorous data creation processes and extensive diverse
baseline experiments. EmotionTalk provides a benchmark testing platform for future multimodal
emotion recognition and emotional dialogue modeling, aiming to advance the development of affective
computing and human-computer interaction fields.

6 ETHICS STATEMENT

This study is conducted in accordance with rigorous ethical guidelines to ensure the protection of
participants’ rights and well-being. All recordings take place in a quiet indoor environment, where
professional actors engage in natural, emotionally diverse, and logically coherent dialogues based on
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predefined emotional themes and content outlines. The annotation cost for each data sample is 0.2
RMB.

To preserve participant privacy, all data are anonymized by removing personal identifiers and replacing
them with coded labels. The dataset is released under the CC BY-NC 4.0 license, which prohibits
commercial use and supports ethical research practices. Data are securely stored, and access is
restricted to authorized researchers for academic purposes only.

In conclusion, this study demonstrates a strong commitment to ethical standards, encompassing
informed consent, the protection of personal privacy, appropriate compensation, and the responsible
dissemination of data, thereby safeguarding participant rights and supporting ethical scientific
advancement.

7 REPRODUCIBILITY STATEMENT

All experiments in this study strictly adhere to the principles of reproducibility. To facilitate repli-
cation by future researchers, we have provided a detailed list in the appendix B.1 and B.2, of all
hyperparameter settings, as well as the precise source (including version numbers and reference links)
for each model and feature extraction tool. All code has been open-sourced to ensure the transparency
and verifiability of our results.
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A DATASHEETS FOR DATASETS

A.1 DATASET SNAPSHOTS

The dataset comprises 744 dialogues, encompassing a total of 19,250 utterances for each unimodal
modality—text, audio, and video. The audio data span approximately 23.6 hours, with an average
duration of 4.4 seconds per utterance.

Each utterance is stored as an individual JSON file following a unique naming conven-
tion in the format: <group No> <session No> <Speaker id> <Utt No>.json. Cor-
responding audio and video files are named identically, with the extensions “.wav” and
“.mp4” respectively: <group No> <session No> <Speaker id> <Utt No>.wav and
<group No> <session No> <Speaker id> <Utt No>.mp4. The samples of audio and
video files in EmotionTalk are shown in Fig. 2.

(a) Examples of audio file samples.

(b) Examples of video file samples.

Figure 2: Snapshots of audio and video samples in the EmotionTalk dataset. All files are named
following a consistent and structured format.

A.2 DATA FORMAT

Each utterance in the EmotionTalk dataset is associated with a corresponding ”.jsonl” file, which
contains detailed sample-level annotations. These annotations include not only the basic information
such as the emotion label, speaker identity, and transcript, but also rich metadata that describes the
expressive characteristics of the utterance. The detailed annotation fields are listed in Table 6.

A.3 DATA DISTRIBUTION

In this study, to make full use of the data and ensure both effective model training and fair evaluation,
the dataset is divided into training, validation, and test sets in a approximate ratio of 8:1:1. Specifically,
80% of the data is used for training the model to learn effective feature representations, 10% is
allocated for validation to assist in model selection and prevent overfitting during training, and the
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remaining 10% is reserved as the test set to evaluate the model’s generalization performance. When
splitting the dataset, we make effort to ensure that the data distribution of each category remains
consistent across the training, validation, and test sets. A detailed information of the the distribution
across different subsets is presented in the Table 7.

Table 6: Description of Sample-Level Annotations

Name Description

emotion Emotion label.1

Confidence degree Annotator’s self-rated confidence in the emotion label.
Continuous label 5-dimensional sentiment labels.2

speaker id Unique speaker identifier.
emotion result Final aggregated emotion label.3

Continuous label result Final averaged sentiment labels aggregated from five annotators.
content Transcript of the utterance.
startTime Utterance start time in the session.
endTime Utterance end time in the session.
duration Total duration of the utterance.
emo cap Caption describing the type and intensity of the expressed emotion.
spe cap Caption describing the speaker’s voice quality.
style cap Caption describing speaking style.
caption 1 – caption 5 Emotional speaking style caption.
file path Relative path to the audio file.
1 The emotion categories include: happiness, surprise, sadness, disgust, anger, fear, and neutral.
2 The 5-dimensional sentiment labels include: -2 (strongly negative), -1 (weakly negative), 0 (neutral), 1

(weakly positive), or 2 (strongly positive).
3 The computation method is detailed in Section 3.2 Annotation.

Table 7: Statistics of the data distribution across the training, validation, and test sets.

Angry Disgusted Fearful Happy Neutral Sad Surprised Total
Train 2950 1142 672 2986 5377 919 1367 15413
Validation 409 95 125 360 675 111 133 1908
Test 339 134 125 246 801 123 161 1929

Total 3698 1371 922 3592 6853 1153 1661 19250

B FEATURE EXTRACTION

B.1 MODELS

To comprehensively evaluate the proposed dataset, we conduct extensive experiments on three tasks:
unimodal emotion recognition, multimodal emotion recognition / sentiment analysis and emotional
speaker style captioning. For the unimodal and multimodal emotion recognition tasks, we employ a
range of state-of-the-art models as feature extractors to obtain representations from each modality.
Then, we select several high-quality features as the foundation for multimodal fusion. For the
emotional speaker style captioning task, we utilize three types of decoders, including transformer,
GPT-2 and Qwen-2, to assess the quality and utility of the dataset. The details of the models are
provided in Table 8.
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Table 8: An overview of the models employed across different tasks.

Speech Model Link License

Whisper-Base Radford et al. (2023) huggingface.co/openai/whisper-base Apache License 2.0

Whisper-Large Radford et al. (2023) huggingface.co/openai/whisper-large-v2 Apache License 2.0

WavLM-Base Chen et al. (2022) huggingface.co/microsoft/wavlm-base CC BY-SA 3.0

Wav2vec 2.0-Base Baevski et al. (2020) huggingface.co/TencentGameMate/chinese-wav2vec2-base MIT License

Wav2vec 2.0-Large Baevski et al. (2020) huggingface.co/TencentGameMate/chinese-wav2vec2-large MIT License

WavLM-Large Chen et al. (2022) huggingface.co/microsoft/wavlm-large CC BY-SA 3.0

Hubert-Large Hsu et al. (2021b) huggingface.co/TencentGameMate/chinese-hubert-large MIT License

Hubert-Base Hsu et al. (2021b) huggingface.co/TencentGameMate/chinese-hubert-base MIT License

Text Model Link License

Vicuna-7B Chiang et al. (2023) huggingface.co/CarperAI/stable-vicuna-13b-delta CC BY-NC-SA 4.0

LERT-Base Cui et al. (2022) huggingface.co/hfl/chinese-lert-base Apache License 2.0

DeBERTa-Large He et al. (2020) huggingface.co/microsoft/deberta-v3-large MIT License

BERT-Base Devlin et al. (2019) huggingface.co/google-bert/bert-base-chinese Apache License 2.0

Sentence-BERT Reimers & Gurevych (2019) huggingface.co/sentence-transformers/paraphrase-multilingual Apache License 2.0

-mpnet-base-v2

BLOOM-7B Workshop et al. (2022) huggingface.co/bigscience/bloom-7b1 BigScience Responsible

AI License 1.0

ChatGLM2-6B Du et al. (2021) huggingface.co/THUDM/chatglm2-6b Apache License 2.0

RoBERTa-Large Liu et al. (2019) huggingface.co/hfl/chinese-roberta-wwm-ext-large Apache License 2.0

RoBERTa-Base Liu et al. (2019) huggingface.co/hfl/chinese-roberta-wwm-ext Apache License 2.0

Baichuan-7B Yang et al. (2023a) huggingface.co/baichuan-inc/Baichuan-7B

Visual Model Link License

Data2vec-Base Baevski et al. (2022) huggingface.co/facebook/data2vec-vision-base Apache License 2.0

VideoMAE-Base Tong et al. (2022) huggingface.co/MCG-NJU/videomae-base CC BY-NC 4.0

EVA-02-Base Fang et al. (2024) https://huggingface.co/timm/eva02 base patch14 224.mim in22k MIT License

VideoMAE-Large Tong et al. (2022) huggingface.co/MCG-NJU/videomae-large CC BY-NC 4.0

CLIP-Base Radford et al. (2021) huggingface.co/openai/clip-vit-base-patch32 Apache License 2.0

Dinov2-Large Oquab et al. (2023) huggingface.co/facebook/dinov2-large Apache License 2.0

Dinov2-Giant Oquab et al. (2023) huggingface.co/facebook/dinov2-giant Apache License 2.0

CLIP-Large Radford et al. (2021) huggingface.co/openai/clip-vit-large-patch14 Apache License 2.0

Captioning Model Link License

Transformer-based Lewis et al. (2019) huggingface.co/fnlp/bart-base-chinese Apache License 2.0

GPT-2 Lagler et al. (2013) huggingface.co/uer/gpt2-chinese-cluecorpussmall Apache License 2.0

Qwen-2 Yang et al. huggingface.co/Qwen/Qwen2-7B Apache License 2.0

Table 9: Training hyperparameters used for the unimodal and multimodal models in Table 2 on the
EmotionTalk dataset. ”Four” refers to using four emotion labels (happy, angry, sad, neutral), while
”All” refers to using the full label set.

Hyperparameter Four (Unimodal/Multimodal) All (Unimodal/Multimodal)

Learning Rate 1e-3 1e-5
L2 Regularization Weight 1e-5 1e-5
Batch Size 32 32
Epochs 100 100

B.2 HYPERPARAMETERS AND COMPUTING RESOURCES

We provide open access to both the data and the code used in our experiments. The full experimental
code is available at https://github.com/NKU-HLT/EmotionTalk. Key training hyperpa-
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rameters for different models are summarized in Table 9, Table 10, and Table 11. All models are
trained using the AdamW optimizer.

The experiments based on the Qwen-2 decoder are conducted on an NVIDIA A800 GPU, while all
other experiments are performed using an NVIDIA GeForce RTX 3090 GPU.

Table 10: Key training hyperparameters used for each multimodal model in Table 3 on the Emo-
tionTalk dataset.

Model Hidden Dim Dropout Learning Rate Grad Clip

MCTN 64 – 256 0.0 – 0.3 1e-3 0.6 – 1.0
MFM 128 / 256 0.0 – 0.7 1e-3 -1.0
GMFN 128 / 256 0.0 – 0.7 1e-3 -1.0
MMIN 64 – 256 0.0 – 0.3 1e-3 0.6 – 1.0
MISA 64 – 256 0.2 – 0.5 1e-4 -1.0 – 1.0
TFN 64 / 128 0.2 – 0.5 1e-3 -1.0
MulT 64 – 256 0.0 – 0.3 1e-3 0.6 – 1.0
MFN 128 / 256 0.0 – 0.7 1e-3 -1.0
Attention 64 – 256 0.2 – 0.5 1e-5 -1.0
LMF 32 – 256 0.2 – 0.5 1e-5 -1.0

Table 11: Training hyperparameters for each decoder in Table 5.

Decoder Batch Size Epochs Learning Rate Weight Decay Warmup

Transformer-based 8 15 1.7e-05 3.0e-04 0
GPT-2 8 15 1.7e-05 3.0e-04 0
Qwen-2 4 6 1e-4 0.0 1,000

C ANNOTATION WEBSITE

To improve the efficiency of the annotation process, we conduct data annotation and quality assess-
ment on a data platform. As shown in the Fig 3, this platform supports the annotation of various
tasks such as speech emotion recognition and emotional speaking style captioning.

D EXTRA EXPERIMENT RESULTS AND ANALYSIS

Table 12: Accuracy (%) comparison of different models across modalities (Speech, Text, and
Speech+Text) on the Emotion Prediction in Conversation (EPC) task.

Modality Model ACC

Speech

BiGRU 62.58

AVEF 60.81

DEP 65.40

EAMT 65.85

Text

BiGRU 44.19

AVEF 49.92
DEP 49.53

EAMT 48.68

Speech+Text

BiGRU 65.70
AVEF 64.47

DEP 65.25

EAMT 65.47
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Table 13: Accuracy (%) comparison of different models across modalities (Speech and Text) on the
Emotion Recognition in Conversation (ERC) task.

Modality Model ACC

Speech

CMN 66.37

ICON 65.31

DialogueRNN 66.34

DialoguGCN 67.51

Text

CMN 46.67

ICON 47.38

DialogueRNN 49.63

DialoguGCN 49.75

In the task of Emotion Prediction in Conversation (EPC), we observe clear performance differences
across modalities and models Shahriar & Kim (2019); Shi et al. (2020; 2023), as shown in Table 12.
Speech-based models consistently outperform text-based ones, highlighting the importance of vocal
information in anticipating upcoming emotional states. Among the speech-only models, EAMT Shi
et al. (2023) achieves the highest accuracy at 65.85%, marginally surpassing DEP Shi et al. (2020)
(65.40%) and BiGRU (62.58%), indicating the benefit of explicitly modeling multi-role contextual
information. Text-only models perform significantly worse, with BiGRU scoring only 44.19%, and
EAMT, despite its contextual modeling, reaching just 48.68%. Interestingly, multimodal fusion

(a) Annotation platform of the speech emotion recognition.

(b) Annotation platform of the emotional speaking style captioning.

Figure 3: Overview of the annotation platform interface.
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(speech+text) does not yield substantial improvements over speech alone. The BiGRU model achieves
65.70% when both modalities are used, only slightly better than its speech-only counterpart. Similarly,
DEP and EAMT see marginal, suggesting that the textual signal may offer limited complementary
information for EPC.

In Emotion Recognition in Conversation (ERC), a similar modality gap is evident, with speech-based
models outperforming their text-based versions by a large margin Hazarika et al. (2018); Yeh et al.
(2019); Majumder et al. (2019); Ghosal et al. (2019), as shown in Table 13. DialoguGCN Ghosal et al.
(2019) achieves the best performance among all models with 67.51% accuracy, leveraging its graph-
based structure to effectively capture speaker interactions and contextual flow. DialogueRNN Ma-
jumder et al. (2019) and CMN Hazarika et al. (2018) also perform competitively in the speech
modality (66.34% and 66.37%, respectively), while ICON Yeh et al. (2019) slightly lags behind at
65.31%. In contrast, their text-based counterparts yield significantly lower results—DialoguGCN at
49.75% and DialogueRNN at 49.63%—underscoring the limitations of relying solely on lexical infor-
mation for emotion recognition. Notably, DialoguGCN consistently outperforms the other models
across both modalities, suggesting its architectural advantage in handling complex conversational
dynamics.

All models are trained using the Adam optimizer with an initial learning rate of 1e-4 and a weight
decay of 1e-5. The batch size is set to 16, and models are trained for a maximum of 30 epochs (except
for DialogueRNN, which is trained for 100 epochs). A StepLR scheduler is employed to decay the
learning rate by a factor of 0.1 every 10 epochs in ERC.

E LIMITATIONS

The EmotionTalk dataset serves as an important resource in the field of conversational emotion
recognition, providing a valuable experimental foundation for related research. However, when
conducting in-depth analysis, it is necessary to examine several of its characteristics in order to
more comprehensively evaluate its applicability across different research scenarios. First, it is worth
noting that this dataset has a relatively limited scale, containing only 19 participants and 23.6 hours
of multimodal data. Although the dataset demonstrates excellence in ensuring data quality and
annotation precision, the limited sample size may to some extent affect the generalization ability
of models trained on this dataset when applied to broader populations and diverse conversational
scenarios.

These characteristics are not fundamental flaws of the dataset, but rather products of its specific
research design, pointing researchers toward future development directions. For example, in future
research, one could consider using the EmotionTalk dataset as an initial validation set and combining
it with other larger-scale or more robust datasets to construct conversational emotion recognition
systems with greater robustness and generalizability.

F LLMS USAGE

In the writing process of this study, large language models (LLMs) are employed as auxiliary
tools, primarily for optimizing linguistic expression and standardizing formatting. These tools
assisted in improving the clarity of presentation, logical coherence, and linguistic accuracy of the
manuscript. It should be emphasized that the core concepts, experimental design, and conclusions of
this research represent entirely original work by the authors. The authors assume full responsibility
for the academic integrity of the research content, strictly adhering to academic ethical standards and
ensuring the originality and authenticity of the research findings.
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