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ABSTRACT

In this work, we tackle the problem of Open World Object Detection (OWOD).
This challenging scenario requires the detector to incrementally learn to classify
given known objects without forgetting while identifying unknown objects with-
out supervision. Previous OWOD methods have enhanced the unknown discovery
process and employed memory replay to mitigate catastrophic forgetting. How-
ever, since existing methods heavily rely on the detector’s known class prediction
information for detecting unknown objects, they struggle to effectively learn and
recognize unknown object representations. Moreover, while memory replay miti-
gates forgetting of old classes, it often sacrifices the knowledge of newly learned
classes. To resolve these limitations, we propose DEUS (Detecting Unknowns
via energy-based Separation), a novel framework that addresses the challenges of
Open World Object Detection. DEUS consists of ETF-Subspace Unknown Sepa-
ration (EUS) and an Energy-based Known Distinction (EKD) loss. EUS leverages
ETF-based geometric properties to create orthogonal subspaces, enabling cleaner
separation between known and unknown object representations and leverages en-
ergies from both spaces to better capture distinct patterns of unknown objects, in
contrast to prior energy-based approaches that consider only the energy within the
known space. Furthermore, EKD loss enforces the separation between previous
and current classifiers, thus minimizing knowledge interference between previous
and newly learned classes during memory replay. We thoroughly validate DEUS
on OWOD benchmarks, demonstrating outstanding performance improvements in
unknown detection while maintaining competitive known class performance.

1 INTRODUCTION

Object Detection, a foundational task in computer vision, has achieved significant advances with
the progress of deep learning (Fang et al., 2021; Girshick et al., 2014; Misra et al., 2021; Sun et al.,
2021). However, traditional object detection approaches generally follow a closed-set paradigm,
where the detector is restricted to recognizing only predefined classes during training. This closed-
set setting hinders the detector from identifying objects that have not been encountered. To relax
this restriction, Joseph er al. (Joseph et al., 2021) introduced a new scenario, called Open World Ob-
ject Detection (OWOD), in which the detector continuously learns annotated known objects while
identifying unannotated objects as unknown. In this challenging scenario, when annotations for
previously unknown objects become available, the detector must be incrementally updated to recog-
nize unknown objects as known classes. Since supervision for unknown objects is not available in
OWOD, the detector faces challenges in learning knowledge for unknown objects.

To address this, prior works (Joseph et al., 2021; Ma et al., 2023b; Gupta et al., 2022; Ma et al.,
2023a) propose an unknown discovery process, which utilizes the detector to assign pseudo-labels
to specific regions in the background as unknowns. However, since this selection relies on the detec-
tor’s current representations, it frequently selects partial areas of known objects or true background
regions. This produces weak semantic pseudo-labels that blend known and unknown features, hin-
dering effective discrimination. Since the model continuously learns from its own generated pseudo-
labels during training, detecting higher-quality unknowns has become crucial in OWOD. To address
this challenge, several approaches (Liang et al., 2023; Du et al., 2022; Zhang et al., 2025) integrate
energy-based methods (Liu et al., 2020) by using energy scores to better identify unknown regions.
However, these methods also generally consider energy only within the known space, thus rely-
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(a) Feature visualization by PCA. (b) Objectives of the proposed method (DEUS) in the OWOD scenario.

Figure 1: Motivation and objectives of DEUS. (a) Feature visualization by PCA results comparison between
baseline and DEUS. (b) Objectives of the proposed method (DEUS) in the OWOD scenario: separating known
from unknown proposals while distinguishing previous and current known classes during memory replay.

ing predominantly on known representations and the detector’s known classification results. Such
known space-only modeling approaches push away non-known objects from the known region but
lack proper constraints to prevent unknown objects from being confused with background regions
or vice versa, resulting in confused representations in the feature space as shown in the top of Fig-
ure la. This leads to many unknown objects being overlooked or misclassified, preventing effective
learning of unknown representation.

Another issue in existing methods is that there is a trade-off between the performances of previous
and current classes when learning new classes. In OWOD, while the detector learns novel classes
sequentially per each task, it significantly forgets the previously learned classes, i.e., catastrophic
forgetting arises. To address this, previous methods commonly adopt memory replay (Mermillod
et al., 2013; Verwimp et al., 2021; Bonicelli et al., 2022) to retain old knowledge while learning new
classes. During memory replay, the detector is fine-tuned on both old and new classes to preserve
old knowledge. Even though this replay effectively alleviates the forgetting issue of old classes,
existing memory replay methods lack explicit regularization to prevent cross-influence between old
and new classes during training. As growing task complexity increases the number of classes to
be jointly optimized, this cross-influence becomes more severe, hindering effective learning of new
classes while preserving knowledge of previously learned ones.

In this paper, we propose DEUS, a novel OWOD framework for Detecting Unknown objects via
energy-based Separation. DEUS consists of ETF-Subspace Unknown Separation (EUS) and an
Energy-based Known Distinction (EKD) loss. As illustrated in Figure 1b, DEUS aims to address
the two aforementioned challenges in the OWOD scenario by separating known and unknown pro-
posals using EUS, and simultaneously distinguishing previous and current known classes with EKD.
First, EUS creates distinct known and unknown feature spaces to more effectively identify unknown
objects. Unlike existing energy-based methods (Liu et al., 2020; Liang et al., 2023; Du et al., 2022)
that rely on a single known space (e.g., known classifier nodes), we jointly consider energies from
two distinct Simplex-ETF subspaces—one for the known space and one for the unknown space.
During training, ground-truth-matched known proposals are encouraged to attain high scores in
the known subspace, while pseudo-labeled unknown proposals are encouraged to attain high scores
in the unknown subspace (and relatively lower scores in the opposite subspace) and background
proposals are guided toward the boundary region between the two subspaces. This bi-subspace en-
ergy learning guides features to naturally align with their respective spaces as shown in the bottom
of Figure 1a and enables the detector to capture discriminative knowledge, thereby enabling effective
distinction of each proposal.




Second, EKD is designed to alleviate the trade-off issue between the performances of old and new
classes during memory replay. To compute energy scores separately, we partition known classifiers
into old and new node classifiers. Here, higher energy scores indicate a stronger affinity to the cor-
responding classifier. For objects from old classes, the EKD loss encourages higher energy scores
from the old classifier and lower scores from the new classifier. Conversely, for new class objects,
it encourages stronger responses from the new classifier and weaker responses from the old classi-
fier. By training the model to distinctly respond to old and new objects through these energy-based
constraints, the EKD loss minimizes cross-influence between old and new classes during memory
replay, enabling effective continual learning. Through comprehensive experiments, we validate the
effectiveness of DEUS, which achieves significantly improved unknown recall performance while
balancing the learning of old and new classes during memory replay.

Our contributions can be summarized as follows:

¢ We propose Detecting Unknown objects via energy-based Separation (DEUS), a novel OWOD
framework that addresses two challenging issues in OWOD, limited unknown representation
learning and cross-influence between old and new classes.

* We introduce ETF-Subspace Unknown Separation (EUS), the first approach to modeling geo-
metrically separated distinct spaces and utilizing energy to separate known and unknown ob-
jects, helping to capture the knowledge of unknown objects and effectively discern unknowns
from known or background.

* We design a new Energy-based Known Distinction (EKD) loss to alleviate the cross-influence
between old and new classes during memory replay. This allows the detector to focus more on
training each class set, enhancing the overall known performance.

» Experiments show that DEUS achieves state-of-the-art unknown recall across all benchmarks
and tasks, while maintaining superior known mAP performance as the number of learned classes
grows, demonstrating effectiveness in both unknown detection and continual learning.

2 RELATED WORK

2.1 OPEN WORLD OBJECT DETECTION

Joseph et al. (Joseph et al., 2021) introduced Open World Object Detection (OWOD) to address the
limitations of traditional closed-set object detection. OWOD faces challenges, as detectors often
confuse known and unknown representation knowledge. Prior works have attempted to enhance
unknown discovery by improving pseudo-labeling and objectness. Joseph et al. (Joseph et al., 2021)
used an RPN-based detector with an energy-based unknown identifier (EBUI), which required ad-
ditional weak supervision of unknown objects. Gupta et al. (Gupta et al., 2022) applied attention-
driven matching for pseudo-labeling, while Ma et al. (Ma et al., 2023b) proposed label transfer
learning and annealing-based scheduling to separate known from unknown representation knowl-
edge. Ma et al. (Ma et al., 2023a) decoupled localization and identification, introducing self-adaptive
pseudo-labeling. Zohar et al. (Zohar et al., 2023) adopted a normal distribution for class-agnostic
objectness, and Sun ef al. (Sun et al., 2024) reduced the correlation between objectness and class
predictions via orthogonalization. However, due to the lack of supervision for unknown objects,
prior works have not focused on learning representations specific to unknowns.

2.2 ENERGY SCORE

Energy-based methods (Liu et al., 2020) have recently been widely adopted for out-of-distribution
detection. The energy score, computed as the negative log-sum-exponential of logits, provides a
unified measure for distinguishing in-distribution from out-of-distribution samples. Park et al. (Park
et al., 2025) introduced an energy-guided discovery to identify novel categories within unlabeled
data. In unknown object detection, Liang et al. (Liang et al., 2023) proposed a negative energy
suppression loss to filter out non-object samples, while Du et al. (Du et al., 2022) and Zhang et
al. (Zhang et al., 2025) introduced energy-based uncertainty regularization to model the uncertainty
between known and unknown objects. In Open World Object Detection, Joseph et al. (Joseph et al.,
2021) proposed an energy-based classifier to distinguish known from unknown objects. However,
existing energy-based approaches in OWOD primarily rely on known class predictions, lacking



explicit modeling of unknown representations, which leads to confusion between unknown objects
and background regions and misclassifying known object parts as unknowns.

3 METHOD

We propose DEUS, which effectively addresses the key challenges in Open World Object Detection.
In Sec 3.1, we first introduce the problem definition of Open World Object Detection. We then
describe the pipeline of the base model in Sec 3.2 for better understanding. From Sec 3.3, we
propose ETF-Subspace Unknown Separation (EUS) technique that models geometrically distinct
known and unknown subspaces based on Equiangular Tight Frame (ETF) (Papyan et al., 2020) and
uses energy to guide objects to their respective spaces for effective separation. Finally, in Sec 3.4,
we introduce an Energy-based Known Distinction (EKD) loss to balance the learning of old and new
classes during memory replay.

3.1 PROBLEM DEFINITION

In an Open World Object Detection (OWOD) task, a total of 7" incremental tasks are sequentially
given. In the ¢-th task, where ¢ € {1,..., T}, the detector is trained on dataset D, = {(Z!, V})} ¥
consisting of N images, where Z! denotes the i-th input image and Y! = {¢;,b; };’;1 contains
J; annotations for known objects. Here, c; denotes the class label, which belongs to the known
class set IC; = {1,2,...,C} where C denotes the number of known classes at task ¢, and b; =
[z, v, w;, h;] denotes the bounding box. The detector trained on task ¢ can identify known objects
and detect objects from the unknown class set &, = {C' + 1,...} as unknowns. In the following
task ¢ + 1, a subset of the unknown class set, /' = {C + 1,...,C + n}, is labeled and merged
into the updated known class set ;11 = K; U U’, while the remaining unknown classes for task
t + 1 are given by U1 = U; \ U'. By repeating this process, the detector learns new classes
incrementally, expanding its knowledge of known classes while continuously identifying unseen
classes as unknowns.

3.2 PIPELINE OF THE BASE MODEL

We adopt OrthogonalDet (Sun et al., 2024) as the base model due to its promising performance in
identifying known objects in OWOD. Given an input image, the image backbone extracts a feature
map and the detector obtains object proposal features f € R? from the feature map using Rol
pooling (Girshick, 2015), where d is the feature dimension. The extracted proposal feature f is fed
into the bounding box (Fppos), Objectness (F,p;), and classification (F;,) branches to get:

f
Robj = fobj(”f”)v Rels = fdé(“f” )7 Zbboxr = ]:bbox(f)a (1)
where zqp; € R denotes the objectness score of the proposal f, and z.s € RE+! denotes the
logits for C' 4 1 classes, which include C' known class nodes and a single unknown node, and
Zhhor € R* denotes the bounding box regression outputs. Using these outputs, the base model forms
joint class probabilities for each proposal as p,; = softmax(z.s) - 0(zop;), Where p;; denotes joint
probabilities, and o () denotes the sigmoid function. During training, these joint probabilities are
converted back to logits by z;; = log% for classification loss. Given the ground truth label as a

J
one-hot vector ¥4, the classification loss is computed as follows:

Lets = Liocal (Ygt» Zjt; 00, 7Y) 2
=—ayg (1—0(z))" logo(zje) — (1—a) (1 —yg) (0(2j)" log (1 —a(z;0)), 3)

where Lgoca1(+) denotes the sigmoid focal loss (Ross & Dolldr, 2017), and « and -y are focal loss
hyperparameters. For the bounding box branch, the regression loss is computed using 2ppo, With:

Lbbox = ELI (beo:va bgt) + EgIoU (beox; bgt)> (4)

where by, denotes the ground truth bounding box coordinates, Ly,; refers to the L1 loss, and Lg1,u
denotes the generalized IoU loss (Rezatofighi et al., 2019). Given the large number of proposals
generated by the detector, it is essential to select appropriate proposals for training based on ground
truth. To achieve this, a dynamic matcher (Wang et al., 2023) is adopted to align object proposals
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Figure 2: Overview of DEUS. ETF-Subspace Unknown Separation (EUS) utilizes a simplex ETF to construct
known and unknown spaces, where each space serves as an energy module to compute space energy scores, and
Energy-based Known Distinction (EKD) loss is applied during the memory replay phase, where classification
branch is split into two sub-classifiers to calculate energy scores for previous and current tasks.

with ground truth, while a subset of the unmatched proposals is used as training targets for unknown
objects. Furthermore, in OWOD, the sequential training of new classes leads to severe forgetting
after each incremental training phase. To address this issue, memory replay is employed to mitigate
catastrophic forgetting. For memory replay, samples are stored in a memory buffer and utilized in
the subsequent replay phase.

3.3 ETF-SUBSPACE UNKNOWN SEPARATION

Existing OWOD methods have typically defined unknown objects based solely on the detector’s
known class predictions, without considering distinctive representations specific to unknown ob-
jects. This approach leads to missing unknown objects or misclassifying them as background re-
gions. To address this, we propose the ETF-Subspace Unknown Separation (EUS), which explicitly
builds two ETF-aligned subspaces (known / unknown) and guides each proposal toward its respec-
tive subspace. To this end, we first construct geometrically separated known and unknown spaces
using a Simplex ETF. The simplex ETF is defined mathematically as follows:

K 1
wE = 7(1 -1 1T) , 5
71 Uk~ 1xklk)@ S
where W¥ € RE*4 represents the ETF basis matrix containing K equiangular vectors, 15 is the
all-ones vector, € R¥ *d js an orthonormal matrix (i.e., QTQ = 1), K is the number of ETF
basis vectors. From the definition of simplex ETF, we define known and unknown spaces as follows:
WE=WE. s WEeR¥* WF=[WE ;. WE eRF* ©6)
2 2
where Wi and W}§ denote non-overlapping subspaces from the simplex ETF, and these bases are
fixed and non-learnable.

Using the separated subspaces, the detector computes the energy with respect to the subspace. Each
space functions as an energy module to compute the Helmholtz free energy (Liu et al., 2020) for a
proposal feature f:

K2 K2
EN(f)=—log» exp (W&, - f),  EY(f)=—log ) exp (W, - f). 9
=1 1=1

where EX(f) and EY(f) denote the known and unknown energies, respectively, while W,g ;- fand
sz , - f represent the projections of feature f onto the i-th ETF basis vectors in the known and



unknown subspaces. Then, we define subspace scores by negating energies:

se(f) =—EN(f),  su(f)=—E“(f), (8)

where sj and s,, denote the known and unknown scores indicating whether f belongs to the known
and unknown subspaces, respectively, where higher value implies a stronger association with the
corresponding subspace. We then define the unknown offset as:

Au(f) = sulf) = sk(f), ©)

where A, (f) represents how much higher the unknown subspace score is compared to the known
subspace score for feature f. To guide known and unknown proposals toward their respective sub-
spaces, EUS employs a loss function consisting of two complementary terms. First, we use an
energy-based margin loss on the unknown offset A,,:

max (0,m + Ay (f))* if f is GT-matched
Lenergy = Ey max (0, m — A, (f ))2 if f is pseudo-unknown | , (10)
0 otherwise

where m is a hyperparameter for the minimum margin gap. This loss enforces a margin between
known and unknown scores by driving A, (f) < —m for known and A, (f) > m for pseudo-
unknown proposals. For more stable convergence during training, we additionally adopt a focal loss
(equation 3) on the subspace scores [sy, S]:

l:subspace = £focal(t7 [Skv Su}; (&%) 7)5 (11)

where target one-hot vector is ¢ = [1, 0] for GT-matched queries, ¢ = [0, 1] for pseudo-unknown
queries, and ¢ = [0, 0] for background. With this objective, known proposals are guided toward the
known ETF subspace, while unknown proposals are guided toward the complementary unknown
ETF subspace. Background queries receive negative targets for both energy scores, encouraging
them toward the boundary region between the two subspaces. The final EUS objective is the sum of
the two terms:

['EUS = Eenergy + ‘Csubspace~ (12)

While energy loss provides the primary mechanism for known-unknown separation, the subspace
loss guides known, unknown, and background proposals to their respective regions stably.

At inference time, following energy-based unknown scoring (Liu et al., 2020), we first calculate
the unknown logit z, = log ) . exp(z.), where z. represents the logit for known class ¢ from
the classification head z.;s. Next, to reflect the subspace scores, we calibrate z,, with the unknown
offset A, (f). We form a calibration term that decreases the logit for known proposals and increases
it for unknown proposals by standardizing A, (f) per image across proposals, A, (f) = (A.(f) —
ua,)/oa, , and then rescaling it by the standard deviation of z,, (denoted as o, ) to match the scale.
Accordingly, the final unknown logit is given by

2 = 2y + 0., Au(f). (13)

This calibration enhances the logit for unknown proposals while suppressing it for known proposals.
For background proposals, which comprise most of the proposals, near-zero calibration values are
obtained. In contrast to previous energy-based approaches that depend solely on the detector’s
known class head prediction, EUS explicitly projects features onto two subspaces to effectively
capture not only known features but also unknown representations, which prior works overlook.

3.4 ENERGY-BASED KNOWN DISTINCTION LOSS

In OWOD, memory replay is commonly used to mitigate catastrophic forgetting. Although this
technique helps the detector to retain the knowledge of old classes, as the number of known classes
grows and the classification problem becomes more complex, the cross-influence between old and
new classes makes it difficult to preserve old knowledge and learn new concepts simultaneously.
To address this, we propose an Energy-based Known Distinction (EKD) loss that reduces cross-
influence during memory replay by explicitly separating the old and new classifiers and guiding each
proposal to its corresponding classifier using energy scores. Concretely, we split the known class



classifier into two sub-classifiers: the previous task sub-classifier Hy, and the current task sub-
classifier H¢yy, each handling its own classes. For each proposal feature f, we define the negative
energy-based score as follows:

Ch
S(f;H) = —E(f;H) = logy_ exp(z.(f; H)), (14)

c=1

where H € {Hpey, Heurr} denotes a sub-classifier, z.(f; H) is the logit for class ¢, and Cp is the
number of classes handled by sub-classifier H. Similar to the energy scores defined in Sec. 3.3, a
larger S indicates lower energy (i.e., stronger affinity) with the sub-classifier H, as higher logits in
the log-sum-exponential formulation naturally correspond to stronger confidence within that clas-
sifier’s domain. To minimize cross-interference, we encourage each sub-classifier to respond more
strongly to its corresponding task samples. Specifically, let fy.y and feur denote proposals from
previous and current tasks, respectively. We expect proposals from previous tasks to have higher
energy scores with Hp, than with Heyrr, that 18, S(fprev; Hprev) > S(fprev; Heurr), and vice versa
for current task proposals. To this end, we design the EKD loss that enforces these preferences via
pairwise loss as follows:

Lirev = 10g<1 + exp [S(fprev; Heurr) — S(fprev; Hprev)} )7 (15)
Lewr = IOg(l + exp [S(fcurr§ Hprev) — S(feur; chrr)] )7 (16)
£EKD = Eprev + Ecurr- (17)

This contrastive loss reduces the interference of Hyy in previous task proposals and of Hpe, in
current task proposals, effectively mitigating the cross-influence during memory replay. The overall
training objective combines all components:

Elotal = ﬁcls + »Cbbox + EEUS + »CEKD» (18)

where Lgkp is applied only during memory replay phases when training on incremental tasks. To
sum up, EUS first constructs the simplex ETF aligned known and unknown subspaces, and trains
the detector to align features with their respective subspaces while leveraging energy scores of both
known and unknown subspaces. As a result, the detector achieves stronger unknown detection and
effective discrimination between known and unknown objects. Moreover, the EKD loss aims to
strike a balance between old and new classes during memory replay. EKD guides the detector to
reduce cross-influence by contrastively learning energy scores from each sub-classifier.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Metrics. We evaluated our method, DEUS, on M-OWODB (Joseph et al., 2021) and
S-OWODB (Gupta et al., 2022). M-OWODB refers to the “Superclass-Mixed OWOD Benchmark”
and consists of the COCO (Lin et al., 2014) and PASCAL VOC (Everingham et al., 2010) datasets,
grouped into four sets of non-overlapping tasks. S-OWODB represents the “Superclass-Separated
Benchmark™ and uses only the COCO dataset, also divided into four non-overlapping tasks. We
validate DEUS by considering both known and unknown classes. For known classes, we used mean
average precision (mAP) as the metric, measuring mAP for previously learned classes, currently
learned classes, and all known classes. For unknown classes, we used the recall (U-Rec) as the
main metric to evaluate the performance of detecting unknown objects. To measure the overall
performance, considering both known and unknown objects, we adopted the harmonic mean (H-
score), combining the mAP of known and the recall of unknown classes.

Implementation Details. We used OrthogonalDet (Sun et al., 2024) as our base model. Orthog-
onalDet is based on a Fast R-CNN (Girshick, 2015) and a ResNet-50 (He et al., 2016) pre-trained
on ImageNet (Russakovsky et al., 2015). The weight of the ETF and EKD loss is set to 1.0. We
set the number of K for the Simplex ETF spaces to 128, constructing both known and unknown
spaces with 64 vectors each. Our implementation is based on MM-Detection (Chen et al., 2019).
For further implementation details, please refer to the supplementary materials (see Appendix A).



Table 1: Experimental results on M-OWODB (top) and S-OWODB (bottom). Results are reported in terms
of mean average precision (mAP) for known classes, unknown class recall (U-Rec), and harmonic score (H-
Score). The best performance is highlighted in bold, with the second-best performance underlined. { denotes re-
produced results after correcting M-OWODB annotation duplication bug identified in (Yavuz & Giiney, 2024),
which may differ from the originally reported numbers.

Task IDs Task 1 Task 2 Task 3 Task 4

Method o e e AP, UrRes Hesaore s AP, UrRes Hesaone s oAb
ORE (Joseph et al., 2021) 560 49 9.0 527 260 394 29 54 382 127 297 39 6.9 29.6 124 253
OW-DETR (Gupta et al., 2022) 592 75 13.3 53.6 335 429 62 10.8 38.3 158 308 57 9.6 314 17.1 278
CAT (Ma et al., 2023a) 60.0 237 340 555 327 441 191 267 42.8 18.7 348 244 287 344 166 29.9
PROB' (Zohar et al., 2023) 664 283 397 62.6 392 509 264 348 49.6 335 442 293 352 44.0 265  39.7
OrthogonalDet' (Sunetal., 2024)| 634 241 349 582 440 511 247 333 509 401 473 287 357 49.1 315 447
010 (Yavuz & Giiney, 2024) 65.1 493 561 61.0 450 53.0 503 516 50.0 36.5 455 495 474 46.2 31.0 424
OWOBJ (Zhang et al., 2025) 614 236 341 584 344 457 238 313 44.8 27.8 388 251 305 36.4 20.7  32.0
DEUS Ours) 662 651 656 | 610 457 533 662 590 | 534 433 500 690 580 | 505 328 460
ORE (Joseph et al., 2021) 614 15 2.9 56.5 26.1 406 39 7.1 38.7 237 337 36 6.5 33.6 263 318
OW-DETR (Gupta et al., 2022) 715 57 10.6 62.8 275 438 6.2 10.9 452 249 385 69 11.7 382 28.1 331
CAT (Ma et al., 2023a) 742 240 363 67.6 355 507 230 316 512 326 450 246 318 454 351 428
PROB (Zohar et al., 2023) 734 176 284 66.3 360 504 223 309 47.8 304 420 248 312 42.6 317 399
OrthogonalDet (Sun et al., 2024) | 71.6 24.6  36.6 64.0 399 513 279 36.1 52.1 422 488 319 386 48.7 388 462
010 (Yavuz & Giiney, 2024) 726 498 59.1 65.3 449 546 511 528 49.5 415 468 48.1 474 473 420 459
OWOBJ (Zhang et al., 2025) 762 223 345 69.8 410 548 287 377 50.6 357 468 309 372 46.7 369 432
DEUS Ours) | 716 687 700 | 635 430 527 629 54 | 536 454 509 607 554 | 507 428 488

Table 2: Ablation study of DEUS on M-OWODB. EUS and EKD represent ETF-Subspace Unknown Separa-
tion and Energy-based Known Distinction loss, respectively. EUS aims to improve the detection performance
for unknown objects, while EKD is designed to enhance the performance for known objects. The best perfor-
mance is highlighted in bold, with the second-best performance underlined.

Task IDs Task 1 Task 2 Task 3 Task 4
EUS EKD C::Z:" U-Rec  H-Score Pr[::(}:)us C‘:rl:;“ Kng\;;n U-Rec  H-Score Pr:]\;:;m C‘:r/;e;l Kr:uA\;n U-Rec  H-Score Pr;\;:;’us CnL:r/:t;)m K‘::‘;;“
660 368 472 58.8 453 520 290 373 527 435 497 303 376 492 313 447
v | 660 368 472 | 92 459 526 400 454 | 536 436 503 389 439 | 503 327 459
v 62 651 656 58.8 450 519 638 572 526 24 492 690 515 48.1 297 435
VR 662 651 656 | 610 457 533 662 590 | 534 433 501 690 580 | 505 328 460

4.2 EXPERIMENTAL RESULTS

We present the comparison results for M-OWODB (top) and S-OWODB (bottom) in Table 1, com-
paring our DEUS with previous OWOD methods (Joseph et al., 2021; Gupta et al., 2022; Ma et al.,
2023a; Zohar et al., 2023; Sun et al., 2024; Zhang et al., 2025; Yavuz & Giiney, 2024). In OWOD
benchmarks, a fundamental trade-off exists between known mAP and unknown recall (U-Rec).
Methods focusing on unknown detection often sacrifice known class performance by misclassify-
ing known objects as unknown, while maintaining high known mAP leads to poor unknown recall.
The H-Score, measuring the harmonic mean of both metrics, reflects the model’s ability to accu-
rately separate known and unknown objects. As shown in Table 1, our DEUS achieves the best
H-Score performance across all tasks. In particular, DEUS shows strong unknown detection capa-
bility, achieving U-Recall scores of 65.1, 66.2, and 69.0 for Tasks 1-3, which clearly outperform
other methods. These large improvements in unknown detection are achieved while maintaining
competitive known mAP performance, resulting in significantly improved H-Scores that demon-
strating our EUS method’s superior ability to distinguish known from unknown objects. Addition-
ally, while other methods showed degraded known mAP as tasks progress, DEUS maintains stable
performance throughout the incremental learning process, showing better resistance to catastrophic
forgetting through our EKD loss. From Tasks 3-4 onward, DEUS achieves the best performance in
all known mAP metrics, showing that our approach successfully reduces cross-influence between
previously learned and newly learned classes. To evaluate the generalizability of DEUS, we con-
structed a new OWOD benchmark using remote sensing images and compared it with our baseline.
Detailed experimental results can be found in supplementary materials (see Appendix C).
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Figure 3: Analysis of DEUS. (a) Per-class subspace score comparison between known (green) and unknown
(red) for queries matched with actual ground-truth objects. Note that known classes are 1-20. (b) Energy
scores of proposals from each task computed by each task head (w/o vs. w/ EKD). The numbers in parentheses
represent the change in values when EKD is applied.

4.3 ABLATION STUDY

We conducted an ablation study on the M-OWODB benchmark to validate the performance improve-
ments contributed by each component of DEUS. Table 2 summarizes the performance comparison
of each ablated case of the proposed DEUS. EUS significantly enhances U-Recall performance, as
it aims to disentangle representation knowledge between known and unknown objects, effectively
helping the detector capture knowledge of unknown objects. However, since EUS focuses on detect-
ing unknown objects, the known mAP shows a slight decrease as a result of the increased number
of unknown detections. In contrast, EKD consistently leads to performance improvements across
all tasks regardless of whether EUS is applied. When both components are applied, DEUS achieved
the best performance, with the highest H-Score on every task.

4.4 ANALYSIS

To show how well EUS distinguishes between known and unknown objects, we analyzed the per-
class subspace scores for queries that match actual ground-truth objects using a model trained on
Task 1 classes (known classes 1-20), as shown in Fig. 3a. The results show that queries matched
to learned classes (1-20) consistently have higher Known scores than Unknown scores, with strong
affinity toward the known subspace. In contrast, queries matched to classes not yet encountered
during training (classes 21-80) exhibit higher Unknown scores, indicating proper alignment with the
unknown subspace. Background proposals (those unmatched to any GT and with low objectness
scores) are naturally placed in marginal scores between the two, which aligns with our expectations.
This clear separation between known and unknown representations naturally aligns proposals in
the feature space as visualized in bottom of Fig. 1a, enabling effective distinction between known,
unknown, and background objects. Furthermore, to verify whether EKD actually increases scores
for proposals belonging to each task’s sub-classifier while suppressing scores for non-belonging
proposals, we visualize energy scores (Eq. 14) heatmap for each task head on proposals from each
task as shown in Fig. 3b. Ideally, diagonal elements (matching task-head pairs) should be high while
off-diagonal elements should be low. With EKD, diagonal scores increase while off-diagonal scores
are significantly suppressed compared to without EKD (e.g., T3 proposals with T1 head: -1.34 —
-4.73), demonstrating that EKD effectively guides proposals towards their appropriate task heads.

5 CONCLUSION

In this paper, we propose DEUS, a novel framework for Open World Object Detection (OWOD).
OWOD requires models to learn known classes incrementally while detecting unknown objects,
which raises challenges such as limited representation learning of unknown objects and cross-
influence between old and new classes during memory replay. DEUS addresses these issues through
two modules: ETF-Subspace Unknown Separation (EUS), which captures representations of un-
known objects by separating them from known, and Energy-based Known Distinction (EKD), which
mitigates cross-influence by focusing on each class set. Nonetheless, semantic overlap between
known and unknown objects remains challenging, motivating future work on more refined represen-
tation learning for unknown objects.



REFERENCES

Lorenzo Bonicelli, Matteo Boschini, Angelo Porrello, Concetto Spampinato, and Simone Calder-
ara. On the effectiveness of lipschitz-driven rehearsal in continual learning. Advances in Neural
Information Processing Systems, 35:31886-31901, 2022.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie
Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli
Ouyang, Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and
benchmark. arXiv preprint arXiv:1906.07155, 2019.

Xuefeng Du, Xin Wang, Gabriel Gozum, and Yixuan Li. Unknown-aware object detection: Learning
what you don’t know from videos in the wild. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13678—13688, 2022.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88:
303-338, 2010.

Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, and
Wenyu Liu. You only look at one sequence: Rethinking transformer in vision through object
detection. Advances in Neural Information Processing Systems, 34:26183-26197, 2021.

Ross Girshick. Fast r-cnn. In International Conference on Computer Vision (ICCV), 2015.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 580-587, 2014.

Akshita Gupta, Sanath Narayan, KJ Joseph, Salman Khan, Fahad Shahbaz Khan, and Mubarak
Shah. Ow-detr: Open-world detection transformer. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 9235-9244, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770778, 2016.

KJ Joseph, Salman Khan, Fahad Shahbaz Khan, and Vineeth N Balasubramanian. Towards open
world object detection. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 5830-5840, 2021.

Wenteng Liang, Feng Xue, Yihao Liu, Guofeng Zhong, and Anlong Ming. Unknown sniffer for
object detection: Don’t turn a blind eye to unknown objects. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3230-3239, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision—-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740-755. Springer, 2014.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
tion. Advances in neural information processing systems, 33:21464-21475, 2020.

Shuailei Ma, Yuefeng Wang, Ying Wei, Jiaqi Fan, Thomas H Li, Hongli Liu, and Fanbing Lv. Cat:
Localization and identification cascade detection transformer for open-world object detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
19681-19690, 2023a.

Yuqing Ma, Hainan Li, Zhange Zhang, Jinyang Guo, Shanghang Zhang, Ruihao Gong, and Xiang-
long Liu. Annealing-based label-transfer learning for open world object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11454—-11463,
2023b.

10



Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma: Investi-
gating the continuum from catastrophic forgetting to age-limited learning effects, 2013.

Ishan Misra, Rohit Girdhar, and Armand Joulin. An end-to-end transformer model for 3d object
detection. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
2906-2917, 2021.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652-24663, 2020.

Keon-Hee Park, Hakyung Lee, Kyungwoo Song, and Gyeong-Moon Park. Online continuous gen-
eralized category discovery. In European Conference on Computer Vision, pp. 53—-69. Springer,
2025.

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, lan Reid, and Silvio Savarese.
Generalized intersection over union: A metric and a loss for bounding box regression. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 658—666,
2019.

T-YLPG Ross and GKHP Dollar. Focal loss for dense object detection. In proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2980-2988, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211-252, 2015.

Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng Xu, Wei Zhan, Masayoshi Tomizuka,
Lei Li, Zehuan Yuan, Changhu Wang, et al. Sparse r-cnn: End-to-end object detection with
learnable proposals. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 14454—-14463, 2021.

Zhicheng Sun, Jinghan Li, and Yadong Mu. Exploring orthogonality in open world object detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
17302-17312, 2024.

Eli Verwimp, Matthias De Lange, and Tinne Tuytelaars. Rehearsal revealed: The limits and mer-
its of revisiting samples in continual learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9385-9394, 2021.

Yanghao Wang, Zhongqi Yue, Xian-Sheng Hua, and Hanwang Zhang. Random boxes are open-
world object detectors. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 6233-6243, 2023.

Misra Yavuz and Fatma Giiney. Olo: Grouping of known classes to identify unknown objects as
odd-one-out. In Proceedings of the Asian Conference on Computer Vision (ACCV), pp. 614-629,
December 2024.

Shan Zhang, Yao Ni, Jinhao Du, Yuan Xue, Philip H. S. Torr, Piotr Koniusz, and Anton van den Hen-
gel. Open-world objectness modeling unifies novel object detection. 2025 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 30332-30342, 2025.

Orr Zohar, Kuan-Chieh Wang, and Serena Yeung. Prob: Probabilistic objectness for open world
object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11444-11453, 2023.

11



	Introduction
	Related Work
	Open World Object Detection
	Energy Score

	Method
	Problem Definition
	Pipeline of the Base Model
	ETF-Subspace Unknown Separation
	Energy-based Known Distinction Loss

	Experiments
	Experimental Settings
	Experimental Results
	Ablation Study
	Analysis

	Conclusion

