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ABSTRACT

Cross-view object geo-localization (CVOGL) aims to determine the location of
a specific object in high-resolution satellite imagery given a query image with a
point prompt. Existing approaches treat CVOGL as a one-shot detection task,
directly regressing object locations from cross-view information aggregation, but
they are vulnerable to feature noise and lack mechanisms for error correction. In
this paper, we propose ReCOT, a Recurrent Cross-view Object geo-localization
Transformer, which reformulates CVOGL as a recurrent localization task. ReCOT
introduces a set of learnable tokens that encode task-specific intent from the query
image and prompt embeddings, and iteratively attend to the reference features to
refine the predicted location. To enhance this recurrent process, we incorporate
two complementary modules: (1) a SAM-based knowledge distillation strategy
that transfers segmentation priors from the Segment Anything Model (SAM) to
provide clearer semantic guidance without additional inference cost, and (2) a
Reference Feature Enhancement Module (RFEM) that introduces a hierarchical
attention to emphasize object-relevant regions in the reference features. Extensive
experiments on standard CVOGL benchmarks demonstrate that ReCOT achieves
state-of-the-art (SOTA) performance while reducing parameters by 60% compared
to previous SOTA approaches. Our code will be made available upon acceptance.

1 INTRODUCTION

Cross-view object geo-localization (CVOGL) aims to determine the geographic location of a specific
object indicated by point prompts in a query image on the reference image Sun et al. (2023). The
query images can be captured from devices like phones, autonomous vehicles, robots, and drones,
while the reference images are typically high-resolution satellite images. CVOGL is widely used
in various applications, such as smart city management Yao et al. (2022), disaster monitoring Chini
et al. (2009); Kumar et al. (2013), and robot navigation Singamaneni et al. (2024); Zhai et al. (2024).
However, the view gap poses challenges for CVOGL Sun et al. (2023).

Recent cross-view image geo-localization (CVIGL) works Hu et al. (2018); Shi et al. (2019); Zhu
et al. (2022a); Yang et al. (2021); Lin et al. (2022) have demonstrated their superiority in handling
view gaps. However, CVIGL approaches are fundamentally designed for camera-level localization
using retrieval-based approaches Deuser et al. (2023); Zhang et al. (2024b); Shi et al. (2019) or
fine-grained approaches Sarlin et al. (2023); Wang et al. (2023). However, CVOGL aims to local-
ize specific objects (e.g., a building with a red roof) captured in the query image, which demands
prompt-guided and object-aware prediction. Therefore, in CVOGL scenarios, CVIGL approaches
can only provide a nearby location for the indicated object Sun et al. (2023), which is insufficient
for precise object-level localization.

To address this, CVOGL approaches emerge recently. Existing approaches Sun et al. (2023); Li
et al. (2025); Huang et al. (2025) typically treat CVOGL as a one-shot detection paradigm, where
the model directly regresses the object location based on prompt-guided information aggregation,
as shown in Fig. 1(a). For example, the recent state-of-the-art (SOTA) approach Huang et al.
(2025) aggregates information from cross-view images and prompts to produce a spatial attention
matrix, which is used to enhance the reference image features. The enhanced features are then fed
into several convolutional layers to regress the object location. While efficient and architecturally
simple, such a framework is sensitive to the quality of the enhanced feature Cao et al. (2022). It
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Figure 1: Comparison between the framework of previous CVOGL approaches and ours. (a) Pre-
vious approaches treat the CVOGL as a prompt-based detection task, where the model directly re-
gresses the object location based on information aggregation once. (b) Our framework reformulates
the CVOGL as a recurrent localization problem, where the model iteratively refines the localization
through a set of learnable tokens. Please refer to the zoomed-in view for better visualization.

lacks a correction mechanism for early-stage prediction errors, making them vulnerable to noise in
features, i.e., the model cannot give correct localization once the enhanced feature leads to a wrong
prediction Cao et al. (2023); Sun et al. (2023).

To cope with this, we propose a Recurrent Cross-view Object geo-localization Transformer (Re-
COT). Motivated by the success of iterative refinement strategies Yu et al. (2023); Cao et al. (2022;
2023), ReCOT reformulates the CVOGL task as a recurrent localization problem, as shown in Fig.
1(b). This serves as the main difference between previous approaches Sun et al. (2023); Li et al.
(2025); Huang et al. (2025) and our framework. Specifically, ReCOT initializes a set of learnable
tokens, which interact with the query image feature and prompt embeddings to extract task-specific
intent. These tokens then act as recurrent “questioners” that iteratively attend to the enhanced ref-
erence image features, progressively extracting object-relevant information and refining the predic-
tion. The proposed recurrent strategy enables our ReCOT to effectively enhance the performance of
CVOGL by iteratively refining the initial prediction, as shown in Fig. 1(b).

Nevertheless, the success of this recurrent strategy in our token-driven framework relies on the se-
mantic clarity of the prompts Li et al. (2025) and the quality of reference features Teed & Deng
(2020). Specifically, the learnable tokens are first guided by prompt semantics to extract object-
relevant intent, then iteratively attend to the reference features to refine the object location in each
recurrent step. Therefore, if prompts lack clear semantic intent or reference features are cluttered,
the tokens may not accumulate correct task-specific cues across iterations, leading to suboptimal per-
formance. To tackle this, we introduce two complementary methods: (1) a SAM-based knowledge
distillation strategy, which injects prior knowledge from large-scale model into the prompt embed-
dings to boost prompt understanding while avoiding computational cost during inference, and (2)
a Reference Feature Enhancement Module (RFEM), which emphasizes object-relevant reference
features through hierarchical attention. These components provide clean visual and semantic cues,
enabling the tokens to effectively accumulate task-specific information during iterative refinement.

We evaluate ReCOT on the standard CVOGL benchmark Sun et al. (2023). It achieves state-of-the-
art (SOTA) performance while reducing parameter count by 60% compared to the previous SOTA
approach Huang et al. (2025) (29.9M vs. 74.8M), and runs at a competitive inference speed. In
summary, our contributions are as follows:

• We propose ReCOT, a novel framework for CVOGL that reformulates the task as a recur-
rent localization problem, where learnable tokens iteratively attend to reference features to
refine object localization.

• We introduce a SAM-based knowledge distillation strategy that transfers prior knowledge
from a large foundation model into the prompt embeddings, providing clearer semantic
guidance without adding inference cost.

• We design the RFEM, which leverages a proposed hierarchical attention to highlight object-
relevant regions in the reference feature, thereby facilitating the recurrent localization pro-
cess.
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2 RELATED WORK

Cross-View Image Geo-Localization (CVIGL). CVIGL aims to determine the camera’s geo-
graphic location by matching a ground-view query image with the most correlated reference im-
age Deuser et al. (2023); Zhang et al. (2024b); Shi et al. (2019) or position Sarlin et al. (2023);
Wang et al. (2023); Lentsch et al. (2023). Existing CVIGL approaches can be grouped into metric
learning-based methods Lu et al. (2022); Zhu et al. (2022b); Cai et al. (2019); Shi et al. (2020b);
Guo et al. (2022); Shi & Li (2022); Shi et al. (2022); Hu et al. (2018); Yang et al. (2021); Lin et al.
(2022); Zhu et al. (2022a), which learn viewpoint-invariant features, and geometry-based methods
Shi et al. (2020a); Lu et al. (2020); Toker et al. (2021); Liu & Li (2019); Regmi & Shah (2019);
Shi et al. (2019), which exploit orientation or structural cues to reduce viewpoint gaps. However,
CVIGL methods only provide camera-level localization and cannot accurately pinpoint object-level
targets Sun et al. (2023).

Cross-View Object Geo-Localization (CVOGL). CVOGL focuses on locating a specific object
indicated by prompts in a query image. DetGeo Sun et al. (2023) first formalized this task and
proposed a detection-based framework. Subsequent works, such as VaGeo Li et al. (2025) and
OCGNet Huang et al. (2025), enhanced cross-view feature aggregation and prompt embedding. De-
spite progress, existing CVOGL methods still rely on one-shot detection, which is sensitive to noisy
features and lacks mechanisms for error correction Cao et al. (2022). In contrast, we reformulate
CVOGL as a recurrent localization problem and propose ReCOT to address these limitations.

3 METHODOLOGY
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Figure 2: Architecture of our recurrent cross-view object geo-localization transformer (ReCOT).
ReCOT reformulates the CVOGL task as a recurrent localization task, which leverages a set of
learnable tokens to extract information from cross-view images and prompts to recurrently refine the
prediction. Notably, all recurrent steps in ReCOT share the same “MHCA” and “Linear” component.

Fig. 2 presents the architecture of ReCOT, which reformulates CVOGL as a recurrent localization
task. A set of learnable tokens is initialized to encode task-specific intent from the query image
features and prompt embeddings. These tokens act as recurrent “questioners” that iteratively extract
object-relevant cues from the reference features and refine the predicted location through cross-
attention mechanisms. Additionally, we introduce two complementary methods to enhance this
recurrent process: (1) a SAM-based knowledge distillation strategy, which transfers segmentation
priors from the Segment Anything Model (SAM) to enhance prompt semantics, and (2) a Reference
Feature Enhancement Module (RFEM), which provides object-relevant reference features through
proposed hierarchical attention for the recurrent stage.

3.1 RECURRENT LOCALIZATION FRAMEWORK

Motivation. As shown in Fig. 1, existing CVOGL approaches follow a one-shot detection paradigm,
directly predicting the object location from enhanced reference features. However, such frameworks
are often sensitive to feature noise and lack a mechanism for error correction Cao et al. (2022;
2023). Fundamentally, CVOGL can be regarded as a cross-view matching problem, where recurrent
strategies have shown superior robustness across domains Cao et al. (2022); Teed & Deng (2020).
Inspired by this, we reformulate CVOGL as a recurrent localization process. Moreover, unlike dense
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matching tasks Cao et al. (2023); Yu et al. (2023); Edstedt et al. (2024), CVOGL is prompt-driven
and focuses on object-level semantic matching. This calls for a representation that can both encode
semantic intent and drive iterative refinement. To this end, we draw inspiration from the class token
in vision transformers (ViT) Dosovitskiy et al. (2021), and introduce a set of learnable tokens that
absorb task-specific semantics from the query and prompt. Acting as semantic carriers, these tokens
can recurrently interact with the reference feature to enable step-wise prediction.

Structure. We initialize a set of learnable tokens T ∈ Rn×c, where n and c denote the number of
tokens and the feature dimension, respectively. To enable T to extract object-relevant information
from the reference features, T needs to first acquire task-specific semantics from the query image
feature Fq ∈ Rhqwq×c and the point prompt embedding P ∈ Rc. Here, hq and wq denote the height
and width of the query feature, respectively. Specifically, we concatenate T with Fq along the spa-
tial dimension, yielding Fqc ∈ R(n+hqwq)×c. Following standard operations in Vision Transformers
(ViT) Dosovitskiy et al. (2021), we apply self-attention to Fqc, allowing T to aggregate global con-
text from the query image. The resulting tokens are denoted as Tq. To further inject object-level
intent, the point prompt P embedded interacts with Fqc through cross-attention. This enables the
prompt to semantically guide the tokens, allowing Tq to further incorporate object-level context.
After interaction, we denote the concatenated feature and tokens as F′

qc and T′, respectively. The
F′

qc and Tq are further utilized to enhance reference features in RFEM. The enhanced reference fea-
ture are denoted as F′

r ∈ Rhrwr×c, where hr and wr denote the height and width of the reference
feature, respectively

After acquiring task-specific semantics from the query and prompt, we use T′ to perform recurrent
localization, as shown in Fig. 2. Let T′

i denote the token state at the i-th refinement step, where
i ∈ [0, 1, 2, . . . ,m]. We set m to 6 in our work experimentally. At each step, T′

i attends to the
enhanced reference feature F′

r to extract object-relevant cues and update the task-specific intent.
Formally, the update process is defined as

T′
i+1 = MHCA(T′

i,F
′
r) (1)

where MHCA(·, ·) denotes the multi-head cross-attention module. Here, T′
i serves as the query,

while F′
r acts as the key and value. This recurrent attention mechanism enables iterative refinement,

where the tokens T′ progressively accumulate task-specific semantics and extract increasingly rele-
vant information from the fixed reference feature F′

r. The T′
i of each step is fed into a linear layer

to predict an updated object location, allowing the model to gradually converge toward a precise
localization.

At each refinement step i, we introduce a loss LToken to guide the generation of T′
i. Specifically, since

T′
i is expected to contain the task-specific intent in cross-view features, it should be able to highlight

the required object area on F′
r. Therefore, in each refinement step, we first aggregate T′

i along the
spatial dimension to generate a global embedding T′′

i , and use T′′
i ∈ R1×c and F′

r to produce an
aggregation map m̂o ∈ R1×hr×wr . This can be expressed as

T′′
i = Sum(T′

i · Softmax(T′
i)), (2)

m̂oi = σ(T′′
i F′T

r ), (3)
where σ(·) and Softmax(·) denote the sigmoid and softmax function, respectively. Sum(·) is the
summing along the spatial dimension. We then utilize a box-level mask moi produced using the
ground truth box to supervise the generation of m̂o, which can be expressed as

LTokeni(mo, m̂oi) = Lbce(mo, m̂oi) + Ldice(mo, m̂oi), (4)

where Lbce(·, ·) and Ldice(·, ·) denote the binary cross-entropy loss and the Dice Loss Milletari et al.
(2016), respectively.

How ReCOT works. As shown in Fig. 3(a), previous one-shot detection CVOGL approaches Sun
et al. (2023); Li et al. (2025); Huang et al. (2025) rely on a single forward information aggregation
and are thus sensitive to noisy features Cao et al. (2022; 2023). Our ReCOT adopts a recurrent
localization mechanism that iteratively refines predictions. The visualization in Fig. 3(b) of cross-
attention weights between tokens and the reference feature reveals the inner dynamics of this refine-
ment process. It can be seen that different tokens focus on different regions of the reference feature,
indicating a form of token-level specialization. For object-relevant tokens, their attention gradually
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Figure 3: Comparison between the previous one-shot framework and our recurrent localization
framework. (a) Previous approaches Li et al. (2025); Sun et al. (2023); Huang et al. (2025) rely on
single-shot information aggregation, which is sensitive to noisy enhanced features and often leads to
incorrect predictions. (b) Our ReCOT iteratively refines predictions through learnable tokens. The
attention weight visualizations show that object-relevant tokens progressively focus and strengthen
around the target, while object-irrelevant tokens weaken and stabilize to background patterns. Please
refer to the zoomed-in view for better visualization.

concentrates and intensifies around the object region across recurrent steps, reflecting the ability to
correct early prediction error and progressively refine the prediction. In contrast, object-irrelevant
tokens experience a decrease in their attention responses and eventually stabilize to background pat-
terns once they no longer contribute to the object localization. This behavior highlights the compet-
itive nature of token updates, i.e., multiple tokens initially compete to explain different parts of the
reference feature Carion et al. (2020), but those correlated with the object receive positive feedback
and their attention weights are amplified over recurrent steps, leading to iterative convergence. Such
dynamics demonstrate the effectiveness of recurrent refinement mechanism in suppressing irrelevant
regions while enhancing object-relevant cues.

3.2 SAM-BASED KNOWLEDGE DISTILLATION

Motivation. Point prompt understanding is essential for CVOGL to correctly locate objects. How-
ever, point prompt itself suffers from semantic ambiguity, leading to unsatisfactory performance
Kirillov et al. (2023). To address this, we propose a SAM-based knowledge distillation strategy
to boost the prompt understanding of ReCOT. The incorporation of SAM Kirillov et al. (2023) is
motivated by an observation that SAM can give a mask with a clear indication of the required object
using point prompts and corresponding images. However, directly applying SAM during inference
incurs a large computation overhead. Hence, we leverage predictions of SAM as supervision signals,
transferring its knowledge through knowledge distillation.

Structure. We extract the query feature F′
q from the previous concatenated feature F′

qc. Notably, the
F′

q has been interacted with prompt embedding and is supposed to contain the object-level semantic.
Therefore, we process it using a lightweight convolutional head followed by a sigmoid activation to
generate a segmentation map m̂q. Meanwhile, we use SAM to generate a pseudo ground-truth mask
mSAM from the query image and point prompt, This mask is used to supervise the segmentation out
of F′

q via LSAM, which can be defined as

LSAM(mSAM, m̂q) = Lbce(mSAM, m̂q) + Ldice(mSAM, m̂q), (5)

3.3 REFERENCE FEATURE ENHANCEMENT MODULE

Motivation. In CVOGL, the reference feature Fr extracted by the backbone encoder is typically
generic and background-dominated, lacking object-level specificity before prompt interaction Sun
et al. (2023); Li et al. (2025). In our framework, guiding Fr to focus on the expected object indicated
by the prompt can significantly ease the downstream recurrent localization Cao et al. (2023); Teed
& Deng (2020). To this end, we propose the Reference Feature Enhancement Module (RFEM),
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which enhances reference features into a more object-aware representation F′
r. Unlike previous

approaches Sun et al. (2023); Li et al. (2025); Huang et al. (2025) that attempt to clearly highlight
the object features through one-shot feature enhancement, RFEM serves as a preparatory module
to filter irrelevant features and provide more object-relevant information for subsequent recurrent
localization. The key of RFEM lies in its hierarchical attention design. We first perform spatial
attention to highlight the query-relevant regions in the reference feature, as the expected object is
likely confined to these regions. We then apply cross-attention guided by the query and prompt cues
to refine these regions with object-level semantics. This spatial-to-cross hierarchy yields a cleaner
and more informative reference feature F′

r, which significantly benefits the iterative localization
process of ReCOT.
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Figure 4: Architecture of reference feature enhancement module (RFEM). RFEM enhances refer-
ence features through a hierarchical attention pipeline to obtain F′

r.

Structure. Specifically, as illustrated in Fig. 4, we utilize two levels of reference features, i.e.. a
low-resolution semantic feature Flr ∈ Rhr×wr×c that captures scene semantics, and a high-resolution
detailed feature Fhr ∈ R2hr×2wr×c that preserves fine-grained spatial structures Zhang et al. (2024c).

Spatial Attention: We leverage the spatial attention to highlight query-relevant features. Specifically,
We first aggregate the query tokens Tq into a global descriptor T′

q (Eq. (2)). Notably, the T′
q contains

only the global information of the query image without prompt guidance. This descriptor correlates
with Flr via a dot-product operation to produce a spatial attention map as

M = σ(T′
qFT

lr ), (6)

which highlights query-relevant regions. The attention map is then up-sampled and applied to Fhr by
element-wise multiplication, suppressing irrelevant background and narrowing the focus to potential
object areas.

Cross Attention: We leverage the cross-attention to incorporate detailed query features and prompt
semantics for further refining the reference feature. The filtered Fhr is subsequently refined via
cross-attention with Fqc, which encodes fine-grained prompt cues and detailed query features. This
cross-attention step sharpens the object-relevant responses and injects object-level semantics into
the reference representation.

Finally, the updated feature is down-sampled and refined through spatial attention Woo et al. (2018)
and self-attention Dosovitskiy et al. (2021) to generate the F′

r, which is then passed to the recurrent
localization stage in ReCOT.

Why multi-resolution reference features? The reference image typically contains both global
scene information and fine-grained object details. The low-resolution semantic reference feature Flr
extracted from deeper layers of the backbone encodes more scene-level context but lose spatial de-
tails due to down-sampling. Therefore, we utilize Flr to enhance query-relevant regions. Conversely,
the high-resolution reference features Fhr preserve fine structural details but are dominated by back-
ground noise. Thus, it needs to be refined by the attention map produced by Flr, and then RFEM can
utilize it to perform object-level enhancement. This design leverages advantages of multi-resolution
features, which is crucial for object-level feature enhancement in CVOGL Huang et al. (2025).
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3.4 LOSS FUNCTION

Our training objective L is defined as a weighted sum of the localization loss Llocal and the auxiliary
loss Laux. It can be defined as

L = Llocal + αLaux, (7)

where Llocal denotes the sum of DETR-style detection losses LDet computed at each recurrent local-
ization step (see Fig. 2). The auxiliary loss Laux is the sum of LTokeni across all recurrent steps and
the SAM-based distillation loss LSAM. The balancing coefficient α is set to 1 in all experiments.

4 EXPERIMENT

4.1 DATASETS

CVOGL-DetGeo dataset Sun et al. (2023) divides the task into “Ground → Satellite” task and
“Drone → Satellite” task. This dataset is the only public dataset for the relatively new task CVOGL.
It contains 6,239 pairs of “Ground → Satellite” view and 6,239 pairs of “Drone → Satellite” view
query and reference images. The ground view query images, drone view query images, and satellite
view reference images are sized to 512 × 256, 256 × 256, and 1024 × 1024, respectively. Each
cross-view task uses 4,343 pairs for training, 923 pairs for validation, and 973 pairs for testing. Our
experiments utilize the training set to train the model and select the best model on the validation set
for evaluation on the test set.

4.2 EVALUATION METRICS

Following the pioneering work DetGeo Sun et al. (2023), we adopt Acc@0.25 and Acc@0.50 for
evaluation. For each pair of the query and reference image, we select the box with the highest
confidence output by our model as the final prediction box. Additionally, we use the parameter
and frames per second (FPS) to show the model efficiency. Higher Acc@0.25, higher Acc@0.50,
Higher FPS, and fewer parameter denote better performance. Please refer to the appendix for more
detailed introduction of evaluation metrics.

4.3 IMPLEMENTATION DETAILS

Please refer to the appendix for detailed introduction of implementation details.

4.4 ABLATION STUDY

Effect of Total Recurrent Localization Steps. The role of the recurrent localization lies in refining
and correcting early predictions. Table 1 investigates the impact of varying the total number of recur-
rent stepsm on ReCOT performance. For the Ground→Satellite task, increasingm from 1 (one-shot
prediction) to 5 yields consistent improvements, with the best performance achieved at m = 5. In
contrast, for the Drone→Satellite task, the Drone and Satellite images share similar top-down ge-
ometry and exhibit cleaner alignment, a single forward pass already produces a strong estimate. Its
performance saturates earlier, with m = 3 giving the relatively optimal results.This discrepancy
indicates that the optimal number of recurrent steps is task-dependent due to differences in view-
point variations and feature alignment difficulty across scenarios. Additionally, further increasing
m beyond the optimal point does not bring additional gains and may slightly degrade performance,
which can be attributed to over-refinement and overfitting in deeper iterations Hur & Roth (2019);
Cao et al. (2023); Yu et al. (2023). Based on the results, we set m = 5 for the Ground→Satellite
task, while m = 3 for the Drone→Satellite task, and keep this setting in other experiments.

Effect of Components in ReCOT. Table 2 presents the ablation study of the key components in
ReCOT on the CVOGL-DetGeo test set. Removing the RFEM module (w/o RFEM) leads to a
noticeable performance drop, confirming that early reference feature enhancement is critical for
guiding tokens to focus on relevant regions. Similarly, removing the SAM-based distillation loss
LSAM (w/o LSAM) results in performance degradation, indicating the importance of accurate prompt
semantics understanding. The full ReCOT model achieves the best performance across both scenar-
ios. In addition, removing the token-guidance loss LToken (w/o LToken) also degrades performance,
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which highlights its role in encouraging the learnable tokens to accurately capture object-relevant
areas during recurrent refinement. These results collectively validate that RFEM, LSAM, and LToken
complement each other, contributing to the robust performance of ReCOT.

Table 1: Ablation study on the recurrent localization stepsm of ReCOT in terms of Acc@0.25(%) ↑
and Acc@0.50(%) ↑ on the test set of CVOGL-DetGeo dataset. Bold and Underline indicate the
best and second-best results, respectively.

Steps m Ground→Satellite Drone→Satellite
Acc@0.25 Acc@0.50 FPS Acc@0.25 Acc@0.50 FPS

1 49.74 46.25 26.9 78.31 71.74 27.2
2 51.08 47.17 26.2 78.21 72.15 26.5
3 51.28 47.58 25.6 78.21 72.35 25.7
4 51.39 47.89 24.8 77.90 72.56 24.9
5 52.00 48.10 24.1 77.60 72.05 24.3
6 51.70 48.10 23.4 77.49 71.84 23.5

Table 2: Ablation study on the components of ReCOT in terms of Acc@0.25(%) ↑,
Acc@0.50(%) ↑, and FPS ↑ on the test set of CVOGL-DetGeo dataset.

Component Ground→Satellite Drone→Satellite
Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50

w/o RFEM 46.45 42.24 50.15 46.04
w/o LSAM 49.74 44.81 70.91 65.78
w/o LToken 50.57 47.58 72.05 66.80

ReCOT (Ours) 52.00 48.10 78.21 72.35

Effect of Components Within the RFEM. Table 3 investigates the contributions of components
within the RFEM. Removing the weight matrix M (w/o M) leads to a noticeable performance drop,
particularly in the Drone→Satellite setting. This confirms that the spatial attention stage benefit the
reference feature enhancement. Furthermore, replacing the low-resolution semantic feature Flr with
the high-resolution feature Fhr and replacing Fhr with Flr both result in performance degradation,
highlighting the importance of leveraging multi-resolution reference features in RFEM. Please refer
to the appendix for more ablation study results.

Table 3: Ablation study inside the RFEM in terms of Acc@0.25(%) ↑ and Acc@0.50(%) ↑ on the
test set of CVOGL-DetGeo dataset.

RFEM Ground→Satellite Drone→Satellite
Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50

w/o M 51.18 47.48 75.44 70.30
Replace Flr with Fhr 48.00 44.19 75.85 70.09
Replace Fhr with Flr 47.49 43.28 75.64 67.11

ReCOT (Ours) 52.00 48.10 78.21 72.35

4.5 COMPARISON RESULTS

Quantitative Results. Table 4 compares ReCOT with existing SOTA cross-view localization ap-
proaches on the CVOGL-DetGeo dataset. ReCOT consistently outperforms all competitors in both
the Ground→Satellite and Drone→Satellite settings, achieving new SOTA performance across al-
most all metrics in the test set. Despite relatively lower performance on the validation set for
Ground→Satellite, it maintains the best performance on the test set, indicating stronger generaliza-
tion ability. Notably, as shown in Table 4, these performance gains are achieved with significantly
fewer parameters, representing a 60% reduction in model size. ReCOT is a little slower in inference
speed compared to the previous CVOGL works Sun et al. (2023); Huang et al. (2025) due to itera-
tive framework Cao et al. (2023). However, it still achieves a competitive inference speed, making
ReCOT both efficient and scalable for real-world applications. Compared to the Drone→Satellite
setting, the improvement of ReCOT on Ground→Satellite is relatively smaller. This is mainly due
to the larger viewpoint gap and severe occlusions in ground-view images Sun et al. (2023), where
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objects are often partially visible or obstructed by surrounding structures. Moreover, ground im-
ages typically contain more background clutter, making recurrent localization harder. We believe
integrating geometric priors (e.g., camera pose estimation) or multi-view fusion could further boost
Ground→Satellite performance. Please refer to the appendix for more comparison results.

Table 4: Comparisons in terms of Acc@0.25(%) ↑, Acc@0.50(%) ↑, Parameter (M) ↓, and FPS ↑ on
the CVOGL-DetGeo dataset. Following Table 1, we setm = 5 andm = 3 for the Ground→Satellite
and Drone→Satellite task, respectively. The inference speed is test on the Drone→Satellite (m = 3)
task using one NVIDIA GeForce RTX 4090 GPU. Bold and Underline indicate the best and second-
best results, respectively.

Ground→Satellite Drone→SatelliteMethod
Test Set Validation Set Test Set Validation Set

Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50

Param FPS

CVM-Net Hu et al. (2018) 4.73 0.51 5.09 0.87 20.14 3.29 20.04 3.47 – –
RK-Net Lin et al. (2022) 7.40 0.82 8.67 0.98 19.22 2.67 19.94 3.03 – –
L2LTR Yang et al. (2021) 10.69 2.16 12.24 1.84 38.95 6.27 38.68 5.96 – –

Polar-SAFA Shi et al. (2019) 20.66 3.19 19.18 2.71 37.41 6.58 36.19 6.39 – –
TransGeo Zhu et al. (2022a) 21.17 2.88 21.67 3.25 35.05 6.47 34.78 5.42 – –

SAFA Shi et al. (2019) 22.20 3.08 20.59 3.25 37.41 6.58 36.19 6.39 – –
GeoDTR+ Zhang et al. (2024b) 14.19 5.14 14.08 1.95 16.03 4.73 15.71 3.68 – –

DetGeo Sun et al. (2023) 45.43 42.24 46.70 43.99 61.97 57.66 59.81 55.15 73.8 29.5
VaGeo Li et al. (2025) 48.21 45.22 47.56 44.42 66.19 61.87 64.25 59.59 – –

OCGNet Huang et al. (2025) 51.49 47.69 48.54 44.20 68.39 63.93 66.52 61.86 74.8 27.7

ReCOT (Ours) 52.00 48.10 48.43 43.66 78.21 72.35 74.00 67.17 29.9 25.7

Query Image & 
Point Prompt

Recurrent Localization of our ReCOT
1 2 3 4 5 6 IoU Curve

Prediction of 
Previous Approach

Point PromptPrediction results of our methodGround truth Prediction results of Previous Approach

Figure 5: Visualization of some representative results produced by our ReCOT and the previous
work Sun et al. (2023). Please refer to the zoomed-in view for better visualization.

Qualitative Results. Fig. 5 visualizes some representative results. As the recurrent steps proceed,
our model progressively refines the bounding boxes, leading to higher-quality localization compared
to the single-shot prediction of the previous approach Sun et al. (2023). However, the optimal
number of recurrent steps varies across different scenarios, and excessive iterations may cause over-
refinement Hur & Roth (2019), resulting in a slight performance drop. Therefore, based on the
ablation results in Table 1, we set the number of recurrent steps to 5 for Ground→Satellite and 4 for
Drone→Satellite, which provides the best trade-off between accuracy and stability.

5 CONCLUSION

In this paper, we propose ReCOT, which reformulates the CVOGL task as a recurrent localiza-
tion problem. ReCOT introduces learnable tokens to encode task-specific semantics and recur-
rently refine predictions. We further incorporate a SAM-based knowledge distillation scheme to
improve prompt understanding without incurring additional inference costs, and a RFEM to pro-
duce object-aware reference features via a hierarchical attention strategy. Extensive experiments on
the CVOGL-DetGeo benchmark demonstrated that ReCOT achieves state-of-the-art performance
with significantly fewer parameters and competitive inference speed.
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R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32, 2019.

Krishna Regmi and Mubarak Shah. Bridging the domain gap for ground-to-aerial image matching.
In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 470–479, 2019.

Paul-Edouard Sarlin, Daniel DeTone, Tsun-Yi Yang, Armen Avetisyan, Julian Straub, Tomasz Mal-
isiewicz, Samuel Rota Bulo, Richard Newcombe, Peter Kontschieder, and Vasileios Balntas. Ori-
enterNet: Visual localization in 2d public maps with neural matching. In 2023 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 21632–21642, 2023.

Liang Shi, Yixin Chen, Meimei Liu, and Feng Guo. DuST: Dual swin transformer for multi-modal
video and time-series modeling. In 2024 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, pp. 4537–4546, June 2024.

Yujiao Shi and Hongdong Li. Beyond Cross-view Image Retrieval: Highly accurate vehicle local-
ization using satellite image. In 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 16989–16999, 2022.

Yujiao Shi, Liu Liu, Xin Yu, and Hongdong Li. Spatial-aware feature aggregation for image based
cross-view geo-localization. In Advances in Neural Information Processing Systems, volume 32,
2019.

Yujiao Shi, Xin Yu, Dylan Campbell, and Hongdong Li. Where Am I Looking At? joint location
and orientation estimation by cross-view matching. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4063–4071, 2020a.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yujiao Shi, Xin Yu, Liu Liu, Tong Zhang, and Hongdong Li. Optimal feature transport for cross-
view image geo-localization. Proceedings of the AAAI Conference on Artificial Intelligence, 34
(07):11990–11997, Apr. 2020b.

Yujiao Shi, Xin Yu, Liu Liu, Dylan Campbell, Piotr Koniusz, and Hongdong Li. Accurate 3-DoF
camera geo-localization via ground-to-satellite image matching. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45:2682–2697, 2022.

Phani Teja Singamaneni, Pilar Bachiller-Burgos, Luis J. Manso, Anaı́s Garrell, Alberto Sanfeliu,
Anne Spalanzani, and Rachid Alami. A survey on socially aware robot navigation: Taxonomy
and future challenges. The International Journal of Robotics Research, 43(10):1533–1572, 2024.

Yuxi Sun, Yunming Ye, Jian Kang, Ruben Fernandez-Beltran, Shanshan Feng, Xutao Li, Chuyao
Luo, Puzhao Zhang, and Antonio Plaza. Cross-view object geo-localization in a local region with
satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 61:1–16, 2023.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow, 2020.

Aysim Toker, Qunjie Zhou, Maxim Maximov, and Laura Leal-Taixe. Coming Down to Earth:
Satellite-to-street view synthesis for geo-localization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 6488–6497, June 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Herve Jegou. Training data-efficient image transformers &; distillation through attention. In
International Conference on Machine Learning, volume 139, pp. 10347–10357, July 2021.

Xiaolong Wang, Runsen Xu, Zuofan Cui, Zeyu Wan, and Yu Zhang. Fine-grained cross-view geo-
localization using a correlation-aware homography estimator. ArXiv, abs/2308.16906, 2023.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. CBAM: Convolutional block
attention module. In Proc. Eur. Conf. Comput. Vis., pp. 3–19, Cham, September 2018. Springer
Nature Switzerland.

Hongji Yang, Xiufan Lu, and Yingying Zhu. Cross-view geo-localization with layer-to-layer trans-
former. In Advances in Neural Information Processing Systems, volume 34, pp. 29009–29020.
Curran Associates, Inc., 2021.

Jing Yao, Danfeng Hong, Lianru Gao, and Jocelyn Chanussot. Multimodal remote sensing bench-
mark datasets for land cover classification. In 2022 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), pp. 4807–4810, 2022.

Jiahuan Yu, Jiahao Chang, Jianfeng He, Tianzhu Zhang, Jiyang Yu, and Feng Wu. Adaptive spot-
guided transformer for consistent local feature matching. In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 21898–21908, 2023.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-
Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5728–5739,
June 2022.

Ruoming Zhai, Jingui Zou, Vincent J.L. Gan, Xianquan Han, Yushuo Wang, and Yinzhi Zhao.
Semantic enrichment of bim with indoorgml for quadruped robot navigation and automated 3d
scanning. Automation in Construction, 166:105605, 2024. ISSN 0926-5805.

Tianyang Zhang, Xiangrong Zhang, Xiaoqian Zhu, Guanchun Wang, Xiao Han, Xu Tang, and
Licheng Jiao. Multistage enhancement network for tiny object detection in remote sensing im-
ages. IEEE Transactions on Geoscience and Remote Sensing, 62:1–12, 2024a.

Xiaohan Zhang, Xingyu Li, Waqas Sultani, Chen Chen, and Safwan Wshah. GeoDTR: Toward
generic cross-view geolocalization via geometric disentanglement. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(12):10419–10433, 2024b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xiaohan Zhang, Xue Zhang, Si-Yuan Cao, Beinan Yu, Chenghao Zhang, and Hui-Liang Shen.
MRF3Net: An infrared small target detection network using multireceptive field perception and
effective feature fusion. IEEE Transactions on Geoscience and Remote Sensing, 62:1–14, 2024c.

Sijie Zhu, Mubarak Shah, and Chen Chen. TransGeo: Transformer is all you need for cross-view
image geo-localization. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 1162–1171, June 2022a.

Yingying Zhu, Bin Sun, Xiufan Lu, and Sen Jia. Geographic semantic network for cross-view image
geo-localization. IEEE Transactions on Geoscience and Remote Sensing, 60:1–15, 2022b.

A APPENDIX

A.1 MORE EXPERIMENTAL RESULTS

A.1.1 DETAILED INTRODUCTION OF EVALUATION METRICS.

Definition of Acc@0.25 and Acc@0.50. The Acc@0.25 and Acc@0.50 measure the prediction
accuracy under a specific intersection over union (IoU) threshold t between the predicted box bp and
ground box bg as

Acc@t =
1

n

n∑
i=1

ψ(t), (8)

where

ψ(t) =

{
1, IoU(bp, bg) ≥ t
0, otherwise , (9)

IoU(bp, bg) =
|bp ∩ bg|
|bp ∪ bg|

. (10)

A.1.2 IMPLEMENTATION DETAILS

We conduct all experiments on four NVIDIA GeForce RTX 4090 GPUs, with implementations
based on PyTorch Paszke et al. (2019). For training, we adopt the AdamW Loshchilov & Hutter
(2017) as the optimizer and set the initial learning rate to 0.0025, the weight decay rate to 0.0001,
and the batch size to 16. We train our network for 300 epochs for all the experiments. Since
CVOGL is a relatively new task, we follow the pioneering work Sun et al. (2023) and select five
CVIGL approaches Hu et al. (2018); Lin et al. (2022); Yang et al. (2021); Shi et al. (2019); Zhu
et al. (2022a) and the existing CVOGL approaches Sun et al. (2023); Li et al. (2025); Huang et al.
(2025) as our comparison methods. The results of CVIGL comparison methods can be found in
previous works Sun et al. (2023); Huang et al. (2025); Li et al. (2025). Additionally, we adopt swin
transformer (Swin-t) Liu et al. (2021) as the image encoder for its superior performance on various
fields Zhang et al. (2024a); Shi et al. (2024); Chi et al. (2023); Zamir et al. (2022). We set the
hyper-parameter m to 6 during training.

A.1.3 MORE ABLATION STUDY RESULTS

Detailed explanation of performance degradation with excessive steps in our recurrent local-
ization. The recurrent mechanism in ReCOT aims to progressively refine the predicted location.
However, as reported in Table 1, excessive recurrent steps may sightly degrade performance. This is
because our recurrent localization can be interpreted as predicting and applying residual corrections
to the bounding box. After the prediction becomes sufficiently accurate, the remaining residuals are
mainly high-frequency noise or background fluctuations. As observed in other iterative refinement
works Cao et al. (2022; 2023), continuing to update on such residuals may amplify noise and in-
troduce attention drift, causing the learnable tokens to overfit spurious cues rather than consolidate
stable object semantics Cai & Vasconcelos (2021). From an optimization perspective, when the
objective is already close to its minimum, further iterations may overshoot or oscillate around the
optimum Teed & Deng (2020), leading to a slight decline in IoU.
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How to determine m on new datasets? To determine m on a new dataset, one can monitor IoU
gain per step on a validation set and stop when the gain becomes negligible or unstable. Tasks with
large viewpoint gaps typically require larger m, while nearly aligned views (e.g., Drone→Satellite)
benefit from smaller m for a better balance of accuracy and efficiency.

Effect of the parameter α. Table 5 shows how the performance of ReCOT varies with differ-
ent values of the balancing coefficient α, which controls the weight between the localization loss
Llocal and the auxiliary loss Laux. We observe that α = 1 yields the best performance on both
Ground→Satellite and Drone→Satellite. A smaller value (α = 0.1) weakens the supervision of to-
ken alignment and SAM distillation, slightly reducing accuracy. Conversely, a larger value (α = 10)
overemphasizes auxiliary objectives, causing a notable drop. These results indicate that α = 1
achieves the optimal trade-off.

Table 5: Ablation study on the hyper-parameter α in terms of Acc@0.25(%) ↑ and Acc@0.50(%) ↑
on the test set of CVOGL-DetGeo dataset.

α
Ground→Satellite Drone→Satellite

Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50

0.1 51.28 48.10 75.13 69.68
1 52.00 48.10 78.21 72.35

10 48.51 45.02 76.05 70.20

Effect of the hyper-parameter n. Table 6 investigates the impact of the token number n on the
performance of ReCOT. We observe a clear performance gain when increasing n from 1 to 100.
This demonstrates that a sufficient number of tokens provides a richer representation of task-specific
intent and better coverage of cross-view semantics, which benefits the recurrent refinement process.
However, when n is further increased to 200, performance drops across all metrics. This decline
is likely due to over-parameterization and token redundancy, which can introduce noise and hin-
der effective attention learning Dosovitskiy et al. (2021), as also observed in token-scaling studies
Dosovitskiy et al. (2021); Touvron et al. (2021). Therefore, we set n to 100 in this work.

Table 6: Ablation study on the hyper-parameter n in terms of Acc@0.25(%) ↑ and Acc@0.50(%) ↑
on the test set of CVOGL-DetGeo dataset.

n
Ground→Satellite Drone→Satellite

Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50

1 47.89 43.37 74.31 68.86
100 52.00 48.10 78.21 72.35
200 50.46 47.28 72.25 67.01

Table 7: Comparisons between DetGeo Sun et al. (2023), DetGeo using Swin-t Liu et al. (2021)
(DetGeo*), and our methods in terms of Acc@0.25(%) ↑ and Acc@0.50(%) ↑ on the test set of
CVOGL-DetGeo dataset.

Method Ground→Satellite Drone→Satellite
Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50

DetGeo 45.43 42.24 61.97 57.66
DetGeo* 46.01 41.44 66.60 56.11

VaGeo 48.21 45.22 66.19 61.87
OCGNet 51.49 47.69 68.39 63.93

ReCOT (Ours) 52.00 48.10 78.21 72.35

A.1.4 MORE COMPARISON RESULTS.

Quantitative Results.
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As shown in Table 7, we replace the backbone of DetGeo Sun et al. (2023) with Swin-t Liu et al.
(2021) for a more comprehensive and fair comparison. While the upgraded DetGeo* shows slight
improvements on the Acc@0.25, it still lags behind our ReCOT by a large margin across all eval-
uation metrics. Moreover, the backbone replacement does not lead to consistent gains, as DetGeo*

fails to outperform other recent CVOGL methods Li et al. (2025); Huang et al. (2025) in Table 7.
This demonstrates that the key factor of CVOGL does not lie in the backbone. In contrast, our pro-
posed ReCOT achieves superior performance through a more effective and task-aligned framework,
highlighting the importance of architectural innovations for CVOGL.

Qualitative Results.

Fig. 6 provides more visualization results of the cross attention weights beteen the token and ref-
erence features during recurrent process. As the recurrent steps progress, object-relevant tokens
gradually focus and strengthen around the expected object, enabling the bounding box to converge
toward the correct location. In contrast, object-irrelevant tokens weaken and gradually stabilize over
iterations. This behavior highlights the ability of ReCOT to dynamically disentangle object-focused
information from irrelevant features, which is a key factor driving the success of our recurrent local-
ization strategy.
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Figure 6: Visualizations of how our ReCOT works. The object-relevant tokens progressively focus
and strengthen around the indicated object, while object-irrelevant tokens weaken and stabilize to
background patterns.

A.2 LIMITATIONS AND FUTURE WORK

As shown in Fig. 7, some failure cases of ReCOT are caused by ambiguous or imprecise point
prompts, which often highlight only a part of the object rather than its entirety. This ambiguity
misguides the token-driven recurrent refinement process, leading to suboptimal localization results.
In the future, we will incorporate multi-modal prompts (e.g., textual descriptions or bounding boxes)
to provide richer and more accurate prompt semantics. Such multi-modal guidance could reduce
ambiguity and further improve the robustness and precision of recurrent localization.

A.3 STATEMENT

A.3.1 ETHICS STATEMENT

This work addresses cross-view object geo-localization in the recurrent manner. All experiments
are conducted on publicly available datasets that do not contain sensitive information. The authors
affirm that this work complies with the code of ethics.
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Figure 7: Examples of failure cases. Please refer to the zoomed-in view for better visualization.

A.3.2 REPRODUCIBILITY STATEMENT

We provide the source code in the supplementary material. Upon acceptance, we will release the
source code, repurposed datasets, and model weights to ensure the reproducibility of the experimen-
tal results.

A.3.3 THE USE OF LARGE LANGUAGE MODEL (LLM)

We used the LLM (e.g., ChatGPT) only to aid English writing and polish the presentation of this
paper (grammar, clarity, and minor wording suggestions). The research ideas, algorithms, theoretical
analysis, experiment design, implementation, and all reported results were entirely developed and
validated by the authors without automated assistance. No content was directly copied from model
outputs, and all technical claims have been carefully verified by the authors.
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