
Published as a conference paper at ICLR 2025

NONLINEAR SEQUENCE DATA EMBEDDING BY MONO-
TONE VARIATIONAL INEQUALITY

Jonathan Y. Zhou, Yao Xie
School of Industrial & Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332
jyz@gatech.edu, yao.xie@isye.gatech.edu

ABSTRACT

In the wild, we often encounter collections of sequential data such as electrocar-
diograms, motion capture, genomes, and natural language, and sequences may be
multichannel or symbolic with nonlinear dynamics. We introduce a method to
learn low-dimensional representations of nonlinear sequence and time-series data
without supervision which has provable recovery guarantees. The learned repre-
sentation can be used for downstream machine-learning tasks such as clustering
and classification. The method assumes that the observed sequences arise from a
common domain, with each sequence following its own autoregressive model, and
these models are related through low-rank regularization. We cast the problem as a
convex matrix parameter recovery problem using monotone Variational Inequalities
(VIs) and encode the common domain assumption via low-rank constraint across
the learned representations, which can learn a subspace approximately spanning
the entire domain as well as faithful representations for the dynamics of each
individual sequence incorporating the domain information in totality. We show
the competitive performance of our method on real-world time-series data with
baselines and demonstrate its effectiveness for symbolic text modeling and RNA
sequence clustering.

1 INTRODUCTION

Collections of time-series data, where each sequence is represented by a series of points indexed
over time, are ubiquitous and increasingly prevalent. Notable examples include physiological signals
(Cohen, 2014; Alday et al., 2020), power systems (Van Wijk & Van Selow, 1999), financial data
(Tsay, 2005; Min et al., 2021), computer networks (Basu et al., 1996), and electronic health records
(Reyna et al., 2020; Rasmy et al., 2021). In addition to traditional time series data, other sequential
data like gene and protein sequences (Argelaguet et al., 2020; Jumper et al., 2021) as well as natural
language have garnered significant attention, particularly with the advent of large language models
(Brown et al., 1992; Peters et al., 2018; Reimers & Gurevych, 2019; Cer et al., 2018).

Learning high-quality representations of sequences and time series (Mikolov et al., 2013) is an
essential building block for understanding the dynamics underlying observed sequences, enabling
informed decision making and downstream machine learning tasks (Trirat et al., 2024). A key
paradigm underlying the unsupervised representation learning has been that of self-supervised
learning (Shwartz Ziv & LeCun, 2024), where we first solve some auxiliary task (e.g., autoregression
or reconstruction), which leads implicitly to a compressed representation of the input data (Murphy,
2023; Kingma & Welling, 2022). The development of self-supervised methods for natural language
has been, in turn, paralleled by embedding methods for other types of sequential data, with there now
being a burgeoning literature on time series and sequence representation (Lafabregue et al., 2022;
Krishnan et al., 2022).

A lasting challenge in bringing representation learning to time series is how to learn the information
common to the entire domain in conjunction with faithful individual representations of each sequence.
Indeed, when learning a model for time series or sequence data a common assumption to make is
that the sequence observations arise from repeated realizations of a single random source. While

1

Published as a conference paper at ICLR 2025

this is effective in the natural language setting where there exists a shared “universal” embedding
space language (Yang et al., 2020) backed up by a large amount of available training data, many time
series data are often highly domain-specific in the sense that each domain is distinct from another
(e.g., Electrocardiogram (ECG) vs power systems). Sequences may be also highly distinct from
one another (e.g., healthy vs sick patients) and our observations of each individual be partial or
limited. To this end, recent empirical evidence indicates (Tan et al., 2024) that augmenting time-series
prediction with large language models results in performance no better than models trained from
scratch, and removing the LLM components. For many settings, the individual processes which we
receive observations for may in fact also be substantially different among themselves (e.g., differences
between sick and healthy patients). There thus is a challenge in balancing learning the common
dynamics of a set of observed sequences in addition to faithfully representing the dynamics of each
sequence. This is especially the case when observations of all sequences individually are limited
or otherwise partially observed. To this end, we take inspiration from an area where the above
challenges are common and well known — low-rank matrix recovery (Davenport & Romberg, 2016;
Candes & Tao, 2010; Candes & Plan, 2010; Ahmed & Romberg, 2015; Juditsky & Nemirovski, 2020)
— previously applied to collaborative filtering problems and develop it towards the general sequential
and time series representation learning setting, enabling us to bring provable recovery guarantees to
the modeling of a broad class of sequences with autoregressive character.

To this end, we introduce an approach for unsupervised learning of low-dimensional representations
for collections of nonlinear sequences, time-series, and dynamical systems based on the assumption
that each sequence behaves according to its own autoregressive model but that the sequences are
related to each other through low-rank regularization. We cast the problem as a computationally
efficient convex matrix parameter recovery problem using monotone VIs. This formulation maintains
problem convexity and recovery guarantees, while allowing for a broad range of autoregressive
sequence dynamics through an arbitrary monotone link function. By enforcing a low-rank assumption
across the learned representations we efficiently learn a subspace to capture entire domain. We apply
our method to real-world time-series data and demonstrate its effectiveness in symbolic text modeling
and RNA sequence clustering. On many datasets, our method performs comparably to neural-network
based deep representation models.

1.1 RELATED WORK

We review related work in time-series representation learning, clustering, and classification. Simple
methods include feature extraction (Ye & Keogh, 2009) or defining a distance metric between time-
series (Cormen et al., 2001; Müller, 2007; Bagnall et al., 2017). Another approach is to model
each series, which aligns with our model-based representation approach (Smyth, 1996; Kalpakis
et al., 2001). Recent time-series representation learning methods often use contrastive learning
to distinguish sequences, employing deep networks to treat sub-samples of the same sequence as
positives and different sequences as negatives (Yang & Hong, 2022; Yue et al., 2022; Xiao et al.,
2024; Fraikin et al., 2024; Wang et al., 2023). These approaches focus on neural architecture, data
augmentation for robustness, and contrastive learning strategies (Ma et al., 2019; Fortuin et al., 2020;
Devlin et al., 2019).

In our work, we adopt autoregression as the auxiliary task. Unlike techniques which use contrastive
learning to indirectly learn an encoder for the latent space, we do not assume inherent similarities
or differences across sequences. Instead, we explicitly constrain the representations to lie in a
low-rank space. We motivate our work from the perspective of low-rank matrix recovery (Davenport
& Romberg, 2016), common in other areas of machine learning and serving as the foundation for
principal component analysis (Hotelling, 1933), classical methods in natural language processing
(topic modeling) (Blei et al., 2003; Blei, 2012) and collaborative filtering (Koren et al., 2009).
Problems in this area typically admit convex formulations and come with provable recovery guarantees
(Juditsky & Nemirovski, 2020). Most recently, a line of work has on signal recovery by convex
optimization has loosened the structural assumptions needed for signal (time-series) recovery in an
autoregressive context while still maintaining problem convexity, using VIs with monotone operators
the main tool (Juditsky et al., 2023; 2020; Juditsky & Nemirovski, 2019).

The basic idea that sequences (time-series) can be represented in a low-dimensional space (e.g.,
by latent factors) has a long history, such as hierarchical time-series models (Laird & Ware, 1982;
Gamerman & Migon, 1993). More recently, Kirchmeyer et al. (2022) and Kostic et al. (2024) address

2

Published as a conference paper at ICLR 2025

dynamical systems learning, where either a context or latent vector aids in governing each sequence’s
dynamics, in contrast to directly learning an encoder from observations into a latent space.

2 PROBLEM SETUP

We aim to represent observations into N vector-valued time series of length T each of the form {xi,t},
where x ∈ RC , t ∈ [T], and i ∈ [N]. Here, we introduce the algorithm under the assumption that all
sequences have the same length for notational clarity. However, the proposed results and algorithms
can be extended to accommodate sequences that are partially observed or of varying lengths.

The sequences are sampled from a common domain independently of each other across i, but have
temporal dependence across t. We refer to the history of events for sequence i up to time-point t as
Hi,t := {xi,s | s < t}. We expect the behavior at event xi,t to be a function of past observations.
Namely, at each time-point we suppose xi,t’s dependence on its past values Hi,t is sufficiently
captured by a nonlinear vector autoregressive model of order d with C channels. In particular, we
package the preceding d observations with a bias term as a vector

ξi,t = vec(1, {xi,t−s}ds=1) ∈ RCd+1,

where vec(·) arranges its arguments into a single column vector so that

E[xi,t | Hi,t] = ϕ(Riξi,t), ∀i ∈ [N]. (1)

Note that we allow each sequence i ∈ [N] to have its own own model. In particular, we aim to learn
matrices Ri ∈ RC×(Cd+1) which serve as model parameters for prediction of the focal observation
xi,t. For each Ri, we write bi = vec(Ri) ∈ Rm,m := C2d + C as the corresponding parameter
vector sufficient to capture the dynamics to the ith sequence.

The structure of our model is inspired by Generalized Linear Models (GLMs) (Nelder & Wedderburn,
1972), with a monotone link function ϕ : RC → RC that captures sequence dynamics. The choice of
ϕ naturally corresponds to a variety of different models and phenomena, for example:

Vector auto-regression: ϕ(x) = x;x ∈ RC , e.g. motion capture, Electrocardiogram (ECG) signals.
Symbolic sequences: ϕ(x) = exp(x)/

∑
i exp(xi);x ∈ [Σ]C , e.g. natural language, genes.

Count processes: ϕ(x) = exp(x);x ∈ ZC
≥0, e.g. traffic intensity, call center arrival rates.

Bernoulli Processes: ϕ(x) = exp(x)/(1 + exp(x));x ∈ BC , e.g. wildfire presence, neuron firing.

We do not restrict the mechanics of the link function ϕ beyond the fact it is monotonically increasing.
We remark also that each vector bi corresponding to each sequence may itself be high dimensional.

The key aspect of our method for low dimensional representation learning lies in the common domain
assumption, which should limit how the sequences are similar (different) through their individual
model. We leverage this information by a low rank assumption on the space of parameters by which
each sequence is described. In this way, we constrain the individual bi to lie approximately on a low
dimensional linear subspace of the possible full parameter space Rm. The representation of each
sequence’s parameter within this subspace may be taken as a low-dimensional embedding and used
for downstream tasks such as clustering, classification, and anomaly detection.

In particular, we consider the autoregressive sequence model introduced in (1), allowing bi to be
those parameters unique to the ith sequence. Allow the matrix B = [b1 . . . bN] ∈ Rm×N denote
the parameters across all the sequences. We aim to recover a good choice of the matrix B without
supervision and balancing two goals: (1) we desire each bi to be as faithful to the generating dynamics
of their respective observed data as possible; (2) we hope to leverage the common domain assumption
about the sequences and use information from the other sequences to inform the prediction of the
focal sequence. To express the corresponding low-rank constraint, consider the rank r Singular Value
Decomposition (SVD) of B

B = UΣV∗ =

r∑
k=1

σkukv
∗
k (2)

where Σ = diag{σk}rk=1 corresponds to the singular values, columns of U = [uk]
r
k=1 ∈ Rm×r

form an orthobasis in Rd, and columns of V∗ = [vk]
r
k=1 ∈ Rr×N form an orthobasis in RN . The

3

Published as a conference paper at ICLR 2025

recovered columns C := ΣV∗ = [ci]
N
i=1 ∈ Rr×N give an r-dimensional representation for each of

the N sequences. Likewise, the subspace sp{uk}rk=1 describes the common domain from which the
generating processes of the sequences arise. We consider the low dimensional representation ci for
the ith sequence bi = Uci as an embedding of the dynamics for the ith sequence.

Because rank-constrained optimization is in general an NP-hard problem (Natarajan, 1995), to enforce
the low-rank requirement on B, we instead constrain our setup to a nuclear norm ball. The nuclear
norm is given by ∥X∥∗ =

∑r
j=1 σi(X) where σi is the ith singular value of the matrix X. The

nuclear norm is the tightest convex relaxation to matrix rank (Recht et al., 2010) leading to tractable
parameter recovery and allows us to leverage a long line of work from convex optimization and
matrix recovery (Cai et al., 2010; Davenport & Romberg, 2016; Nesterov & Nemirovski, 2013).

We model each sequence as originating from an individual stochastic source, evolving according
to the parametric observation model of (1). This model, detailed in Juditsky & Nemirovski (2020),
balances the need for learned dynamics to closely resemble the original time-series observations (by
using the most general convex model) with the requirement for efficient and identifiable parameter
recovery via first-order methods (Facchinei & Pang, 2003). The choice to make the observation
model convex is motivated not only by parameter recovery guarantees but also by the need to ensure
regularity of the parameter space for low-rank estimation of sequence parameters in aggregate. By
framing time-series and sequence representation learning as a convex low-rank matrix parameter
estimation task, our method is particularly well-suited for representation learning in contexts with
limited, partially observed, and highly heterogeneous sequence data.

3 METHOD

In the following, we present our method, first for linear auto-regressive models and then for general
non-linear auto-regressive models, including categorical sequences.

3.1 LOW RANK TIME-SERIES EMBEDDING FOR LINEAR AUTO-REGRESSIVE MODELS

First, suppose events xi,t ∈ RC obey a linear autoregressive model corresponding to (1) with
ϕ(x) = x. To recover the parameter matrix B = [vec(Ri)]

N
i=1 ∈ Rm×N , a natural choice is to take

least squares loss and write

min
B∈Rd×N

1

N

N∑
i=1

(
1

T − d

T∑
t=d+1

∥xi,t − ϕ(Riξi,t)∥22

)
s.t. ∥B∥∗ ≤ λ. (3)

where λ ≥ 0 is a regularization parameter governing the rank of B.

Low-rank recovery and nuclear norm regularization. We now discuss Program (3) in the
context of low-rank matrix recovery (Davenport & Romberg, 2016). We aim to recover matrix B, but
instead of observing it directly, we receive it through indirect observations through successive linear
measurement operators

At(B) := vec([Riξi,t]
N
i=1) : Rm×N → RCN (4)

which at each time-step t, provide for the prediction of the states xi,t across all observed sequences
i ∈ [N]. We likewise define yt := vec([xi,t]

N
i=1) ∈ RCN to be the true values for the focal time-point

across all N sequences. We then use all of the observed temporal slices of size d+ 1 running up to
time T , to and consider the least squares loss via the program

min
B

ℓ̂(B) :=
1

N(T − d)

T∑
t=d+1

∥At(B)− yt∥22 s.t. ∥B∥∗ ≤ λ, (5)

which is a Lipschitz smooth convex program on the nuclear ball of radius λ (Shapiro et al., 2021).
Program (5) is exactly the same as Program (3) except placed in a matrix recovery context. We aim
to recover the optimal B from the samples while accounting for the global structure. When λ is
arbitrarily large, there is no constraint on B and Program (5) corresponds to fitting each sequence
individually with no global information. On the other extreme, forcing B to be rank one constrains

4

Published as a conference paper at ICLR 2025

the models of each sequence to be multiples of each other. Intermediate values of λ correspond
to various trade-offs between learning common global structure and personalization to individual
sequences.

Program (5) can be readily cast as a Semidefinite Program (SDP) solvable using standard interior point
methods (Ben-Tal & Nemirovski, 2001). However, as the size of B may reach into the hundreds of
thousands of decision variables, we turn our discussion to efficient first-order algorithms (Combettes
& Pesquet, 2011; Parikh & Boyd, 2014) analogous to those for linear inverse problems (Beck &
Teboulle, 2009). Indeed, consider the following Proximal Gradient (PG) procedure

Bk+1 = Proxγkδλ(γk∇Bk
[ℓ(Bk)]), B0 ∈ {X | ∥X∥∗ ≤ λ}, (6)

consisting of a gradient step followed by proximal projection for an appropriately chosen sequence
of steps {γk}. In this case, the prox-mapping associated with the indicator of the nuclear ball with
radius λ is the projection

Proxγkδλ(X) = argmin
Y∈{Y|∥Y∥∗≤λ}

∥X−Y∥2.

We can compute this projection mapping using Singular Value Thresholding (SVT), eliminating the
small singular values (Cai et al., 2010; Nesterov & Nemirovski, 2013). Namely, with X ∈ Rm×n, we
first compute its SVD X = U diag{σi}mi=1V

∗. We then project the singular values onto a simplex

t = min
t∈Rm

{
m∑
i=1

(σi − ti)
2 |

m∑
i=1

ti = λ, t ≥ 0

}
. (7)

The matrix projection can then be constructed by reapplying the singular vectors

Proxγkδλ(X) = U diag(t)V∗.

In the worst case, Program (7) requires that we find O(m) singular values. However, it is typically
the case that the parameter matrix B has a decaying spectrum of singular values, and we take a small
choice of λ in (6) as to ensure the representation is low rank. Thus, we typically need only to calculate
a few largest singular values of B need, for instance via the Golub-Kahan-Lanczos bidiagonalization
processes (Golub & Van Loan, 1996). We compute singular values and vectors in an incremental
fashion, up to the rth singular value that still satisfies σr > 1

r (−λ+
∑r

j=1 σj) (Duchi et al., 2008).
Then, the optimal solution to (7) is given in closed form by

t =

{
σi − 1

r

(
−λ+

∑r
j=1 σj

)
i ≤ r

0 i > r
.

In our real-data experiments, the iteration cost is typically dominated by the cost of computing the
gradient, which can be mitigated by stochastic approximation.

3.2 NONLINEAR TIME-SERIES EMBEDDING BY MONOTONE VI

We now extend our discussion to the nonlinear case. Our goal is to likewise form a rank-constrained
stochastic estimate to B when we recieve observations according to (1).However, with arbitrary
monotone link ϕ : RC → RC the Least Squares (LS) approach outlined in (3) and (5) loses convexity
and computational tractability in general. Likewise, parameter estimation by Maximum Likelihood
Estimation (MLE) also becomes computationally difficult (Juditsky & Nemirovski, 2020). By
contrast, we shall cast the parameter recovery problem into a monotone VI formulation, the most
general type of convex program with known methods to efficiently find high accuracy solutions
(Juditsky et al., 2023; Juditsky & Nemirovski, 2019; Juditsky et al., 2020).

Preliminaries on monotone VI. A monotone vector field on Rm with modulus of convexity β is a
vector field G : Rm → Rm such that

⟨G(x)−G(x′),x− x′⟩ ≥ β∥x− x′∥ ∀ x,x′ ∈ X
when β > 0, G is strongly monotone. For some convex compact set X ⊆ Rm, a point x∗ is a weak
solution to the VI associated with (G,X) if for all x ∈ X we have ⟨G(x),x − x∗⟩ ≥ 0. If G is
strongly monotone and a weak solution exists, then the solution is unique. When ⟨G(x∗),x−x∗⟩ ≥ 0
for all x ∈ X , we term x∗ a strong solution to the VI. When G is continuous on X , all strong solutions
are weak solutions and vice versa (Facchinei & Pang, 2003).

5

Published as a conference paper at ICLR 2025

Monotone VI for nonlinear parameter recovery. We turn our attention now to the construction
of a Monotone VI which has as its root optimal parameters corresponding to Model (1). We will
use the same operator At from the linear case defined in (4) together with its corresponding adjoint
A∗

t : RCN → Rm×N which takes the pre-image of the multichannel predictions (observations)
yt = vec([xi,t]

N
i=1) and maps them back to the parameter space. Note that A∗

t can be computed
using the below formula

A∗
t (y) = [vec([xi,cR

T
i ec])

C
c=1)]

N
i=1 : RCN → Rm×N

where ec is cth standard basis. The adjoint, for each entry and channel, multiplies the parameters by
the value of the observation corresponding to the channel.

Consider now the vector field on the space of matrices

Ψ(B) =
1

N
Et[A∗

t (ϕ(At(B̂))− y)] : R(C2d+C)×N → R(C2d+C)×N

=
1

N(T − d)

T∑
t=d+1

[A∗
t (ϕ(At(B)))−A∗

t (yt)]

=
1

N(T − d)

T∑
t=d+1

A∗
t [ϕ(At(B))− yt].

(8)

where we extend the link function ϕ to act sample wise. Notice that the matrix B of true generating
parameters is a zero of Ψ,

Ψ(B) = Et[A∗
t (ϕ(At(B))− yt)] = Et[A∗

t (ϕ(At(B)))−A∗
t (yt)]

= Et[A∗
t (ϕ(At(B)))−A∗

t (ϕ(At(B)))] = 0.

We note that both At and A∗
t may be computed in time O(NC2d). In most of our computations,

we average across all available time steps giving a cost of O(TNC2d). We also illustrate averaging
instead using smaller random sub-windows of the data in Section 4.3. Analogous to Program (5), the
VI associated with (8) likewise admits solutions by PG. To illustrate, consider the recurrence

Bk+1 = Proxγkδλ(γkΨ(Bk)), B0 ∈ {X | ∥X∥∗ ≤ λ},

with step sizes {γk}. Note if ϕ := Id, the identity function, then vector field associated with the VI
corresponds exactly to the gradient field of Program (5). In this case, Ψ(X) = ∇X[ℓ(X)] and the
PG procedures for VI and LS are the same.

First order methods for monotone VI To concretely solve the monotone VI outlined in (8), we
detail an extragradient scheme with backtracking for nuclear norm constrained VI in Algorithm 1 of
Appendix A, which addresses the following general problem

⟨Ψ̂(B),B−B∗⟩ ≥ 0 ∀ B ∈ X := {B | ∥B∥∗ ≤ λ}

where Ψ̂ is an (unbiased estimator of a) κ-lipschitz continuous monotone vector field Ψ as detailed
in Iusem et al. (2019), and which addresses the difficulty that κ is in most cases is unknown to
us beforehand. The convergence results for this class of algorithm are typical and presented in
(Iusem et al., 2019; Gorbunov et al., 2022; Korpelevich, 1976). Namely, for ϵ error as measured by
ϵΨ,X (B̃t) = ∥B̃t − ProxX (B̃t −Ψ(B̃t))∥ requires iteration complexity on order of Õ(1/ϵ) outer
iterations of the extragradient Algorithm 1. The convergence of the algorithm as applied to the vector
fields given in (8) in particular may be established similarly to Juditsky & Nemirovski (2019), and
when the data follow the true model (1), parameter recovery guarantees can be established similarly to
Juditsky et al. (2020). In addition to the ordinary projection, proximal (Nesterov & Nemirovski, 2013;
Chen et al., 2017; Nemirovski, 2004; Juditsky et al., 2011), and extragradient schemes, the program
induced by (8) can be solved using projection-free methods like such conditional gradient (Frank-
Wolfe) scheme, which requires only computing singular value/vector per iteration but converges at
a slower rate as compared to projection/proximal based schemes and is less stable with respect to
stochastic gradients (Hammond, 1985).

6

Published as a conference paper at ICLR 2025

Parameter recovery for symbolic sequences. As a special case of (8), consider now that each
channel represents the probability of emitting a token from syllabary {sc}Cc=1 of size C. Then each
xi,t represents a probability vector

∑C
c xi,t,c = 1 where E[xi,t,c|Hi,t] = P[xi,t,c = sc]. We take

the softmax activation function σ(y) = vec([∥ exp(y(i))∥−1
1 exp(y(i))]Ni=1), where y(i) corresponds

to values from the ith sequence. This problem corresponds to learning representations for different
sequences. We illustrate in Section 4.3 the above as applied to learning dynamics for genomics data
and natural language, for which autoregressive models have become increasingly popular.

4 EXPERIMENTS

We first illustrate parameter recovery using synthetic univariate time-series in Section 4.1. We
investigate the choice of nuclear penalty λ and the rank of the recovered parameter matrix as it relates
to reconstruction quality. Section 4.2 describes benchmarks using real-world time-series data from
the UCR Time Series Classification Archive (Dau et al., 2018). We report classification and runtime
performance against a number of baselines. Section 4.3 provides two illustrations on embedding of
real-world sequence data. We first consider a language representation task where we embed without
supervision a series of excerpts taken either from the works of Lewis Carroll or abstracts scraped
from arXiv (Carroll, 1865; 1871; Kaggle Team, 2020). In the second illustration, we apply our
method to the clustering of gene sequences for strains of Influenza A and Dengue viruses (Sayers
et al., 2022). Appendix A provides implementations for solving the programs in Sections 3.1 and
3.2 in pseudocode and the Julia programming language. The full experimental setup and results are
detailed in Appendix B.

In Appendix A we discuss and provide implementations to solve the programs described in Sections
3.1 and 3.2 and describe the experimental setup and results in detail in Appendix B.

4.1 PARAMETER RECOVERY WITH SYNTHETIC AUTOREGRESSIVE SEQUENCES

To illustrate parameter recovery across autoregressive sequences, we synthetically generated a set
of ten baseline parameters for linear autoregressive sequences of order d = 15. Within each class,
we then created N = 300 sequences of each type, perturbing the baseline coefficients by adding a
small amount of noise according to a fixed rule for the set of parameters. We then generated T = 250
observations for each sequence according to the autoregressive model in (1) with linear link function
ϕ(x) = x. We formed all 120 combinations of k = 3 type of sequences from the ten classes and
recovered the underlying parameter matrix by solving Program (5) to optimality. We report the
data-generating procedure and experimental details in Appendix B.1. To further illustrate parameter
recovery with a nonlinear link function, we provide an additional illustration using synthetic symbolic
sequences in Appendix B.2

Table 1 reports averages and standard deviations for the relative reconstruction error ∥B−B̂∥F /∥B∥F ,
the least squares error of the objective function given in (3), the Adjusted Rand Index (ARI) using
k-means clustering with k = 3 clusters in the embedding space across the runs, and the number of
large singular values (singular values within 10−2 of the principal singular value). We first learn
representations for sequences without nuclear norm constraint.

To illustrate the low-rank matrix recovery, we search across the values of nuclear regularization
λ via Brent search (Brent, 2002) and report the performance for a close to the optimal value of λ
with respect to the reconstruction error. When the underlying dynamics share a common low-rank
structure, the nuclear constraint effectively leverages the common information shared across the
sequences to recover the true parameters more faithfully using the common domain information
with comparable error in the least squares sense. Furthermore, we observe the nuclear regularization
procedure driving the singular value spectrum to sparsity, with the number of large singular values
being much smaller than in the unconstrained case.

To further illustrate, Figure 1 depicts parameter recovery for a collection of sequences with autore-
gressive order d = 15. In the leftmost pane, we report the relative reconstruction error and the number
of large singular values across different values of nuclear constraint λ. In the central pane, we depict
the singular value spectra of the true parameter matrix (which has approximately low-rank structure
plus noise) and recovered matrices with differing numbers of large singular values. In the third

7

Published as a conference paper at ICLR 2025

Table 1: Time series parameter recovery for synthetic autoregressive time-series.

Relative Err. LS Err. Cluster ARI Rank

λ Selection Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Unconstrained 0.341 (0.016) 79.333 (0.169) 0.967 (0.049) 14.442 (1.203)
argminλ ∥B̂λ −B∥F 0.158 (0.020) 80.709 (0.233) 0.997 (0.008) 7.392 (4.255)

0.2 0.1 0.0 0.1 0.2

First Principal Component: B *

0.10

0.05

0.00

0.05

0.10

0.15

S
ec

on
d

P
rin

ci
pa

l C
om

po
ne

nt
: B

*

17.5 20.0 22.5 25.0

0.20

0.25

0.30

||B
B|

| F/
||B

|| F

4
5
6
7
8
9
10
11
12
13
14

Ra
nk

(B
)

(B
)

2
1

2
0

2
1

2
2

2
3

S
pe

ct
ru

m
 o

f B
5 10 15

Rank(B)

Figure 1: Simulation results: Parameter recovery for a collection of univariate time series drawn
from k = 3 classes. Left: Relative reconstruction error and approximate rank of recovered parameter
matrices across levels of nuclear constraint λ. Center: Singular values of the true parameter matrix B
and the singular values of the recovered solutions of varying dimensions. Right: First two principal
components of the recovered matrix with the smallest reconstruction error and original class labels.

pane, we show the first two principal components (total explained variance = 0.868) of the sequence
embedding with the smallest reconstruction error along with the original three generating classes
of the data. With the introduction of sufficient nuclear regularization, we drastically reduced the
reconstruction error of our recovered solution and observed that the solutions with low reconstruction
error were of approximately low rank. In the plots of the singular value spectra and the projection
of the learned sequence embeddings, we observe that those rank-constrained recoveries effectively
recover those large singular values in the spectrum of the true parameter matrix. By contrast, the
parameter recoveries performed without or insufficient nuclear constraint fit the noise component of
the data, as evident in the distribution of singular values.

4.2 REAL TIME-SERIES CLASSIFICATION

Following (Middlehurst et al., 2024; Ma et al., 2019; Yue et al., 2022; Zakaria et al., 2012), we
conduct experiments on 36 UCR time series datasets (Dau et al., 2018). Dataset statistics are provided
in Appendix B.3.1, with each dataset using its default train/test split. Each time series is re-encoded
as a multichannel signal comprising the original signal and its first finite difference. We embed
the data without supervision by solving (8) using the extragradient scheme given in Algorithm 1 of
Appendix A with a look-back length of d = 20 , running the algorithm for 256 steps using a linear
link function. The value of λ is selected via a two-step process: first, bisection identifies when the
solution becomes rank-one, and then a grid search refines the choice for rank-constrained parameters.
We report results for the λ value with the best training performance. Evaluation metrics include ARI
(Hubert & Arabie, 1985), Normalized Mutual Information (NMI) (Vinh et al., 2009), macro-F1 score
(Fawcett, 2006), accuracy on the test set, and average runtime, including the full grid search and
SVD at each step. Runtime improvements using partial SVD computed up to required threshold λ
are discussed in Appendix B.8.

We compare our method with five representative time series embedding and classification methods:
K-nearest neighbors (KNN) using Euclidean (ℓ2) distance (Cover & Hart, 1967), KNN with Dynamic
Time Warping (DTW) as the distance metric (Müller, 2007), shapeDTW (another method based on
DTW but with additional features) (Zakaria et al., 2012; Ye & Keogh, 2009), a dictionary-based
method MultiROCKET+Hydra (Dempster et al., 2023), one deep representation method based on
contrastive learning (TS2Vec) (Yue et al., 2022) and one based on masked modeling (Ti-MAE) (Cheng
et al., 2023). In line with Yue et al. (2022); Franceschi et al. (2019), to evaluate the classification

8

Published as a conference paper at ICLR 2025

Table 2: Time series classification performance on UCR time series data of our method vs a number
of baselines (higher is better, except for runtime). We outperform simple approaches and perform
close to classification using the embeddings from the neural network based TS2Vec but use only 37%
of the runtime. The best performing method, MR-Hydra, is a ensemble based on handpicked features
tuned specially for time series classification and does not produce latent embeddings.

ARI NMI F1 Accuracy Runtime (Sec)

Method Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

ℓ2+KNN 0.422 (0.294) 0.416 (0.290) 0.752 (0.144) 0.725 (0.166) 0.128 (0.413)
DTW+KNN 0.447 (0.303) 0.435 (0.300) 0.766 (0.150) 0.738 (0.170) 42.988 (134.320)
shapeDTW 0.470 (0.307) 0.460 (0.299) 0.773 (0.152) 0.746 (0.178) 21.871 (71.655)
TiMAE 0.461 (0.275) 0.457 (0.274) 0.763 (0.135) 0.723 (0.170) 1275.712 (1161.375)
TS2Vec 0.606 (0.282) 0.580 (0.287) 0.840 (0.138) 0.814 (0.178) 1,085.092 (1,408.458)
Ours 0.602 (0.282) 0.562 (0.293) 0.817 (0.180) 0.788 (0.193) 400.031 (677.486)

MR-Hydra 0.682 (0.273) 0.656 (0.285) 0.877 (0.121) 0.851 (0.162) 10.197 (16.459)

performance on test set for methods which produce embeddings (TS2Vec, Ti-MAE, and our method),
we perform cross-validated grid search across KNNs with k = {2i | i ∈ [0, 4]} neighbors or SVMs
with RBF kernels with penalty values c ∈ {2i | i ∈ [−10, 15]} ∪∞. We defer all further details of
our experimental setup to Appendix B. To further compare the quality of representations, we provide
in Appendix B.5 projections of the learned latent space for various UCR datasets. Table 2 displays the
mean and standard deviation across the metrics across the datasets. We provide the detailed results
per dataset in Tables 5 and 6 of Appendix B.3. We observe superior performance to baseline methods
based on distance metrics, such as Euclidean distance or DTW, and observe performance between
that of TiMAE and TS2Vec. We note that for this class of sequence, the heuristic dictionary-based
ensemble (MR-HYDRA) outperforms both our approach and the deep-learning-based approaches.
However, this method has been tuned specifically for this type of classification problem. By contrast,
similar to Yue et al. (2022); Cheng et al. (2023), we consider classification only as one potential
downstream task.

4.3 SYMBOLIC SEQUENCES: LANGUAGE AND GENOMICS

Symbolic sequences and language: arXiv abstracts or “Alice in Wonderland”? To illustrate the
capability of our method to learn meaningful representations for sequences with nonlinear dynamics,
we first consider an autoregressive language modeling task, drawing textual sequences from three
sources: two works by the same author Lewis Caroll — Alice’s Adventures in Wonderland (n = 228)
(Carroll, 1865) and Through the Looking Glass (n = 316) (Carroll, 1871) — and machine learning
related abstracts scraped from arXiv (n = 600) (Kaggle Team, 2020) (details in Appendix B.6). We
embed the sequences without supervision with a lookback of d = 75, and in order to reduce the
number of symbols in our alphabet and avoid the blowup in the number of channels, we converted
each of the sequences into a c = 4 symbol code via Huffman coding, based on the overall frequencies
of letters in the English language (Cover & Thomas, 2005). We then solve Program induced by
(8) using the multichannel measurement operator given in (4) to optimality and using the softmax
activation discussed in Section 3.2. We show in Figure 2a the space learned when λ was chosen to
be sufficiently small as to give a rank three representation of the data. We then project the learned
representation via Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018).
Two distinct clusters form corresponding to the two different genres of writing, however, whereas the
paper abstracts are clearly separable from the works of Lewis Caroll, the two books written by him
are not as clearly disambiguable as they are from the same author.

Virus strain identification from genome sequences For the final illustration, in line with Mil-
lan Arias et al. (2022), the problem of classifying genetic sequences, which allows for the plac-
ing of species/variants in the evolutionary context of others (phylogenetic classification). We
consider gene sequence data from segment six of the Influenza A virus genome (n = 949,
average sequence length = 1409) (Bao et al., 2008) and the complete genome the Dengue virus
(n = 1633, average sequence length = 10559) (Hatcher et al., 2017). We consider gene sequences
from five strains of Influenza and the four strains of Dengue. Likewise, we provide a detailed overview
of the data and learning procedure in Appendix B.7. We encode the genomes in a similar manner

9

Published as a conference paper at ICLR 2025

2.5 0.0 2.5 5.0 7.5 10.0 12.5
First UMAP Component

1

2

3

4

5

6

7

8

9

S
ec

on
d

U
M

A
P

C
om

po
ne

nt

Alice's Adventures in Wonderland
Through the Looking-Glass
ArXiv Abstracts

(a) Lewis Caroll or ArXiv abstracts?
Genres form clusters.

5 0 5 10 15
First UMAP Component

25
20
15
10
5
0
5

10
15
20

Se
co

nd
 U

M
AP

 C
om

po
ne

nt

H7N3
H7N9

H5N1
H1N1

H2N2

(b) Clustering strains of Influenza A
virus genome data (segment 6)

4 2 0 2 4 6 8
First UMAP Component

1

0

1

2

3

4

5

6

7

Se
co

nd
 U

M
AP

 C
om

po
ne

nt

DENV-4
DENV-1
DENV-3
DENV-2

(c) Clustering using full genome for
the four strains of Dengue Virus

Figure 2: Learned embeddings for symbolic sequences collections using our method— visualized by
UMAP projections shows clear groupings based on sequences with similar underlying dynamics.

as for the natural language illustration, assigning one channel to each nucleotide (A, C, T, G), and
encode the presence/absence of each nucleotide at each position via one-hot encoding.

To recover the embedding, we adopt the same softmax activation scheme as described in Section 3.2.
Since the genomes are of variable length, we consider a stochastic approximation to the monotone
field Ψ (8) by taking the sample average of randomly selected length G = 800 sub-windows from
each of sequences at each training step. We consider clustering the Influenza and Dengue genome
segments individually and report UMAP projections of the learned representations in Figure 2b
and 2c, respectively. The dimensions of the learned embeddings are 7 and 20, respectively. In
these subspaces, we note the clear grouping of viral strains obtained via solving the stochastic
approximation to the VI in (8).

5 DISCUSSION

We propose a method to learn embeddings for sequences and time series by framing it as a low-rank
matrix recovery problem cast into a VI form. This approach is particularly amenable to settings
with partial or limited observations, allowing similar sequences to inform the representation of a
focal sequence. Each sequence is modeled with its own autoregressive process through a monotone
link function. Our observation model is both a strength and limitation: on one hand is as general
as possible while still maintaining convexity, and thus flexible enough to handle a number of
diverse scenarios — notably probabilistic modeling of symbolic data — and demonstrates empirical
performance comparable to methods based on contrastive learning and masked modeling. On the
other hand, reliance on convexity to ensure regularity and identifiability limits its ability to capture
highly non-convex structures and provide universal approximation guarantees. Our method performs
well under low-rank and monotonicity assumptions, is sample-efficient, and is faster in limited-data
settings, as shown in most cases. However, its performance declines when these assumptions are
violated, seen in certain UCR datasets, where it may be outperformed by energy-based approaches in
data-rich scenarios. Future work could explore alternative objectives within the VI framework and
non-convex extensions to address these limitations.

ACKNOWLEDGMENTS

This work is partially supported by NSF DMS-2134037.

REFERENCES

Ali Ahmed and Justin Romberg. Compressive multiplexing of correlated signals. IEEE Transactions
on Information Theory, 61(1):479–498, 2015. doi: 10.1109/TIT.2014.2366459.

Erick A Perez Alday, Annie Gu, Amit J Shah, Chad Robichaux, An-Kwok Ian Wong, Chengyu Liu,
Feifei Liu, Ali Bahrami Rad, Andoni Elola, Salman Seyedi, Qiao Li, Ashish Sharma, Gari D
Clifford, and Matthew A Reyna. Classification of 12-lead ecgs: the physionet/computing in

10

Published as a conference paper at ICLR 2025

cardiology challenge 2020. Physiological Measurement, 41(12):124003, 12 2020. doi: 10.1088/
1361-6579/abc960. URL https://dx.doi.org/10.1088/1361-6579/abc960.

R. Argelaguet, D. Arnol, D. Bredikhin, Y. Deloro, B. Velten, J.C. Marioni, and O. Stegle. Mofa+:
a statistical framework for comprehensive integration of multi-modal single-cell data. Genome
Biology, 21(1):111, 2020.

Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh. The great time
series classification bake off: a review and experimental evaluation of recent algorithmic advances.
Data Mining and Knowledge Discovery, 31(3):606–660, 2017. doi: 10.1007/s10618-016-0483-9.
URL https://doi.org/10.1007/s10618-016-0483-9.

Yiming Bao, Pavel Bolotov, Dmitry Dernovoy, Boris Kiryutin, Leonid Zaslavsky, Tatiana Tatusova,
Jim Ostell, and David Lipman. The influenza virus resource at the national center for biotechnology
information. J. Virol., 82(2):596–601, January 2008.

S. Basu, A. Mukherjee, and S. Klivansky. Time series models for internet traffic. In Proceedings of
IEEE INFOCOM ’96. Conference on Computer Communications, volume 2, pp. 611–620 vol.2,
1996. doi: 10.1109/INFCOM.1996.493355.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009. doi: 10.1137/080716542.
URL https://doi.org/10.1137/080716542.

Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Optimization. MOS-SIAM
Series on Optimization. Society for Industrial and Applied Mathematics, 2001.

David M. Blei. Probabilistic topic models. Commun. ACM, 55(4):77–84, 4 2012. ISSN 0001-0782.
doi: 10.1145/2133806.2133826. URL https://doi.org/10.1145/2133806.2133826.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach. Learn.
Res., 3(null):993–1022, 3 2003. ISSN 1532-4435.

R. P. Brent. Algorithms for minimization without derivatives /. Dover Publications, Mineola,
N.Y. :, 2002. URL http://catdir.loc.gov/catdir/description/dover031/
2001047459.html.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, Jenifer C. Lai, and Robert L. Mercer.
Class-based n-gram models of natural language. Computational Linguistics, 18(4):467–480, 1992.
URL https://aclanthology.org/J92-4003.

Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen. A singular value thresholding algorithm
for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010. doi: 10.1137/
080738970. URL https://doi.org/10.1137/080738970.

Emmanuel J. Candes and Yaniv Plan. Matrix completion with noise. Proceedings of the IEEE, 98(6):
925–936, 2010. doi: 10.1109/JPROC.2009.2035722.

Emmanuel J. Candes and Terence Tao. The power of convex relaxation: Near-optimal matrix
completion. IEEE Transactions on Information Theory, 56(5):2053–2080, 2010. doi: 10.1109/TIT.
2010.2044061.

Lewis Carroll. Alice’s Adventures in Wonderland. Macmillan Publishers, 1865.

Lewis Carroll. Through the Looking-Glass, and What Alice Found There. Macmillan Publishers,
1871.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian Strope, and Ray Kurzweil. Universal
sentence encoder for English. In Eduardo Blanco and Wei Lu (eds.), Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp.
169–174, Brussels, Belgium, November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-2029. URL https://aclanthology.org/D18-2029.

11

https://dx.doi.org/10.1088/1361-6579/abc960
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1137/080716542
https://doi.org/10.1145/2133806.2133826
http://catdir.loc.gov/catdir/description/dover031/2001047459.html
http://catdir.loc.gov/catdir/description/dover031/2001047459.html
https://aclanthology.org/J92-4003
https://doi.org/10.1137/080738970
https://aclanthology.org/D18-2029

Published as a conference paper at ICLR 2025

Yunmei Chen, Guanghui Lan, and Yuyuan Ouyang. Accelerated schemes for a class of variational
inequalities. Mathematical Programming, 165(1):113–149, 2017. doi: 10.1007/s10107-017-1161-
4. URL https://doi.org/10.1007/s10107-017-1161-4.

Mingyue Cheng, Qi Liu, Zhiding Liu, Hao Zhang, Rujiao Zhang, and Enhong Chen. Timemae:
Self-supervised representations of time series with decoupled masked autoencoders. arXiv preprint
arXiv:2303.00320, 2023.

Mike X Cohen. Analyzing Neural Time Series Data: Theory and Practice. The MIT Press, 01 2014.
ISBN 9780262319553. doi: 10.7551/mitpress/9609.001.0001. URL https://doi.org/10.
7551/mitpress/9609.001.0001.

Patrick L. Combettes and Jean-Christophe Pesquet. Proximal Splitting Methods in Signal Processing.
Springer New York, New York, NY, 2011. ISBN 978-1-4419-9569-8. doi: 10.1007/978-1-4419-
9569-8 10. URL https://doi.org/10.1007/978-1-4419-9569-8_10.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. The MIT Press, 2 edition, 2001.

Athel Cornish-Bowden. Nomenclature Committee of the International Union of Biochemistry (NC-
IUB). Nomenclature for incompletely specified bases in nucleic acid sequences. Recommendations
1984. Biochemical Journal, 229(2):281–286, 07 1985. ISSN 0264-6021. doi: 10.1042/bj2290281.
URL https://doi.org/10.1042/bj2290281.

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information
Theory, 13(1):21–27, 1967. doi: 10.1109/TIT.1967.1053964.

Thomas M. Cover and Joy A. Thomas. Data Compression, chapter 5, pp. 103–158. John Wiley &
Sons, Ltd, 2005. ISBN 9780471748823. doi: https://doi.org/10.1002/047174882X.ch5. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/047174882X.ch5.

Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing Hu, Nurjahan Begum, Anthony Bagnall,
Abdullah Mueen, Gustavo Batista, and Hexagon-ML. The ucr time series classification archive, 10
2018. https://www.cs.ucr.edu/˜eamonn/time_series_data_2018/.

Mark A. Davenport and Justin Romberg. An overview of low-rank matrix recovery from incomplete
observations. IEEE Journal of Selected Topics in Signal Processing, 10(4):608–622, June 2016.
ISSN 1941-0484. doi: 10.1109/jstsp.2016.2539100. URL http://dx.doi.org/10.1109/
JSTSP.2016.2539100.

Angus Dempster, Daniel F. Schmidt, and Geoffrey I. Webb. Hydra: competing convolutional kernels
for fast and accurate time series classification. Data Mining and Knowledge Discovery, 37(5):
1779–1805, 2023. doi: 10.1007/s10618-023-00939-3. URL https://doi.org/10.1007/
s10618-023-00939-3.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto
the l1-ball for learning in high dimensions. In Proceedings of the 25th International Conference
on Machine Learning, ICML ’08, pp. 272–279, New York, NY, USA, 2008. Association for
Computing Machinery. ISBN 9781605582054. doi: 10.1145/1390156.1390191. URL https:
//doi.org/10.1145/1390156.1390191.

Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational inequalities and complemen-
tarity problems, volume 1 of Springer series in operations research. Springer, New York, 2003.
ISBN 9780387955803.

12

https://doi.org/10.1007/s10107-017-1161-4
https://doi.org/10.7551/mitpress/9609.001.0001
https://doi.org/10.7551/mitpress/9609.001.0001
https://doi.org/10.1007/978-1-4419-9569-8_10
https://doi.org/10.1042/bj2290281
https://onlinelibrary.wiley.com/doi/abs/10.1002/047174882X.ch5
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
http://dx.doi.org/10.1109/JSTSP.2016.2539100
http://dx.doi.org/10.1109/JSTSP.2016.2539100
https://doi.org/10.1007/s10618-023-00939-3
https://doi.org/10.1007/s10618-023-00939-3
https://aclanthology.org/N19-1423
https://doi.org/10.1145/1390156.1390191
https://doi.org/10.1145/1390156.1390191

Published as a conference paper at ICLR 2025

Tom Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27(8):861–874, 2006.
ISSN 0167-8655. doi: https://doi.org/10.1016/j.patrec.2005.10.010. URL https://www.
sciencedirect.com/science/article/pii/S016786550500303X. ROC Analy-
sis in Pattern Recognition.

Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. Gp-vae: Deep probabilistic
time series imputation. In International conference on artificial intelligence and statistics, pp.
1651–1661. PMLR, 2020.

Archibald Felix Fraikin, Adrien Bennetot, and Stephanie Allassonniere. T-rep: Representation learn-
ing for time series using time-embeddings. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=3y2TfP966N.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation
learning for multivariate time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/53c6de78244e9f528eb3e1cda69699bb-Paper.pdf.

Dani Gamerman and Hélio S. Migon. Dynamic hierarchical models. Journal of the Royal Statistical
Society. Series B (Methodological), 55(3):629–642, 1993. ISSN 00359246. URL http://www.
jstor.org/stable/2345875.

Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University Press,
third edition, 1996.

Eduard Gorbunov, Nicolas Loizou, and Gauthier Gidel. Extragradient method: O(1/k) last-iterate
convergence for monotone variational inequalities and connections with cocoercivity. In Gustau
Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.), Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine
Learning Research, pp. 366–402. PMLR, 28–30 Mar 2022. URL https://proceedings.
mlr.press/v151/gorbunov22a.html.

Janice H Hammond. Solving asymmetric variational inequality problems and systems of equations
with generalized nonlinear programming algorithms. PhD thesis, Massachusetts Institute of
Technology, Aug 1985.

Eneida L Hatcher, Sergey A Zhdanov, Yiming Bao, Olga Blinkova, Eric P Nawrocki, Yuri Ostapchuck,
Alejandro A Schaeffer, and J Rodney Brister. Virus variation resource - improved response to
emergent viral outbreaks. Nucleic Acids Res., 45(D1):D482–D490, January 2017.

Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal
of educational psychology, 24(6):417, 1933.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2(1):193–218,
1985. doi: 10.1007/BF01908075. URL https://doi.org/10.1007/BF01908075.

Alfredo N. Iusem, Alejandro Jofré, Roberto I. Oliveira, and Philip Thompson. Variance-based
extragradient methods with line search for stochastic variational inequalities. SIAM Journal on
Optimization, 29(1):175–206, 2019. doi: 10.1137/17M1144799. URL https://doi.org/10.
1137/17M1144799.

A. B. Juditsky and A. S. Nemirovski. Signal recovery by stochastic optimization. Automation and
Remote Control, 80(10):1878–1893, 2019. doi: 10.1134/S0005117919100084. URL https:
//doi.org/10.1134/S0005117919100084.

Anatoli Juditsky and Arkadi Nemirovski. Solving variational inequalities with monotone operators
on domains given by linear minimization oracles. Mathematical Programming, 156(1):221–256,
2016. doi: 10.1007/s10107-015-0876-3. URL https://doi.org/10.1007/s10107-
015-0876-3.

Anatoli Juditsky and Arkadi Nemirovski. Statistical Inference via Convex Optimization. Princeton
University Press, 2020. ISBN 9780691197296. URL http://www.jstor.org/stable/j.
ctvqsdxqd.

13

https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://openreview.net/forum?id=3y2TfP966N
https://proceedings.neurips.cc/paper_files/paper/2019/file/53c6de78244e9f528eb3e1cda69699bb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/53c6de78244e9f528eb3e1cda69699bb-Paper.pdf
http://www.jstor.org/stable/2345875
http://www.jstor.org/stable/2345875
https://proceedings.mlr.press/v151/gorbunov22a.html
https://proceedings.mlr.press/v151/gorbunov22a.html
https://doi.org/10.1007/BF01908075
https://doi.org/10.1137/17M1144799
https://doi.org/10.1137/17M1144799
https://doi.org/10.1134/S0005117919100084
https://doi.org/10.1134/S0005117919100084
https://doi.org/10.1007/s10107-015-0876-3
https://doi.org/10.1007/s10107-015-0876-3
http://www.jstor.org/stable/j.ctvqsdxqd
http://www.jstor.org/stable/j.ctvqsdxqd

Published as a conference paper at ICLR 2025

Anatoli Juditsky, Arkadi Nemirovski, and Claire Tauvel. Solving variational inequalities with
stochastic mirror-prox algorithm. Stochastic Systems, 1(1):17–58, 2011. doi: 10.1287/10-SSY011.
URL https://doi.org/10.1287/10-SSY011.

Anatoli Juditsky, Arkadi Nemirovski, Liyan Xie, and Yao Xie. Convex parameter recovery for
interacting marked processes. IEEE Journal on Selected Areas in Information Theory, 1(3):
799–813, 11 2020. ISSN 2641-8770. doi: 10.1109/JSAIT.2020.3040999.

Anatoli Juditsky, Arkadi Nemirovski, Yao Xie, and Chen Xu. Generalized generalized linear models:
Convex estimation and online bounds, 2023.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu,
Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with
alphafold. Nature, 596(7873):583–589, 2021. doi: 10.1038/s41586-021-03819-2. URL
https://doi.org/10.1038/s41586-021-03819-2.

Kaggle Team. Leveraging ML to Fuel New Discoveries with the arXiv Dataset, 8
2020. URL https://blog.arxiv.org/2020/08/05/leveraging-machine-
learning-to-fuel-new-discoveries-with-the-arxiv-dataset.

K. Kalpakis, D. Gada, and V. Puttagunta. Distance measures for effective clustering of arima time-
series. In Proceedings 2001 IEEE International Conference on Data Mining, pp. 273–280, 2001.
doi: 10.1109/ICDM.2001.989529.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.

Matthieu Kirchmeyer, Yuan Yin, Jeremie Dona, Nicolas Baskiotis, Alain Rakotomamonjy, and
Patrick Gallinari. Generalizing to new physical systems via context-informed dynamics model. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 11283–11301. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/kirchmeyer22a.html.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009. doi: 10.1109/MC.2009.263.

G.M. Korpelevich. An extragradient method for finding saddle points and for other problems.
Ekonomika i Matematicheskie Metody, 12(4):747–756, 1976.

Vladimir R Kostic, Pietro Novelli, Riccardo Grazzi, Karim Lounici, and massimiliano pontil. Learning
invariant representations of time-homogeneous stochastic dynamical systems. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=twSnZwiOIm.

Rayan Krishnan, Pranav Rajpurkar, and Eric J. Topol. Self-supervised learning in medicine and
healthcare. Nature Biomedical Engineering, 6(12):1346–1352, 2022. doi: 10.1038/s41551-022-
00914-1. URL https://doi.org/10.1038/s41551-022-00914-1.

Baptiste Lafabregue, Jonathan Weber, Pierre Gançarski, and Germain Forestier. End-to-end deep
representation learning for time series clustering: a comparative study. Data Mining and Knowledge
Discovery, 36(1):29–81, 2022. doi: 10.1007/s10618-021-00796-y. URL https://doi.org/
10.1007/s10618-021-00796-y.

Nan M. Laird and James H. Ware. Random-effects models for longitudinal data. Biometrics, 38
(4):963–974, 1982. ISSN 0006341X, 15410420. URL http://www.jstor.org/stable/
2529876.

14

https://doi.org/10.1287/10-SSY011
https://doi.org/10.1038/s41586-021-03819-2
https://blog.arxiv.org/2020/08/05/leveraging-machine-learning-to-fuel-new-discoveries-with-the-arxiv-dataset
https://blog.arxiv.org/2020/08/05/leveraging-machine-learning-to-fuel-new-discoveries-with-the-arxiv-dataset
https://proceedings.mlr.press/v162/kirchmeyer22a.html
https://openreview.net/forum?id=twSnZwiOIm
https://openreview.net/forum?id=twSnZwiOIm
https://doi.org/10.1038/s41551-022-00914-1
https://doi.org/10.1007/s10618-021-00796-y
https://doi.org/10.1007/s10618-021-00796-y
http://www.jstor.org/stable/2529876
http://www.jstor.org/stable/2529876

Published as a conference paper at ICLR 2025

Qianli Ma, Jiawei Zheng, Sen Li, and Gary W Cottrell. Learning representations for time se-
ries clustering. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/1359aa933b48b754a2f54adb688bfa77-Paper.pdf.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. Umap: Uniform manifold
approximation and projection. Journal of Open Source Software, 3(29):861, 2018. doi: 10.21105/
joss.00861. URL https://doi.org/10.21105/joss.00861.

Matthew Middlehurst, Patrick Schäfer, and Anthony Bagnall. Bake off redux: a review and experimen-
tal evaluation of recent time series classification algorithms. Data Mining and Knowledge Discov-
ery, 2024. doi: 10.1007/s10618-024-01022-1. URL https://doi.org/10.1007/s10618-
024-01022-1.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 26.
Curran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper_
files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

Pablo Millan Arias, Fatemeh Alipour, Kathleen A. Hill, and Lila Kari. Delucs: Deep learning for
unsupervised clustering of dna sequences. PLOS ONE, 17(1):1–25, 01 2022. doi: 10.1371/journal.
pone.0261531. URL https://doi.org/10.1371/journal.pone.0261531.

Wei Min, Weiming Liang, Hang Yin, Zhurong Wang, Mei Li, and Alok Lal. Explainable deep
behavioral sequence clustering for transaction fraud detection. CoRR, abs/2101.04285, 2021. URL
https://arxiv.org/abs/2101.04285.

Meinard Müller. Dynamic Time Warping, pp. 69–84. Springer Berlin Heidelberg, Berlin, Heidelberg,
2007. ISBN 978-3-540-74048-3. doi: 10.1007/978-3-540-74048-3 4. URL https://doi.
org/10.1007/978-3-540-74048-3_4.

Kevin P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023. URL
http://probml.github.io/book2.

B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24
(2):227–234, 1995. doi: 10.1137/S0097539792240406. URL https://doi.org/10.1137/
S0097539792240406.

J. A. Nelder and R. W. M. Wedderburn. Generalized linear models. Journal of the Royal Statistical
Society. Series A (General), 135(3):370–384, 1972. ISSN 00359238, 23972327. URL http:
//www.jstor.org/stable/2344614.

Arkadi Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with
lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 15(1):229–251, 2004. doi: 10.1137/S1052623403425629. URL
https://doi.org/10.1137/S1052623403425629.

Yurii Nesterov and Arkadi Nemirovski. On first-order algorithms for l1/nuclear norm minimization.
Acta Numerica, 22:509–575, 2013. doi: 10.1017/S096249291300007X.

Neal Parikh and Stephen Boyd. Proximal algorithms. Found. Trends Optim., 1(3):127–239, 1
2014. ISSN 2167-3888. doi: 10.1561/2400000003. URL https://doi.org/10.1561/
2400000003.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. Deep contextualized word representations. In Marilyn Walker, Heng Ji,
and Amanda Stent (eds.), Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers), pp. 2227–2237, New Orleans, Louisiana, 6 2018. Association for Computational
Linguistics. doi: 10.18653/v1/N18-1202. URL https://aclanthology.org/N18-1202.

15

https://proceedings.neurips.cc/paper_files/paper/2019/file/1359aa933b48b754a2f54adb688bfa77-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1359aa933b48b754a2f54adb688bfa77-Paper.pdf
https://doi.org/10.21105/joss.00861
https://doi.org/10.1007/s10618-024-01022-1
https://doi.org/10.1007/s10618-024-01022-1
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/10.1371/journal.pone.0261531
https://arxiv.org/abs/2101.04285
https://doi.org/10.1007/978-3-540-74048-3_4
https://doi.org/10.1007/978-3-540-74048-3_4
http://probml.github.io/book2
https://doi.org/10.1137/S0097539792240406
https://doi.org/10.1137/S0097539792240406
http://www.jstor.org/stable/2344614
http://www.jstor.org/stable/2344614
https://doi.org/10.1137/S1052623403425629
https://doi.org/10.1561/2400000003
https://doi.org/10.1561/2400000003
https://aclanthology.org/N18-1202

Published as a conference paper at ICLR 2025

Laila Rasmy, Yang Xiang, Ziqian Xie, Cui Tao, and Degui Zhi. Med-bert: pretrained contextualized
embeddings on large-scale structured electronic health records for disease prediction. npj Digital
Medicine, 4(1):86, 2021. doi: 10.1038/s41746-021-00455-y. URL https://doi.org/10.
1038/s41746-021-00455-y.

Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–501, 2010. doi:
10.1137/070697835. URL https://doi.org/10.1137/070697835.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992, Hong Kong,
China, 11 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1410. URL
https://aclanthology.org/D19-1410.

Matthew A Reyna, Christopher S Josef, Russell Jeter, Supreeth P Shashikumar, M Brandon Westover,
Shamim Nemati, Gari D Clifford, and Ashish Sharma. Early prediction of sepsis from clinical
data: The PhysioNet/Computing in cardiology challenge 2019. Crit. Care Med., 48(2):210–217,
February 2020.

Eric W Sayers, Evan E Bolton, J Rodney Brister, Kathi Canese, Jessica Chan, Donald C Comeau,
Ryan Connor, Kathryn Funk, Chris Kelly, Sunghwan Kim, Tom Madej, Aron Marchler-Bauer,
Christopher Lanczycki, Stacy Lathrop, Zhiyong Lu, Francoise Thibaud-Nissen, Terence Murphy,
Lon Phan, Yuri Skripchenko, Tony Tse, Jiyao Wang, Rebecca Williams, Barton W Trawick,
Kim D Pruitt, and Stephen T Sherry. Database resources of the national center for biotechnology
information. Nucleic Acids Res., 50(D1):D20–D26, January 2022.

Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. Lectures on Stochastic Program-
ming: Modeling and Theory, Third Edition. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2021. doi: 10.1137/1.9781611976595. URL https://epubs.siam.org/
doi/abs/10.1137/1.9781611976595.

Ravid Shwartz Ziv and Yann LeCun. To compress or not to compress—self-supervised learning and
information theory: A review. Entropy, 26(3), 2024. ISSN 1099-4300. doi: 10.3390/e26030252.
URL https://www.mdpi.com/1099-4300/26/3/252.

Padhraic Smyth. Clustering sequences with hidden markov models. In M.C. Mozer, M. Jor-
dan, and T. Petsche (eds.), Advances in Neural Information Processing Systems, volume 9.
MIT Press, 1996. URL https://proceedings.neurips.cc/paper_files/paper/
1996/file/6a61d423d02a1c56250dc23ae7ff12f3-Paper.pdf.

Chang Wei Tan, Angus Dempster, Christoph Bergmeir, and Geoffrey I. Webb. Multirocket: multiple
pooling operators and transformations for fast and effective time series classification. Data Mining
and Knowledge Discovery, 36(5):1623–1646, 2022. doi: 10.1007/s10618-022-00844-1. URL
https://doi.org/10.1007/s10618-022-00844-1.

Mingtian Tan, Mike A. Merrill, Vinayak Gupta, Tim Althoff, and Thomas Hartvigsen. Are language
models actually useful for time series forecasting?, 2024. URL https://arxiv.org/abs/
2406.16964.

Patara Trirat, Yooju Shin, Junhyeok Kang, Youngeun Nam, Jihye Na, Minyoung Bae, Joeun Kim,
Byunghyun Kim, and Jae-Gil Lee. Universal time-series representation learning: A survey, 2024.

Ruey S. Tsay. Analysis of financial time series. Wiley series in probability and statis-
tics. Wiley-Interscience, Hoboken, NJ, 2. ed. edition, 2005. ISBN 978-0-471-69074-
0. URL http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&
TRM=ppn+483463442&sourceid=fbw_bibsonomy.

J.J. Van Wijk and E.R. Van Selow. Cluster and calendar based visualization of time series data. In
Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis’99), pp. 4–9, 1999. doi:
10.1109/INFVIS.1999.801851.

16

https://doi.org/10.1038/s41746-021-00455-y
https://doi.org/10.1038/s41746-021-00455-y
https://doi.org/10.1137/070697835
https://aclanthology.org/D19-1410
https://epubs.siam.org/doi/abs/10.1137/1.9781611976595
https://epubs.siam.org/doi/abs/10.1137/1.9781611976595
https://www.mdpi.com/1099-4300/26/3/252
https://proceedings.neurips.cc/paper_files/paper/1996/file/6a61d423d02a1c56250dc23ae7ff12f3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/6a61d423d02a1c56250dc23ae7ff12f3-Paper.pdf
https://doi.org/10.1007/s10618-022-00844-1
https://arxiv.org/abs/2406.16964
https://arxiv.org/abs/2406.16964
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+483463442&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+483463442&sourceid=fbw_bibsonomy

Published as a conference paper at ICLR 2025

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for clusterings
comparison: Is a correction for chance necessary? In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML ’09, pp. 1073–1080, New York, NY, USA, 2009. Associ-
ation for Computing Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553511. URL
https://doi.org/10.1145/1553374.1553511.

Yihe Wang, Yu Han, Haishuai Wang, and Xiang Zhang. Contrast everything: A hierarchical
contrastive framework for medical time-series. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=sOQBHlCmzp.

Zhiwen Xiao, Huanlai Xing, Bowen Zhao, Rong Qu, Shouxi Luo, Penglin Dai, Ke Li, and Zonghai
Zhu. Deep contrastive representation learning with self-distillation. IEEE Transactions on
Emerging Topics in Computational Intelligence, 8(1):3–15, 2024. doi: 10.1109/TETCI.2023.
3304948.

Ling Yang and Shenda Hong. Unsupervised time-series representation learning with iterative bilinear
temporal-spectral fusion. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 25038–25054. PMLR, 7
2022. URL https://proceedings.mlr.press/v162/yang22e.html.

Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo, Jax Law, Noah Constant, Gustavo Hernan-
dez Abrego, Steve Yuan, Chris Tar, Yun-hsuan Sung, Brian Strope, and Ray Kurzweil. Multilingual
universal sentence encoder for semantic retrieval. In Asli Celikyilmaz and Tsung-Hsien Wen
(eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics:
System Demonstrations, pp. 87–94, Online, July 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.acl-demos.12. URL https://aclanthology.org/2020.acl-
demos.12.

Lexiang Ye and Eamonn Keogh. Time series shapelets: a new primitive for data mining. In
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’09, pp. 947–956, New York, NY, USA, 2009. Association for Computing
Machinery. ISBN 9781605584959. doi: 10.1145/1557019.1557122. URL https://doi.org/
10.1145/1557019.1557122.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of time series. Proceedings of the AAAI
Conference on Artificial Intelligence, 36(8):8980–8987, 6 2022. doi: 10.1609/aaai.v36i8.20881.
URL https://ojs.aaai.org/index.php/AAAI/article/view/20881.

Jesin Zakaria, Abdullah Mueen, and Eamonn Keogh. Clustering time series using unsupervised
shapelets. In IEEE 12th International Conference on Data Mining, pp. 785–794. IEEE, 2012.

Jiaping Zhao and Laurent Itti. shapedtw: Shape dynamic time warping. Pattern Recognition, 74:
171–184, 2018. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2017.09.020. URL https:
//www.sciencedirect.com/science/article/pii/S0031320317303710.

A IMPLEMENTATION DETAILS

A.1 FIRST ORDER METHODS FOR MONOTONE VI WITH NUCLEAR BALL SETUP

In Algorithm 1, we present a concrete extragradient method with backtracking for nuclear norm
constrained VI based primarily on the Algorithms given in (Iusem et al., 2019) and (Duchi et al.,
2008).

The monotonicity of Ψ itself when the link function ϕ is monotone is readily established by two facts
about the calculus of monotone vector fields:

Affine substitution of argument If ϕ(·) is monotone vector field on Rm and A ∈ Rn×m is a matrix,
the vector field

g(x) = Aϕ(A∗x+ a)

is monotone on Rn

17

https://doi.org/10.1145/1553374.1553511
https://openreview.net/forum?id=sOQBHlCmzp
https://proceedings.mlr.press/v162/yang22e.html
https://aclanthology.org/2020.acl-demos.12
https://aclanthology.org/2020.acl-demos.12
https://doi.org/10.1145/1557019.1557122
https://doi.org/10.1145/1557019.1557122
https://ojs.aaai.org/index.php/AAAI/article/view/20881
https://www.sciencedirect.com/science/article/pii/S0031320317303710
https://www.sciencedirect.com/science/article/pii/S0031320317303710

Published as a conference paper at ICLR 2025

Summation If S is a Polish space, ϕ(x, s) : Rm×S → Rm is a Borel vector-valued function which
is monotone in x for every s ∈ S and µ(ds) is a Borel probability measure on S such that
the vector field

F (x) ≡
∫
S

ϕ(x, s)µ(ds)

is well defined for all x, then F (·) is monotone.

for a more detailed discussion, see Juditsky & Nemirovski (2016). Since the vector field given by the
link function f(·) is continuous and monotone, and the expectation is well-defined, the vector field

Ψ(B̂) = Et[A∗
t (ϕ(At(B̂))− yt)]

is monotone and well defined since A∗
t (ϕ(At(B̂)) − yt) is monotone for all linear operators At

and vectors yt by affine substitution, and since expectation can be expressed by definition as an
integration (summation in the empirical approximation) with respect to a Borel measure.

Algorithm 1 Extragradient Method with Backtracking for Nuclear Norm constrained VI

1: procedure BACKTRACKINGEXTRAGRADIENT(Ψ, N , λ, κ0, θ, ν) ▷ Ψ (stochastic Estimate to)
monotone VI, N > 0 number of steps, λ > 0 radius of nuclear ball, κ0 ∈ (0, 1] initial step size,
θ ∈ (0, 1] step size decay parameter, ν ∈ (0, 1√

2
] line search parameter

2: B1 := 0
3: for t := 1, N do
4: for j := 1 . . . do ▷ Line Search
5: κ := θjκ0

6: Rκ
t := PROXNUC(Bt − κ(Ψ(Bκ

t)), λ) ▷ Extragradient step
7: if κ∥Ψ(Rκ

t)−Ψ(Bt)∥F ≤ ν∥Rκ
t −Bt∥F then

8: break
9: end if

10: end for
11: Bt+1 := PROXNUC(Bt − κΨ(Rκ

t)λ)
12: end for
13: return BN

14: end procedure
15: procedure PROXNUC(A,λ) ▷ Computes Proxδλ(A), A ∈ Rm×n

16: r := min(m,n)
17: U := [];V := [];σ := []
18: cs := 0 ▷ Cumulative sum of singular values
19: for j := 1, . . . , r do
20: Compute uj , σj ,vj ▷ From Lanczos iteration on A
21: if σj ∗ j ≤ (cs + σj)− λ then
22: break
23: end if
24: cs := cs + σj

25: V := [V vj] , σ := [σ σj] , U := [U uj]
26: end for
27: θ := (cs − λ)/j
28: if j < r then
29: return U diag(σ − θ)V∗

30: else
31: return A
32: end if
33: end procedure

A.2 IMPLEMENTATION

We implement Algorithm 1, and associated subroutines (evaluation of the monotone field Ψ, as
defined in Equation (8), incremental simplex/nuclear ball projection), using the Julia program-
ming language. The implementation is available at https://github.com/XSpace2013/
LowRankTimeSeriesRecovery.

18

https://github.com/XSpace2013/LowRankTimeSeriesRecovery
https://github.com/XSpace2013/LowRankTimeSeriesRecovery

Published as a conference paper at ICLR 2025

Table 3: Five classes of sequence generating procedure

Baseline Coefficients Perturbation Pattern

Exponentially Time Decaying Gaussian
Exponentially Time Decaying d/3 Most Recent
Exponentially Time Decaying Uniform × Fixed Vector
Uniform Gaussian
Uniform Uniform × Fixed Vector

B DETAILED EXPERIMENTAL SETUP AND RESULTS

We evaluated all experiments and illustrations using a cluster with 24 core Intel Xeon Gold 6226 CPU
(2.7 GHZ) processors, and NVIDIA Tesla V100 Graphics coprocessors (16 GB VRAM), and 384
GB of RAM. However, it is also possible to reproduce the results on a standard personal computer.

B.1 SYNTHETIC TIME SERIES

B.1.1 DATA GENERATION

For the synthetic sequence recovery experiment, we adopt the following data-generating procedure:
We take the order of the sequences to be d = 15, and we generate data according to the following
procedure within each of the five generated classes of observations

1. Pick a baseline set of coefficients according to a given random distribution
2. For each of the N = 300 sequences to generate, perturb the coefficients according to the

pre-specified rule
3. Generate the data matrix of size consisting of T = 250 of the N = 300 sequences according

to the perturbed coefficients such that the data obeys (1) with linear link function ϕ(x) = x.
To do so, we seat the first 15 observations using random noise such that xi,t ∼ N (µ =
0, σ2 = 1),∀t ∈ [1, d], i ∈ [N]. Then each successive entry xi,t, t ∈ [d+1, T] is then given
by taking xi,t =

∑d
s=1 bi,sxi,t−s + ϵi,t, ϵi,t ∼ N (µ = 0, σ2 = 0.02).

We draw the ten generated classes of data from the following five generation procedures given in
Table 3. We use each procedure twice to generate the ten classes of data. We denote the coefficients
common to the sequences (for some class) as bcommon, and the coefficients for the ith sequence in said
class as bi.

The baseline coefficients generation methods are given as:

Exponentially Time Decaying: bcommon,s = Zγs/(
∑d

j=1 γ
j) Z ∼ Uniform([0, 1]),∀s ∈ [d]

Uniform: bcommon,s = Z Z ∼ Uniform([0, 1/2d]),∀s ∈ [d]

and the perturbation methods are given as:

Gaussian: bi = bcommon + Z Zj ∼ N (µ = 0, σ2 = 0.02)

d/3 Most Recent: bi = bcommon + Z Zj ∼
{
N (µ = 0, σ2 = 0.02) j < ⌈d/3⌉
0

,∀i ∈ [N]

Uniform × Fixed Vector: bi = bcommon + θv θ ∼ Uniform([−1, 1]), ∥v∥ = 1,∀i ∈ [N] $v
chosen uniformly on a unit hypersphere, and is the same for all sequences generated in the
class)

B.1.2 PARAMETER RECOVERY

For the parameter recovery experiment, we take all
(
10
3

)
= 120 combinations of k = 3 sequences

from the 10 classes and concatenate the generated sequences to form a matrix of 900 observations.

19

Published as a conference paper at ICLR 2025

= 14.51
Rank=3

= 45.86
Rank=10

= 108.70
Rank=35

= 193.24
Rank=47

= 264.82
Rank=48

= 349.36
Rank=48

= 412.20
Rank=48

= 443.55
Rank=48

Figure 3: Learned representations for symbolic sequences generated from Hidden Markov Models
(HMMs), recovered by solving Program (5) with varying nuclear constraints λ, visualized using
UMAP projection.

0 100 200 300 400
5.206

5.208

5.210

5.212

5.214

5.216

Pr
ed

ict
io

n
(C

ro
ss

 E
nt

ro
py

)

Figure 4: Cross entropy as function of λ across for symbolic sequence generated by HMMs.

We then recover the baseline coefficient matrix B ∈ R15×900. To recover the parameters for each
sequence, we solve the program given in (5) to optimality for differing levels of λ (using a standard
convex solver by contrast to Algorithm 1). To find which levels of λ to solve for, we first solve the
unconstrained version of the problem. We then compute the nuclear norm of recovered ∥B̂∥∗. We
then successively search for the optimal λ∗ on the interval [0, ∥B̂∥∗] using the relative reconstruction
error ∥B− B̂∥F /∥B∥F as the objective until we achieve an absolute tolerance of 10−3. We report
the results in Table 1 using the matrices B̂ and B̂λ∗ across the 120 runs. For Figure 1, we use
data drawn from the classes uniform baseline coefficients with Gaussian perturbation, exponentially
time-decaying baseline coefficients with Gaussian perturbation; and exponentially time-decaying
baseline coefficients with uniform*fixed vector perturbation. We find the λ∗ via Brent search, and we
sweep 40 values of λ ∈ [16.3, 25.2] (the right bound corresponding to the value of ∥B̂∥∗) to produce
Figure 1. When reporting the spectra of singular values, we pick solutions that correspond to the
largest value of λ we have for some fixed number of large singular values. Finally, we depict the
principal components according to the recovered matrix B̂λ∗ , which is optimal in the sense of the
reconstruction error (found via Brent search).

B.2 SYNTHETIC SEQUENCE DATA

B.2.1 DATA GENERATION

To illustrate representation learning and parameter recovery in the nonlinear case, we simulate an
HMMs with four hidden and four observed states. Transitions between states are random, and the
emission matrix assigns a 0.9 probability to emitting the symbol corresponding to the hidden state,

20

Published as a conference paper at ICLR 2025

Table 4: Basic statistics for the UCR time-series classification benchmark data

Training Samples Testing Samples Length Classes

ArrowHead 36 175 251 3
Beef 30 30 470 5
BeetleFly 20 20 512 2
BirdChicken 20 20 512 2
Car 60 60 577 4
ChlorineConc. 467 3840 166 3
Coffee 28 28 286 2
DiatomsizeReduction 16 306 345 4
Dist.Pha.Outln.AgeGrp. 400 139 80 3
Dist.Pha.Outln.Correct 600 276 80 2
ECG200 100 100 96 2
ECGFiveDays 23 861 136 2
GunPoint 50 150 150 2
Ham 109 105 431 2
Herring 64 64 512 2
Lightning2 60 61 637 2
Meat 60 60 448 3
Mid.Pha.Outln.AgeGrp. 400 154 80 3
Mid.Pha.Outln.Correct 600 291 80 2
Mid.PhalanxTW 399 154 80 6
MoteStrain 20 1252 84 2
OSULeaf 200 242 427 6
Plane 105 105 144 7
Prox.Pha.Outln.AgeGrp. 400 205 80 3
Prox.PhalanxTW 400 205 80 6
SonyAIBORobotSurf.1 20 601 70 2
SonyAIBORobotSurf.2 27 953 65 2
SwedishLeaf 500 625 128 15
Symbols 25 995 398 6
ToeSegmentation1 40 228 277 2
ToeSegmentation2 36 130 343 2
TwoPatterns 1000 4000 128 4
TwoLeadECG 23 1139 82 2
Wafer 1000 6164 152 2
Wine 57 54 234 2
WordSynonyms 267 638 270 25

with equal probability among other symbols. The models are initialized randomly and simulated for
100 time steps, generating 150 trajectories for each random HMM.

B.2.2 PARAMETER RECOVERY WITH SEQUENCE DATA

For parameter recovery demonstrating a nonlinear sequence dynamics, we sample three random
HMMs and aggregate their realizations (450 sequences in total). We solve Program induced by (8)
using these realizations, sweeping across different values of λ.

Figure 3 depicts the learned low-rank space projected into two dimensions using UMAP, showing
the choice of λ and the approximate rank of the space. Figure 4 presents the relationship between
the nuclear ball size (λ), and the loss as measured cross entropy of the trained parametric model
ϕ(Riξi,t) with the data across the entire observation timeframe.

The results largely align with the discussion in Section 4.1. Small amounts of nuclear regularization
improve the quality of sequence representations and improve the prediction performance, as the
information from other sequences becomes incorporated to aid in prediction. The sequences sequences
also cluster within a constrained representational subspace. The data remains well-separated even in
low-dimensional spaces (e.g., rank 3).

B.3 UCR TIME SERIES

B.3.1 DATA OVERVIEW

We compare our method with the following representative time series clustering methods. In line with
Ma et al. (2019) we selected 36 of the univariate UCR time series classification datasets 1. We report
basic statistics (training samples, testing samples, length, and number of classes) of the datasets in
Table 4.

1https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018/

21

https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018/

Published as a conference paper at ICLR 2025

B.3.2 OVERVIEW OF EVALUATION METHODS

We evaluate the classification performance using the following methods:

ARI: Similarity of learned and ground truth assignments (Vinh et al., 2009). For matched clustering
partitions

RI = (a+ b)/

(
N

2

)
, ARI =

RI− E[RI]
max(RI)− E[RI]]

NMI: The mutual information between the true class labels and the cluster assignments, normalized
by the entropy of the true labels and the cluster assignments (Vinh et al., 2009).

NMI =
2I(X;Y)

H(X) +H(Y)

where X,Y are the true and assigned labels, H(X) is the entropy of X , and I(X;Y) is the
mutual information between X and Y .

Accuracy: Proportion of correct predictions to a total number of predictions.
F1: Harmonic mean of the precision and recall. In the multiclass case, we take the macro average by

calculating the metric for each label and computing their unweighted mean.

F1 =
2× TP

2× TP + FP + FN

Runtime: Runtime of the algorithm in terms the user CPU time in the computational setting de-
scribed in 4. If the method is GPU accelerated we report the user CPU/GPU time spent in
the routine.

B.3.3 OVERVIEW OF METHODS

In addition to our method, we evaluate the performance of the following baseline methods

ℓ2+KNN K-Nearest Neighbors Classification with the distance metric as the Euclidean distance
between two time-series treating the entire observation sequence as a high dimensional
vector (Cover & Hart, 1967).

DTW+KNN K-Nearest Neighbors Classification with the distance metric calculated according to
DTW (Müller, 2007), which aims to align the two given sequences by solving the following
program

DTWq(x,x
′) = min

π∈A(x,x′)
⟨Aπ, Dq(x,x

′)⟩1/q.

The set A(x,x′) is the set of all admissible paths as represented by boolean matrices. Non-
zero entries correspond to matching time series elements in the path. A path is admissible if
the beginning and end of the time series are matched together, the sequence is monotone in
both i and j, and all entries appear at least once. We take q = 2 as the Euclidean metric.

shapeDTW Extension to DTW scheme by incorporating point-wise local structures into the match-
ing procedure (Zhao & Itti, 2018). Examples of such shape descriptors include data itself, a
rolling average of, a discrete wavelet transform, and a finite difference/derivative. Finally,
the encoded sequences are then aligned by DTW and used for nearest neighbor classification.

MR-Hydra Combination of dictionary-based Multirocket and Hydra algorithms for time series
classification, extracts and counts symbolic patterns using competing convolutional kernels
(Dempster et al., 2023; Tan et al., 2022).

TS2Vec Construct an encoder network for time series embedding based on hierarchical contrastive
learning (Yue et al., 2022). The discrimination is done both between sequences and within
the sequences themselves. The encoder network consists of an input projection layer, a
timestamp masking module, and a dilated convolutional module, and is optimized jointly
with temporal and cross-sequence contrastive loss.

Ti-MAE Like all auto-encoding models, an encoder network maps a time series signal into a latent
representational space, and then a decoder aims to reconstruct the original sequence from
the representational space. Once the input has been tokenized, a random sample of tokens
are masked, and then the decoder attempts to reconstruct the time series optimizing the on
self supervised reconstruction loss (Cheng et al., 2023).

22

Published as a conference paper at ICLR 2025

B.3.4 DETAILED EXPERIMENTAL PROCEDURE

We split our data into testing and training splits according to those given by the UCR repository.
For the methods that directly perform classification (KNN, shapeDTW, Inception Time), we train
on the test set and then report the performance on the training set. In line with Yue et al. (2022);
Franceschi et al. (2019), to evaluate the classification performance on test set for methods which
produce embeddings (TS2Vec, Ti-MAE and our method), we perform cross-validated grid search
(based on k = 5 folds) across KNNs with k = {2i | i ∈ [0, 4]} neighbors or SVMs with RBF kernels
with penalty values c ∈ {2i | i ∈ [−10, 15]} ∪∞. For the KNN-based methods, we do the same grid
search as outlined above. For our own method, we also grid search across parameters of λ and report
the performance for the best choice under rank constraint. To find the embedding, we run Algorithm
1 for 256 iterations.

B.4 DETAILED NUMERICAL RESULTS

In Tables 5 and 6, we present the classification performance for the discussed metrics for the evaluated
methods for each of the tested UCR datasets.

B.5 REPRESENTATION VISUALIZATION

In Figure 5 we provide a comparison of the embedding quality for some of the recovered real-time
series for our method (left) as compared two recent and popular neural-network based time-series
representation learning methods — TS2Vec (Yue et al., 2022) (center) and Ti-MAE (Cheng et al.,
2023) (right). We plot the category of the data in color, though this information is not provided to
the models during training. We note that our method produces similar quality embeddings to these
approaches, with better separation of the data according to category in the low sample cases (e.g.,
BeetleFly, BirdChicken). For all three models, there exist cases, where the separation is worse for
certain datasets, for example Ti-MAE on TwoLeadECG, our method on TwoPatterns.

B.6 NATURAL LANGUAGE EMBEDDING

To acquire the data, we retrieved the raw text of Alice’s Adventures in Wonderland and Through
the Looking Glass from Project Gutenberg 2. For the paper abstracts, we used the training portion
of the ML-ArXiv-Papers dataset 3. For each dataset, we stripped all non ASCII characters and
uncommon punctuation (<,>, ‘, =, |, ?, &, [,], *, , !, #, @, and ").

After acquiring the data, we then encoded using a Huffman tree with n = 4 symbols derived from
the frequency of letters in our corpora. We treated each abstract as a document and considered
500-character chunks of the two books. We rejected abstracts containing less than 500 words. After
encoding the sequences using the Huffman code, we cut off each sequence at 1000 coded symbols
and rejected all sequences less than this length after coding. This left us with n = 228 samples
from “Alice’s Adventures in Wonderland”, n = 316 samples from “Through the Looking Glass”, and
n = 600 machine learning-related ArXiv abstracts.

To learn the embedding, we use the method described in Appendix A.1 and grid searched across
values of λ for 512 steps using the softmax link function described in Section 3.2.

B.7 GENE SEQUENCE EMBEDDING

Data acquisition and processing In line with Millan Arias et al. (2022), we downloaded viral
genome sequences for two different kinds of human viruses: Influenza A virus and Dengue virus. We
consider different strains of each virus in addition to the species as a whole. We provide a textual
description below. In Table 7, we provide summary statistics, including the number of sequences in
the strain, the average and standard deviation of the sequence lengths, and the length of the shortest
and longest sequences in the strains.

2https://www.gutenberg.org
3https://www.kaggle.com/datasets/Cornell-University/arxiv

23

https://www.gutenberg.org
https://www.kaggle.com/datasets/Cornell-University/arxiv

Published as a conference paper at ICLR 2025

2.5 0.0 2.5 5.0 7.5
4

6

8

10

12

Ours

10 15 20
6

8

10

12
TS2Vec

8 10 12 14
0

2

4

6

8

Ti-MAE
ArrowHead

6 8 10 12 14
2

3

4

5

6

Ours

1 2 3 4
1

2

3

4

5
TS2Vec

2 4 6

9

10

11

Ti-MAE
BeetleFly

2 1 0 1 2
8

6

4

2

0
Ours

8 10 12

7

8

9

10
TS2Vec

7 8 9 10

2

4

6

8
Ti-MAE

BirdChicken

0 5 10

2

4

6

Ours

5 10 15
0

2

4

6
TS2Vec

2.5 5.0 7.5 10.0

6

4

2

0

2

4
Ti-MAE

Car

2 3 4 5

4

6

8

10

12

Ours

4 6

6

8

10

12

14

TS2Vec

8 10 12 14

6

8

10

Ti-MAE
Coffee

0 5 10 15
2
4
6
8

10
12

Ours

0 10

5
0
5

10
15
20

TS2Vec

0 5 10

5

0

5

10

Ti-MAE
DiatomSizeReduction

5 0 5 10
2
3
4
5
6
7

Ours

0 5 10 15
2

4

6

8
TS2Vec

0 10 20
2

0

2

4

6

8
Ti-MAE

DistalPhalanxOutlineAgeGroup

6 8 10 12
2

0

2

4

6

Ours

5.0 7.5 10.0 12.5

5

6

7

8

9
TS2Vec

5.0 7.5 10.0 12.5

5

10

15

Ti-MAE
ECG200

0 10 20

5

0

5

10

Ours

5 10 15

5

10

15

TS2Vec

10 5 0 5
0

2

4

6

Ti-MAE
Meat

5 0 5 10 15
0

2

4

6

8

Ours

2.5 0.0 2.5 5.0

4

6

8

TS2Vec

0 10

0
2
4
6
8

10
Ti-MAE

OSULeaf

0 5 10 15
5

0

5

10

Ours

10 0 10 20

5

0

5

10

15
TS2Vec

0 10 20
0

5

10

15

20
Ti-MAE

Plane

5 0 5 10 15
0

2

4

Ours

5 0 5 10
2.5
0.0
2.5
5.0
7.5

10.0

TS2Vec

5 0 5 10 15

4

6

8

10

Ti-MAE
ProximalPhalanxTW

2.5 5.0 7.5 10.0
4

6

8

10
Ours

5 10
4

6

8

10

12

TS2Vec

5 0 5 10 15

0.0

2.5

5.0

7.5

10.0
Ti-MAE

SonyAIBORobotSurface2

0 5 10

10

12

14

Ours

8 10 12 14

2

4

6

8

TS2Vec

6 8 10 12

8

9

10

11

12

Ti-MAE
ToeSegmentation1

0.0 2.5 5.0 7.5 10.0

2

4

6

8

Ours

0 10
5

0

5

10

15

TS2Vec

5 0 5 10
0

2

4

6

Ti-MAE
TwoPatterns

0 5 10

4

6

8

Ours

0 10

2

4

6

8

TS2Vec

5 0 5 10

6

8

10

Ti-MAE
TwoLeadECG

Figure 5: UMAP projections of learned embeddings for UCR datasets by our method, TS2Vec (Yue
et al., 2022), and Ti-MAE (Cheng et al., 2023)

24

Published as a conference paper at ICLR 2025

Table 5: Detailed results per UCR dataset (Part I)

Dataset Method ARI NMI Acc. F1 RT Method ARI NMI Acc. F1 RT

ArrowHead ℓ2+ 0.482 0.453 0.800 0.800 0.007 MR 0.629 0.585 0.863 0.863 3.183
Beef KNN 0.322 0.518 0.667 0.672 0.001 Hydra 0.454 0.627 0.767 0.768 1.967
BeetleFly 0.219 0.344 0.750 0.733 0.001 0.621 0.619 0.900 0.899 1.532
BirdChicken -0.044 0.007 0.550 0.549 0.001 0.621 0.619 0.900 0.899 1.536
Car 0.403 0.477 0.733 0.737 0.003 0.830 0.860 0.933 0.933 4.023
ChlorineConc. 0.231 0.157 0.650 0.610 0.633 0.472 0.373 0.789 0.753 57.36
Coffee 1.000 1.000 1.000 1.000 0.001 1.000 1.000 1.000 1.000 1.411
DiatomsizeReduction 0.872 0.830 0.935 0.883 0.004 0.921 0.896 0.964 0.947 6.537
Dist.Pha.Outln.AgeGrp. 0.190 0.224 0.626 0.613 0.019 0.383 0.404 0.770 0.775 4.794
Dist.Pha.Outln.Correct 0.181 0.137 0.717 0.684 0.054 0.366 0.286 0.804 0.790 8.056
ECG200 0.571 0.445 0.880 0.868 0.004 0.667 0.542 0.910 0.902 1.765
ECGFiveDays 0.352 0.304 0.797 0.794 0.011 1.000 1.000 1.000 1.000 7.914
GunPoint 0.681 0.578 0.913 0.913 0.004 1.000 1.000 1.000 1.000 2.064
Ham 0.031 0.029 0.600 0.600 0.006 0.229 0.177 0.743 0.742 5.055
Herring -0.015 0.003 0.516 0.516 0.003 0.207 0.155 0.734 0.726 3.825
Lightning2 0.246 0.193 0.754 0.750 0.003 0.104 0.084 0.672 0.665 5.208
Meat 0.799 0.797 0.933 0.935 0.003 0.810 0.808 0.933 0.933 3.096
Mid.Pha.Outln.AgeGrp. 0.055 0.026 0.519 0.443 0.021 0.092 0.071 0.591 0.491 4.599
Mid.Pha.Outln.Correct 0.280 0.208 0.766 0.756 0.057 0.475 0.372 0.845 0.842 8.154
Mid.PhalanxTW 0.379 0.367 0.513 0.382 0.020 0.383 0.433 0.513 0.339 5.382
MoteStrain 0.573 0.467 0.879 0.877 0.015 0.794 0.699 0.946 0.945 7.062
OSULeaf 0.298 0.383 0.521 0.525 0.023 0.921 0.919 0.963 0.956 10.34
Plane 0.919 0.943 0.962 0.963 0.005 1.000 1.000 1.000 1.000 2.505
Prox.Pha.Outln.AgeGrp. 0.492 0.422 0.785 0.693 0.027 0.662 0.564 0.868 0.797 5.489
Prox.PhalanxTW 0.584 0.566 0.707 0.444 0.027 0.718 0.671 0.805 0.490 4.922
SonyAIBORobotSurf.1 0.148 0.280 0.696 0.688 0.007 0.598 0.570 0.887 0.887 3.396
SonyAIBORobotSurf.2 0.514 0.395 0.859 0.849 0.013 0.782 0.682 0.942 0.940 4.828
SwedishLeaf 0.629 0.761 0.789 0.782 0.109 0.950 0.965 0.976 0.977 10.78
Symbols 0.791 0.843 0.899 0.898 0.017 0.955 0.954 0.981 0.981 21.89
ToeSegmentation1 0.126 0.095 0.680 0.675 0.006 0.832 0.782 0.956 0.956 4.760
ToeSegmentation2 0.340 0.244 0.808 0.744 0.003 0.640 0.464 0.915 0.866 3.608
TwoPatterns 0.770 0.726 0.907 0.906 1.328 1.000 1.000 1.000 1.000 50.14
TwoLeadECG 0.244 0.217 0.747 0.741 0.015 0.993 0.983 0.998 0.998 6.182
Wafer 0.971 0.923 0.995 0.988 2.088 0.998 0.993 1.000 0.999 76.27
Wine 0.031 0.036 0.611 0.611 0.002 0.720 0.687 0.926 0.926 1.718
WordSynonyms 0.537 0.571 0.618 0.465 0.069 0.725 0.753 0.777 0.658 15.76

ArrowHead DTW+ 0.312 0.282 0.703 0.700 2.139 TS2 0.480 0.462 0.794 0.794 81.08
Beef KNN 0.276 0.490 0.633 0.629 1.158 Vec 0.284 0.494 0.667 0.670 109.0
BeetleFly 0.131 0.275 0.700 0.670 0.618 0.800 0.761 0.950 0.950 79.59
BirdChicken 0.212 0.221 0.750 0.744 0.606 0.621 0.619 0.900 0.899 80.60
Car 0.446 0.501 0.733 0.728 7.565 0.709 0.787 0.867 0.867 298.9
ChlorineConc. 0.231 0.154 0.648 0.607 247.313 0.432 0.333 0.764 0.730 2439
Coffee 1.000 1.000 1.000 1.000 0.336 0.857 0.811 0.964 0.964 129.1
DiatomsizeReduction 0.938 0.921 0.967 0.942 3.272 0.968 0.952 0.984 0.973 87.44
Dist.Pha.Outln.AgeGrp. 0.389 0.368 0.770 0.763 1.804 0.272 0.277 0.705 0.699 2046
Dist.Pha.Outln.Correct 0.183 0.132 0.717 0.690 5.382 0.246 0.176 0.750 0.737 2882
ECG200 0.280 0.192 0.770 0.749 0.468 0.540 0.417 0.870 0.858 463.5
ECGFiveDays 0.286 0.252 0.768 0.763 1.848 0.991 0.979 0.998 0.998 80.84
GunPoint 0.659 0.557 0.907 0.907 0.847 0.973 0.949 0.993 0.993 234.7
Ham -0.005 0.003 0.467 0.467 12.116 0.210 0.168 0.733 0.733 526.1
Herring -0.012 0.001 0.531 0.520 6.536 0.064 0.047 0.641 0.625 326.8
Lightning2 0.537 0.480 0.869 0.864 8.898 0.318 0.252 0.787 0.783 301.2
Meat 0.799 0.797 0.933 0.935 4.497 0.687 0.714 0.883 0.883 300.1
Mid.Pha.Outln.AgeGrp. 0.024 0.022 0.500 0.411 2.066 0.038 0.029 0.519 0.426 2042
Mid.Pha.Outln.Correct 0.153 0.109 0.698 0.691 5.663 0.385 0.297 0.811 0.808 3055
Mid.PhalanxTW 0.380 0.368 0.506 0.374 1.996 0.420 0.404 0.545 0.396 1997
MoteStrain 0.448 0.351 0.835 0.834 0.900 0.528 0.424 0.863 0.862 86.43
OSULeaf 0.309 0.392 0.591 0.588 50.818 0.644 0.671 0.822 0.799 1071
Plane 1.000 1.000 1.000 1.000 1.172 1.000 1.000 1.000 1.000 541.7
Prox.Pha.Outln.AgeGrp. 0.504 0.430 0.805 0.716 2.696 0.506 0.437 0.780 0.689 2051
Prox.PhalanxTW 0.644 0.587 0.756 0.511 2.673 0.674 0.628 0.771 0.562 2052
SonyAIBORobotSurf.1 0.200 0.316 0.725 0.721 0.309 0.588 0.571 0.884 0.883 84.73
SonyAIBORobotSurf.2 0.435 0.324 0.831 0.817 0.571 0.671 0.584 0.910 0.907 125.5
SwedishLeaf 0.639 0.770 0.792 0.787 25.957 0.875 0.916 0.936 0.937 2573
Symbols 0.891 0.913 0.950 0.949 21.459 0.928 0.936 0.969 0.969 132.7
ToeSegmentation1 0.293 0.260 0.772 0.762 3.704 0.816 0.723 0.952 0.952 213.5
ToeSegmentation2 0.398 0.249 0.838 0.764 2.904 0.714 0.631 0.931 0.899 170.8
TwoPatterns 1.000 1.000 1.000 1.000 330.318 0.973 0.964 0.990 0.990 5216
TwoLeadECG 0.654 0.564 0.904 0.904 0.901 0.958 0.918 0.989 0.989 87.20
Wafer 0.867 0.748 0.980 0.944 720.459 0.942 0.868 0.991 0.976 5386
Wine 0.003 0.016 0.574 0.574 0.860 0.339 0.271 0.796 0.796 303.5
WordSynonyms 0.575 0.600 0.649 0.533 66.754 0.349 0.421 0.522 0.309 1407

25

Published as a conference paper at ICLR 2025

Table 6: Detailed results per UCR dataset (Part II)

Dataset Method ARI NMI Acc. F1 RT Method ARI NMI Acc. F1 RT

ArrowHead shape 0.521 0.492 0.817 0.818 0.672 Ours 0.336 0.306 0.720 0.720 136.7
Beef DTW 0.322 0.518 0.667 0.672 0.214 0.453 0.654 0.733 0.736 70.59
BeetleFly 0.219 0.344 0.750 0.733 0.107 1.000 1.000 1.000 1.000 51.50
BirdChicken -0.044 0.007 0.550 0.549 0.106 1.000 1.000 1.000 1.000 51.92
Car 0.560 0.585 0.817 0.815 1.077 0.372 0.457 0.667 0.648 173.1
ChlorineConc. 0.199 0.133 0.628 0.587 120.800 0.537 0.414 0.811 0.782 2252
Coffee 1.000 1.000 1.000 1.000 0.105 1.000 1.000 1.000 1.000 39.92
DiatomsizeReduction 0.921 0.890 0.958 0.921 0.849 0.818 0.865 0.882 0.704 331.7
Dist.Pha.Outln.AgeGrp. 0.209 0.251 0.633 0.615 1.584 0.323 0.402 0.741 0.748 103.9
Dist.Pha.Outln.Correct 0.188 0.140 0.721 0.690 4.733 0.316 0.233 0.783 0.772 158.0
ECG200 0.541 0.420 0.870 0.860 0.397 0.668 0.554 0.910 0.904 43.80
ECGFiveDays 0.705 0.605 0.920 0.920 1.279 0.765 0.666 0.937 0.937 306.1
GunPoint 0.845 0.761 0.960 0.960 0.517 0.845 0.761 0.960 0.960 70.03
Ham 0.031 0.029 0.600 0.600 2.714 0.160 0.124 0.705 0.704 265.6
Herring -0.012 0.006 0.531 0.531 1.129 0.176 0.128 0.719 0.688 162.0
Lightning2 0.358 0.299 0.803 0.797 1.345 0.399 0.320 0.820 0.817 230.8
Meat 0.799 0.797 0.933 0.935 0.860 0.856 0.841 0.950 0.950 133.3
Mid.Pha.Outln.AgeGrp. 0.053 0.022 0.513 0.432 1.722 0.184 0.143 0.649 0.523 106.6
Mid.Pha.Outln.Correct 0.281 0.207 0.766 0.759 5.110 0.410 0.324 0.821 0.813 177.9
Mid.PhalanxTW 0.357 0.360 0.487 0.361 1.740 0.362 0.436 0.591 0.334 107.5
MoteStrain 0.573 0.467 0.879 0.877 0.804 0.212 0.175 0.731 0.731 243.3
OSULeaf 0.316 0.411 0.566 0.567 10.754 0.600 0.625 0.810 0.798 584.7
Plane 0.937 0.961 0.971 0.972 0.644 1.000 1.000 1.000 1.000 74.50
Prox.Pha.Outln.AgeGrp. 0.482 0.399 0.780 0.688 2.244 0.681 0.584 0.883 0.808 119.3
Prox.PhalanxTW 0.585 0.565 0.702 0.426 2.240 0.752 0.728 0.834 0.436 118.7
SonyAIBORobotSurf.1 0.206 0.333 0.729 0.724 0.282 0.619 0.572 0.894 0.893 102.1
SonyAIBORobotSurf.2 0.589 0.468 0.885 0.876 0.560 0.767 0.655 0.938 0.934 139.3
SwedishLeaf 0.697 0.806 0.830 0.827 16.027 0.805 0.864 0.899 0.897 441.6
Symbols 0.823 0.864 0.918 0.917 4.945 0.903 0.917 0.956 0.956 1127
ToeSegmentation1 0.221 0.181 0.737 0.728 1.136 0.678 0.580 0.912 0.912 203.4
ToeSegmentation2 0.486 0.379 0.862 0.809 0.780 0.655 0.471 0.923 0.868 158.2
TwoPatterns 0.908 0.870 0.965 0.964 204.000 0.679 0.145 0.143 0.514 1719
TwoLeadECG 0.484 0.438 0.848 0.846 0.742 0.993 0.981 0.998 0.998 240.5
Wafer 0.977 0.936 0.996 0.991 373.891 0.939 0.858 0.991 0.975 3329
Wine 0.016 0.025 0.593 0.593 0.300 0.150 0.128 0.704 0.702 62.29
WordSynonyms 0.578 0.600 0.639 0.487 20.963 0.246 0.325 0.395 0.220 764.7

ArrowHead Ti- 0.374 0.334 0.737 0.735 465.061
Beef MAE 0.179 0.415 0.533 0.551 483.791
BeetleFly 0.219 0.344 0.750 0.733 395.046
BirdChicken 0.324 0.278 0.800 0.800 396.516
Car 0.260 0.382 0.650 0.662 945.301
ChlorineConc. 0.376 0.273 0.726 0.691 2665.898
Coffee 1.000 1.000 1.000 1.000 340.228
DiatomsizeReduction 0.980 0.971 0.990 0.984 310.567
Dist.Pha.Outln.AgeGrp. 0.357 0.395 0.763 0.762 1457.101
Dist.Pha.Outln.Correct 0.267 0.199 0.761 0.742 2509.478
ECG200 0.635 0.509 0.900 0.891 584.081
ECGFiveDays 0.220 0.167 0.735 0.735 402.789
GunPoint 0.575 0.505 0.880 0.879 472.733
Ham 0.130 0.102 0.686 0.685 1952.924
Herring 0.044 0.028 0.625 0.584 1383.155
Lightning2 0.084 0.140 0.656 0.642 1512.649
Meat 0.622 0.646 0.867 0.832 1096.418
Mid.Pha.Outln.AgeGrp. 0.066 0.032 0.571 0.416 1757.044
Mid.Pha.Outln.Correct 0.118 0.095 0.677 0.631 2353.275
Mid.PhalanxTW 0.442 0.409 0.604 0.437 1631.601
MoteStrain 0.460 0.380 0.839 0.839 322.049
OSULeaf 0.216 0.290 0.483 0.479 2730.597
Plane 0.882 0.915 0.943 0.944 562.163
Prox.Pha.Outln.AgeGrp. 0.898 0.923 0.952 0.954 1407.416
Prox.PhalanxTW 0.682 0.648 0.780 0.449 1407.906
SonyAIBORobotSurf.1 0.650 0.614 0.756 0.494 239.141
SonyAIBORobotSurf.2 0.371 0.293 0.805 0.800 274.687
SwedishLeaf 0.540 0.693 0.726 0.722 2093.867
Symbols 0.617 0.709 0.797 0.799 456.173
ToeSegmentation1 0.557 0.692 0.696 0.660 438.146
ToeSegmentation2 0.343 0.215 0.815 0.740 450.744
TwoPatterns 0.401 0.380 0.720 0.720 4361.683
TwoLeadECG 0.359 0.356 0.696 0.698 302.257
Wafer 0.923 0.826 0.988 0.968 5112.925
Wine 0.910 0.804 0.986 0.963 476.993
WordSynonyms 0.509 0.503 0.563 0.394 2173.234

26

Published as a conference paper at ICLR 2025

Table 7: Statistics for selected viral genomes.

Virus Strain Count Sequence Length

Avg. Std. Min. Max.

Influenza-A H5N1 188 1368.521 (21.682) 1350 1457
H1N1 191 1421.0 (15.25) 1350 1468
H7N9 190 1403.521 (12.048) 1389 1444
H2N2 187 1430.053 (17.87) 1376 1467
H7N3 193 1423.15 (21.537) 1345 1468

Total 949 1409.326 (28.512) 1345 1468

Dengue DENV-1 409 10577.812 (194.4) 10176 10821
DENV-2 409 10592.504 (196.308) 10173 10991
DENV-3 408 10614.137 (132.911) 10173 10810
DENV-4 407 10452.469 (205.208) 10161 10772

Total 1633 10559.328 (194.74) 10161 10991

Influenza A The Influenza A virus genome data (n = 949) is acquired from the NCBI Influenza
Virus Resource (Bao et al., 2008). We consider the genome of segment 6, which encodes the
neuraminidase protein, and include sequence samples belonging to subtypes H1N1, H2N2,
H5N1, H7N3, and H7N9.

Denuge We consider n = 1562 full Dengue virus genomes downloaded from the NCBI Virus
Variation Resource (Hatcher et al., 2017). We consider all four subtypes of the virus
DENV-1, DENV-2, DENV-3, and DENV-4.

We encoded all the sequences as four-channel signals via one-hot encoding, with each nucleotide
(A,C,T,G) corresponding to one of the channels. In the case we encounter incompletely specified
bases in the nucleic acid sequences (Cornish-Bowden, 1985), we give equiprobable weights to the
possible corresponding nucleotides.

Learning procedure Same as the natural language case, we represent the data as a four channel
signal and adopt the softmax activation scheme as described in Section 3.2. Since the sequences
are of considerable and variable length (> 1000 nucleotides, see Table 7), we adopt a stochastic
estimation to (8) by randomly sampling length G = 800 sub-windows from each of sequences. We
take the sample average for each of the sub-window observations similar to (8). We run Algorithm
1 for N = 1024 iterations, using the stochastic approximation described above and grid searching
across values of λ. To produce Figures 2b and 2c, we took the learned representations and projected
them into two dimensions via UMAP.

B.8 RUNTIME WITH PARTIAL SVD

In Section 4.2, we report runtime figures where each iteration computes the Prox step via full SVD.
In practice, the recovered Bλ matrices often exhibit an exponentially decaying spectrum, allowing
singular values to be computed only up to a threshold. In our recovery experiments in Section 4.2,
we use all time slices to form the stochastic approximation for Equation (8), and thus, the runtime is
primarily determined by the time spent evaluating the VI field.

Table 8 presents the time spent evaluating the VI per outer iteration (each iteration also includes
a line search) of the PG Algorithm 1 (in seconds) for four representative UCR datasets and their
accompanying statistics. We consider window sizes d = 20 and d = 60.

In Table 9, we report the spectra of singular values across different values of λ, and in Table 10, we
present the time spent per outer iteration when using either full or partial SVD, as described in the
PROJNUC subroutine of Algorithm 1. We note that for small matrices, there is no computational
benefit to using the partial SVD. However, as the matrix size increases and for smaller values of λ,
early termination of the singular value search can improve the runtime of the projection step and
especially the case when the structure of the data is indeed well approximated by a low rank subspace.

27

Published as a conference paper at ICLR 2025

d Dataset B dimension Seq. Len. VI Runtime per iteration (avg. sec)

20 Meat 82× 120 448 4.00
ECG200 82× 200 96 1.12
DistalPhalanxOutlineAgeGroup 82× 539 80 2.83
Wafer 82× 7164 152 78.31

60 Meat 242× 120 448 5.57
ECG200 242× 200 96 0.99
DistalPhalanxOutlineAgeGroup 242× 539 80 1.90
Wafer 242× 7164 152 103.53

Table 8: Statistics for four representative datasets. The time to evaluate the VI field given in Equation
(8) is given in seconds per outer iteration of Algorithm 1 across all choices of λ given in Table 10.

28

Published as a conference paper at ICLR 2025

Dataset d

20 40

Meat

0 1 2 3 4 5

100

(B
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

100

(B
)

ECG200

6 8 10 12 14 16 18 20 22
10 4

10 3

10 2

10 1

100

101

(B
)

0 5 10 15 20 25

10 3

10 2

10 1

100

(B
)

DisPhaOutAgeGrp

12 14 16 18 20 22 24 26 28

10 5

10 4

10 3

10 2

10 1

100

101

(B
)

4 6 8 10 12 14 16 18
10 5

10 4

10 3

10 2

10 1

100

(B
)

Wafer

40 60 80 100 120

10 2

10 1

100

101

(B
)

35 40 45 50 55 60 65
10 4

10 3

10 2

10 1

100

101

(B
)

Table 9: Spectrum of recovered singular values for Bλ with differing levels of λ for different real
world datasets from UCR data as described in Table 8. When λ is smaller, it is generally sufficient to
compute a fewer number of singular values.

29

Published as a conference paper at ICLR 2025

Dataset d

20 40

Meat

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2
W

al
l T

im
e

(s
)

Partial SVD
Full SVD

0 1 2 3 4
0.00

0.01

0.02

0.03

0.04

W
al

l T
im

e
(s

)

Partial SVD
Full SVD

ECG200

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

W
al

l T
im

e
(s

)

Partial SVD
Full SVD

0 5 10 15 20 25
0.00

0.05

0.10

0.15

0.20

0.25

W
al

l T
im

e
(s

)

Partial SVD
Full SVD

DisPhaOutAgeGrp

0 5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
al

l T
im

e
(s

)

Partial SVD
Full SVD

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
al

l T
im

e
(s

)

Partial SVD
Full SVD

Wafer

0 20 40 60 80 100 120
0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
al

l T
im

e
(s

)

Partial SVD
Full SVD

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

W
al

l T
im

e
(s

)

Partial SVD
Full SVD

Table 10: Average outer iteration runtime (seconds) of Algorithm 1 using PROXNUC for the Prox
step (computing incremental singular values) versus using the full SVD across different λ values for
datasets in Table 8.

30

	Introduction
	Related work

	Problem Setup
	Method
	Low rank time-series embedding for linear auto-regressive models
	Nonlinear time-series embedding by monotone VI

	Experiments
	Parameter recovery with synthetic autoregressive sequences
	Real time-series classification
	Symbolic sequences: language and genomics

	Discussion
	Implementation Details
	First order methods for monotone VI with nuclear ball setup
	Implementation

	Detailed Experimental Setup and Results
	Synthetic Time Series
	Data Generation
	Parameter Recovery

	Synthetic Sequence Data
	Data Generation
	Parameter Recovery with Sequence Data

	UCR time series
	Data Overview
	Overview of Evaluation Methods
	Overview of Methods
	Detailed Experimental Procedure

	Detailed Numerical Results
	Representation Visualization
	Natural language embedding
	Gene sequence embedding
	Runtime with Partial SVD

