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Abstract

The function of biomolecules such as proteins depends on their ability to inter-
convert between a wide range of structures or “conformations.” Researchers have
endeavored for decades to develop computational methods to predict the distri-
bution of conformations, which is far harder to determine experimentally than
a static folded structure. We present ConforMix, an inference-time algorithm
that enhances sampling of conformational distributions using a combination of
classifier guidance, filtering, and free energy estimation. Our approach upgrades
diffusion models—whether trained for static structure prediction or conforma-
tional generation—to enable more efficient discovery of conformational variability
without requiring prior knowledge of major degrees of freedom. ConforMix is
orthogonal to improvements in model pretraining and would benefit even a hypo-
thetical model that perfectly reproduced the Boltzmann distribution. Remarkably,
when applied to a diffusion model trained for static structure prediction, ConforMix
captures structural changes including domain motion, cryptic pocket flexibility, and
transporter cycling, while avoiding unphysical states. Case studies of biologically
critical proteins demonstrate the scalability, accuracy, and utility of this method.

1 Introduction

Biology depends on molecular flexibility. Proteins, RNA, DNA, and other components of biological
systems adopt dynamic 3D conformations, which are key to function [[7} 8|]. Understanding and mod-
eling these dynamics informs both basic biology research and applications to medicine, agriculture,
and other areas, and is therefore a major aim of both experimental and computational scientists. The
statistical distribution of the atomic configurations of a molecular system in equilibrium at a given
temperature is determined by their potential energies. Specifically, a state with lower potential energy
is exponentially more probable than a higher potential energy state, as determined by the Boltzmann
distribution [31]]. To sample this distribution, scientists have invested decades of effort in creating
methods such as Monte Carlo samplers and molecular dynamics simulations (MD), but these methods
are typically extremely slow and suffer from accuracy problems [25} 31} 32].

More recently, machine learning models have revolutionized biomolecular structure prediction, and
efforts are underway to extend these advances to train models that do not merely predict static
structures but generate diverse conformations from the true Boltzmann distribution [|1, {11} |12} 17|
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35]]. As the field evolves, new questions arise about how best to take advantage of these models,
access the information they contain, and target opportunities for further improvement. We ask the
following question: Given a pretrained generative structure model, what strategy should be deployed
at inference time to efficiently and accurately sample its conformational landscape?

In this work, we present an enhanced sampling algorithm, ConforMix, that can be applied to
diffusion-based biomolecular structure prediction models such as the AlphaFold 3 family. ConforMix
reveals hidden conformations and estimates free energies more efficiently than the default sampling
from diffusion models. Our approach is based on the hypothesis that the probability distribution
of generative models contains more information than is efficiently sampled. Importantly, even a
generative model that perfectly sampled the true Boltzmann distribution—a major long-term goal in
machine learning for biology—would, for many uses, still require enhanced sampling algorithms to
fruitfully explore it. For instance, correct sampling of the tight-binding proteins barnase and barstar
at standard state would generate an unbound structure with probability approximately 10~14 [33]].
Directly drawing samples from the distribution would be an extremely inefficient way to estimate
this probability, determine transition states along the binding pathway, or understand the effects of
environmental factors in modulating this affinity [30, [38].

Contributions We introduce, implement, and benchmark ConforMix. Our contributions include:

* A novel algorithm combining twisted sequential Monte Carlo, which performs asymptoti-
cally exact sampling of conditional distributions, with an automated procedure for exploring
the diffusion landscape, using conditional sampling as a subroutine. Optionally, a statisti-
cally optimal sample reweighting algorithm, applied to diffusion models for the first time,
can be used to reconstruct the unconditional distribution from the conditional samples.

* Dramatically improved inference-time sampling in structure prediction models. We imple-
ment ConforMix in Boltz-1, an AlphaFold 3-like diffusion model that typically predicts only
one distinct conformation for a given input. ConforMix-Boltz generates realistic and diverse
conformations for a variety of proteins, without prior knowledge of important degrees of
freedom. In prior work, conditional sampling on biomolecular diffusion models has required
additional input information, such as experimentally measured pairwise distances.

« Efficient free energy estimation. We also implement ConforMix in BioEmu, a diffusion-
based model for conformational sampling, and compare free energy estimates from BioEmu
with and without ConforMix. Using ConforMix boosts the speed of free energy estimation.

2 Related Work

Computational methods have been used to sample molecular conformations for decades. The well-
known Metropolis-Hastings algorithm [23]] for Monte Carlo sampling was first used to simulate the
statistical mechanics of particles in a box. Elastic network models represent a protein as low-resolution
beads connected by springs and recover the principal motions that would occur in this representation,
which often are representative of motions of the actual system [20]]. More sophisticated methods,
such as coarse-grained or all-atom molecular dynamics simulation, model the physical interactions
with progressively more detail and have been used to generate detailed probabilistic distributions for
a number of proteins [[18],24]].

More recently, machine learning models such as AlphaFold 3 [1]] have revolutionized the problem
of static protein structure prediction. AlphaFold 3 is the most prominent example of a class of
diffusion-based structure prediction methods that excel at generating the single most likely protein
structure for a given amino acid sequence. While AlphaFold 3 generates five samples per run, for
well-ordered proteins these samples are often almost identical and are better understood as very
similar predictions of the same static structure rather than a representation of conformational variety.

Using such models to model the distribution of conformations, however, is a task still in its infancy.
The most well-studied approaches involve subsampling or otherwise perturbing the multiple sequence
alignment (MSA) input [[13}|15 27, 35] or templates input [2} |4, |9] to AlphaFold and related models.
These inputs specify, respectively, sequence co-evolutionary information and related 3D structures.
Emphasizing different sequence or structural features in the input has empirically produced significant
conformational diversity. Subsampling methods, however, suffer from fundamental limitations. First,
subsampling necessarily involves reducing the information available to the model, which often



produces poor-quality outputs. Second, molecular conformations are continuous, while subsampling
of sequences or templates is a discrete operation. Third, the structure distribution accessed by
subsampling methods is not well defined, and despite years of study there is no clear means of
reconstructing actual probabilistic ensembles.

Beyond input-perturbation methods, other efforts have involved building new models to predict con-
formations [6} [I1,[I7]. Strategies include leveraging molecular dynamics simulations or experimental
data, either during training or at runtime 34]]. While these approaches have shown
promise, they do not yet accurately reproduce the thermodynamic ensembles of arbitrary proteins.

Based on the successes of MSA subsampling and template perturbation methods, we hypothesized
that diffusion models have learned richer energy landscapes than are generally recovered and that
these landscapes can be accessed via a more sophisticated sampling approach. As improvements in
model training lead to more accurate learned landscapes, it will become increasingly valuable to not
only access the most dominant configurations from the model but also extract rich information about
transition mechanisms and probabilities. We aim to open the door to this type of insight.

3 Methods

Given a biomolecular structure diffusion model p(z|s), where s is the input biological system
provided to the model (for instance, the amino acid sequence of a protein and its multiple sequence
alignment) and x € R™*3 specifies the predicted atomic coordinates, our objective is to efficiently
explore and characterize the distribution p.
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Figure 1: (A) ConforMix adds conditioning to diffusion-based structure prediction models, enabling
deeper and more efficient exploration. (B) ConforMix uses a series of bias potentials to target new
states. ConforMixRMSD is an instantiation that biases sampling away from default predictions to
sample conformational transitions without requiring any user intervention. Sample reweighting can
be applied to recover the ground state distribution.

3.1 ConforMix

Diffusion models learn probability distributions, and the standard sampling procedures, which we
refer to as default sampling, are designed to draw i.i.d. samples from this distribution. To explore
further and more efficiently than is possible with default sampling, we employ conditional sampling,
which is widely used with diffusion models to guide sampling toward particular regions of the learned



probability distribution [5, [10]. As we will see, conditional sampling offers clear benefits even
without specialized prior knowledge about the protein of interest. While time-dependent classifier
guidance and classifier-free guidance are commonly used in other diffusion contexts, these methods
are not well suited to our needs because they require either additional training or special architectural
choices, which are impractical for our needs.

Instead, to devise a purely inference-time method, we turn to Twisted Diffusion Sampling [37]], a
form of sequential Monte Carlo (SMC), to guide conditional generation. SMC has advantages over
more typical guidance methods, including (a) requiring only a time-independent guidance function,
which enables us to easily describe conditions as a function of the fully denoised state of the system,
and (b) providing an asymptotic guarantee of sampling the true target conditional distribution in
the limit of many particles. Twisted diffusion sampling works in conjunction with an underlying
diffusion model that learns to sample a target data distribution ¢(x¢|s). Diffusion models define a
forward noising process, operating over a sequence of 7" steps, that constructs an extended distribution
q(z7.0l8) = ¢(xr|TTy) - - - @(21|20)q(T0|5). The diffusion model py (x4, t|s) can then be trained to
approximate the score function V, log ¢;(z|s), which is used to simulate the noising process in
reverse. We emphasize that ConforMix itself does not involve additional model training.

Instead, twisted diffusion operates as a particle filter. The sampling algorithm is instantiated with
a series of guidance functions y;(z) = exp(—U;(z)), where U; is a potential. For example, many
motions can be described in terms of the distance between two groups of atoms A and B, so we
might select a potential

Usa) = 5 (liia = fisll = A)° M

where « is a strength parameter, [i4, [ip are the centroids of the atom groups, and A; € [Amin, Amax]
is a target distance. The corresponding score function

Valogy(z) = —a(|lia — fisll = Aj) Valliia — iisl| @

is easy to compute. During inference, at each denoising timestep ¢, we construct an inexpensive
estimate of the fully denoised state ¢, which we plug into y; to approximate the potential of the
current state. We then compute V,,y; = (J3,20)” Vi, y; and use this signal to guide z; towards
p(x]y;, s). By simultaneously denoising several such particles x; and periodically resampling them
to maintain correct sampling, we can obtain approximate samples from the desired conditional
distribution. For more details, we refer the reader to Algorithm S1 in the Supplement and to
Algorithm 1 in [37]], which provides an asymptotic guarantee that the sampling approaches the true
conditional distribution as the number of particles becomes large.

In our general framework, ConforMix, twisted diffusion sampling can be used to sample from nearly
arbitrary conditional distributions. To select suitable conditioning, we are motivated by two biological
use cases: (1) automated exploration of the conformational landscape, where a user provides only an
input system (i.e. amino acid sequence, and optionally MSA and/or templates), and (2) user-defined
exploration of conformational states, where a user wishes to examine a specific hypothesized motion
or state. In the rest of this paper, we focus primarily on the first case, but we note that ConforMix can
be customized to scan targeted degrees of freedom.

3.2 ConforMixRMSD

Our approach to the automated exploration problem, which we call ConforMixRMSD, is described
in Algorithm[I] Here we assume that a user wishes to perform undirected exploration of the protein
conformational distribution learned by the underlying model. The idea of ConforMixRMSD is to
simply generate the most probable samples that are sufficiently different from the default prediction
x4. AlphaFold 3—family generative models often have probability distributions p(z|s) that are highly
concentrated around one conformation. After generating an initial conformation x4 with default
sampling, we construct a series of guidance potentials that steer the probability distribution away
from z4 using a root mean square deviation (RMSD) metric: U;(z) = $RMSD(z, 2"%/)?, where

RMSD = ming ¢ x—— S Natoms |12 — (Rx7¢/ + t)||2, and R € SO(3) and t € R? respectively

a=1
rotate and translate x to best align to z"*/. RMSD is differentiable and computable in closed form
via the Kabsch algorithm. The fastest motions of a protein, which are easier to predict are often
fluctuations of disordered loop regions. To avoid exclusively sampling these motions, we apply a



rigid-element mask: we only compute RMSD on amino acids that are part of secondary structure
elements, « helices or 3 sheets. All amino acids still remain free to move during sampling.

Because the realistic range of motion varies per protein and is not known a priori, we seek to discover
the flexibility of each protein by generating structure predictions spanning the range 0 to 20 A RMSD
to x4. After samples are generated, we filter those that are physically implausible. Specifically, we
reject samples where any 10-residue sliding window has an average pLDDT value of more than 20%
below that of the default prediction, as well as structures with clashes. The sliding window approach
detects local non-physical perturbations from sampling beyond the protein’s flexibility range; indeed,
the amount of filtering increases as we bias to larger RMSD to z4 (Figure S6).

Algorithm 1 ConforMixRMSD for exploration of conformational landscapes

Input: Biomolecular structure prediction model p, input system s, target RMSD values R, constraint
strength o, number of samples per RMSD N pies
Output: Samples {x;} for all R and i

1: zg < p(x | 9) # Predict a structure using default sampling

2: mask < RIGIDELEMENTS(xz4) # Identify atoms within secondary structure elements
3 gy x) exp(fa (RMSD(x, xq; mask) — 7")2> # Define conditioning potential
4: forr € R do

5: fori=1, -+, Neamples do

6: Zr,; < CONFORMIX(Z; gr, S)

7: end for

8: end for

9:

return {z,.;} "7 forall v € R

3.3 Sample reweighting and free energy estimation

While some scientific problems require only qualitative information about accessible conformational
states and flexibility, others require estimates of statistical quantities such as free energy differences.
For this reason, we wish to recover the free energy landscape of structure prediction models.

Samples generated from ConforMix are sampled from a series of conditional probability distributions
p(x]y;,s). To form a clear picture of this latent distribution, we wish to reweight our mixture of
conditional samples to the unconditional distribution. Combining samples from multiple conditional
distributions requires estimating the partition functions p(y;). An unbiased estimator of this quantity
is available directly from twisted diffusion sampling, but in practice these estimates are noisy,
particularly for rare samples, and therefore convergence is slow.

To solve the challenge of estimating the partition functions p(y;), we turn to a statistical tool that
to the best of our knowledge has not previously been applied in the context of diffusion models.
The multistate Bennett acceptance ratio (MBAR) free energy estimation algorithm combines sample
information from multiple conditional distributions to jointly estimate the probabilities {p(y;)}, up to
a (negligible) constant factor [28} 29]. In practice, this means that given sufficiently accurate samples
from a series of overlapping distributions, such as the conditional distributions of ConforMix, we can
reconstruct the unbiased model landscape in those areas. We discuss free energy estimation further in
Section 4.4. The mathematical details of MBAR are deferred to the appendix.

4 Results

We evaluate ConforMix in multiple settings to explore the following questions:

Q1. How do conformational samples generated via inference-time guidance with fixed inputs
(sequence, MSA, etc.) compare in quality and coverage to samples generated via methods
that require altering the input MSA?

Q2. Can relevant degrees of freedom be extracted from the energy landscape of a model trained
for single structure prediction?

Q3. As future generative models improve accuracy in predicting the true Boltzmann distribution,
can enhanced sampling algorithms like ConforMix provide rapid quantitative information?



4.1 ConforMixRMSD recovers experimentally observed conformations

We first implement ConforMix in Boltz-1 [36], an open-source diffusion-based structure prediction
model similar to AlphaFold 3. Importantly, Boltz was trained on the Protein Data Bank (PDB), and not
with any other dynamics information. While the default Boltz sampling can generate multiple samples,
they are generally highly concentrated and are more usefully thought of as multiple approximations
of the same static structure than as samples from the true conformational distribution of the protein.
To address Q1, we collect samples using ConforMixRMSD with Boltz (ConforMixRMSD-Boltz) as
the underlying structure prediction model.

We examine performance of ConforMixRMSD-Boltz on proteins that exhibit different types of
conformational changes: (a) domain motion, (b) transporter cycling, (c) cryptic pocket formation, and
(d) fold switching. The set of 38 proteins that exhibit domain motions are the combination of proteins
curated by Lewis et al. [[17] and in OC23 by Kalakoti et al. [13]]. The set of 15 membrane transporters
that exhibit inward-open and outward-open conformations were curated in TP16 by Kalaloti et al.
[13]. The set of 31 proteins that exhibit cryptic pocket formation were curated by Lewis et al. [[17]].
The set of 15 fold switchers proteins are a subset of those curated by Porter et al. [26].

On these sets, Boltz alone typically recovers only a single conformation. Sampling from Boltz with
ConforMixRMSD, however, reveals that the hidden energy landscape contains degrees of freedom
that transition to alternative conformations seen in experiment and deposited in the PDB (Figure
|Z|). As comparators, we implement three MS A-modification protocols in Boltz: AFCluster [35]],
AFSample2 [[13]], and CF-random [15] (see details in Supplement). We also compare to default
Boltz sampling with 1,000 samples. On the domain motion, transport, and cryptic pocket sets,
ConforMixRMSD recovers more alternate conformations than all baselines—as measured by RMSD
and TM-scores to PDB structures (Tables [T] [S3] and Figures 2] [ST} [S4] [S7{SI0)—demonstrating
its power explore conformational space in a novel manner. MSA-based methods show stronger
performance on fold switchers, suggesting such rearrangements are be better captured discrete input
modulation, whereas ConforMixRMSD is better suited to continuous (e.g. domain, transporter,
pocket) transitions.
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Figure 2: ConforMixRMSD uncovers conformational states that are not sampled by default. Confor-
mational sampling of (A) a domain motion protein and (B) a membrane transporter. For each system,
Top Left: density of sampling relative to reference experimental structures. Bottom Left: projection
of the ConforMixRMSD sampled structures (orange) onto the first two principal components com-
puted from their internal atomic distances. Experimentaly determined reference structures (grey) are
projected onto the same space. Right: reference structures and the closest structure generated by each
sampling approach (lowest RMSD).

We also find that recovery of experimentally observed states from ConforMixRMSD-Boltz sampling
is competitive with BioEmu [I7]] (Figure [S2)), a model trained to generate conformational ensembles,



Table 1: Coverage of experimentally-determined reference conformations by method and dataset

Domain motion Membrane transporters Cryptic pockets Fold switching

(n=38) (n=15) (n=31) (n=15)

Default Boltz sampling 0.33 (x0.14) 0.13 (x0.17) 0.15 (x0.12) 0.13 (20.17)

w"::;:::‘f::‘ed AFCluster-Boltz 0.46 (+0.15) 0.19 (x0.19) 035(x0.18)  0.27 (x0.23)
conformagion  CF-random-Boltz 0.51 (0.17) 0.20 (£0.20) 039 (x0.16)  0.20 (x0.20)
(harder tasky _ AFsample2-Boltz 0.44 (£0.15) 0.20 (£0.20) 033 (#0.17) 010 (0.15)
ConforMixRMSD-Boltz  0.69 (+0.15) 0.33 (0.23) 0.45(0.18)  0.13(20.17)

Best-matched  Default Boltz Sampling 0.94 (£0.07) 0.59 (£0.23) 0.94 (x0.08)  0.60 (x0.27)
P— AFCluster-Boltz 0.92 (+0.09) 0.60 (£0.27) 0.97 (£0.05)  0.60 (+0.27)
conformation  CE-random-Boltz 0.87 (+0.12) 0.60 (+0.23) 0.97 (£0.05)  0.60 (+0.27)
Cousier tasky_AFsample-Boltz 0.90 (+0.08) 0.67 (+0.23) 093 (x0.08)  0.70 (x0.30)
ConforMixRMSD-Boltz 097 (+0.04) 0.79 (£0.19) 094 (£0.08)  0.67 (x0.23)

Coverage at X% measures the fraction of proteins with samples matching a reference conformation within X%
of the RMSD between reference structures. Displayed are values of coverage evaluated at 50% of the
reference-to-reference RMSD. We evaluate coverage separately for best-matched and alternate (worst-matched)
states. Error bars are 95% confidence intervals over 1,000 bootstraps.

although we note that many of the evaluated proteins were held out of training for BioEmu but were
likely present in the Boltz training set.

4.1.1 Runtime performance

Due to the additional cost of the guidance and resampling steps in Twisted Diffusion Sampling,
sampling with ConforMix takes ~ 3x the wall clock time compared to default sampling. However,
individual ConforMix samples are much more informative than default samples. ConforMixRMSD
can scan large motions of a protein within the space of a few dozen samples, which takes just a few
minutes for a moderately sized protein. For many such proteins, default sampling would not reveal
such motions even after thousands of samples. Timing statistics are provided in Table[ST]

4.2 ConforMixRMSD samples conformational transitions of domain motion proteins

It is important for any structural sampling method to distinguish meaningful conformational fluctua-
tions from random perturbations. Consider a protein that exhibits an open-to-closed domain motion.
Consider two sampling approaches: (A) generates structures that map the domain transition from
open-to-closed—ideally with lower energy wells at observed dominant conformations—while (B)
generates structure variation in many directions. While both methods may sample the reference
open and closed states of this protein at the same RMSD, approach A is clearly more useful as
it identifies the biologically significant motions. Approach B is difficult to use in practice, as the
reference conformations are not typically known and thus identifying relevant conformations from
the collection of heterogeneous variation is not tractable.

To evaluate whether sampling methods explore biologically relevant conformational landscapes
versus generating diffuse structural noise, we analyze the variance of generated ensembles using prin-
cipal component analysis on pairwise structural distances. We project experimental PDB reference
structures onto the principal components to assess whether the major axes of structural variation
in the samples correspond to observed conformational transitions. Focusing on the domain motion
set, where proteins are known to exhibit a predominant motion between states, we find that Con-
forMixRMSD tends to produce more organized sampling that highlights the transitions between
known conformations, while MSA-based methods typically yield less-interpretable diffuse sampling

(Figures 3] [S3] [STT).

As discussed in the previous section, Boltz sampling generates limited structural diversity, typically
clustering near one experimental state. However, we find that the limited variance that does exist
between samples often corresponds to the direction of motion needed to reach the alternative confor-
mational state—but lacks the magnitude to actually traverse the transition. This suggests the model
recognizes the relevant degrees of freedom but undersamples them. MSA-based approaches present
the opposite problem: they generate abundant structural diversity and can more frequently recover
both reference structures, but sampling often doesn’t map to relevant motion. MSA-based methods
show lower values for both the degree of sample variance explained by top principal components and
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Figure 3: ConforMixRMSD samples domain motion, revealing transitions consistent with experiment
while avoiding noisy paths. (A) Principal component analysis of pairwise C'a: distances of samples
generated for a domain motion protein, dppA. Default sampling extends toward but does not reach
the open conformation, while ConforMixRMSD traces an opening/closing path. While AFCluster
generates open and closed states, its sampling of many other large fluctuations makes it harder to
identify the relevant motion. (B) Analysis of variance of samples generated by default sampling,
ConforMixRMSD, and AFCluster, all used with Boltz. Each point describes results for one protein.
Default sampling and ConforMixRMSD tend to exhibit concentrated variance between samples that
align with the direction of domain motion between reference structures. Note that this metric captures
alignment of the sampling direction with experimental conformational differences, but not the extent
of sampling along that direction—a method may align well without sampling both experimental
conformations. AFCluster often produces samples whose structural differences do not match the
direction of domain motion between references, or lack dominant directions of variance—indicating
off-path sampling. Black-outlined points denote dppA.

the principal component alignment with experimental transitions. These methods generate predictions
diffusely across structure space, sometimes matching reference states, but without concentrating
sampling along pathways likely to exist between observed states.

ConforMixRMSD, by contrast, often generates substantial conformational diversity while concentrat-
ing that diversity along experimentally relevant transitions. For the dipeptide binding protein dppA
(Figure ), for instance, 96% of the variance in ConforMixRMSD samples is explained by a single
principal component that directly corresponds to the domain hinging motion between experimental
states. More generally for domain motion proteins (Figure [3B), the top two principal components
of each ConforMixRMSD ensemble generally explain both a high fraction of the sample variance
(indicating the method generates focused diversity) and a high fraction of the variance between exper-
imental reference structures (indicating this diversity aligns with known conformational changes).
When this is the case, conformational ensembles are readily interpretable: their major modes of
structural variation correspond to biologically meaningful motions. PCA plots for all proteins in the
domain motion set are provided in Figure [STI]

As an alternate metric, the “fill ratio" introduced by [13]] measures how continuously samples cover
the conformational path between reference states based on TM-scores. ConforMixRMSD sampling
results in higher fill ratios than the other evaluated methods (Figure[S5). We also compute geometric
quality metrics on ConforMix-generated samples and observe slightly elevated rates of outliers
compared to default sampling, but most samples appear reasonable (Table[S2).
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Figure 4: Exploration of biological macromolecules of interest. (A) ConforMixRMSD-Boltz recovers
all three experimentally determined conformations of the SemiSWEET transporter. Default Boltz
sampling recovers only the occluded state. PCA demonstrates how the samples capture the major
motions as the transporter opens to the inward (intracellular) or outward (extracellular) sides. (B)
Preliminary application of ConforMixRMSD-Boltz to RNA structure shows it can recapitulate MD-
observed transitions.

4.3 ConforMixRMSD recovers heterogeneous states in multi-chain and RNA systems

We further evaluate ConforMixRMSD on select biomolecular systems known to exhibit interesting
heterogeneity. First, we consider a multi-chain transporter protein, the SemiSWEET sugar transporter,
which cycles through three distinct states to transport substrate across a membrane (Figure dA) [T4].
The inward- and outward-open states enable substrate uptake and release, while an occluded state
that is closed to both sides allows the substrate to pass through the transporter. Thus far, ML-based
conformational sampling approaches have primarily been effective on single-chain proteins. Boltz by
default predicts only the occluded state for this system. With ConforMixRMSD sampling, however,
Boltz recovers all three states. PCA analysis and visual inspection of sampled structures reveal
intermediate states between each known conformation, forming a conformational “trajectory”.

While most of our testing focuses on proteins, ConforMix can be applied to any biomolecular system
as long as it is supported by the underlying model. We demonstrate sampling of the hammerhead
ribozyme (FiguredB), a small catalytic RNA molecule that adopts multiple conformations. These
conformations have not been deposited in the PDB, so instead we take molecular dynamics simulations
from [22]] as reference data (the grey structures in Figure[dB represent MD frames). ConforMixRMSD-
Boltz visually recapitulates key aspects of the unzipping transition observed in the MD simulations.
The sampled structures qualitatively capture the conformational trajectory, suggesting that ConforMix
can extract meaningful conformational heterogeneity from RNA systems, though comprehensive
evaluation across RNA systems would be needed to fully characterize performance.

We conclude that (1) Boltz’s learned conformational landscape is rich enough to be of practical utility
on many protein systems of interest, and (2) ConforMixRMSD enables inference-time access to this
landscape without the disadvantages associated with MSA-modification methods.

4.4 Rapid free energy estimation with BioEmu

To illustrate the ability of ConforMix to improve sampling in a variety of situations, we implement it
in BioEmu [17] as well. Unlike Boltz, BioEmu produces broad distributions of conformations with
default sampling. However, default sampling is an inefficient way to observe rare events or estimate
quantities such as free energy differences, so we assess the ability of ConforMix to rapidly estimate
free energies from BioEmu.



ConforMix speeds free energy estimation, trp-cage-helix

Estimated AG
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—— Default sampling
ConforMix
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Figure 5: ConforMix sampling in BioEmu enables faster convergence of free energy estimates than
default sampling. Using a series of guidance potentials based on RMSD to the native state enables
systematic collection of samples that, in turn, enable more rapid free energy estimation. The free
energy difference estimated is between the lowest free energy RMSD value (3A to the reference state)
and a more extended conformation at 7.5A. 90% confidence interval from 50 bootstraps is shown.

While ConforMix can be used to study states that are not seen at all in unbiased sampling, for
purposes of comparison we consider a set of transitions that can also be observed without enhanced
sampling. Specifically, we evaluate ConforMix on local unfolding proteins from BioEmu, which
contain structural motifs that undergo transitions between ordered and disordered states. Because
BioEmu does not produce a single consensus structure from default sampling, here we instead use
RMSD to the folded reference structure as the basis for defining a series of guidance potentials (see
Supplement). We compare the rate of convergence of i.i.d. probabilities from ConforMix estimates
with MBAR reweighting to unbiased sampling in BioEmu (Figure[5). Specifically, we estimate the
free energy difference between the lowest free energy RMSD value and a specific less folded state.
We observe that ConforMix produces estimates close to the true unbiased estimates and converges
significantly more quickly.

5 Discussion

Predicting biomolecular dynamics represents a major frontier for machine learning. By enhancing
inference-time sampling in diffusion models, ConforMix rapidly reveals hidden states and continuous
motions without prior knowledge from the user. It also enables characterization of the underlying
free energy landscape of the models, which we anticipate will assist in future training and evaluation.
The broader impact of tools like this is initially in an improved understanding of basic biology and
then in applications to medicine and other areas.

The primary limitation of ConforMix, like other enhanced sampling methods, is that it depends on
the robustness and utility of the underlying energy landscape it samples. While Boltz has learned a
useful landscape for many proteins, its default sampling typically does not adequately explore the
landscape. ConforMix sampling enables us to identify major missing states: known experimental
conformations that do not exist with realistic probabilities in the Boltz probability distribution.
Other limitations include potential systematic errors due to the inexact sampling of twisted diffusion
in the non-asymptotic regime and the statistical uncertainty associated with MBAR. We note that
ConforMix has more general uses beyond the specific instantiation of ConforMixRMSD. For instance,
users can supply more informative biasing potentials, perhaps based on experimental evidence. If
desired, ConforMix can be used in combination with input-modification approaches such as MSA
subsampling, although we leave that exploration to future work.

ConforMix is fundamentally flexible. It is not restricted to proteins, and it can handle complexes of
multiple molecules. It is able to operate in both all-atom and backbone-only diffusion methods. It is
orthogonal to model training. We anticipate that as models mature and energy landscapes approximate
the true Boltzmann distribution more closely, inference-time sampling methods such as ConforMix
will only become more valuable, both for direct study of protein systems and for model development.

The code for this project is available at |github.com/drorlab/conformix|
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* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: [NA]

Guidelines: The paper does not include theoretical results. Citations are provided to the
theory that is used.

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the Supplemental material, but if
they appear in the Supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or Supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Descriptions of the sampling and algorithms used are clear and provided in the
paper.
Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in Supplemental
material?

Answer: [Yes]

Justification: Code to run ConforMixRMSD-Boltz, as well as additional analysis code, will
be provided on our Github. The full protein sample datasets we generated are very large and
are impractical to share online, but we will attempt to make them available upon request.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in Supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Essential information is provided in the paper. This paper does not involve
additional model training. The models used and sets of proteins evaluated are clearly
described in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as Supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The standard errors reported in Table 1 are computed with a bootstrap analysis
(1,000 bootstraps).

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Compute resources are discussed in the Supplement.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have reviewed the Code of Ethics and this work conforms.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See conclusion.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not consider that the work herein has a high risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Each tool described in the paper is cited and credited. Boltz is released
under the MIT License, https://github.com/jwohlwend/boltz. BioEmu is released under the
MIT license, https://github.com/microsoft/bioemu/blob/main/LICENSE. Some free energy
computations were performed with the pymbar module, which is released under the MIT
license, https://github.com/choderalab/pymbar. The paper corresponding to each of these is
cited in the main text.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The primary new asset is code. The proteins used are enumerated in the
Supplement.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjects were involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the Supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects were involved.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were not used in formulating the core development of this work.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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