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ABSTRACT

Skill-based reinforcement learning (SBRL) enables rapid adaptation in environ-
ments with sparse rewards by pretraining a skill-conditioned policy. Effective skill
learning requires jointly maximizing both exploration and skill diversity. However,
existing methods often face challenges in simultaneously optimizing for these two
conflicting objectives. In this work, we propose a new method, Adaptive Multi-
objective Projection for balancing Exploration and skill Diversification (AMPED),
which explicitly addresses both: during pre-training, a gradient-surgery projection
balances the exploration and diversity gradients, and during fine-tuning, a skill
selector exploits the learned diversity by choosing skills suited to downstream
tasks. Our approach achieves performance that surpasses SBRL baselines across
various benchmarks. Through an extensive ablation study, we identify the role of
each component and demonstrate that each element in AMPED is contributing to
performance. We further provide theoretical and empirical evidence that, with a
greedy skill selector, greater skill diversity reduces fine-tuning sample complexity.
These results highlight the importance of explicitly harmonizing exploration and
diversity and demonstrate the effectiveness of AMPED in enabling robust and
generalizable skill learning. https://amped2025.vercel.app/

1 INTRODUCTION

Efficient exploration remains a major challenge in reinforcement learning (RL), particularly in
environments with sparse or delayed rewards (Sutton & Barto, [2018}; |[Schmidhuber;, [2010; [Vinyals
et al., 2017 |Litman, |2005). While biological agents naturally discover rewarding behaviors, artificial
agents often rely on handcrafted reward functions, which demand extensive domain knowledge and
limit scalability (Kwon et al.,|2023)). Skill-Based Reinforcement Learning (SBRL) addresses this by
pretraining a skill-conditioned policy through unsupervised skill discovery (Gregor et al., 2016 |Shi
et al.| 2022)), enabling efficient adaptation to downstream tasks.

A common approach in SBRL is to use Unsupervised Reinforcement Learning (URL) objectives
during pretraining to discover diverse and useful skills (Eysenbach et al.||2019; |Gregor et al., 2016).
Two widely used URL objectives are: (1) maximizing mutual information (MI) between skills and
their state trajectories to promote skill diversity, and (2) maximizing state entropy to encourage
exploration (Laskin et al.| 2022} |Liu & Abbeel, 2021b) (Appendix [H) However, MI-driven objectives
often induce premature specialization by curtailing exploration (Campos et al.| [2020; Jiang et al.|
2022; |Strouse et al., 2022)), while entropy-based exploration sacrifices skill distinguishability, limiting
downstream utility. The core problem is how to balance these competing objectives, without resorting
to ad-hoc heuristics.

In this work, we bridge two URL paradigms in the theoretical framework of multi-objective reinforce-
ment learning, proposing Adaptive Multi-objective Projection for balancing Exploration and skill
Diversification (AMPED). Few previous studies, such as CeSD (Bai et al.,|2024) and ComSD (Liu
et al., [2025), have explored similar integrations but either lack a solid theoretical foundation or exhibit
significant limitations (Appendix [G)).

Our key insight is that gradient conflicts naturally arise between diversity objectives and exploration
objectives, leading to inefficient updates that hinder learning (Yu et al., [2020). To address this issue,


https://amped2025.vercel.app/

Under review as a conference paper at ICLR 2026

1
1
@ Skill Pretraining '@ Fine-tuning
1
. —
' -
| | )
| skl ) ] Skill 1
. \ \ : Stand Stand .‘ .
Skill 1{ skill 2 | ) | / - /,
{ sz |, I skill2 I skill2
J\Skius /7—*-\ \\ : ~\ \\ / N "
| skil3 | ! ( skill3 | [ oskins |
A4 / 1 A4 \\//’/
1
1
(a) Initialization (b) Maximization ' (c) Skill Selection (d) Adaptation

Figure 1: Graphical scheme explaining our method, AMPED. (a) At initialization, the skills exhibit
small coverage that are close to each other in the task space. (b) During skill pretraining, exploration
and diversity objectives encourage skills to widen and repel each regions. (c) In fine-tuning, the skill
selector identifies the skill best aligned with the target task at each step. (d) The selected skill is
further adapted via extrinsic rewards to maximize performance on the target task.

we adopt a gradient surgery method inspired by multi-objective RL, ensuring that conflicting gradient
components are removed before applying updates (Yu et al.,|2020). We use particle-based entropy
and Random Network Distillation (RND) (Burda et al.,|2019) to drive exploration, and adopt the
AnInfoNCE objective for skill diversity. Furthermore, rather than selecting skills uniformly at random
during fine-tuning, as is common in prior SBRL approaches (Bai et al., 2024; |[Eysenbach et al.| 2019
Yang et al.,[2023)), we introduce a Soft Actor-Critic (SAC) based skill selector that learns to select
the best matching pretrained skill (Haarnoja et al.,|2018). This adaptive selection manner maximally
leverages the inherent diversity of the skill repertoire. A graphical summary of these contributions is
provided in Figure[T]

AMPED improves performance over strong baselines, DIAYN, COMSD, RND, CeSD, BeCL, CIC,
and APT, across benchmarks. We evaluate AMPED on Maze environments (Campos},2020) and the
Unsupervised Reinforcement Learning Benchmark (URLB) (Laskin et al.,|2021)). In the Maze suite,
AMPED learns well-separated skills while simultaneously achieving high state coverage, whereas
competing methods fail to maximize both. On URLB, AMPED delivers statistically significant
improvements in return over the baselines. Taken together, these results show that explicitly resolving
exploration-diversity gradient conflicts yields substantial gains in SBRL.

Ablation studies further confirm that each component of our framework, entropy bonuses, RND,
Anisotropic InfoNCE, gradient surgery, and the skill selector, contributes meaningfully to overall
performance. Moreover, we show, theoretically and empirically, that greater skill diversity reduces
fine-tuning sample complexity when paired with a greedy skill selector. This clarifies the respective
roles of diversity and selection and motivates further work on principled skill selector design.

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESS (MDP) AND CONDITIONAL MDP (CMDP)

MDP is a tuple M := (S, A,P, R, i, v), where S is a state space; .4 is an action space; P : S x A —
A(S) is a transition model where we denote the probability of transitioning from s to s’ with action
a by P(s'|a,s); R : S x A — R is a reward function; ;1 € A(S) is the initial state distribution;
and v € (0,1] is a discount factor. A trajectory is a sequence of states and actions, for example:
T = (81,01, 82,0a2,...ag_1,5H). We will only consider finite horizon MDP, i.e. H < co. A policy
m: S — A(A) maps states to action probabilities, denoted as 7 (als).

CMDP extends MDP by introducing a latent variable z € Z, often representing a skill or context.
The policy becomes 7(als, z), additionally conditioned on z. CMDP is used in skill discovery, where
the goal is to learn diverse, distinct behaviors parameterized by z.
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Figure 2: Overview of the training process of AMPED. During the skill pretraining phase, the agent
is conditioned on randomly sampled skills and optimized using intrinsic rewards for exploration and
diversity. These gradients are not directly used, but are balanced via a gradient surgery mechanism.
In fine-tuning phase, a skill selector adaptively selects skills on each step, based on task-specific
feedback, and the agent is further optimized using extrinsic rewards from the downstream target task.
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Both MDP and CMDP aim to maximize the expected cumulative discounted reward:
max, B, i py[D>; 7(t)r:] where trajectory 7 is generated from policy 7.

2.2 ENTROPY AND MUTUAL INFORMATION

For random variables X, Y, Shannon entropy and MI are defined as H(X), I(X;Y), respectively:

H(X)=—E[logp(X)], I(X;Y)= Dkr(px.y | pxpy) (1)

where Dxi, is a Kullback-Leibler divergence, and px y is a joint distribution. Higher entropy
corresponds to higher unpredictability, the state distribution becomes more uniform in the state
space, thereby facilitating broader exploration. In contrast, higher MI indicates stronger statistical
dependence between two random variables. MI is commonly used between skills and trajectories, so
that each skills reliably produces its characteristic behavior. Moreover, by using contrastive learning
to estimate MI, each skills repel the others, thereby achieving skill diversity.

These information-theoretic terms are widely used as an intrinsic objective in URL. For example,
CIC (Laskin et al.,[2022): I(T; z), DIAYN (Eysenbach et al., 2019): I(S; Z) + H(A|S) — I(A; Z|5),
BeCL (Yang et al, [2023): I(S M. s (2)). Additional details on the objectives are provided in Ap-
pendix [H]

2.3 GRADIENT CONFLICT

In multi-objective RL, optimizing multiple objectives simultaneously with the same network can
lead to conflicts between the gradients of each objective. A naive implementation computes the
gradients for each objective independently and performs gradient descent using their sum. However,
this can result in gradient conflict, where the update direction that benefits one task negatively impacts
another (Yu et al., [2020).

To address this issue, [Yu et al.|(2020) proposed PCGrad, a gradient surgery method designed to
mitigate such conflicts by removing interfering gradient components. Given a set of objectives L (6)
for k = 1,...,n, the corresponding gradients are first computed as gx = VL. The gradients are
then processed sequentially in a random order. For each pair of gradients g; and gy, if a conflict is
detected, i.e., if g; - g < 0, then the projection of g; onto gy, is subtracted from g;. Thus, the modified
gradient is guaranteed not to interfere with the descent directions of other tasks. Moreover, PCGrad
paper showed that under appropriate conditions, a projected gradient step can outperform standard
stochastic gradient descent (SGD). Finally, the adjusted gradients are aggregated and applied using
conventional SGD.
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3 ADAPTIVE MULTI-OBJECTIVE PROJECTION FOR EXPLORATION AND
DIVERSIFICATION (AMPED)

Our goal is to maximize both skill diversity and exploration, as supported by prior works (Eysenbach
et al.| 2019} |Gregor et al.| 2016 [Yang et al.| [2023;2024)). Previous methods in URL, such as CeSD
and ComSD (Bai et al., 2024} [Liu et al.l [2025)), have combined these objectives. Following this
approach, we optimize the discounted cumulative return E [Zt ’yt(rexplomﬁon + rdiversity)}, using a
DDPG agent (Lillicrap et al., 2015). Here, 7expioration incorporates entropy and RND-based objec-
tives (Burda et al., 2019), while rgjversiy includes the AnInfoNCE term (Rusak et al., [2024). The
specific formulations and the rationale for their use are detailed in Section[3.2] We illustrate our
overall method in Figure 2]

Maximizing state entropy is essential because it induces a uniform visitation distribution, minimizing
worst-case regret as shown by |Gupta et al.|(2018). And this principle has been empirically validated
in prior works (Jain et al.} 2023} |Liu & Abbeel, 2021b). We now briefly motivate the importance of
skill diversity for downstream tasks via the following theoretical analysis.

3.1 THEORETICAL ANALYSIS OF SKILL DIVERSITY

Assume a finite state space S with cardinality S, and a finite horizon H. Suppose we are given
skill-conditioned policies 7(a | s, z) with a finite number of skills and a downstream task. Let 7*
be the optimal policy and p* € A(S*) be a corresponding state distribution. Also set z, as a best
policy in the sense that z, = argmin, d(p*, p,). We denoted the total variation of two probability

distributions by d(p1, p2) = |p1 — p2/|1.

Theorem 1. Define 6 = min;+; d (pzl. , pzj), e=d (p*, pz*). Assume that the skills are sufficiently
diversified, so that A = § —2¢ > 0.

Draw n i.i.d. trajectories from optimal policy SO, ... S™ ~ p* and form the empirical state
distribution p. Consider the greedy skill selector Z := argmin, d(ﬁ, pz). Then

2
Pr[2 # 2] < 29Hexp (—?) . 2)

In terms of confidence level n € (0, 1), if

A—(SlogZ +log H — logn), 3)

we have Pr[Z # z,] <.

Thus, greater diversity  increases the margin A and reduces the required samples. This formalizes
the intuition that diverse skills ease identifying the skill whose policy is closest to the downstream
optimum 7*. Empirical validation appears in Section and the proof is provided in Appendix [A]

3.2 EXPLORATION & DIVERSITY INTRINSIC REWARDS

Exploration Reward. Our exploration reward consists of two components: an entropy-based term and
a RND term (Burda et al.,[2019). The entropy component, widely used in SBRL (Gregor et al.,|2016;
Laskin et al.| 2022} |Liu & Abbeel, 2021a)), enhances exploration when maximized and is defined as
H (Siot), where Sioe(s) = (1 —~) Y-, v'p(s¢ = s) is the discounted total state distribution. Since the
exact discounted total state distribution is unknown, we approximate it using a particle-based method
by [Laskin et al.[(2022). Each particle is an embedded state pair x; = gy, (7;) Where 7; = (s¢, S¢+1)
and g, denotes the embedding function. Then the distribution is estimated using distances to its kth

nearest neighbor, R; i, ,,. The intrinsic reward is then computed as rengopy (S) = 1og(2f:1 Riin)s
which captures the entropy contribution of each particle.

To construct a meaningful latent space, we train an encoder with the contrastive loss:
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here g, encodes skills, and 7' > 0 is a temperature hyperparameter from CIC (Laskin et al., 2022).

Despite its benefits, entropy-based exploration alone is insufficient in high-dimensional spaces due
to its O(n?) complexity, making full-state utilization impractical. Although clipping the particle
number alleviates computational overhead, it correspondingly degrades the fidelity of the entropy
approximation. To address this, we integrate RND, a model-based exploration technique, which is
effective in later training stages when sufficient data is available for model learning. RND trains a
predictor network fy to approximate the output of a fixed, randomly initialized target network fiarger,

with the intrinsic reward rma(s) = || fo(s) — ftarge[(s)||2, where higher prediction error indicates
unfamiliar states, encouraging exploration.

We define the exploration reward as a linear combination of the RND and entropy terms. Specifically,
Texploration () = QTentropy (S) + Brma(s) where a and £ is the positive scaling coefficients that modulate
the relative influence of the entropy-based and RND rewards. Ablation studies in Appendix [D]confirm
that combining entropy and RND significantly improves exploration efficiency in high-dimensional
environments.

Diversity Reward. To motivate our diversity reward formulation, we first examine CeSD (Bai et al.,
2024). CeSD optimizes H (Siot) + Laiversity> Where Laiversity ensures non-overlapping skill trajectories.
However, if the supports of different skill coverages become disjoint, the diversity 1oss Lgiversity NO
longer enforces inter-skill distributional separation, which can lead to skill clustering rather than
promoting broad coverage of the state space.

To overcome this limitation, we adopt the MI objective I (S’(l)7 S (2)) from BeCL (Yang et al.,[2023),
where S™) and S(®) are states sampled from trajectories generated by the same skill. Unlike CeSD’s
heuristic penalty, this formulation actively repels skill distributions, leading to stronger skill separation.
Moreover, they showed that sufficiently maximizing the BeCL objective also increases state entropy,
balancing exploration and diversity. The empirical results of the 2D maze experiment (As shown in
Figure [3) confirm its superiority in differentiating skills compared to CeSD. For an analysis of the
effectiveness of skill diversification under BeCL's MI objective, refer to Appendix [B]

For MI estimation, we use AnlnfoNCE (Rusak et al.| 2024), an anisotropic variant of InfoNCE (Oord
et al. 2018), designed to handle asymmetries in latent factors. Empirical studies (Section @)
demonstrate its advantage over standard InfoNCE.

The AnInfoNCE loss is defined as:
eI =F()I1R

, 5
e I (sH)=F()IF + vail e () =FIIF ©)

Lamce(f, A) = _Es,sﬂ{SZ} In

where s, sT are positive samples (from the same skill), and {s~} are negative samples (from different
skills). The matrix A is a learnable diagonal matrix, and the weighted norm is defined as ||x||i =

2T Az. The state encoder f and A are updated via loss minimization. Accordingly, we define
contrastive reward 7giversity as the term inside the bracket.
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3.3 BALANCING EXPLORATION AND DIVERSITY OBJECTIVES

Differentiable skills improve adaptability in dynamic skill selection but often compromise exploration
ability (Yang et al.| [2023)), leading to suboptimal performance in environments. By treating MI,
entropy, and RND as distinct objectives, our problem can be framed as a multi-objective RL setting,
in which all three objectives are optimized concurrently. In this perspective, observed gradient
interference can be interpreted as a form of gradient conflict, a well-documented challenge in multi-
objective RL. Empirical evidence of such conflicts in our setting is presented in Table[T] For each
task, results are averaged over 10 random seeds and reported as mean =+ standard deviation.

Table 1: Gradient conflict ratio in skill learning across environments. The ratio is defined as the
fraction of training steps exhibiting gradient conflicts. Conflicts arise with high probability.

Walker Quadruped Jaco
Gradient Conflict Ratio  0.754 £ 0.281 0.907 £ 0.103  0.958 4 0.056

To mitigate this issue, we integrate a gradient projection method, known as gradient surgery or
projecting conflicting gradients (PCGrad), proposed by |Yu et al.|(2020). The key idea is to remove
gradient interference by projecting one objective’s gradient onto the orthogonal complement of the
other (Figure 4). Concretely, let g, and g,;,, denote exploration and diversity gradient, respectively.
At each update, we randomly choose which gradient to adjust: with probability p we project g,
to g4;,,, and with probability 1 — p vice versa. Then, the final update gradient g;,,,,; is obtained by
summing two gradients, one projected. The procedure is detailed in Algorithm [I] Although more
advanced methods exist (e.g., Liu et al.|(2021)); Navon et al.[(2022)), we opted for the original gradient
surgery approach due to its simplicity and ease of integration. Despite its straightforward design, this
method proved sufficiently effective in mitigating gradient conflicts for our application.

3.4 ADAPTIVE SKILL SELECTION

To utilize the diversity of skill set, we adopt a skill selection method during fine-tuning. Specifically,
we train a skill selector p(z|s) concurrently with skill fine-tuning. At every time step, the selector
samples a skill according to p(z|s), while the policy conditioned on that selected skill continues to
adapt under the downstream task reward. We employ an e-greedy strategy with e decaying over the
course of training to balance between exploring new skills and exploiting high-performing ones.

Prior methods often impose constraints to stabilize skill learning. For example, DIAYN (Eysenbach
et al., 2019)) freezes the prior distribution, VIC (Gregor et al., 2016)) fixes the skill at initialization,
and other approaches rely on labeled demonstrations. In contrast, our method jointly trains the policy
and skill distribution, which turned out to be stable and effective.

During evaluation, the skill selector becomes deterministic, employing a greedy strategy to maximize
task performance. This hierarchical framework facilitates efficient skill transfer and adaptation while
maintaining decision stability. Detailed descriptions of the implementation of the skill selector are
provided in Appendix [[.4]

T AT

(a) DIAYN (b) BeCL (c) CIC (d) CeSD (e) ComSD (f) Ours

Figure 5: Agents exploring on Tree Maze after pretrained from different skill discovery objec-
tives. From (a) to (f) each are trained with six skills. Visually, our approach exhibits the most distinct
skills while ensuring full coverage of the state space.
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Figure 6: Aggregated expert-normalized performance on 12 URLB downstream tasks. Four
metrics, median, IQM, arithmetic mean, and optimality gap, are plotted using the evaluation protocol
introduced by |Agarwal et al.|(2021)). Our method (gray) achieves the highest median, IQM, and mean
scores and the smallest optimality gap, outperforming the previous state-of-the-art APT (pink) and
other baselines.

4 EXPERIMENTS

In this section, we provide a comprehensive evaluation of our method’s performance in comparison
with baseline approaches using the URLB. We also illustrate skill visualizations in the Tree Maze,
which reveal how our method explores and separates behaviors. A series of targeted ablations then
isolates the impact of each algorithmic component, RND, AnInfoNCE, gradient surgery, and skill
selector. We conclude by visualizing representative skills learned during URLB pretraining.

4.1 SKILL DISCOVERY IN TREE MAZE

The experiment demonstrating the skill discovery capability is conducted in a Tree Maze environ-
ment (Campos et al., 2020). For details on the environment, implementations, and hyperparameters,
refer to the Appendix [l The Tree Maze serves as a toy environment for preliminary analysis and
insight; accordingly, we evaluate a reduced set of baselines, DIAYN, BeCL, CIC, CeSD, and ComSD,
compared to those used in URLB. Refer to the Appendix [H|for comprehensive details on the baselines.

Figure [3]illustrates the visualization of each baseline’s performance after pretraining with six skills. In
terms of skill distinguishability, our observations indicate that DIAYN, BeCL are capable of learning
distinct skills, enabling clear differentiation among the states covered by each skill. Conversely, the
skills learned by CIC are less distinguishable, likely due to the absence of a skill-differentiating term in
its reward function. Regarding state coverage, CIC, CeSD and ComSD nearly reach the state coverage
limit, whereas DIAYN and BeCL exhibit inferior performance in this regard. Notably, our proposed
method, AMPED, demonstrates superior performance in both maximizing skill discriminability
and state coverage, achieving the state coverage limit while each skill clearly separated. Additional
experiments on the effect of varying the number of skills, results in other maze layout, and the
evolution of skills over training steps are provided in Appendix [C]

4.2 EVALUATION ON URLB

To evaluate the performance of our method on downstream tasks, we utilize 12 tasks from the URLB.
The benchmark comprises three domains: Walker, Quadruped, and Jaco. Detailed descriptions of the
URLB are provided in Appendix Each method is first pretrained for 2M steps using an intrinsic
reward, followed by fine-tuning for 100K steps on the downstream tasks.

For comparative evaluation, we selected strong baseline methods from the URLB, including DIAYN,
APT, BeCL, CIC, RND, and the recently proposed CeSD and ComSD. Furthermore, methods such
as LSD (Park et al., [2022), CSD (Park et al., [2023)), and Metra (Park et al., 2024)) were omitted
because they do not exhibit performance improvements on the URLB relative to CeSD (Bai et al.|
2024). Our implementation adheres to the official URLB code (Laskin & Yarats| |2025). Additional
information on hyperparameters and network architectures can be found in Appendix |I} For more
details on reproducing these baselines, see Appendix

In order to ensure a fair comparison, we fine-tuned all methods under identical conditions without
using the skill selector. Unless otherwise stated, all experiments on URLB were pre-trained across 10
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Table 2: Episode returns under component ablation. Ablating any single component, RND,
AnInfoNCE loss, gradient surgery, or the skill selector, occasionally improves performance on
individual tasks, yet yields degraded overall returns. The best result is shown in bold, and the second-
best is underlined.

W.0. W.0.
Domain  Task AMPED (Ours) ﬁvli?b AnIIVIVf'(‘)’NCE Gradient Skill
Surgery Selector
Flip 674+ 105 487 +47 536475 625+48 686+ 133
Run 467+ 103 341+ 67 440441 427457 517+49
Walker Stand 951 + 38 917+ 67 950+25 939+26 947+ 19
Walk 929 4 19 638+ 60 923+ 18 899 +45 886+ 63
Sum 3021 2383 2849 2890 3036
Jump 720+32 5974154 705+22 641 + 64 699 + 68
Run 494 + 53 410+ 84 496 +37 453+ 13 493 + 54
Quadruped Stand 906 + 67 905+ 10 867+70 890 +34 816+ 150
Walk 890+59 6114228 870+26 747+ 114 816+ 116
Sum 3010 2523 2938 2731 2824
Re. bottom left 143 + 32 147 +14 105433 111427 139 + 34
Re. bottom right 144 + 25 132440 148+ 14 114435 140 +21
Jaco Re. top left 140 + 39 163+36 140423  96+23 130 +38
Re. top right 154 + 46 144 +47  92+24  106+49 146 + 49
Sum 581 586 485 427 555

random seeds, and each fine-tuning run reused its corresponding pre-training seed. The aggregation
of statistics was performed using the Rliable open-source framework (Agarwal et al., 2021). The
expert score, which is used to calculate these metrics, was derived from an expert DDPG agent, as
outlined in |Agarwal et al.[(2021)).

As shown in Figure [6] our method achieves the best results on the URLB. As recommended by
Agarwal et al.|(2021), we use the IQM as our primary performance measure. In particular, it surpasses
the skill-differentiating methods BeCL by 17.96%, the entropy-maximization method CIC and
APT by 15.02%, 9.73%, as well as the recent diversity-exploration hybrids CeSD and ComSD by
20.91%, 35.01%. These results suggest that considering both diversity and exploration is critical for
downstream task performance, and more importantly, appropriately balancing these objectives is
essential. All scores of each method at each task is reported at the Appendix |[M]

4.3 ABLATION STUDIES

Ablation of AMPED shows that each component, RND, contrastive diversity, gradient surgery, and
skill selection, makes a non-redundant and substantial contribution to the overall efficacy of AMPED.
To quanitfy each component’s impact, we individually ablated it within AMPED and reporting the
resulting relative change in total returns with standard deviation (Table [2). In the Walker domain,
removing RND incurs a 21.1% drop; in Quadruped it costs 16.2%; in Jaco, 0.9% increased but it
is negligible, confirming RND’s crucial exploration role. Dropping the AnInfoNCE diversity term
reduces Walker by 5.7%, Quadruped by 2.4%, and Jaco by 16.5%, underscoring the need for skill
separation. Disabling gradient surgery degrades returns by 4.3% (Walker), 9.3% (Quadruped), and
26.5% (Jaco), highlighting the value of conflict resolution. Finally, omitting the skill selector yields
a 0.5% gain in Walker but decreases Quadruped by 6.2% and Jaco by 4.5%, demonstrating the
importance of the skill selector.

A balanced projection ratio effectively mitigates gradient conflicts and consistently improves skill
learning across diverse environments (Figure[7). We compare three projection strategies: projecting
the exploration gradient onto the diversity gradient (p = 0.0), projecting the diversity gradient onto
the exploration gradient (p = 1.0), and AMPED approach with projection ratio in Appendix
Results are reported as mean + standard deviation; the p = 0.0 and p = 1.0 variants are averaged
over three random seeds. AMPED achieves the highest aggregate returns in all three domains. Full
numerical results are in Appendix [M] URLB reward-scaling ablations are presented in Appendix [D}
and an extended analysis of the skill-selection method appears in Appendix
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Figure 7: Task-level return comparison under different projection ratios. In the Jaco domain, task
labels “Re.bl”, “Re.br”, “Re.tl”, and “Re.tr” refer to reaching the bottom-left, bottom-right, top-left,
and top-right targets, respectively.

4.4 ANALYSIS ON DIVERSITY AND SAMPLE COMPLEXITY

Table 3: Steps to reach 90% of the maximum reward. Values are in thousands (K).

Domain Task BeCL CIC AMPED
Flip 73+£11 86+ 10 84 +8
Walker Run 86+t5 82410 86+5

Stand 43 +8 45+11 41+9
Walk 71+ 16 72+13 60+9

We empirically validate our theorem in Section [3.1} with a greedy skill selector, greater skill diversity
reduces fine-tuning sample complexity. On Walker, we measure steps to 90% of each method’s
maximum return across four tasks, using 90% as a convergence proxy. Results are averaged over 10
random seeds and reported as mean =+ standard deviation. AMPED matches BeCL and CIC on Flip,
Run, and Stand within error bars and requires fewer steps on Walk (Table [3). Combined with higher
final returns, this indicates faster convergence of AMPED. While BeCL maximizes diversity and CIC
emphasizes coverage, BeCL, which lacks a selector, does not reduce fine-tuning steps as effectively.
By promoting diversity and employing a skill selector, AMPED converges faster in the fine-tuning
phase, consistent with the theory.

5 CONCLUSION

In this work, we introduce AMPED to jointly address exploration and skill diversity in SBRL. Our
framework unifies entropy-based exploration with contrastive skill separation, explicitly resolves their
gradient conflicts via PCGrad, and employs a skill selector to adaptively deploy skills during fine-
tuning. Empirically, we show that (i) eliminating exploration-diversity gradient interference is crucial,
(i1) combining AnInfoNCE-inspired diversity losses with RND-driven entropy bonuses balances
the objectives, and (iii) the skill selector improves downstream performance. We demonstrate, both
theoretically and empirically, that skill diversity is critical for maximizing downstream returns.

While AMPED was developed for skill-based RL, its core insight, treating exploration and diversity
as competing objectives and resolving their gradient conflicts via projection, extends to other settings
with multiple learning signals, motivating broader use of gradient-projection methods.

Future research could adopt more advanced conflict-resolution techniques and remove remaining
heuristics, develop more precise estimators for our objectives, or identify alternative objective
functions that better reconcile exploration and diversity. Additionally, investigators might explore
factors beyond exploration and diversity or address the fixed-skill-count limitation of our current
framework. Further details are available in Appendix |J| By tackling these challenges, the SBRL
community can progress toward creating richer, more capable agents.
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APPENDIX

A PROOF OF THE THEOREM

Assume a finite state space S with cardinality S, and a finite horizon H. Suppose we are given
skill-conditioned policies 7(a | s, z) with a finite number of skills and a downstream task. Let 7*
be the optimal policy and p* € A(S*) be a corresponding state distribution. Also set z, as a best
policy in the sense that z, = argmin,d(p*, p,). We denoted the total variation of two probability
distributions by d(p1, p2) = 1|p1 — p2/l1.

Theorem 1. Define 6 = min;x; d(pzi,pzj), € = d(p*, pz*). Assume that skills are diversified
enough, so that A = § —2e > 0.

Draw n ii.d. trajectories SV, ... S ~ p* and form the empirical state distribution p. Consider
the greedy skill selector Z := argmin, d(ﬁ, pz). Then

2
Pr[2# 2] < 29Hexp (n?) . (6)

In terms of confidence level n € (0,1), if

2
n2§(510g2+logH—logn), @)

we have Pr([Z # z,] <.

Proof.
Step 1. A sufficient condition for correct selection.

Define d := d(p, p*). Triangular inequality gives d(p, p.,) < d(p*, p.,) +d(p, p*) = & + d. If

~ A 4 . =~
d<§f§—5, ie. 0 > 2(e+4d),

then Z = z, because for every z # z,, by triangular inequality,
d(p,p) = d(pz,,pz) —d(pp2,) > 06— (e+d) >e+d>d(p,ps,).
Hence

Pr[2 # 2] < Pr{E > %} ®)

Step 2. Convergence of p to p*.
By Bretagnolle-Huber-Carol (BHC) inequality, for a discrete random variable X =
(X17X2a R 7Xk))a

k
Pr[Z|Xi —npi| > 2/\\/77} < 282 X ~ Mult(n, p).
i=1
Let the state space S = {s1,...5g5}. If we denote S(*) = (S¥ ... Sk) e SH,
1 n H
P= i 22 st
k=1j=1

Define S-dimension random vectors X; = (le, .. X]S) where j =1,..., H as XJ" = #{i: Sji. =
$m }. Then X is a n-multinomial distribution with

P = Pj,---0§) = (p"(S; = 51),...,p"(S; = s5))-
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Now taking £ = % and combining with equation gives

A2
Pr[2# 2] < 29Hexp (—712> .
In terms of confidence level n € (0, 1),

2 ~
n > E(S’logQ—i—logH—logn) = Pr[z#z]<n.
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Figure 8: Effect of mean vector’s distance on Loss. AnlnfoNCE objective has a positive correlation

with distance between two distributions. Loss was calculated by sampling 1000 points from two
5-dimensional Gaussian distributions.
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An analysis was conducted to evaluate the behavior of the AnInfoNCE objective as a function of
inter-distribution separation. Two mean vectors were first drawn independently from the standard
normal distribution and used to parameterize two Gaussian distributions with identity covariance.
AnInfoNCE was then estimated by Monte Carlo sampling from each distribution. Empirically, we
observe that the AnInfoNCE loss increases monotonically with the Euclidean distance between the
two mean vectors, indicating that larger separations yield higher objective values (Figure [8). This
monotonic relationship highlights the ability of AnInfoNCE to promote diversity between learned
skill, in contrast to the CeSD objective, which collapses to zero whenever the support sets of the two
distributions do not overlap.

C ADDITIONAL EXPERIMENTS IN MAZE

C.1 ANALYSIS OF THE EFFECT OF SKILL COUNT

i

{
DIAYN E‘ﬂ"‘ﬁ
BeCL r'j!‘\
i,
T

CIC | -
i 4

3
ComSD - »if;i-,
1 1

"
AMPED . -
(Ours) ﬂ Ei

5 skills 10 skills 15 skills 20 skills 25 skills

Figure 9: Skills learned in the Tree Maze under varying skill counts. This visualization shows the
skill allocations of each method as the number of skills increases from 5 to 25. AMPED consistently
fills the maze with well-separated regions, whereas DIAYN and BeCL leave gaps, and CIC and
ComSD exhibit increasing overlap as the skill count grows.

Figure Q)illustrates how different methods partition the Tree Maze as the number of skills increases
from 5 to 25. Unlike DIAYN and BeCL, which tend to leave large regions unexplored or produce
overlapping trajectories, our method fills the entire maze while maintaining clear separation between
skills. When using 10 or 15 skills, both CIC and ComSD exhibit substantial mixing between skill
regions, whereas AMPED preserves distinct, non-overlapping coverage for each skill. At higher skill
counts (20 and 25), all methods begin to overlap simply due to capacity limits, making AMPED’s
advantage over ComSD less visually pronounced. Nonetheless, it still outperforms CIC in maintaining
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cleaner skill boundaries. These results confirm that AMPED effectively balances exploration and
diversity even as the dimensionality of the skill space grows.

C.2 COMPARISON ON THE SQUARE MAZE

{LJ

S

DIAYN BeCL CIC ComSD AMPED

Figure 10: Skills learned in the Square Maze. Each method’s trajectories are shown: AMPED
explores every corridor with separated regions, whereas DIAYN and BeCL leave gaps and CIC and
ComSD exhibit overlapping trajectories.

In the Square Maze, AMPED achieves full coverage with largely distinct skill regions and only minor
overlap (Figure [I0). All visualizations use 15 skills per method. By contrast, DIAYN and BeCL
leave large areas under-explored or learn only a few broad behaviors, sacrificing either coverage or
separation. CIC covers most of the state-space but generates highly entangled trajectories, indicating
poor skill disentanglement. ComSD attains coverage similar to AMPED but exhibits more pronounced
region mixing. Taken together, these results show that AMPED not only generalize beyond the Tree
Maze but both maximizes exploration and enforces strong skill diversity in the Square Maze as well.

C.3 COMPARISON OF MI AND ENTROPY

2.3797

2.2904 2.2240

1.7443

1.3789

=
)

Mutual Information

0.5 — ac
— DIAYN
05 —— ComSD
0.0 —— AMPED (Ours)

0 2000 4000 6000 8000 10000
BeCL cic DIAYN ComsSD AMPED (Ours) MINE iteration

(a) Entropy Estimation (b) MI Estimation

Figure 11: Entropy and MI estimates in the Square Maze. (a) Particle-based entropy estimates
(Liu & Abbeel, [2021b) show that AMPED achieves significantly higher state entropy (exploration)
than diversity-focused methods (BeCL, DIAYN), while matching CIC and ComSD. (b) MI estimated
via MINE (Belghazi et al, 2018) indicates that AMPED attains diversity comparable to BeCL and
DIAYN and substantially exceeds CIC and ComSD.

In the Square Maze, AMPED maximizes both mutual information (MI) and state entropy (Fig-
ure [TT). To assess whether multi-objective optimization degrades any single objective relative to
single-objective training, we compare AMPED’s MI and entropy losses against mono-objective base-
lines. Following BeCL, we use a particle-based entropy estimator and a MINE-based MI estimator,
evaluating 10 skills in the Square Maze (Belghazi et al} 2018)). Taken together, these results indicate
that AMPED simultaneously maximizes exploration and diversity.

C.4 EVOLUTION OF SKILLS ACROSS TIME STEPS

As illustrated in Figure[I2] early in training (epoch 1), the policy aggressively explores new branches,
rapidly expanding its state coverage. By epoch 3 and 5, the trajectory has spanned nearly the entire
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(a) Epoch 1 (b) Epoch 3 (c) Epoch 5 (d) Epoch 7 (e) Epoch 9

Figure 12: SKill trajectory evolution in the Tree Maze over training epochs. A representative
skill’s path is shown at 2-epoch intervals, illustrating initial rapid expansion of coverage followed by
progressive refinement into distinct, well-separated skill regions.

maze, maximizing exploration. In later stages (epoch 7 and 9), the skill’s path is refined: it begins
to adjust which corridors it traverses to carve out distinct regions and increase diversity. Although
such clear visualizations are not possible in high-dimensional spaces, this simple sequence provides
intuition for how our method first drives broad exploration and then sculpts well-separated skill
behaviors.

D ABLATION STUDY ON REWARD SCALING FACTOR

Table 4: Performance comparison under extreme « and 3 settings. « and 3 control the relative
weight of entropy-based and RND rewards. AMPED (Ours) result are computed as return (mean =+
standard deviation) over 10 random seeds, while each « or 3 configuration is evaluated using three
random seeds. The best result is shown in bold, and the second-best is underlined.

Domain Task AMPED (Ours) a=0 a =100 B6=0 £ = 1000
Flip 674 + 105 609 +44 587 +74 524+38 586+ 88
Walker Run 467 + 103 505+ 10 420+99 382+29 505439
Stand 951 +38 942 +26 956 +6 948 +£9 923 +30
Walk 929 + 19 9134+43 908 £21 863+59 878+94
Sum 3021 2969 2871 2717 2892
Jump 720 + 34 677+50 710+59 623+ 100 648 + 61
Run 494 + 56 493 £23 4594+122 371+ 127 613 +£92
Quadruped
Stand 906 + 71 865+55 837+117 904+27 875+23
Walk 890 + 62 844 +58 805+73 720+ 118 852+ 53
Sum 3010 2879 2811 2618 2998
Re. bottom left 143 + 34 94+31 1234£22 133+35 134416
Jaco Re. bottom right 144 + 27 1M1£15 96+15 114 £35 118 +37
Re. top left 140 £+ 41 1154+18 159+24 145463 12143
Re. top right 154 + 49 112422 143+18 112416 106+ 11
Sum 581 432 521 504 479

In this ablation, we keep every setting in Appendix [[.3]fixed except for one of the reward-scaling
factors. As shown in Table 4] deviating from the defaults on either a or § degrades the sum of
episode returns in most domains. Setting « = 0 (no entropy reward) or 5 = 0 (no RND reward)
leads to substantial drops, while excessively large values («« = 100 or 8 = 1000) improve some
individual tasks but hurt overall performance. The default AMPED weights achieve the best aggregate
performance, underscoring the need for balanced scaling between exploration and novelty signals.

In Table 5] we present hyperparameter search results for the entropy reward weight o and the RND
reward weight 8. In the Walker domain, the average sum return across five («, 3) configurations
is 2989.4, which still ranks second among the baselines in Table Notably, the (0.01, 8) setting
achieves a sum return of 3323, outperforming all baselines. Similarly, in the Quadruped domain, the
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Table 5: Hyperparameter search results for o and . Results reflect single-run returns for each
modified configuration, except for AMPED. The best result is shown in bold, and the second-best is
underlined.

Domain Task AMPED (0.01, 10) (0.02, 10) (0.005,10) (0.01,12) (0.01, 8)

Flip 674 + 105 667 535 599 886
Run 467 £ 103 451 354 550 565
Walker Stand 951 £ 38 960 942 964 949
Walk 929 £ 19 893 891 797 923
Sum 3021 2971 2722 2910 3323

Task AMPED (0.002, 8) (0.004,8) (0.001,8) (0.002, 10) (0.002, 6)

Jump 720 + 34 597 702 710 717
Run 494 + 56 499 276 512 488
Quadruped Stand 906 + 71 956 792 918 918
Walk 890 + 62 833 853 891 869
Sum 3010 2885 2623 3031 2992

average across the five configurations is 2908.2, exceeding the best baseline performance. Moreover,
the (0.002, 10) configuration yields even better performance than our default hyperparameter choice.
These results suggest that careful tuning of o and 3 can yield further improvements for AMPED.

E ANALYSIS ON SKILL SELECTION

One of the central motivations for our approach is that the skill selector, responsible for choosing
among a diverse, pretrained set of skills, should substantially enhance overall performance. However,
an ablation in the Walker domain (3021 with the selector vs. 3036 without it) revealed that adopting
the skill selector does not lead to consistent improvements.

To investigate this discrepancy, we designed a complementary experiment isolating each pretrained
skill. For each task, we fix a single skill and condition the policy exclusively on that skill during
fine-tuning, both for training and evaluation. We conducted three-seed evaluations on Walker-flip,
run, where the selector had previously degraded performance, and on Quadruped-stand, walk-where
it had been beneficial (3,010 with the selector vs. 2,824 without).

Table 6: Fine-tuning returns under different skill-selection regimes. “Single-Skill” reports the
average return across fine-tuning each pretrained skill individually; “Oracle Best Skill” denotes the
highest return achieved by the single best skill. Results are computed over three random seeds and
reported as mean + standard deviation. The best result is shown in bold, and the second-best is
underlined.

Domain Task Skill Selector ~ Random Skill Single-Skill Oracle Best Skill
Walker Flip 674 + 105 686+ 133 719+ 121 913+3
Run 467+ 103 517+49 503 +74 603+ 19
Quadruped Stand 906 + 71 816+ 150 911443 959 £5
P Walk 890 +62 816+ 116 837+ 62 912+ 17

The fixed-skill results in Table [6] show that the skill selector underperforms single-skill fine-tuning
across three tasks. Crucially, this deficit persists whether the selector had previously appeared
beneficial (as in the Quadruped environments) or not (as in Walker), indicating that the selector itself,
rather than domain-specific factors, is the primary bottleneck. Although dedicated fine-tuning benefits
from sustained gradient updates targeted at a single skill, the observed performance gap suggests
that the selector’s learning is hampered, likely by sparse rewards. Consequently, its value estimates
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Table 7: Number of unique skills used per task. Results are computed over three random seeds and
reported as mean =+ standard deviation.

Domain Task Unique Skills Used
Walker Flip 4.00+1.73
Run 3.67+1.53
Stand 2.674+0.58
druped
Quadruped 1k 4334058

remain unstable, leading to suboptimal choices. These findings underscore the need for more robust
training strategies for the skill selector.

To assess the stability and consistency of the skill selector, we measure the number of distinct skills
invoked during the last 5K fine-tuning episodes for each downstream task. As summarized in Table
the selector consistently concentrates on a small subset of available skills, particularly toward the end
of training. This pattern suggests convergence to a stable, task-specific mapping from observations to
high-level skills, underscoring the utility and reusability of the learned skill space.

F RELATED WORKS

F.1 UNSUPERVISED REINFORCEMENT LEARNING

URL aims to train general-purpose policies capable of rapid adaptation to diverse downstream tasks.
This is achieved through the design of intrinsic objectives or rewards that guide exploration without
relying on explicit external feedback. URL typically involves two stages: (1) pretraining, where
agents develop foundational behaviors driven by intrinsic motivation, and (2) fine-tuning, where these
behaviors are adapted to task-specific objectives.

URLB (Laskin et al.;2021) categorizes existing URL algorithms into three primary groups:

1. Data-based approaches encourage agents to explore novel states by maximizing state entropy,
fostering diverse experiences during pretraining. Notable methods include APT (Liu & Abbeel,
2021b), which utilizes particle-based entropy estimators to maximize the distance between k-nearest
neighbors (kNN) in observation embeddings. ProtoRL (Yarats et al., 2021) builds on this idea by
incorporating prototypical representation learning, inspired by SWaV (Caron et al.,2020), to enhance
exploration efficiency. CIC (Laskin et al.l 2022)) extends ProtoRL by introducing skills, positioning
CIC as both a data-based and competence-based method.

2. Knowledge-based approaches aim to improve an agent’s understanding of environmental dynamics
by maximizing prediction errors, thus incentivizing the exploration of novel or poorly understood
states. The Intrinsic Curiosity Module ICM) (Pathak et al.,|2017) encourages exploration by reward-
ing agents based on the error in predicting future state transitions. Reyes et al.| (2022) extended this
idea by incorporating the prediction of joint observations. On the other hand, disagreement-based
methods (Pathak et al[2019) quantify uncertainty through an ensemble of predictive models, reward-
ing states where model predictions diverge significantly. Random Network Distillation (RND) (Burda
et al.,2019) measures novelty via the prediction error of a random, fixed target network, where higher
errors indicate unfamiliar states. Nikulin et al.|(2023)) enhanced this idea by applying Feature-wise
Linear Modulation.

3. Competence-based approaches, often referred to as unsupervised skill discovery, seek to develop
a diverse repertoire of skills without relying on external rewards. These methods are grounded
in information-theoretic principles, typically maximizing MI between skill embeddings and state,
or trajectories to ensure meaningful and diverse behaviors. For instance, VIC (Gregor et al., 2016)
maximizes controllability of skills by setting MI between skills and final state, given the initial state as
an objective. DIAYN (Eysenbach et al.,[2019) encourages diversity by maximizing MI between skills
and states while ensuring skills are distinguishable. BeCL (Yang et al., 2023) leverages contrastive
learning to enhance skill discriminability by maximizing MI between trajectories generated from the
same skill; this also has a side effect that maximizes the entropy in the limiting case.
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Our approach synthesizes principles from data-based, knowledge-based, and competence-based
methods, drawing on models such as CIC (Laskin et al., [2022), RND (Burda et al.,|2019), CeSD (Bai
et al.,[2024), and BeCL (Yang et al., [2023)). Specifically, we address the limitations of these models
in balancing exploration and skill diversity by introducing novel methods for integrating them.

F.2 UNSUPERVISED SKILL DISCOVERY

Competence-based approaches, commonly referred to as unsupervised skill discovery, have garnered
significant attention in recent years due to their potential to enable agents to acquire diverse, dis-
criminative behaviors without external supervision. It focuses on enabling agents to learn distinct,
discriminating behaviors without external supervision. Skill diversity has been shown to be critical
for downstream task performance, both empirically and theoretically (Eysenbach et al.l 2019; |Laskin
et al., 2022;|Yang et al.,|2024)). This is often achieved by maximizing the MI between states or trajec-
tories with skills, encouraging agents to develop diverse and meaningful behaviors. Key contributions
in this area include works by (Gregor et al.| |2016} [Florensa et al.l 2017} [Eysenbach et al.l 2019
Sharma et al., |[2020; | Baumli et al., [2021)).

However, these studies (Campos et al., [2020; [Strouse et al., [2022} |Park et al.l 2022) have highlighted
limitations in traditional MI-based methods, noting that maximizing MI between states and skills can
lead to suboptimal exploration. It is also theoretically shown that such approach can not construct
an optimal policy for some downstream tasks (Eysenbach et al.,[2022;|Yang et al.,|2024). There are
some methods to address this when the observation space is Cartesian coordinate space (Park et al.,
2022} |Zhao et al, 2021)); while effective in specific navigation tasks, these approaches impose strong
assumptions and are less adaptable to general situation. To address these limitations, alternative
approaches introduce auxiliary exploration mechanisms and refined training techniques aimed at
enhancing exploration. While many methods focus on modifying the objective functions, such as
DIAYN, BeCL, CeSD, ComSD, and CSD, others explore architectural innovations and dynamic
exploration strategies, as seen in DSG (Bagaria et al., 2021)), EDL (Campos et al., |2020), and
ReST (Jiang et al.,|2022)). These techniques aim to promote diverse exploration without relying solely
on objective modifications.

G DIFFERENCE WITH FORMER STUDIES

Prior to our work, two representative methods for jointly considering exploration and diversity are
CeSD and ComSD. However, our method departs from these approaches in several important ways,
which will be explained in detail. Note that on URLB, our approach achieves 20.91% and 35.01%
higher returns than CeSD and ComSD, respectively.

G.1 DIFFERENCE WITH CESD

Instead of diversifying skills using MI, CeSD maximizes exploration using the entropy, while adding
a regularization term for diversifying skills. This approach mitigates the paucity of exploration
while simultaneously accounting for a diverse array of skills. Unfortunately, the algorithm is time-
consuming because it includes clustering states. The paper avoids this bottleneck by choosing a
subset of states for clustering, which would lead to inaccurate estimation of clustering and, therefore,
instability of training. Also, their regulation on diversity does not work if the state distribution of
different skills does not intersect. Such an effect can be seen in the 2D maze experiment; other methods
like BeCL or DIAYN separate skills effectively, while CeSD does not. This may be advantageous in
low dimension environment like a 2D maze because one can fully cover the whole space. However,
in high-dimensional domains such as URLB, insufficient separation of skills degrades downstream
task performance, as established by our Theorem T}

G.2 DIFFERENCE WITH CoMSD

Similar to ComSD, our approach aims to balance the diversity and exploration objectives. ComSD
uses the entropy of trajectory H (7) as a exploration objective, and negative entropy of trajectory
conditioned to skill —H (7|z) as a diversity objective. H(7) is estimated using a particle-based
approach and H (7|z) is estimated using a variational approach. To balance exploration and diversity,
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ComSD employs a specialized weighting mechanism called Skill-based Multi-objective Weighting
(SMW), which assigns different optimization objectives to different skills; some skills emphasizing
diversity while others prioritize exploration. However, this selective assignment does not necessarily
lead to optimal overall performance. ComSD’s method merely differentiates each skill’s repulsiveness
from others, which does not guarantee an ideal trade-off between exploration and diversity. Moreover,
it lacks a solid theoretical foundation to justify the weighting strategy.

In contrast, our method explicitly aims to maximize both exploration and diversity, grounded in the
concept of gradient conflict, which has been extensively studied in prior research (Yu et al.} 2020; Liu
et al.,2021;Navon et al.|,2022). By directly addressing the conflicts between exploration and diversity
gradients, our method achieves a more stable and theoretically justified optimization process.

H OBIJECTIVES AND REWARDS

Table 8: Comparison of algorithms. Intrinsic Objectives and Rewards of each methods are shown.

Algorithm Intrinsic Objective Intrinsic Reward ()

APT H(o(s)) rpart

ICM E. [, 7'ri] B é(ser1) — ¢lser)lI3

RND E-[30, '] I1f (e) — (x|

CIC H(t)— H(7|2) TPt 4 log q(7|2)

DIAYN H(z) — H(z|s)+ H(als, z) log q(z|s) — logp(z)

DADS H(s'|s) — H(s's, 2) log g(s'|s,2) —log 321 a(s']s, 1)
BeCL I(sM;5(2) peontr

CeSD H(s) + a DsesldTi(s) —dTi(s)] P+ a/(ISPNSE| + )
ComSD H(T) _ ( | ) ,r,part + - ,r,contr

AMPED (Ours) o - H(s)+ - Lanp + I(sM;s@) 7Pt 4 3| f(2,) — f(ay)|? + rAnInfo

z denote a skill, ¢(s) denote a encoded state, and NN, denote a k nearest neighbor. Neglected
the loss for training state encoders. 7" is a particle-based entropy estimation, and r¢°™" is a
contrastive-based MI estimation; the specific reward varies slightly depending on the method. The

canonical MI objective by InfoNCE is defined as:

n (1)y . ()
ppart _ Zlog |2 — NNg(2)], reontr _ g exp(f(sy ) - f(s:7)/k)

)
i=1 ESJ'ES*IU{S,EQ)} eXp(f(Sgl)) ' f(S])/K)

I IMPLEMENTATION DETAILS
I.I MAZE ENVIRONMENTS

Table 9: Environment detail of square-maze used for evaluation.

Parameter Value

State space S e R?

Action space A € [-0.95,0.95)
Episode length 50

Size: Square maze (Figure 5x5
Size: Tree maze (Figure and Figure@]) TxT

The maze environments are adapted from the open-source EDL implementation by (Campos}, 2020).
In this setup, the observation is given as S € R?, which represents the current position, while the
action is given as A € R2, corresponding to the velocity and direction. The agent observes only its
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current position and does not have access to the locations of walls, which must be inferred through
interaction with the environment. At the start of each episode, the agent’s initial state is uniformly
sampled within a 1 x 1 tile. Table [0 summarizes the details and topological characteristics of each
maze used in the experiments.

.2 NETWORK ARCHITECTURES FOR MAZE EXPERIMENTS

All code was based on the open-source EDL implementation by (2020). We used PPO
as our on-policy algorithm, with both policy and value functions parameterized by
three hidden layers of size 128 and ReLU activations. The policy network takes the concatenated
state and goal vectors, passes them through three 128-unit MLP layers, then applies a tanh output
scaled by the action range. The critic shares the same three-layer backbone but outputs a single scalar
Q-value given (s, a).

For intrinsic rewards, we employed three specialized networks: a CIC encoder comprising a state
network that maps the state vector through two 128-unit hidden layers to an n-dimensional embedding
and a predictor network that takes the concatenated pair of these embeddings (size 2n), processes
it through two 128-unit hidden layers, and outputs an n-dimensional prediction; an RND network
comprising predictor and frozen target MLPs (each with two 128-unit hidden layers) mapping
observations to a n-dimensional feature space, where the mean squared prediction error defines
rmmd; and a BeCL encoder implemented as a three-layer 128-unit MLP that maps observations
to an n-dimensional skill embedding for the AnInfoNCE loss, encouraging non-overlapping skill
distributions.

1.3 URLB ENVIRONMENTS

The Walker domain focuses on training a biped constrained to a 2D vertical plane to acquire balancing
and locomotion skills (Laskin et al, 2021)). It includes four downstream tasks: Stand, Walk, Flip, and
Run. The observation space is defined as S € R?*, and the action space as A € RS.

The Quadruped domain involves training a four-legged agent for balance and locomotion within a 3D
environment. This domain includes four tasks (Figurel'lzl): Stand, Walk, run, and flip. The observation
space is S € R"®, and the action space is A € RS,

The Jaco domain is designed for manipulation tasks using a 6-DoF robotic arm equipped with a
three-finger gripper. It includes four tasks: Reach Top Left, Reach Top Right, Reach Bottom Left, and
Reach Bottom Right. The observation space is S € R5®, and the action space is A € R.

Walker Quadruped Jaco

Walk Stand

Reach Bottom Left Reach Bottom Right

!

Flip Run Jump Reach Top Left Reach Top Right

Figure 13: Visualization of the downstream tasks used in the Walker, Quadruped, and Jaco
domains.
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1.4 NETWORK ARCHITECTURES FOR URLB EXPERIMENTS

This section describes the network architecture of our method. At the beginning of each episode, a
skill vector z is sampled, where the default setting uses a one-hot encoding with skill_dim = 16.
This skill vector is concatenated with the processed observation features and used as input to the
policy, value, and intrinsic reward modules.

The raw observation is first processed by a four-layer convolutional encoder, where each layer has 32
channels and uses Rectified Linear Unit (ReLU) activations. The encoder’s output feature map is
then flattened into a latent feature vector of dimensions (repr_dim = 32 x 35 x 35). The resulting
feature vector is combined with the skill vector before being forwarded to the downstream networks.

For decision making, the actor network processes this combined observation and skill vector through
a trunk consisting of a linear layer, layer normalization, and hyperbolic tangent (Tanh) activations.
The resulting feature is passed through two fully connected layers with 1024 hidden dimensions and
ReL.U activations, and finally projected to the action space to produce the action distribution. The
critic network applies the same trunk structure to the combined representation. It then concatenates
the resulting features with the action, and processes them through two additional hidden layers with
1024 dimensions each to estimate the Q-values.

The RND module constructs a predictor-target architecture by copying the observation encoder. Both
the predictor and the frozen target network share the same initial encoder and are extended with a
multilayer perceptron (MLP) composed of two hidden layers of 1024 dimensions. The predictor is
trained to minimize the mean-squared error relative to the target’s output.

The CIC module integrates three coordinated components, which consist of a state encoder that
transforms both the current and next observation features into embeddings within the skill space,
a skill projection network that embeds the sampled skill vector, and a predictor network that takes
the concatenated state and next-state embeddings and transforms them into a representation aligned
with the skill embedding. All components use MLP with hidden layers of 1024 dimensions, and the
module is optimized using a contrastive predictive coding (CPC) objective to encourage alignment
between state transitions and the correct skill representation. The state encoder’s outputs are used to
calculate the 7¢y,¢70py, based on kNN distances.

The BeCL module takes observation features (excluding the skill vector) and processes them through
an embedding network with two hidden layers of 1024 dimensions to produce a compact representa-
tion. This representation is then passed through a projection head, which includes another hidden layer
with 1024 dimensions and an output layer, producing outputs that match the skill dimension. This
layered architecture enables the module to generate embeddings that are optimized for contrastive
learning, effectively encouraging skill discrimination in the learned space.

During fine-tuning, we employ a Soft Actor-Critic (SAC)-based skill selector to adaptively choose
a skill vector given the current observation. SAC offers off-policy sample efficiency and entropy-
regularized stability, which help balance exploration and exploitation. The skill selector consists of a
policy network and a value network. The policy network maps observations to a discrete distribution
over skills. It consists of a linear layer follwed by layer normalization and a Tanh activation, then
two fully connected layers with 256 hidden dimensions and ReL.U activations, producing logits over
the skill space. A skill is sampled from this distribution using an epsilon-greedy strategy. The critic
network use the same input processing as the policy network. It then maps the resulting feature
through two fully connected layers with 256 hidden dimensions to produce Q-values for each skill.
During training, the critic is updated using temporal difference learning, while the actor is optimized
via entropy-regularized policy gradients (Haarnoja et al., [2018).

In the e-greedy skill selection strategy, the exploration probability e decays exponentially over
time, starting from ¢ = 1.0 and gradually decreasing to ¢ = 0.01 with an decay factor of 20000
steps. This encourages early-stage exploration of diverse skills and gradually shifts toward selecting
high-performing skills.
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1.5 HYPERPARAMETERS

Table|10[and Table |l 1| contains the hyperparameters we use. Hyperparameter values for the Maze
environment were adopted directly from the EDL repository (Campos} 2020), while those for the
URLB environment follow the defaults provided by the URLB codebase (Laskin & Yarats| [2025). We
perform hyperparameter tuning in URLB, focusing on three key components, intrinsic reward weights
(v, B), the projection probability p. We explored values in the ranges o € [1072,0.1], 8 € [1073,10],
p € [0.5,1.0].

Table 10: Hyperparameter settings for URLB experiments.

Intrinsic reward hyperparameter Walker Quadruped Jaco
skill dimension 16 16 16
contrastive update rate 3 3 3
temperature 0.5 0.5 0.5
alpha () 0.01 0.002 0.03
beta () 10 8 0.005
projection probability (p) 0.6 0.65 0.8
Number of nearest neighbors (k) 16 16 16
Skill selector hyperparameter Value

epsilon start 1.0

epsilon end 0.01

epsilon step 20000

learning rate 3x 107

DDPG hyperparameter Value

replay buffer capacity 106

warmup frames 4000

n-step returns 3

mini-batch size 1024

discount () 0.99

learning rate 10~*

agent update frequency 2

critic target EMA rate (7)) 0.01

exploration stddev clip 0.3

exploration stddev value 0.2

number of pre-training frames 2 x 106

number of fine-tuning frames 1x10°

Table 11: Hyperparameter settings for Tree-maze experiments.

HyperParameter Value
learning rate (7) 3e-4
discount () 0.99
GAE lambda 0.98
entropy lambda 0.025
hidden dim 128
temperature 0.5
alpha (o) 0.01
beta (3) le-4
projection probability 0.5
knn k 16
knn clip Se-4
epoch 50
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1.6 URLB TRAINING PIPELINE

Algorithm 1 Gradient Surgery

: Aecrilic = n(v‘cdiversily + v‘Cexploration)
ecritic — acritic - Aocritic

1: Given: V Lgiversitys V Lexploration, probability p, parameter of critic O.yic, and a learning rate 7.
2. if Z(vgdiversity . vEexploralion) < 0 then

3: With probability p:

4: V£diversity <~ PI‘OjV Lclxplm_mm (Vﬁdiversily)

5: Otherwise:

6: V»Cexplorznion — Projvﬂjiv ersity (V‘Cexploralion)

7: end if

8

9:

Algorithm 2 Unsupervised Pretraining with Intrinsic Rewards and Gradient Surgery

1: Given: number of skills n, pretraining frames Npr, seed frames 7', batch size IV, update interval
Nupdate, policy mg, critic Qy,

2: Initialize: replay buffer B < (), timestep ¢ < 0

3: while t < Npr do

4: if t mod Nypdate = 0 then

5: Sample skill z; ~ Uniform|[1, n]
6: end if
7: Collect transition (s¢, at, S¢+1) ~ 7o (- | 8¢, 2¢), P(St1 | St at)
8: store (¢, Gy, St+1,2¢) in B
9: if £ > T then > begin intrinsic-reward pretraining
10: Sample batch {(s,a,s’,2)}, ~ B
11: Update encoders:
12: Minimize contrastive loss (Eq.[4), RND prediction loss, and AnInfoNCE loss (Eq.[5)
13: Compute intrinsic rewards:
14: Calculate rexpiorations Tdiversity as defined in Sec. E]
15: Update critic & actor:
16: Compute gradients for diversity and exploration losses
17: Apply Gradient Surgery (Alg. [T)
18: Update policy 7y and critic Q)
19: end if

20: t+—t+1
21: end while

Algorithm 3 Fine-Tuning with Extrinsic Rewards and Joint Skill Selector Training

1: Given: number of finetuning frames Ny, batch size IV, update interval U, critic ), pretrained
policy 7y, skill selector py(z | )

2: Initialize: replay buffer D« (), timestep ¢ <0

3: while t < Npr do

4: Observe state s;

5: Select skill z; ~ pg(z | s¢)

6: Select action a; ~ mg(a | s¢, 2¢)

7: Execute a; to obtain (s¢41,7¢)

8: Store (8¢, as, i, St41,2¢) in D

9: if t mod U = 0 then > Update both selector and agent
10: Sample batch {(s,a,r,s",2)}¥, ~ D

11: Update 6, v using extrinsic reward r

12: end if

13: t—t+1
14: end while
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1.7 TRAINING TIME COMPARISON

Table[I2]compares the wall-clock training time of AMPED against a range of baselines on the Walker,
Quadruped, and Jaco domains. Notably, AMPED incurs only a modest increase in runtime relative to
competitive methods like CeSD and BeCL despite exceeding their downstream performance (see
Figure[6)). Although AMPED requires more computation than CIC (an overhead of 3-6 hours), this
extra cost yields substantial performance gains over CIC’s purely entropy-based exploration. Overall,
these findings demonstrate that AMPED strikes a favorable balance between computational cost and
empirical performance.

Table [[3]reports fine-tuning times. Because AMPED (Ours) includes the SAC-based skill selector, its
fine-tuning incurs a modest overhead of approximately 0.06-0.11 h (4-7 min) compared to baselines
such as CIC and BeCL. In future work, we aim to further optimize runtime efficiency, perhaps via
more streamlined encoder updates or low-precision training, while preserving the joint handling of
exploration and diversity.

Table 12: Pretraining time (hours with decimal minutes) comparison across baselines. Results
are computed over 10 random seeds and reported as mean =+ standard deviation.

Domain AMPED (Ours) CeSD CIC BeCL APT RND DIAYN DDPG ComSD

Walker 13.47 £ 0.06 2228 +0.08 7.34 £0.18 18.13 £4.65 11.02+£0 5.19+0.14 7.34 £ 0.14 4.34 £0.03 7.5+ 0.03

Quadruped 13.62 + 0.1 230100 7.6=+021 1342+£272 11.18 £0.01 545+ 0.02 6.96 + 1.37 4.49 +0.05 7.74 + 0.03

Jaco 13.72 £+ 0.03 22.76 £ 0.07 7.61 £0.03 14.88 +3.11 11.39 £0.03 64 £ 1.09 8.11 £0.02 4.78 +0.1 7.91 £ 0.02

Table 13: Fine-tuning time (hours with decimal minutes) comparison across baselines. Results
are computed over 10 random seeds and reported as mean + standard deviation.

Domain ~ AMPED (Ours) CeSD CIC BeCL APT RND DIAYN ComSD

Walker 035+0 070 026 £0 024+£0 0230 0360 037£001 025+0

Quadruped 0.35 + 0.01 0.73 £ 0.01 0.29 +£0.01 0.29 £ 0.01 0.26 = 0.01 0.44 £0.01 0.4 +0.01 0.28 £ 0.01

Jaco 0.32 +£0.03 0.72 £0.02 027 £0.01 029+0 0.26£0.02 0.28£0.06 0.38=£0 0.26 £0

1.8 REPRODUCING BASELINES

All baseline methods were integrated from their respective open-source implementations and evaluated
under our unified settings. In the Maze environment, DIAYN, CIC, and BeCL were reproduced using
the EDL repository (Campos,2020), and ComSD was imported from its official codebase (Liu}|[2025)).
Since no public implementation of CeSD exists for the Maze tasks, we followed the visualizations
described in the original CeSD paper.

For the URLB, we leveraged the official URLB code (Laskin & Yarats, [2025)) to reproduce DIAYN,
RND, and APT. CIC, BeCL, and CeSD were run using their respective public implementations (Laskin
& Liul 20225 [Yang| 2023} Bai & Yang, [2024). As ComSD lacks an official URLB release, we
reimplemented it from its 2D-Maze variant, strictly adhering to the hyperparameters reported in its
original publication.

Using the unmodified hyperparameters provided in the official CeSD codebase and paper, we
were unable to reproduce the authors’ reported performance. Our analysis indicates that CeSD
exhibits substantially higher variance across random seeds than competing methods. Although minor
implementation or evaluation differences cannot be entirely ruled out, the magnitude of the variance
suggests that the observed gap is primarily attributable to CeSD’s inherent instability rather than to
specific experimental deviations (Table[T4).

1.9 EXPERIMENTAL SETUP AND REPRODUCIBILITY

All experiments were conducted on a Windows 11 workstation equipped with an AMD Ryzen 7 7700
8-core processor (3.80 GHz), 64GB DDRS RAM, and an NVIDIA RTX 3060 GPU (12GB GDDR®6).
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Each experiment was run on a single GPU. The detailed wall-clock time for training and fine-tuning
are summarized in Table [[2] and Table [I3

We implemented all experiments in Python 3.8.10, using PyTorch (v1.9.04+cul11) as the primary
deep learning framework. The DeepMind Control suite (Tassa et al.,|2018)) (dm-control v1.0.8) was
used for environment simulation, and agent-environment communication was handled through the
dm_env interface (v1.6).

J  LIMITATIONS

As with any research, our approach presents several limitations that highlight opportunities for future
investigation:

Better gradient conflict resolver. Although PCGrad is easy to implement and powerful, it has a
few limitations. First, [Liu et al.| (2021)) demonstrates that PCGrad does not preserve the original
objectives; instead, it merely guarantees convergence to the Pareto set. More advanced gradient
conflict-resolution techniques have since been developed; future work can select the method best
suited for SBRL.

Removing heuristics. Although we have introduced theory-based gradient surgery to balance explo-
ration and diversity of skills, we still use the rule of thumb such as positive hyperparameters «, 5 for
Ttotal = Tdiversity T Oentropy -+ B7ma. Future work should eliminate such empirical rule of thumb.

Inaccuracy and inefficiency of Estimators. AnInfoNCE lacks precision, so future research should
consider approaches that tighten the MI bound. And for entropy which has a high computational
overhead, one should explore methods that are computationally efficient and capable of functioning
effectively in high-dimensional state spaces. Model-based approaches, such as those using normalized
flows (Ao & Lil 2022)), could be potential solutions.

Better objectives. The diversity term adopted from the BeCL paper influences entropy, leading to
gradient conflicts. Future research could focus on developing better objectives that maintain diversity
without compromising entropy. In addition to entropy and RND based exploration, there has been a
lot of research going on (Ladosz et al.l 2022). One may find a better way to explore more efficiently
and effectively.

Balancing Other Factors Beyond Diversity and Exploration. While our work primarily focuses
on diversity and exploration, other aspects are also being actively studied to improve performance.
Exploring how to harmonize our method with these additional aspects could be a valuable direction
for future research. For instance, recent studies, such as (Park et al.| [2023)), rewards states that are
difficult to reach.

Fixed Number of Skills. The current model treats the number of skills as a fixed hyperparameters,
which is of course not ideal across different environments; see Figure @ While too few skills
limit overall state coverage, once exploration saturates, adding more skills offers no further benefit.
Developing mechanisms to dynamically adjust the number of skills according to the environment’s
requirements could enhance flexibility and performance.

K LLM USAGE

We used a large language model (LLM) solely for language editing. Concretely, the LLM assisted with
grammar and style polishing, LaTeX phrasing (e.g., equation and caption wording), and improving
clarity and concision of author-written text. The LLM was not used to generate ideas, design
algorithms, select hyperparameters, run experiments, analyze data, create figures/tables, write code,
or produce mathematical results.
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L VISUALIZATION OF SKILLS

Figure[T4]illustrates the skills acquired during the pretraining stage for each environment.

Quadruped: Clockwise rotational movement

A Y \ () ~

Jaco: Upward lifting motion while attempting to grasp the target

Figure 14: Representative skills learned by our method. Walker skills include rising from a supine
position, stepping forward, and performing a backward somersault. Quadruped skills demonstrate
self-righting, acrobatic flips, and rotational maneuvers. Jaco skills capture precise arm motions such
as leftward reaching, rightward grasping, and upward lifting toward a target.
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M NUMERICAL RESULTS

M.1 PER-TASK EPISODE RETURNS ON URLB DOMAINS

We report per-task episode returns (mean =+ standard devition over 10 seeds) following the evaluation
protocol of Agarwal et al.|(2021). All methods are pretrained for 2M steps with only intrinsic rewards,
then finetuned for 100k steps on each downstream task by adding the extrinsic reward. Table [14]
presents results on the Walker, Quadruped, and Jaco domains.

AMPED achieves at least second best performance in almost every discipline, and has the highest
total sum, which confirms that our method consistently perfoms well on different tasks (Table [T4).
More concretely, AMPED achieves a cumulative total sum of 6415, which is the highest among all
methods. The next best is APT with 6362, trailing AMPED by 53 points, and CIC comes third at
5822, well behind by 593 points. These per-task breakdowns confirm that AMPED’s joint handling
of entropy, RND, and diversity objectives delivers consistently strong performance across a diverse
set of URLB challenges. Although CeSD and ComSD also aim to balance diversity and exploration,
AMPED outperforms both on all but one task (Re., top left), demonstrating that our unified objective
formulation is more effective.

Table 14: Performance comparison with baselines. Numerical results corresponding to Figure @
Results are computed over 10 random seeds and reported as mean =+ standard deviation. The best
result is shown in bold, and the second-best is underlined.

Domain  Task AMPED (Ours) CeSD CIC BeCL APT RND DIAYN DDPG  ComSD
Flip 686 + 133 623 90 637 £ 108 625 £ 66 729 £ 129 483 £ 71 329 £39 531 46 488 + 57

Walker Run 517 £49 377+ 89 454 £82 435473 542473 371 +£86 183 &+ 35 327 4 115 341 & 100
Stand 947 £ 19 915+ 68 939 £33 953 4+ 11 949 +20 892 447 716 & 127 905 + 56 937 £ 17
Walk 886+ 63 805+ 133 874 £ 67 818 £ 189 892 £ 62 792 £ 139 434 4= 94 736 £ 149 826 £ 111
sum 3036 2720 2904 2831 3112 2538 1662 2499 2592
Jump 699 + 68 529 4 160 580 &+ 120 668 £ 44 720 £ 32 643 £ 50 555 £ 159 337 £ 129 607 £ 101

Quadruped Run 493 +54 390 £ 212 442 £ 72 394 £98 468 £ 97 435+ 34 398 £ 88 251 £ 112 336 + 91
Stand 816 £ 150 853 +40 693 £ 193 640 4 215 821 4= 192 839 £ 45 644 + 179 511 + 253 684 + 201
Walk 816 £ 116 562 % 322 630 £ 183 635 4205 758 = 192 571 490 404 £ 200 209 £ 60 396 + 182
sum 2824 2334 2345 2337 2767 2488 2001 1308 2023

Re. bottom left 139+ 34 136 £25 135+19 148 4+26 1204+24 101 +£24 20421 133 +£57 126 +24

Jaco Re. bottom right 140 4 21 134+7 152+23 140£22 126425 115+24 22420 115462 111 +41

Re. top left 130 £ 38 175 +8 137421 123 +£35 124£22 97+£30 22422 101 £60 126 25

Re. top right 146 4 49 97£29 149+19 116 £31 1134+25 122+30 12+12 87+£53 12115

sum 555 542 573 527 483 435 76 436 484
Total sum 6415 5596 5822 5705 6362 5461 3747 4243 5099
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M.2 ABLATION STUDY ON PROJECTION RATIO

As detailed in Section AMPED’s balanced projection ratio mitigates gradient conflicts and
enhances skill learning across diverse environments (Table[13).

Table 15: Performance under different projection-ratio settings (p). Numerical results correspond-
ing to Figure [/} Results are computed over three random seeds and reported as mean =+ standard
deviation, except AMPED, which uses 10 seeds. The best result is shown in bold, and the second-best
is underlined.

Domain Task AMPED (Ours) p=20.0 p=1.0
Flip 674 £ 105 628 + 55 606 + 37
Run 467 + 103 427 £ 44 533 £ 71
Walker
Stand 951 + 38 949 +£3 931 £ 12
Walk 929 + 19 939 + 13 828 + 73
Sum 3021 2943 2898
Jump 720 £ 34 706 £+ 19 661 + 34
Run 494 £ 56 483 £ 6 501 £29
Quadruped —
Stand 906 + 71 859+ 109 905+ 4
Walk 890 + 62 613 £ 183 626 4+ 129
Sum 3010 2661 2693
Re. bottom left 143 + 34 133 +44 126 £ 10
Jaco Re. bottom right 144 + 27 108 £+ 53 140 + 17
Re. top left 140 + 41 84 + 37 126 +29
Re. top right 154 + 49 103 £32 139+34
Sum 581 428 531

31



	Introduction
	Preliminaries
	Markov decision process (MDP) and Conditional MDP (CMDP)
	Entropy and Mutual Information
	Gradient Conflict

	Adaptive Multi-objective Projection for Exploration and Diversification (AMPED)
	Theoretical Analysis of Skill Diversity
	Exploration & Diversity Intrinsic Rewards
	Balancing Exploration and Diversity Objectives
	Adaptive Skill Selection

	Experiments
	Skill Discovery in Tree Maze
	Evaluation on URLB
	Ablation Studies
	Analysis on Diversity and Sample Complexity

	Conclusion
	Proof of the theorem
	Analysis on AnInfoNCE
	Additional Experiments in Maze
	Analysis of the Effect of Skill Count
	Comparison on the Square Maze
	Comparison of MI and Entropy
	Evolution of Skills Across Time Steps

	Ablation Study on Reward Scaling Factor
	Analysis on Skill Selection
	Related Works
	Unsupervised Reinforcement Learning
	Unsupervised Skill Discovery

	Difference with Former Studies
	Difference with CeSD
	Difference with ComSD

	Objectives and Rewards
	Implementation Details
	Maze Environments
	Network Architectures for Maze Experiments
	URLB Environments
	Network Architectures for URLB Experiments
	Hyperparameters
	URLB Training Pipeline
	Training Time Comparison
	Reproducing Baselines
	Experimental Setup and Reproducibility

	Limitations
	LLM Usage
	Visualization of Skills
	Numerical Results
	Per-Task Episode Returns on URLB Domains
	Ablation Study on Projection Ratio


