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Abstract

Bandeira et al. (2022) introduced the Franz-Parisi (FP) criterion for characterizing
the computational hard phases in statistical detection problems. The FP criterion,
based on an annealed version of the celebrated Franz-Parisi potential from statisti-
cal physics, was shown to be equivalent to low-degree polynomial (LDP) lower
bounds for Gaussian additive models, thereby connecting two distinct approaches
to understanding the computational hardness in statistical inference. In this paper,
we propose a refined FP criterion that aims to better capture the geometric “overlap"
structure of statistical models. Our main result establishes that this optimized FP
criterion is equivalent to Statistical Query (SQ) lower bounds—another founda-
tional framework in computational complexity of statistical inference. Crucially,
this equivalence holds under a mild, verifiable assumption satisfied by a broad class
of statistical models, including Gaussian additive models, planted sparse models, as
well as non-Gaussian component analysis (NGCA), single-index (SI) models, and
convex truncation detection settings. For instance, in the case of convex truncation
tasks, the assumption is equivalent with the Gaussian correlation inequality (Royen,
2014) from convex geometry. In addition to the above, our equivalence not only
unifies and simplifies the derivation of several known SQ lower bounds—such as
for the NGCA model (Diakonikolas et al., 2017) and the SI model (Damian et al.,
2024)—but also yields new SQ lower bounds of independent interest, including for
the computational gaps in mixed sparse linear regression (Arpino et al., 2023) and
convex truncation (De et al., 2023).

1 Introduction

Over the past decades, a central focus in statistical inference has been to understand the transition
from computationally easy to hard regimes—that is, to characterize when a statistical task can be
solved by polynomial-time algorithms. A key insight from this line of work is the emergence of
computational-statistical tradeoffs: in many models, there exist broad parameter regimes where
information-theoretic recovery is possible, yet no known polynomial-time algorithm succeeds.



Evidence for such tradeoffs spans multiple disciplines with varying levels of mathematical rigor.
In particular, the statistical physics community has played an instrumental role by leveraging non-
rigorous but highly predictive techniques to study average-case hardness. Their approach typically
analyzes the geometry of solution spaces and identifies structural properties that correlate with
algorithmic intractability (see [40] for a survey). Remarkably, for many statistical models, the
predictions from statistical physics have been in striking agreement with the performance of the
best-known polynomial-time algorithms.

Alongside these heuristic predictions, rigorous frameworks from statistics and theoretical computer
science have been developed to analyze the limitations of efficient algorithms. While ruling out all
polynomial-time algorithms would require resolving P ≠ NP , substantial progress has been made
by studying broad, expressive classes of polynomial-time algorithms. Two frameworks have emerged
as particularly influential: low-degree (LD) polynomial lower bounds [31] and statistical query (SQ)
lower bounds [20]. For many “nice enough” detection problems, the lower bounds derived from these
frameworks align closely with the performance of the best-known polynomial-time algorithms1. This
striking consistency has motivated the formulation of the so-called low-degree conjecture by Hopkins
[26], which posits that for sufficiently “symmetric and noisy” models, the failure of degree-O(log n)
polynomials is indicative of the failure of all polynomial-time algorithms [31].

Given this context, a natural question arises: can one formally connect these two seemingly distinct
approaches? At first glance, the answer appears negative, due to a fundamental mismatch in scope.
Statistical physics techniques are primarily geared toward estimation problems, where the goal is to
recover a hidden signal, while the rigorous frameworks discussed above—such as LD and SQ lower
bounds—are focused on detection or hypothesis testing, where the task is to distinguish between the
presence or absence of a signal in a noisy environment2. Nevertheless, a major step towards bridging
this gap was taken by Bandeira et al. (2022) [6], who introduced the Franz-Parisi (FP) criterion for
computational hardness in detection tasks. Inspired by the seminal work of Franz and Parisi in spin
glass theory [21], the FP criterion provides a geometric perspective on computational hardness rooted
in overlap structures. Crucially, Bandeira et al. showed that for Gaussian additive models, the FP
criterion is mathematically equivalent to the low-degree (LD) lower bounds, thereby establishing a
rigorous link between statistical physics heuristics and formal algorithmic barriers.

Specifically, consider the following general detection problem between two distributions P and Q
supported on a subset of Rn, which in what follows we refer to as a “P versus Q" task. Under
the planted distribution P = EuPu, a signal u is drawn from a prior distribution π supported on
Θ ⊆ SN−1, and one observes m independent samples Y1, . . . , Ym ∼ Pu. Under the null distribution
Q, the samples are drawn independently from Y1, . . . , Ym ∼ Q. The goal in the detection task3 is to
distinguish between these two hypotheses based on the observed data, that is to find a test statistics
with vanishing Type I and Type II errors, as n grows. Note that the computational question then
is whether such a successful test statistic exists that also terminates in polynomial-in-mn time. To
characterize the hardness of detection problems from the statistical physics perspective, Bandeira et
al. in [6] introduced the following notion of Franz-Parisi (FP) hardness:

Definition 1 (FP hardness). For D,m ∈ N, ε > 0, we say that a P versus Q detection task is
(q,m, ε)-FP hard if

FP: E
[
⟨L⊗m

u , L⊗m
v ⟩ · 1(|⟨u, v⟩| ≤ δ(q))

]
≤ 1 + ε, where (1)

δ(q) = sup{δ > 0 : π2(|⟨u, v⟩| ≥ δ) ≥ q−2}. (2)

In the definition we denoted as customary Lu = dPu

dQ , u ∈ Θ, and for f, g ∈ L2(Rn), the Hilbert
space L2(Q) of (square integrable) functions from Rn to R, we use ⟨f, g⟩Q = EY∼Qf(Y )g(Y ).

1For exceptions to this correspondence, see [39] and discussion therein.
2Some recent work has extended low-degree lower bounds to estimation settings, beginning with [38], though

this direction remains relatively underdeveloped.
3The associated estimation problem consists in recovering the planted signal u from Y1, . . . , Ym ∼ Pu.
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We elaborate in Section A.1 on the statistical physics motivations behind this criterion, and only
briefly highlight its core intuition here. The left-hand side of the FP condition integrates the function
Fann(t) := E [⟨L⊗m

u , L⊗m
v ⟩ · 1(⟨u, v⟩ = t)] , over a (1− q−2)-typical region of the overlap variable

t, corresponding to the constraint |⟨u, v⟩| ≤ δ(q). This function Fann(t) is an annealed proxy for
the Franz-Parisi potential, a central object in statistical physics that has long served as a predictor
of algorithmic hardness [40]. Intuitively, the Franz-Parisi potential captures the energy landscape
experienced by local algorithms—such as Langevin or Glauber dynamics—whose performance is
constrained by the geometry of the underlying signal space. The overlap ⟨u, v⟩ naturally quantifies
a local “geometric" similarity between signals, making it a meaningful argument for Fann(t) and
explaining its role within the FP criterion.

Returning to the definition of FP hardness, the parameter m corresponds to the sample size, and one
should interpret q as a proxy for the required runtime. In this light, Bandeira et al. (2022) proved
that, for Gaussian additive models, FP-hardness is equivalent to the failure of degree-D = log q
polynomials to solve the detection task with m samples—i.e., roughly the authors of [6] showed that
the problem is (q,m,O(1))-FP hard if and only if it is “hard" for degree-log q polynomials to solve
the detection task4. Hence, based on the current belief in the literature of low-degree lower bounds
that a D-degree lower bound implies that the detection task requires at least eD runtime to be solved,
e.g., see [18], proving a task is ((mn)ω(1),m,O(1))-FP hard for a Gaussian additive model provides
rigorous evidence for polynomial-time hardness for the task.

Despite this success, the connection between the FP potential and other rigorous notions of algorithmic
hardness remains limited. [6] only established a formal equivalence for Gaussian additive models and
an one-sided implication for planted sparse models between the FP criterion and “low-degree" lower
bounds. They further presented counterexamples where the equivalence fails entirely. In this work,
our aim is to extend the Franz-Parisi criterion to rigorously characterize hardness beyond Gaussian
additive models, and to clarify the scope and limitations of this framework across a broader class of
statistical models.

1.1 Main Contributions

Our main contribution is to propose a slight modification of the FP-hardness criterion from [6],
motivated by the observation that sticking to the Euclidean geometry assumption (and hence the
“overlap" ⟨u, v⟩) may fail to capture the “true” hardness of some statistical models. We remark
that this is an arguably natural modification, as (1) there are many statistical models for which the
Euclidean geometry appears unnatural for navigating their parameter space (see Section 5 for a
simple such construction), and (2) even in statistical physics settings, the Franz-Parisi potential is
often considered under a more general notion of overlap [22]. Motivated by these considerations,
we propose optimizing the “overlap" event inside the FP-hardness definition, subject only to a mild
symmetry assumption for technical reasons. This leads to the following new criterion of FP-hardness:
Definition 2 (Generalized Franz Parisi (GFP) hardness under symmetry G). Fix q,m ∈ N, ε > 0
and a group G of finite order acting on the parameter space of the signal. We say a “P versus Q"
problem is (q,m, ε)-GFPG hard if

GFPG : inf
A:π⊗2(A)≥1−q−2

A is G2 -invariant

E
[〈
L⊗m
u , L⊗m

v

〉
Q1(A)

]
≤ 1 + ε. (3)

As in the original FP-hardness framework of [6], one should interpret q as a proxy for runtime,
and therefore ((mn)ω(1),m,O(1))-GFP hardness should be providing evidence of polynomial-time
hardness with m samples in this framework. We highlight that the assumption on the invariance of
the optimizing event under group G is made for technical reasons to enhance the applicability of our
hardness criterion. We point the reader to Section 3.1 for further discussion of this assumption.

The main result of this work is that the “optimized" notion of GFP-hardness is fundamentally
connected with the well-established framework of Statistical Query (SQ) hardness. The SQ framework

4[6] established this equivalence for m = 1, but the argument extends directly to general m.
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was initially proposed by Kearns in [30] to capture the power of noise-tolerant algorithms. The
notion of a statistical dimension proposed by [20] allowed for achieving powerful lower bounds
against SQ methods, which we refer to from now on as SQ-hardness results. We employ here a slight
strengthening of the notion of SQ-hardness from [20], introduced in [8].
Definition 3 (SQ hardness). Fix q,m ∈ N. We say a “P versus Q" detection problem is (q,m)-SQ
hard if

SQ: sup
A:π2(A)≥q−2

E
[∣∣∣⟨Lu, Lv

〉
Q − 1

∣∣∣ |A] ≤ 1

m
. (4)

Roughly, a detection problem is (q,m)-SQ hard if any Statistical Query method succeeding at solving
it with m samples requires q queries, which should be interpreted as requiring runtime q (see [8,
Appendix A] for more details and motivation). Hence, proving a task is ((mn)ω(1),m)-SQ hard
provides evidence for polynomial-time hardness for the task.

Our main result is informally described as follows.
Theorem 1. (Informal, GFP and SQ equivalence) Consider any P versus Q detection task which
we assume (1) it satisfies a mild assumption with respect to a group G of finite order acting on the
parameter space (namely Assumption 1 below), and (2) it is information-theoretically impossible to
be solved with mIT samples. Then the following holds for any samples size m and proxy runtime
q = mΩ(1).

• If the task is (q,m)-SQ hard, then it is also (Θ(q),Θ(m), O(1))-GFPG-hard.

• If the task is (q,m,O(1))-GFPG-hard, then it is also (mΘ(mIT),m1−o(1))-SQ hard.

Note that often in statistical tasks of interest mIT = ω(log n) (in fact, more often than not mIT =
poly(n)). Under this condition, Theorem 1 implies that a task is ((mn)ω(1),m1−o(1), O(1))-GFP
hard if and only if it is ((mn)ω(1),m1−o(1))-SQ hardness, matching the two criteria for hardness.

On top of that, as we mentioned above and discuss in Section 3.1, the required Assumption 1 on
the detection task is rather mild. In fact, it turns out that it is satisfied for several models of recent
interest in the community, making a strong case of how the Generalized Franz-Parisi criterion now
correctly predicts the hardness phase for them. Importantly, these models include the Gaussian
additive models and also greatly extend beyond them, significantly extending the key message from
[6] about connecting the physics-based forms of hardness to more rigorous frameworks. We list now
some of the tasks that satisfy Assumption 1.

1. All Gaussian additive models (GAMs), under any symmetric prior, satisfy Assumption 1
with G = Z2 that flips the sign of the signal. Moreover, in that case the Generalized Franz
Parisi criterion is equivalent to the Franz-Parisi criterion, that is the optimizing event A in
(3) is of the form {|⟨u, v⟩| ≤ δ(q)}. Hence, Theorem 1 allows us to extend the result of [6]
which proved the equivalence of FP-hardness to Low-degree hardness for GAMs, to also
proving FP-hardness equivalent with SQ-hardness for these settings5.

2. All Planted Sparse Models satisfy Assumption 1 for the trivial group G = {id}. In particular,
using Theorem 1 we can prove that GFP-hardness is equivalent to SQ-hardness for multiple
well-studied models such as sparse phase retrieval [5], sparse regression [24, 6], (multi-
sample) sparse PCA [7], and Bernoulli group testing [11]. As a corollary of this connection,
we present a straightforward argument to obtain an SQ lower bound for the mixed sparse
linear regression problem [5]. We remark that in [6] it has been proven that FP-hardness
implies low-degree hardness for all Planted Sparse Models, but no result was presented for
the other direction.

3. All Non-Gaussian component analysis (NGCA) models and all single-index models (under
any symmetric prior) satisfy Assumption 1 with G = Z2, Therefore, via Theorem 1 GFP-
hardness is again equivalent with SQ-hardness for these tasks.

5We remark that such a connection could also be made via the results of [8], since GAMs are noise-robust.
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4. All Gaussian convex truncation models satisfy Assumption 1 for G = {id}. In particular,
interestingly Assumption 1 for these models is exactly equivalent to the celebrated Gaussian
correlation inequality for convex bodies in probability theory, which was a multi-decade open
problem posed in 1972 in [25] that was finally proven by Royen in 2014 [37]. Leveraging
the equivalence between GFP-hardness and SQ-hardness in Theorem 1, we establish an SQ-
lower bound for the convex truncation detection task. This allows us to provide, to the best
of our knowledge, the first formal evidence that the current state-of-the-art polynomial-time
detection method for convex truncation proposed in [15] has optimal sample complexity.

We also complement our results, with a simple example satisfying Assumption 1 where FP-hardness
does not coincide with GFP-hardness, which we interpret as a model where the Euclidean geometry
is not appropriate. We finally conclude the paper with a discussion.

For completeness, we prove in Appendix B the equivalence between GFP-hardness and low-degree
(LD) polynomial hardness for noise-robust models. This result follows by combining our GFP–SQ
equivalence with the equivalence between SQ-hardness and LD-hardness under noise robustness
shown by Brennan et al. [8]. In particular, our GFP-hardness results for the examples presented in this
paper immediately imply low-degree lower bounds in all those settings. This substantially extends
the equivalence established in [6]. For clarity and readers’ convenience, we also include succinct
proofs of the SQ-to-LD equivalence, adapted from [8].

2 Setting and Definitions

We first recall the definition of a “P versus Q" task mentioned in the Introduction. Under the planted
distribution P = EuPu, a signal u is drawn from a prior distribution π supported on Θ ⊆ SN−1, and
one observes m independent samples Y1, . . . , Ym ∼ Pu. Under the null distribution Q, the samples
are drawn independently from Y1, . . . , Ym ∼ Q. The goal in the detection task6 is the so-called
strong detection task to distinguish between these two hypotheses based on the observed data, that is
to find a test statistics with vanishing Type I and Type II errors, as n grows. We will also be interested
in the weak detection task, which is that the sum of type I and type II errors is at most 1− ε for some
fixed ε > 0 (not depending on n). In other words, strong detection means the test succeeds with
high probability, while weak detection means the test has some non-trivial advantage over random
guessing.

Throughout, we will work in the Hilbert space L2(Q) of (square integrable) functions RN → R
with inner product ⟨f, g⟩Q := EY∼Q[f(Y )g(Y )] and corresponding norm ∥f∥Q := ⟨f, f⟩1/2Q . We
will assume that Pu is absolutely continuous with respect to Q for all u ∈ supp(π), use Lu := dPu

dQ
to denote the likelihood ratio, and assume that Lu ∈ L2(Q) for all u ∈ supp(π). The likelihood
ratio between P and Q is denoted by L := dP

dQ = Eu∼µLu. Observe that for m samples, we denote
by Lm = Eu∼µLu the m-sample likelihood ratio. Finally, for a function f : RN → R and integer
D ∈ N, we let f≤D denote the orthogonal (w.r.t. ⟨·, ·⟩Q) projection of f onto the subspace of
polynomials of degree at most D.

An important identity between the (squared) norm of the likelihood ratio with m samples and the
chi-squared divergence χ2(P⊗m ∥Q⊗m) is

∥L∥2Q = ∥Eu∼µLu∥2Q = χ2(P ∥Q) + 1 ≥ 1 .

This quantity has the following standard implications for information-theoretic impossibility of
testing, in the asymptotic regime n → ∞. The proofs can be found in e.g. [34, Lemma 2].

• If ∥L∥2Q = O(1) then strong detection is impossible.

• If ∥L∥2Q = 1 + o(1) then weak detection is impossible.
6The associated estimation problem consists in recovering the planted signal u from Y1, . . . , Ym ∼ Pu.
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3 Main Results

In this section, we formally present our equivalence between GFP-hardness and SQ-hardness.

3.1 The Assumption

As mentioned in the Introduction, all our results operate under a crucial assumption on the “P versus
Q" detection task. The assumption is as follows.

Assumption 1. Given any “P versus Q" task, there exists a π-preserving finite group G acting on

the parameter space Θ, i.e., for all g ∈ G, g(v)
(d)
= v for v ∼ π, such that for any sample size m for

any u, v ∈ Θ, the following “correlation" inequality holds for any k ∈ N

Eg,g′∼Unif(G)(⟨Lg(u), Lg′(v)⟩Q − 1)k ≥ 0. (5)

We first remark that (5) is a natural condition even if G is the trivial group, G = {id}. Indeed in that
case (5) asks that for all u, v ∈ Θ,

⟨Lu, Lv⟩Q ≥ 1. (6)

Recall that if one averages over all (u, v) ∼ π⊗2, we have by standard identities

E⟨Lu, Lv⟩Q = EQ∥EuLu∥22 = 1 + χ2(P,Q) ≥ 1.

Thus, (6) should be understood as a pointwise condition that is guaranteed to hold in expectation over
the product measure π⊗2 for any P,Q. While this pointwise condition turns out to be vanilla satisfied
in many models (such as Planted Sparse Models or Convex Truncation settings), a slight modification
of it—leading to (5)—applies more broadly. Specifically, this modified condition requires (6) to hold
for a pair u, v only after performing a "small" averaging over the a group orbit that preserves the prior
π. For instance, if the prior is symmetric around 0 and the group G is Z2, which acts by flipping the
sign of the signal u, then for k = 1, condition (5) reduces to demonstrating that, for all u, v,

1

4
(E⟨Lu, Lv⟩Q + E⟨L−u, Lv⟩Q + E⟨Lu, L−v⟩Q + E⟨L−u, L−v⟩Q) ≥ 1,

which is significantly less restrictive than the original pointwise condition (6). This averaging
approach allows for much greater generality, making it applicable to various settings, including
Gaussian additive models, single-index models, and Non-Gaussian component analysis settings.

Remark 3.1. We finally make a trivial remark that will be useful in verifying (5) in our examples
in Section 4 with symmetric prior. In all of them by symmetry we have for all u, v ⟨Lu, L−v⟩Q =
⟨L−u, Lv⟩Q and ⟨Lu, Lv⟩Q = ⟨L−u, L−v⟩Q. Using that and the trivial fact that for all x, y ∈ R, if
x + y ≥ 0 then xk + yk ≥ 0 for all k ∈ N, we conclude that if G is either the trivial group or Z2

(which will be the case in all examples of Section 4) it suffices to check the case k = 1 in (5), and
then it automatically holds for all k ∈ N.

Remark 3.2. As mentioned in the previous remark, we highlight that in all our examples in Section
4 of our GFP-SQ equivalence theorem below, we either use G to be the trivial group or Z2. The
reason we state our assumption Assumption 1 for a general finite group G is for potential further
applications of our work.

3.2 The GFP-SQ equivalence

3.2.1 Simplifying GFP-hardness

We present our equivalence theorem in two steps. First, we identify an approximate optimal “overlap"
event A in the definition of GFP-hardness, which simplifies GFP-hardness significantly and makes
GFP-hardness easier to establish in applications. Then, we prove the equivalence between this
simplified version and SQ-hardness.
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Given a group G acting on the parameter space of the signal, it turns out that the approximately
optimal “overlap" event A takes the form {ρG(u, v) ≤ r} for the following notion of “overlap"
between u, v,

ρG(u, v) = max
g,g′∈G

{|⟨Lg(u), Lg′(v)⟩Q − 1|}.

In particular, focusing only on such type of events we define the following version of FP-hardness.

Definition 4 (ρG-FP hardness). Fix q,m ∈ N, ε > 0 and a finite group G acting on the parameter
space of the signal. We say a “P versus Q" problem is (q,m, ε)-ρG-FP hard if

ρG-FP : E
[
⟨L⊗m

u , L⊗m
v ⟩Q · 1(ρG(u, v) < r(q))

]
≤ 1 + ε, where (7)

r(q) = sup{r : π2(ρG(u, v) ≥ r) ≥ q−2}, (8)

We prove that GFPG-hardness is equivalent to ρG-FP hardness under Assumption 1.

Theorem 2. Consider any “P versus Q" task that satisfies Assumption 1 for a group G. Suppose
m, q ∈ N and ε > 0. Then the following statements hold.

1. If the task is (q,m, ε)-ρG-FP hard, then the task is also (q,m, ε)-GFPG hard.

2. Assume there exists an r > 0 such that π2(ρG(u, v) < r) = 1 − q−2 and that m is even.
Then, if the task is (q,m, ε)-GFPG hard, then it is (q,m, 3

|G| (1+ ε)+m ·χ2(P,Q))-ρG-FP
hard. In particular, if mχ2(P,Q) = O(1), the task is (q,m,O(1 + ε))-ρG-FP hard.

The proof of this theorem can be found in Appendix C.1.

Remark 3.3. While the first implication is immediate to grasp, the second implication has some
additional conditions we now elaborate upon. First, both the requirements of the existence of r with
the desired probability mass and the parity of m are for technical convenience, and both can be easily
remove with some tedious work. Second, any potential “blow-up" in the ε-term for ρG-FP hard
depends only on |G|, which should be treated as constant, and the term m · χ2(P,Q), which is an
easy to compute quantity (usually n = 1 and χ2(P,Q) is an one-dimensional integral). Moreover, it
is almost always of order O(1) for detection tasks that are conjecturally hard with m samples. Indeed,
the mathematical reason behind this is exactly that it is equal to the squared L2-norm of the projection
of the likelihood onto the degree-1 polynomial space, i.e., on the span of linear functions. On top of
that, if the detection task is (q,m)-SQ hard for any q then it holds directly mχ2(P,Q) = O(1) as
well. We elaborate more on this in Remark B.1 in Section B.

3.2.2 The equivalence

As we have already proven an equivalence between GFP-hardness and ρG-FP hardness, it suffices to
connect the latter with SQ-hardness. This is the topic of the next theorem.

Theorem 3 (SQ and ρG-FP Equivalence). Suppose a “P versus Q" task satisfies Assumption 1 for a
group G.

1. If the task is (q,m)-SQ hard for some q,m with q > 2 then, it is also (q′,m′, e|G|−1m′/m)-
ρG-FP hard for any integers q′ < q/

√
2 and m′ ≤ m/2.

2. Suppose the task is (q,m, ε)-ρG-FP hard for some q,m integers. Assume that there exists
an r = r(q) > 0 such that π2(ρG(u, v) < r) = 1− q−2 and m is even. Then, the model is
also (q′,m′)-SQ hard for any even integer t with t ≤ log q/ logm and any integer q′ > 0,
where

m′ =
m

(t(1 + ε)1/t + χ2(P⊗4t ∥Q⊗4t))(q′)2/t
.

In particular, if for some sample size mIT, we have

(a) (Bounded χ2 for mIT samples)

χ2(P⊗mIT ∥Q⊗mIT) = O(1).
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(b) (Large enough q)
q ≥ mmIT

then the model is (mδmIT ,Θ( m1−O(δ)

mIT(1+ε) ))-SQ hard for any δ > 0.

The proof of this theorem can be found in Appendix C.2. Similar to Theorem 2, the conditions
on r,m of part 2 in Theorem 3 are for technical convenience and can be easily removed. As we
discussed in the Introduction the assumption that there exists some sufficiently growing mIT (e.g.,
growing super-logarithmically in n) is natural for multiple commonly studied models. We remark
that the condition on the information theory threshold mIT to be growing with n is also necessary, by
constructing a variant of the planted clique problem which satisfies Assumption 1, it is not SQ-hard
and is GFP-hard. Lastly, we also note that our introduced Assumption 1 is also necessary for the
equivalence. In Section A, we discuss a counterexample not satisfying Assumption 1 that is GFP-hard,
but not SQ-hard.
Remark 3.4. We note that while our bounds in the equivalence of Theorem 2 deteriorate when |G|
becomes large, a slightly more general equivalence between GFP and SQ, using a variant of ρG, can
also be proven for infinite groups G under an “hypercontractivity" assumption on ⟨Lu, Lv⟩Q with
respect to the pair (u, v). We omit this generalization as in all relevant examples in this work a small
group action using either the trivial or 2-cyclic group suffices.

4 Examples

In this section, we discuss two popular classes of detection tasks that satisfy Assumption 1 and hence
fall under our GFP-SQ equivalence. Further examples are deferred to Appendix D.

4.1 Gaussian Additive Models

A P versus Q task is a Gaussian additive model (GAM) if it satisfies:

1. Under the null model, Q = N (0, In).

2. Under the planted model Pu (for u ∈ Sn−1), for some signal-to-noise ratio (SNR) λ > 0
we set

Y = λu+ Z, for some Z ∼ Q.

GAMs includes multiple well-studied models in the literature, with the predominant examples
being (multisample variants) of tensor PCA [36] and sparse PCA [2]. For such models, it can be
straightforwardly checked (see [6, Proposition 2.3]) that for all u, v,

⟨Lu, Lv⟩Q = eλ
2⟨u,v⟩.

So for instance, in the case of non-negative sparse PCA where u, v are binary k-sparse vectors in (see
e.g., [4, 10]) we always have ⟨u, v⟩ ≥ 0, and therefore Assumption 1 is always satisfied for the trivial
group G. On top of that, Assumption 1 remains true for any prior which is symmetric around 0; this
time Assumption 1 is also always satisfied by choosing the action of G = Z2 which flips the sign
of u. We remark that symmetric priors encompass most commonly used priors for GAMs, e.g., for
tensor PCA where u = vec(x⊗r), x ∼ Unif(Sd−1).
Lemma 1. Consider any GAM with symmetric π, i.e., v = −v, v ∼ π. For any u, v ∈ support(π),

1

4
(⟨Lu, Lv⟩Q + ⟨L−u, Lv⟩Q + ⟨Lu, L−v⟩Q + ⟨L−u, L−v⟩Q) ≥ 1.

Moreover, any GAM satisfies Assumption 1 for G = Z2 acting by flipping the sign of u.

Proof. Notice
1

4
(⟨Lu, Lv⟩Q+⟨L−u, Lv⟩Q+⟨Lu, L−v⟩Q+⟨L−u, L−v⟩Q) =

1

2
(exp

(
λ2⟨u, v⟩

)
+exp

(
−λ2⟨u, v⟩

)
) ≥ 1.

Hence, given Remark 3.1, the conclusion follows.
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Given the above lemma, we conclude the (almost) equivalence between GFP-hardness and SQ-
hardness from Theorem 3.
Remark 4.1. We remark that in the symmetric prior case for a GAM and G = Z2 acting by flipping
the sign of u, ρG(u, v) = exp

(
λ2|⟨u, v⟩|

)
is an increasing function of |⟨u, v⟩|. Hence, for such

GAMs we conclude via Theorem 2 that FP-hardness is equivalent to GFP-hardness, and therefore
also to SQ-hardness. This is in agreement with the results of [6] establishing that FP-hardness is
equivalent to LD-hardness; in fact, our approach can offer an alternative proof of their result via the
LD-SQ equivalence [8] and the noise robustness of GAMs (see Theorem Theorem 6).

4.2 Planted Sparse Models

In [6], the authors introduced the family of planted sparse models (PSM) and proved that FP-hardness
for a PSM implies it’s also low-degree hard. We start with the definition.

A P versus Q task is a planted sparse model (PSM) if it satisfies:

1. Under the null model, the one sample is given by Y = (Y1, . . . , Yn) ∼ Q, where each entry
Yi, i = 1, . . . , n is drawn independently from some distribution Qi, i = 1, . . . , n on R.

2. Under the planted model Pu, we associate u with a set of planted entries Φu ⊂ [n]. Then on
sample is generated as follows. For the entries i /∈ Φu, we draw Yi independently from Qi

(which is identical as in the Q measure). For the entries in Φu we draw from an arbitrary
joint distribution Pu|Φu

with the following symmetry condition: for any subset S ⊆ Φu, the
marginal distribution Pu|ϕu

(S) does not depend on u but only on S, i.e. Pu|S = PS .

Multiple well-known detection models satisfy this definition, such as, a well studied model of sparse
regression [24, 6], Bernoulli group testing [1, 11], sparse phase retrieval [5], as well as multi-sample
variants [8] of planted clique [29] and sparse (Wigner) PCA [2].

Satisfyingly, all planted sparse models directly satisfy Assumption 1 for the trivial group. In fact this
result has already been established for a different use in [6, Proposition 3.6], proving that any u, v we
have ⟨Lu, Lv⟩Q ≥ 1. We state here for completeness.
Lemma 2. Consider any PSM. For any u, v ∈ support(π), ⟨Lu, Lv⟩Q ≥ 1. This is to say, any PSM
satisfies Assumption 1 for the trivial group.

The proof follows from [6, Proposition 3.6] for D = 0. Using this, one can apply our main
equivalence Theorem 3 to multiple interesting planted sparse models and obtain old and new SQ-
hardness results in a rather streamlined fashion. As an instantiation of this, in Appendix D.1 we prove
the GFP-hardness for the mixed sparse linear regression setting studied in [5] in its conjecturally hard
regime. We then use our equivalence theorem to translate it into an SQ-hardness result in the same
regime. Our results complement the existing low-degree lower bound [5], providing further evidence
for the hard phase of the problem.

4.2.1 Other examples

Due to space constraint, we defer the following examples to Appendix D:

• Non-Gaussian Component Analysis (NGCA): Assumption 1 holds with G = Z2 for any
symmetric prior. We recover the SQ-hardness result of [16] for the uniform prior via its
equivalence with GFP-hardness, and establish a new SQ lower bound under a sparse prior.

• Single-Index Models (SIM): Again, Assumption 1 holds with G = Z2. We rederive the
SQ-hardness result of [12] for the uniform prior through the GFP-hardness equivalence, and
prove a new SQ lower bound for sparse priors.

• Convex truncation detection: Here Assumption 1 holds with the trivial group. In fact this
assumption is precisely equivalent to the celebrated Gaussian Correlation Inequality on
convex bodies [37, 32]. Using the GFP-hardness correspondence, we derive a new SQ lower
bound that matches the current state-of-the-art polynomial-time algorithm of [15].
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5 GFP-hardness is not always equal to FP-hardness

Recall that by definition, FP-hardness implies GFP-hardness. In this section, we show that the con-
verse does not necessarily hold: we construct a P versus Q detection task that satisfies Assumption 1
and is easy under the FP criterion but hard under the GFP criterion. In particular, by using Theorem 2
and Theorem 3, the problem is also SQ-hard. Thus, while the FP criterion fails to capture the
SQ-hardness in this case, our optimized GFP criterion correctly predicts it. As our initial departure
from FP-hardness was that in many models the Euclidean overlap ⟨u, v⟩ might not be the “correct"
choice, our example is carefully creating a model where the natural “overlap" ρG(u, v) (based on
Theorem 3) is not a function of the Euclidean dot product.

The P versus Q problem is defined as follows. The null model is Q = Rad
(
1
2

)⊗(n+1)
, i.e., each

coordinate is an independent Rademacher random variable. For a signal u ∈ {0, 1}n+1, the sample
x ∼ Pu is generated by drawing each coordinate independently according to

xi =

{
+1, w.p. 1

2 + r · 1−(1−α)·ui

2 ,

−1, w.p. 1
2 − r · 1−(1−α)·ui

2 ,
(9)

where α, r ∈ (0, 1) are fixed constants to be chosen later. The following holds.
Lemma 3. Let u, v ∈ {0, 1}n+1. For any u, v ∈ {0, 1}n+1, ⟨Lu, Lv⟩Q =

∏n
i=0

(
1 + r2 · αui+vi

)
.

Notice that our construction importantly ensures that the likelihood ratio inner product ⟨Lu, Lv⟩ is
not solely a function of ⟨u, v⟩, but instead has a more intricate dependence on u and v. It is exactly
this reason that leads to the discrepancy between GFP and FP hardness stated below.
Theorem 4. There exist a two-point prior π on u such that, for r = n−1/2, α = n−1+2ε, m = n1−ε

and D = nε, where ε > 0 is any small constant, the following hold. The m-sample hypothesis testing
problem Eu∼πP⊗m

u versus Q⊗m is (eD/2,m,Θ(n−ε))-GFP hard but not (n−1,m, exp (Θ(nε)))-FP
hard. Moreover, via our equivalence theorem the model is (en

Θ(ε)

, n1−Θ(ε))-SQ hard.

The proof of this Theorem and the above Lemma can be found in Appendix E.

6 Conclusion

In this work, we generalize the Franz-Parisi (FP) criterion introduced by [6], motivated by the obser-
vation that the Euclidean dot product may not be the most natural geometry for all statistical task—a
point partially illustrated by our example in Section 5. Our main result shows that optimizing the
overlap event in the FP definition of [6] leads to a Generalized Franz-Parisi (GFP) hardness criterion,
which is equivalent to SQ-hardness for models satisfying the mild Assumption 1. This assumption
holds in a broad range of well-studied problems, including Gaussian additive models, planted sparse
models, single-index models, and convex truncation. Our work significantly strengthens the theo-
retical foundation behind the (annealed) FP potential’s predictions from statistical physics, but also
opens several questions:

1. (Algorithmic implications) Does the optimal overlap function ρG(u, v)—as characterized in
Theorem 2—yield meaningful algorithmic insights, particularly for local search or geometric
methods?

2. (The annealed potential) Can similar equivalences be established for the original (also
known as quenched) FP potential, or is the choice of the annealed version fundamental?

3. (Interpretation of FP Area) Why does the area under the FP curve appear to govern detection
hardness? Is there some physical/algorithmic interpretation of this phenomenon?

4. (Generalization to estimation) Can our techniques be extended from detection to estimation
tasks, for which the Franz-Parisi potential was originally introduced?

We believe these questions point toward promising future directions, with the potential to unify
different approaches on the computational complexity of statistical inference.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the abstract and introduction make accurate claims about the paper’s
contributions and scope. We describe our results accurately.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss sufficiently the limitations of our results and provide clear assump-
tions under which they apply.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We write clearly all the assumptions that are required for our results to hold.
The proofs are all provided in the appendices.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
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4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: There are no experimental results, as this is a theory paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: There are no experimental results, as this is a theory paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: There are no experimental results, as this is a theory paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: There are no experimental results, as this is a theory paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: There are no experimental results, as this is a theory paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have conducted research and presented our work in accordance with the
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
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A Discussions on FP criterion and assumptions

In this Section, we provide additional discussions on the Franz-Parisi criterion and its connection with
Statistical physics, as well as, on the necessity of our assumptions in our main theorem (Theorem 3).

A.1 Connection of the FP criterion with statistical physics

We begin by discussing the connection between the Franz-Parisi (FP) criterion and statistical physics
methods. For a more detailed overview and additional references, we refer the reader to [6, Section
1.3].

A natural algorithm for solving the estimation problem of recovering u from Y = (Y1, . . . , Ym) ∼ Pu

is to run some “local" dynamics (e.g., Langevin or Glauber dynamics) to sample from the posterior

P(u|Y ) ∝ π(v)P(Y |v) = π(v)

m∏
i=1

Pv(Yi), v ∈ Θ,

where Y = (Y1, . . . , Ym). In statistical physics, a powerful heuristic exists for predicting the success
of local dynamics in sampling from random distributions of the form pY (v)ν(v), v ∈ Θ where ν is a
reference measure and Y ∼ µ is a “disorder". The heuristic approach is to check the monotonicity of
the so-called Franz-Parisi potential defined as

F (t) = Eu∼ν,Y∼µ [logEv∼ν [pY (v)1 (d(v, u) = t)]] , t ∈ [0, 1],

where d(·, ·) is some notion of (normalized) distance between the states u, v in agreement with the
operations of the local dynamics on the state space. The prediction, introduced by Franz and Parisi in
[21], is that local dynamics can efficiently sample from the distribution if and only if the potential
is monotonic, i.e., it lacks “bad" local minima. Remarkably, this prediction has been empirically
validated across a range of problems in statistical physics, often yielding accurate forecasts of
algorithmic tractability. For instance, when d is the Euclidean distance, this criterion has proven
effective in the study of spin glasses [21]. Other, more intricate distance functions have also been
used successfully in non-spin glass settings, such as binary fluids [22].

Now, returning to statistical estimation settings, researchers in statistical physics have applied this
rule for pY (v) := P(Y |v) =

∏m
i=1 Pv(Yi) and ν := π to arrive at a prediction of success for “local"

algorithms based on the geometry defined by the distance d. The prediction [40] is then based on the
monotonicity of the curve

F (t) = Eu∼π,Y∼Pu
[logEv∼π (P(Y |v)1 [d(v, u) = t])] , t ∈ [0, 1],

or equivalently for

F (t) = Eu∼π,Y∼Pu

[
logEv∼π

(
m∏
i=1

Pv(Yi)

Q(Yi)
1 (d(v, u) = t)

)]
, t ∈ [0, 1], (10)
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Interestingly, when d(·, ·) is the Euclidean distance, recent mathematical works have indeed produced
one-sided results linking the potential to the performance of local methods for estimation tasks in the
context of the so-called Gaussian additive models (e.g., [3, 4, 6]). This connection with the choice of
the Euclidean distance can be perhaps cast as natural by a well-known analogy between spin glasses
and GAMs, where GAMs often take the form of "spiked" spin glass models. Now, given the above
successes, both heuristic and rigorous, it is natural to conjecture a potential link between general
algorithmic hardness and the monotonicity of F (t). However, this connection remains unproven in
general, and known counterexamples exist. For instance, in sparse tensor PCA [10], there are regimes
where the FP potential is non-monotonic (suggesting hardness), but some polynomial-time methods
do succeed.

Despite the above issue, [6] used the Franz-Parisi potential to arrive at a different criterion, but now
for algorithmic hardness of detection. Following an application of Jensen’s inequality described in [6,
Section 1.3] one get the following “annealed" upped bound for any t ∈ [0, 1] F (t) ≤ log F̃ (t) for,

F̃ (t) = Eu,v∼p,[⟨L⊗m
u , L⊗m

v ⟩1 [d(v, u) = t]], t ∈ [0, 1]. (11)

Then by focusing on the Euclidean distance d (or equivalently the Euclidean dot product ⟨u, v⟩) they
suggested the Franz-Parisi (FP) criterion Definition 1, restated here.

Definition 5 (FP hardness). We say a problem is (q,m, ε)-FP hard if

FP: E
[
⟨L⊗m

u , L⊗m
v ⟩ · 1(|⟨u, v⟩| ≤ δ(q))

]
≤ 1 + ε, where (12)

δ(q) = sup{δ : π2(⟨u, v⟩ ≥ δ) ≥ q−2}, (13)

Notice that the FP criterion says that to check for “hardness" of detection one should integrate the
annealed FP curve is an (1 − q−2)-typical overlap t-region. Moreover, as we elaborated in the
Introduction, one should understand q in the above definition as a proxy for q run-time. In that light,
[6] roughly proved that for any GAMs is a (q,m,O(1))-FP hard if and only if D = log q-degree
polynomials fail to detect between P and Q with m samples. We remark that, albeit this is an
equivalence for detection, this is a first-of-a-kind result for GAMs as it is mathematical connection
between the FP curve and a rigorous form of hardness. However, [6] also presented counterexamples
where this equivalence breaks down when we move away from GAMs.

The central idea of this work is to optimize over the integration region in the FP criterion, rather
than fixating on the Euclidean dot product. This leads us to propose the Generalized Franz-Parisi
(GFP) criterion (see Definition 2). Our motivation arises from the observation that while the Euclidean
distance is natural for GAMs (and spin glass models), it may be inappropriate in other statistical
settings (see Section 5). This echoes insights from statistical physics, where non-Euclidean distances
are used in models beyond spin glasses [22]. Satisfyingly, this generalization enables a broad
equivalence with statistical query (SQ) lower bounds, as shown in Theorem 3.

A.2 Necessity of assumptions in main theorem

In this section, we comment on the necessity of our assumptions for the GFP-hardness and SQ-
hardness equivalence.

A.2.1 Necessacity of Assumption 1

We first show that there is a strong separation between GFP-hardness and SQ-hardness unless some
non trivial lower bound on minu,v⟨Lu, Lv⟩Q is assumed, providing support for our Assumption 1.
Indeed, we present here a (very) simple counterexample when one allows for minu,v⟨Lu, Lv⟩Q = 0.

Let us define a variant of the following model from [6, Section 4.2.] (assume for simplicity n is a
multiple of 10 in what follows):

• Under P, we first sample a u ∼ Unif({x ∈ {−1, 1}n :
∑

xi = 8n/10}). Then under Pu

each sample always equals to u, i.e., Pu is the Dirac measure on u.
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• Under Q for each sample, we sample u ∼ Unif({−1, 1}n) and output u.

It is easy to see that for all u, v ∈ {x ∈ {−1, 1}n :
∑

xi = 8n/10},

⟨Lu, Lv⟩Q = 2n1(u = v).

We first prove that the task is not even (1, 1)-SQ hard. Indeed (1, 1)-SQ hard implies E[|⟨Lu, Lv⟩Q −
1|] ≤ 1, but

E[|⟨Lu, Lv⟩Q − 1|] ≥ |⟨Lu, Lu⟩Q − 1|π2(u = v) (14)

= (2n − 1)

(
n

9n/10

)−1

= ω(1). (15)

On the contrary, we now show that the task is (en
Θ(1)

,∞, O(1))-GFP-hard, more specifically we
prove that it is (m, q,O(1))-GFP-hard for any sample size m and q =

(
n

9n/10

)1/2
= en

Θ(1)

. Indeed,
we have π2(u ̸= v) = 1− q−2 and therefore to prove (m, q)-GFP hardness it suffices

E[⟨Lu, Lv⟩mQ 1(u ̸= v)] = O(1).

But in fact it even holds E[⟨Lu, Lv⟩mQ 1(u ̸= v)] = 0 completing this proof.

A.2.2 Necessity of a non-trivial information-theory threshold

The second assumption that our equivalence operates under is that mIT is non-trivial. We now claim
that some non-trivial lower bound on mIT is also necessary for the connection between the notions
of GFP-hardness and SQ-hardness, even under Assumption 1.

Indeed, consider the following multisample problem over graphs. Let n ∈ N, p = 1 − n−1/4 and
k = n1/3+o(1).

• Under P we choose a u being a k-clique in Kn, chosen uniformly at random (we see u
as a k-vertex set). Then under Pu one sample consists of the union of a G(n, p) with the
k-clique on u.

• Under Q one sample is a sample from G(n, p).

We note this is a multi-sample variant of the classic planted clique model [29], but on the (very) dense
regime, which has been recently used to establish circuit lower bounds for the model in [? ].

Now, even for m = 1 the problem is information-theoretically solvable; indeed, under P there is
always a k-clique, while under Q there is no k-clique with probability 1− o(1), and a brute force
method can distinguish the two cases. Indeed, by a union bound the probability there is a k-clique
under Q is at most

nk(1− n−1/4)(
k
2) ≤ exp

(
n1/3 log n−Θ(n2/3−1/4)

)
= exp

(
−Θ(n5/12)

)
= o(1).

Moreover, the model satisfies Assumption 1. One can see this because the model is a PSM and
use Lemma 2. Alternatively, one can just directly observe that for any u, we have Lu(G) =

1(u is a k-clique in G)p−(
k
2). Hence, for any u, v

⟨Lu, Lv⟩Q = p−(
|u∩v|

2 ) = (1− n−1/4)−(
|u∩v|

2 ) ≥ 1.

Now, we prove that this PSM is not SQ-hard even for m = 1 and q = 1, but it is GFP-hard even for
m = nΘ(1)-samples.

We first prove that the task is not (1, 1)-SQ-hard. Notice that (1, 1)-SQ hardness is equivalent with
the condition E[|⟨Lu, Lv⟩Q − 1|] ≤ 1. But in this context

E[|⟨Lu, Lv⟩Q − 1|] ≥ |⟨Lu, Lu⟩Q − 1|π2(u = v)
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= (1− n−1/4)Θ(k2)

(
n

k

)
= exp

(
Θ(k2n−1/4)−Θ(k log n)

)
= exp

(
Θ(n5/12)

)
= ω(1).

On the contrary, the task is (en
Θ(1)

, n1/8, O(1))-GFP-hard. Fix m samples. Notice that for i.i.d.
u, v ∼ π, the overlap |u ∩ v| follows an (n, k, k)-Hypergeometric. Hence by [6, Lemma 6.6.] for
any q > 0 if δ = log(k2q) > 0 it holds

π2(|u ∩ v| ≥ δ) ≤ k(k2/n)δ ≤ k2−δ = q−2.

Hence, to prove GFP-hardness it suffices to prove that E[⟨Lu, Lv⟩mQ 1(|u ∩ v| ≤ δ)] = O(1).

Therefore for q = exp (nα) for some α > 0, and m = n1/8+o(1),

E[⟨Lu, Lv⟩mQ 1(|u ∩ v| ≤ δ)] ≤ E[(1− n−1/4)−m(|u∩v|
2 )1(|u ∩ v| ≤ δ)]

≤ (1− n−1/4)−m(δ2)

= (1− n−1/4)−Θ(m(log(kq2))2

≤ exp
(
Θ(mn−1/4(log(kq2))2

)
= exp

(
n−1/8+2α

)
= O(1),

where the last equality hold say for any 0 < α < 1/16. Hence, choosing say q = en
1/32

concludes
the proof.
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B Equivalence between LD, SQ, and GFP

In this Appendix, we discuss the equivalence between GFP and low-degree (LD) polynomial hardness.
This result is obtained by combining the GFP-SQ equivalence from Section 3 with the equivalence
between SQ and LD hardness under noise robustness proved by Brennan et al. [8]. We recall and
provide a succinct proof of Brennan et al.’s result for completeness.

B.1 Low-Degree lower bounds definitions

We start by recalling the definition of a low-degree lower bound. The definition is based on the
low-degree likelihood ratio L≤D, where we recall that L≤D denotes the projection of the likelihood
ratio onto the subspace of degree-at-most-D polynomials.

B.1.1 Low-Degree Lower Bounds

The following is the standard definition of Low-Degree hardness as originally stated, for example, in
[26].

Definition 6 (Low-Degree Likelihood Ratio). For m samples, define the squared norm of the degree-
D likelihood ratio (also called the “low-degree likelihood ratio”) to be the quantity

LD(D) := ∥L≤D
m ∥2Q =

∥∥∥(Eu∼πL
⊗m
u

)≤D
∥∥∥2
Q
= Eu,v∼π

[
⟨(L⊗m

u )≤D, (L⊗m
v )≤D⟩Q

]
. (16)

For some increasing sequence D = Dn, we say that the hypothesis testing problem above is hard for
the degree-D likelihood or simply D-degree hard if LD(D) = O(1).

While we direct the reader to [6, Section 1.2] a relation between the Low-degree likelihood ratio and
the performance of low-degree algorithms we highlight some key conjectures in the community.

• We expect the class of degree-D polynomials to be as powerful as all exp
(
Θ̃(D)

)
-time

tests (which is the runtime needed to naively evaluate the polynomial term-by-term). Thus,
if LD(D) = O(1) (or 1 + o(1)), we take this as evidence that strong (or weak, respectively)
detection requires runtime eΩ̃(D); see Hypothesis 2.1.5 of [26].

• On a finer scale, we expect the class of degree-O(log n) polynomials to be at least as
powerful as all polynomial-time tests. Thus, if LD(D) = O(1) (or 1 + o(1)) for some
D = ω(log n), we take this as evidence that strong (or weak, respectively) detection cannot
be achieved in polynomial time; see Conjecture 2.2.4 of [26].

We emphasize that the above statements are not true in general (see for instance [39] for some
discussion of counterexamples) and depend on the choice of P and Q, yet remarkably often appear to
hold up for a broad class of distributions arising in high-dimensional statistics.

B.1.2 Low Samplewise Degree Lower Bounds

In multisample settings like ours, a similar notion of “samplewise" low degree lower bounds have
been considered in [8].

Definition 7. For d, k ∈ N ∪ {∞} a function f : (Rn)⊗m → R has samplewise degree (d, k) if
it can be written as a linear combination of functions which have degree at most d in each xi and
non-zero degree in at most k of the xi’s (if d < ∞ the function is therefore a polynomial).

Let’s state the hardness criterion associated with this samplewise low degree polynomials:

Definition 8 (Low Degree (LD) Hardness). We say a “P versus Q" detection problem is (m, d, k, ε)-
LD hard if

LD: E
[〈
(L⊗m

u )≤d,k, (L⊗m
v )≤d,k

〉]
≤ 1 + ε. (17)
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Notice that this notion of (d, k)-low degree hardness is the natural generalization to (16). As a
point of comparison, dk-degree polynomials contain all (d, k)-degree polynomials and (d, d)-degree
polynomials contain all d-degree polynomial.

Remark B.1 (Explaining Remark 3.3). A nice property of the low samplewise-degree degree
projection is that it is easy to relate it to d-degree projections. Indeed, using a binomial expansion
argument (see [8, Claim 3.3.]),

∥L≤(d,k)
m ∥2Q = Eu,v∼π

[
⟨(L⊗m

u )≤(d,k), (L⊗m
v )≤(d,k)⟩Q

]
=

m∑
t=0

(
m

t

)
Eu,v∼π

[
(⟨L≤d

u , L≤d
v ⟩Q − 1)t.

]
In particular, if k = 1, d = ∞, since Eu,v∼π [⟨Lu, Lv⟩ − 1] = χ2(P,Q) we have

∥L≤(∞,1)
m ∥2Q = 1 +mχ2(P,Q).

In particular, notice that the condition mχ2(P,Q) = O(1) discussed in Theorem 2 and Remark 3.3
is equivalent with a samplewise (∞, 1)-degree lower bound for the task, i.e., a lower bound against
function that are linear combination of functions of one sample at a time. In [8] the authors prove
that SQ lower bounds are (almost) equivalent with sample-wise degree lower bounds, therefore it is
perhaps no surprise that the condition mχ2(P,Q) = O(1) can be also explained as a (very) weak
consequence of any SQ lower bounds against m samples. Indeed, assume a P versus Q detection
problem is (q,m)-SQ hard for any q (even q = 1). Then setting A = support(π)⊗2 we have that it
must hold mEu,v∼π [|⟨Lu, Lv⟩Q − 1|] ≤ 1 and therefore

mχ2(P,Q) = mEu,v∼π [⟨Lu, Lv⟩Q − 1] ≤ 1.

B.2 Unconditional SQ hardness

Before stating the equivalence between the above LD-hardness criterion and SQ-hardness, we define
an Unconditional Statistical Query (USQ) hardness criterion, which is equivalent to SQ and often
appears as a convenient intermediate step in proofs. This hardness measure appeared, often implicitly,
in several prior work (e.g., [8]):

Definition 9 (Unconditional SQ hardness). We say a “P versus Q" detection problem is (m, t)-
unconditional SQ hard for some even t if

USQ: E
[
χQ(Pu,Pv)

t
]
≤ m−t. (18)

The USQ criterion removes the conditioning on event A from the SQ criterion, which makes it much
easier to manipulate. USQ hardness is essentially equivalent to SQ hardness as stated in the next
proposition:

Proposition 1 (Equivalence USQ and SQ hardness).

(i) If a model is (m, t)-USQ hard, then it is (q,m/q2/t)-SQ hard for all integers q ≥ 1.

(ii) If a model is (q,m/q2/t)-SQ hard for all integers q ≥ 1, then it is (m′, t′)-USQ hard for all
t′ < t and m′ ≤ m · 2−1/t(t− t′)1/t

′
.

For simplicity, for t ≥ 4, we can set t′ = t/2 and m′ = m in Proposition 1.(ii). Proposition 1 was
proven in [8]. We provide a succinct proof for completeness.

Proof of Proposition 1. USQ hardness implies SQ hardness. By Hölder’s inequality,

E
[
|⟨Lu, Lv⟩Q − 1|

∣∣A] ≤ (E [|⟨Lu, Lv⟩Q − 1|t])1/t · (E [1[(u, v) ∈ A]])
1−1/t

π2(A)

=

(
E [|⟨Lu, Lv⟩Q − 1|t]

π2(A)

)1/t

.
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Assuming that we have (m, t)-USQ hardness, this implies that for any q ≥ 1,

sup
A:π2(A)≥q−2

E
[
|⟨Lu, Lv⟩Q − 1|

∣∣A] ≤ q2/t

m
,

which establishes the (q,m/q2/t)-SQ hardness.

SQ hardness implies USQ hardness. For convenience, introduce the random variable X =
|⟨Lu, Lv⟩Q − 1| with (u, v) ∼ π2. Assume that we have (q,m/q2/t)-SQ hardness for all q ≥ 1. In
particular, for all A, we have

E[X|A] ≤ 1

π2(A)1/tm
.

Using [8, Fact 4.3], we have for every t > t′ > 0,

E[Xt′ ] ≤
(
2 sup

A
π2(A) · E[X|A]t

)t′/t

· t

t− t′
≤ 2t

′/t

mt′
· t

t− t′
,

which establishes (t′,m′)-USQ hardness for any t′ < t and m′ = m · 2−1/t(t− t′)1/t
′
.

B.3 Noise-robust models and SQ-LD equivalence

An advantage of USQ is that it is directly related to Low Degree lower bounds: USQ hardness is
equivalent to LD hardness with d = ∞, that is, with no degree-constraint on each sample in the
projection.

Proposition 2 (Equivalence between USQ and LD hardness with d = ∞).

(i) If a model is (m,∞, k, ε)-LD hard, then it is (m′, k)-USQ hard with m′ = m/(kε1/k).

(ii) If a model is (m, k)-USQ hard, it is (m,∞, k, e− 1)-LD hard. More generally, it will be
(m′,∞, k, em′/m)-LD hard for all m′ < m.

Proof of Proposition 2. We follow the proof in [8]. Assume that the model is (m,∞, k, ε)-LD hard.
Then

∥Eu[(L
⊗m
u )≤∞,k]− 1∥2Q =

k∑
s=1

(
m

s

)
Eu,v[χQ(Pu,Pv)

s] ≤ ε,

and in particular, for k even,

∥Eu[(L
⊗m
u )≤∞,k]− 1∥2Q − ∥Eu[(L

⊗m
u )≤∞,k−1]− 1∥2Q =

(
m

k

)
Eu,v[χQ(Pu,Pv)

k] ≤ ε.

This implies that Eu,v[χQ(Pu,Pv)
k] ≤ ε/

(
m
k

)
≤ εkk/mk. On the other hand, (m, k)-USQ hardness

implies that

∥Eu[(L
⊗m
u )≤∞,k]− 1∥2Q ≤

k∑
s=1

ms

s!
Eu,v[χQ(Lu, Lv)

s] ≤ (e− 1).

More generally, we will have for m′ < m

∥Eu[(L
⊗m′

u )≤∞,k]− 1∥2Q ≤
k∑

s=1

(m′)s

s!
Eu,v[χQ(Lu, Lv)

s] ≤
k∑

s=1

1

s!

(
m′

m

)s

≤ e
m′

m
,

which concludes the proof.

Combining this equivalence of USQ and LD(d = ∞) with the equivalence between USQ and SQ
in Proposition 1, we can directly state an (unconditional) equivalence between SQ and LD(d = ∞)
hardness. In order to transfer this equivalence to LD with d < ∞, one can assume that the model
with d = ∞ and d < ∞ are close to each other: this assumption is equivalent to being noise-robust
(in some sense, see discussions in [8]).
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Assumption 2 (Noise robustness). We say a “P versus Q" detection problem is (d, k, δ)-noise robust
if

∥Eu[(L
>d
u )⊗k]∥2L2(Q) ≤ δ. (19)

Under this assumption, one can state the equivalence between LD and USQ:

Proposition 3 (Equivalence between LD and USQ Hardness).

(i) If the model is (m, t)-USQ hard, then the model is also (m′, d, k′, em′/m)-LD hard for all
m′ ≤ m, k′ ≤ t and d ≥ 1.

(ii) If the model is (m, d, k, ε)-LD hard and we further assume that it is (d, k, δ)-noise robust,
then the model is (m′, k)-USQ hard with

m′ =
m

mδ1/k + kε1/k
.

Proof of Proposition 3. Part (i) is directly implied by Proposition 2.(ii). For part (ii), following the
same argument as in the proof of Proposition 2.(i), we get

E[|⟨L≤d
u , L≤d

v ⟩ − 1|k] ≤ ε
kk

mk
.

Then using [8, Lemma 3.4], we obtain

E[|⟨Lu, Lv⟩ − 1|k]1/k ≤ E[|⟨L≤d
u , L≤d

v ⟩ − 1|k]1/k + E[|⟨L>d
u , L>d

v ⟩|k]1/k

≤ ε1/k
k

m
+ δ1/k =

kε1/k +mδ1/k

m
,

which concludes the proof.

Then, the equivalence between LD and SQ hardness in [8] is obtained by combining Proposition 3
and Proposition 1. We state it below for completeness:

Theorem 5 (Equivalence between LD and SQ hardness).

(i) If the model is (q,m/q2/t)-SQ hard for all q ≥ 1 (with t ≥ 4, for simplicity), then it is
(m′, d, k′, em′/m)-LD hard for all m′ ≤ m, k′ ≤ t/2. and d ≥ 1.

(ii) If the model is (m, d, k, ε)-LD hard and we further assume that it is (d, k, δ)-noise robust,
then the model is (q,m′/q2/t)-SQ hard for all q ≥ 1 with

m′ =
m

mδ1/k + kε1/k
.

B.4 Equivalence of GFP, SQ, and LD hardness for noise-robust models

Based on the SQ-LD equivalence stated in the previous section (Theorem 5) and the equivalence
between GFP and SQ (Theorem 3), we can state an equivalence between GFP and LD hardness for
noise-robust models.

Theorem 6 (LD and ρG-FP Equivalence). Suppose a “P versus Q" task satisfies Assumption 1 for a
group G.

(i) If the model is (m, d, k, ε)-LD hard and we further assume that it is (d, k, δ)-noise robust,
then the model is (q′,m′, e|G|−1m̃q2/t/m̃)-ρG-FP hard for any integers q ≥ 1, q′ ≤ q/

√
2,

and m′ ≤ m̃/2, with
m̃ =

m

mδ1/k + kε1/k
.
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(ii) If a task is (q,m, ε)-ρG-FP hard for some q,m integers. Assume that there exists an
r = r(q) > 0 such that π2(ρG(u, v) < r) = 1 − q−2 and m is even. Then, for all even
integer 4 ≤ t ≤ log(q)/ log(m), the model is also (m′, d, k′, em′/m̃)-LD hard for all
m′ ≤ m̃ and k′ ≤ t/2, and d ≥ 1, where

m̃ =
m

t(1 + ε)1/t + χ2(P⊗4t ∥Q⊗4t)
.

Note that the implication of GFP hardness to LD hardness is unconditional. LD hardness with
d = ∞ implies GFP hardness, while for d < ∞, this implication holds under the noise robustness
assumption.
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C Proofs of main theorems

C.1 Proof of Theorem 2

Proof of Theorem 2. It is clear that (q,m, ε)-ρG-FP hard implies (q,m, ε)-GFPG hard as for the
event

A := {ρG(u, v) < r(q)},
it clearly holds π⊗2(A) ≥ 1− q−2 and, since G is a group, G⊗2(A) = A. Hence,

inf
A:π⊗2(A)≥1−q−2

G⊗2(A)=A

E
[〈
L⊗m
u , L⊗m

v

〉
Q1(A)

]
≤ E

[
⟨L⊗m

u , L⊗m
v ⟩Q · 1(ρG(u, v) < r(q))

]
≤ 1 + ε,

implying the desired result.

We now focus on the other direction. By decomposing the likelihood ratio inner product, we obtain

⟨L⊗m
u , L⊗m

v ⟩Q =
(
⟨Lu, Lv⟩Q − 1 + 1

)m
=

m∑
t=0

(
m

t

)
· (⟨Lu, Lv⟩Q − 1)

t
. (20)

Taking expectation over the prior π⊗2 conditioned on any event A satisfying G⊗2(A) = A and
π2(A) = 1− q−2, we have

E
[
⟨L⊗m

u , L⊗m
v ⟩Q |A

]
=

m∑
t=0

(
m

t

)
· E
[(
⟨Lu, Lv⟩Q − 1

)t |A]
=

m∑
t=1

(
m

t

)
·
(
Eg∼Unif(G)E

[(
⟨Lg(u), Lg(v)⟩Q − 1

)t |A])+ 1

≥
⌊m/2⌋∑
t=1

(
m

2t

)
·
(
E
[
Eg∼Unif(G)

(
⟨Lg(u), Lg(v)⟩Q − 1

)2t |A])+ 1.

where in the second equality, we used that G is a π-preserving transformation, and for the inequality
we use Assumption 1.

Clearly for all t ≥ 0,

Eg∼Unif(G)

(
⟨Lg(u), Lg(v)⟩ − 1

)2t
Q ≥ |G|−1ρG(u, v)

2t. (21)

Therefore, we further conclude that

E
[
⟨L⊗m

u , L⊗m
v ⟩Q − 1 |A

]
≥ |G|−1

⌊m/2⌋∑
t=1

(
m

2t

)
· E
[
ρG(u, v)

2t |A
]
. (22)

Recall that r(q) satisfies

π2((u, v) : ρG(u, v) ≤ r(q)) = π2(A) = 1− q−2.

Hence, by definition of r(q) we have

|G|−1

⌊m/2⌋∑
t=1

(
m

2t

)
· E
[
ρG(u, v)

2t |A
]
≥ |G|−1

⌊m/2⌋∑
t=1

(
m

2t

)
· E
[
ρG(u, v)

2t | ρG(u, v) ≤ r(q)
]

(23)

≥ |G|−1

⌊m/2⌋∑
t=1

(
m

2t

)
· E
[∣∣⟨Lu, Lv⟩Q − 1

∣∣2t | ρG(u, v) ≤ r(q)
]
.

(24)
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In addition, we notice that for each even order 2t+1 with t = 1, . . . , ⌊m/2⌋−1, it holds by Lemma 4
that (

m
2t+1

)
·
∣∣⟨Lu, Lv⟩Q − 1

∣∣2t+1√(
m
2t

)
·
∣∣⟨Lu, Lv⟩Q − 1

∣∣2t · ( m
2t+2

)
·
∣∣⟨Lu, Lv⟩Q − 1

∣∣2t+2
=

(
m

2t+1

)√(
m
2t

)
·
(

m
2t+2

) ≤ 2.

Therefore, using the inequality 2
√
ab ≤ a+ b for a, b ≥ 0, we obtain(

m

2t+ 1

)
·
∣∣⟨Lu, Lv⟩Q − 1

∣∣2t+1 ≤
(
m

2t

)
·
∣∣⟨Lu, Lv⟩Q − 1

∣∣2t + ( m

2t+ 2

)
·
∣∣⟨Lu, Lv⟩Q − 1

∣∣2t+2
.

Consequently, the right-hand-side of (24) can be further lower bounded by

|G|−1

⌊m/2⌋∑
t=1

(
m

2t

)
· E
[∣∣⟨Lu, Lv⟩Q − 1

∣∣2t | ρG(u, v) ≤ r(q)
]

(25)

≥ |G|−1

3

m∑
t=2

(
m

t

)
· E
[∣∣⟨Lu, Lv⟩Q − 1

∣∣t | ρG(u, v) ≤ r(q)
]

(26)

≥ |G|−1

3

m∑
t=2

(
m

t

)
· E
[(
⟨Lu, Lv⟩Q − 1

)t | ρG(u, v) ≤ r(q)
]
. (27)

Combining (22), (24), and (27), with the condition of (q,m, ε)-GFPT hardness, we obtain
m∑
t=2

(
m

t

)
· E
[(
⟨Lu, Lv⟩Q − 1

)t | ρG(u, v) ≤ r(q)
]
≤ 3|G| · E

[
⟨L⊗m

u , L⊗m
v ⟩Q − 1 |A

]
. (28)

Again, by the definition of r(A) it follows that
m∑
t=2

(
m

t

)
· E
[(
⟨Lu, Lv⟩Q − 1

)t · 1(ρG(u, v) ≤ r(q))
]
≤ 3|G|E

[
(⟨L⊗m

u , L⊗m
v ⟩Q − 1)1(A)

]
and therefore by (20)

E
[
(⟨L⊗m

u , L⊗m
v ⟩Q − 1)1(ρG(u, v) ≤ r(q))

]
≤ 3|G|E

[
(⟨L⊗m

u , L⊗m
v ⟩Q − 1)1(A)

]
+mE

[(
⟨Lu, Lv⟩Q − 1

)
· 1(ρ(u, v) ≤ r(q))

]
Next, we aim to upper bound the first order term, namely m · E[(⟨Lu, Lv⟩ − 1) · 1(ρG(u, v) ≤
r(q))]. Note that A′ := {(u, v) : ρG(u, v) ≤ r(q)} is also G⊗2-invariant. Hence, employing also
Assumption 1 we also have

E[(⟨Lu, Lv⟩ − 1) · 1(ρG(u, v) ≤ r(q))]

= E[
(
Eg∼Unif(G)⟨Lg(u), Lg(v)⟩Q − 1

)
) · 1(ρG(u, v) ≤ r(q))]

≤ E[
(
Eg∼Unif(G)⟨Lg(u), Lg(v)⟩Q − 1

)
)]

= E[(⟨Lu, Lv⟩ − 1)]

= χ2(P,Q).

Therefore,

E
[
(⟨L⊗m

u , L⊗m
v ⟩Q − 1)1(ρG(u, v) ≤ r(q))

]
≤ 3|G|E

[
(⟨L⊗m

u , L⊗m
v ⟩Q − 1)1(A)

]
+mχ2(P,Q).

from which the result follows.

Lemma 4. For any t ∈ {1, 2, . . . , n− 1} and n ≥ 3, we have(
n
t

)2(
n

t−1

)
·
(

n
t+1

) ≤ 4. (29)

Proof. Note that by the successive ratio between binomial coefficients, we have(
n
t

)2(
n

t−1

)
·
(

n
t+1

) = 1 +
1 + n

t(n− t)
≤ 1 +

1 + n

n− 1
= 2 +

2

n− 1
≤ 4. (30)

This completes the proof.
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C.2 Proof of Theorem 3

Proof of Theorem 3. SQ implies ρG-FP. We have that

sup
A:π2(A)≥q−2

E [|⟨Lu, Lv⟩ − 1| |A] ≤ 1

m
. (31)

Now as G is π-preserving that easily implies that for any A such that G⊗2(A) = A, that

sup
A:π2(A)≥q−2

E [ρG(u, v) |A] ≤ |G| sup
A:π2(A)≥q−2

E
[
Eg∼Unif(G)

∣∣⟨Lg(u), Lg(v)⟩ − 1
∣∣ |A] ≤ |G|

m
.

Hence for any r > 0 if we set Ar = {ρG(u, v) ≥ r} since G⊗2(A) = A we conclude that
π2(Ar) ≥ q−2 implies r ≤ |G|/m. Recall that r(q) > 0 satisfies π2(Ar(q)) ≥ q−2. In particular,
r(q) ≤ |G|/m, and therefore for any m′ ≤ m/2,

E
[
⟨L⊗m′

u , L⊗m′

v ⟩Q · 1(ρG(u, v) ≤ r(q))
]

= E
[
(⟨Lu, Lv⟩Q − 1 + 1)

m′
· 1(ρG(u, v) ≤ r(q))

]
≤ E

[
(ρG(u, v) + 1)m

′
· 1(ρG(u, v) ≤ r(q))

]
(32)

≤ (r(q) + 1)m
′
≤ (|G|/m+ 1)m

′
≤ 1 + e|G|m′/m. (33)

This concludes the (q,m′, e|G|m′/m)-ρG-FP hardness.

ρG-FP hardness implies SQ-hardness. Suppose we have (q,m, ε)-ρG-FP hardness

E
[
⟨L⊗m

u , L⊗m
v ⟩Q · 1(ρG(u, v) < r(q))

]
≤ 1 + ε, where π2(ρG(u, v) ≥ r(q)) = q2.

By definition 4, we have that

1 + ε ≥ E
[(
⟨L⊗m

u , L⊗m
v ⟩Q − 1

)
· 1(ρG(u, v) < r(q))

]
= E

[
m∑
t=1

(
m

t

)
· (⟨Lu, Lv⟩Q − 1)

t · 1(ρG(u, v) < r(q))

]

= E

[
m∑
t=1

(
m

t

)
Eg∼Unif(G)[

(
⟨Lg(u), Lg(v)⟩Q − 1

)t
] · 1(ρG(u, v) < r(q))

]
,

where the first inequality holds by the definition of the ρG-FP hardness and the second equality holds
by using the elementary ⟨L⊗m

u , L⊗m
v ⟩Q = (⟨Lu, Lv⟩Q − 1 + 1)m. The last equality holds by using

that G is π-measure preserving. As crucially Eg∼Unif(G)[
(
⟨Lg(u), Lg(v)⟩Q − 1

)t
] ≥ 0 for all integers

t ≥ 0, we have

E

[
m∑
t=1

(
m

t

)
Eg∼Unif(G)[

(
⟨Lg(u), Lg(v)⟩Q − 1

)t
] · 1(ρG(u, v) < r(q))

]

≥ E

 ∑
t≤m, t even

(
m

t

)
· Eg∼Unif(G)[

(
⟨Lg(u), Lg(v)⟩Q − 1

)t
] · 1(ρG(u, v) < r(q))


≥ max

1≤t≤m,
t even

E
[(

m

t

)
· (⟨Lu, Lv⟩Q − 1)

t · 1(ρG(u, v) < r(q))

]
.

Hence, combining the two for all even t, with 1 ≤ t ≤ m,

max
1≤t≤m,

t even

E
[
(⟨Lu, Lv⟩Q − 1)

t · 1(ρG(u, v) < r(q))
]
≤ 1 + ε(

m
t

) . (34)
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Therefore, we have for any even t with t ≤ m that

E
[
(⟨Lu, Lv⟩ − 1)

t]
= E

[
(⟨Lu, Lv⟩ − 1)

t
1(ρG(u, v) < r(q))

]
+ E

[
(⟨Lu, Lv⟩ − 1)

t
1(ρG(u, v) ≥ r(q))

]
≤ 1 + ε(

m
t

) + E
[
(⟨Lu, Lv⟩ − 1)2t

]1/2 · q−1

≤
(
t(1 + ε)1/t

m
+

χ2(P⊗4t ∥Q⊗4t)1/2t

q1/t

)t

.

where in the first inequality, we use the Cauchy-Schwarz inequality for the second term and the fact
that π2(ρG(u, v) ≥ r(q)) ≤ q2. In the second term, we use the elementary

(
m
t

)
≥ (m/t)t.

Now focusing on t ≤ log q/ logm we further have

E
[
(⟨Lu, Lv⟩ − 1)

t] ≤ ( t(1 + ε)1/t + χ2(P⊗4t ∥Q⊗4t)

m

)t

. (35)

Hence the model is ( m
t(1+ε)1/t+χ2(P⊗4t ∥Q⊗4t)

, t)-USQ hard. By Proposition 1 we conclude for any

q′ > 0 that the model is (q′, m(q′)−2/t

t(1+ε)1/t+χ2(P⊗4t ∥Q⊗4t)
)-SQ hard. The second part follows by setting

t = (logm)s and q′ = eδ(logm)s+1

.
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D Details of examples and proofs

D.1 Symmetric mixed sparse linear regression

The symmetric mixed sparse linear regression (mSLR) setting, is a P versus Q detection task defined
as follows. Given k, n ∈ N with k ≤ n and σ2 > 0, we have:

• Under the planted model, we first sample u ∼ π uniformly from set u ∈ {0, 1}n with
∥u∥0 = k. Then, the sample (xi, yi) ∼ Pu is generated by

yi = (k + σ)−1 [zi ⊙ ⟨xi, u⟩+ (1− z)⊙ ⟨xi,−u⟩+ wi] ,

for independent wi ∼ N (0, σ2), xi ∼ N (0, In) and zi ∼ Bern(1/2). Following [5] we
also denote SNR := k/σ2.

• Under the null model, the sample (yi, xi) ∼ Q is generated by yi ∼ N (0, 1) and indepen-
dently xi ∼ N (0, In).

To see that mSLR is a PSM, set for any u, ϕu := suppport(u) ∪ {n+ 1}, that is the coordinates of
((xi)j)j∈support(u) and of yi. Then it is easy to confirm that for any subset S ⊆ Φu, the marginal
distribution Pu|ϕu

(S) does not depend on u but only on S; the choice of suppport(u) \ S does not
alter this distribution.

It is known that the information theory sample size threshold of the problem is

mSTATS = Θ̃

(
k

log( SNR2

2SNR+1 + 1)

)
,

see e.g., [19]. Also in [5] it was proven that in the similar mSLR setting where u’s coordinates can
take values in {−1, 0, 1}, if

m ≤ mALG = Θ̃

(
(SNR + 1)2

SNR2 k2
)
,

then the problem is O(log n)-degree hard. Here we prove that with sample size m ≤ (mALG)
1−o(1)

the problem is also GFP-hard, and hence via Theorem 3 also SQ-hard. Our result holds under a very
mild assumption on SNR being not exponential in k. Interestingly, the proof is relatively short.

The first step is to calculate the inner product ⟨L⊗m
u , L⊗m

v ⟩Q which accounts to a calculation over the
Gaussian measure.

Lemma 5. For any sample size m and any u, v binary k-sparse vector, the following holds for the
mSLR model:

⟨L⊗m
u , L⊗m

v ⟩Q =

(
1−

(
⟨u, v⟩
k + σ2

)2
)−m

≤ exp

(
m⟨u, v⟩2

(k + σ2)2 − ⟨u, v⟩2

)
.

Using Lemma 5 one can prove the GFP-hardness, and therefore the SQ-hardness.

Theorem 7. If nΩ(1) = k = o(n1/2) then for any m = o

(
k

log( SNR2

2SNR+1+1)

)
, it holds

χ2(P⊗m,Q⊗m) = 1 + o(1).

Moreover, for any constant T > 1, for any m = O
(

(SNR+1)2k2

SNR2(logn)2T+2

)
and q = eΘ((logn)T ), the

mSLR task is (q,m,O(1))-GFP hard. In particular, if SNR ≤ ek
1−α

for some α > 0, then for any
T > 1 the mSLR task is (eΘ((logn)T ), ( (SNR+1)2

SNR2 k2)1−o(1))-SQ hard.

The proof of this Theorem can be found in Appendix D.

36



D.1.1 Proofs for mSLR

Proof of Lemma 5. Let λ =
√

k/σ2 + 1 and since ⟨L⊗m
u , L⊗m

v ⟩Q = (⟨L⊗m
u , L⊗m

v ⟩Q)m we focus
on the case m = 1.

Let Y = Y1, X = X1. By definition and Bayes’ rule,

Lu = Lu(X,Y ) =
P(Y |X,u)

Q(Y )

Under Q we have λσY ∼ N (0, λ2σ2), while under P conditional on (X,u) we have

λσY =
√
k + σ2Y ∼ 1

2
N (⟨X,u⟩, σ2) +

1

2
N (−⟨X,u⟩, σ2),

and so

Lu =
P(Y |X,u)

Q(Y )

=
1

2
λexp

(
− 1

2σ2
(λσY − ⟨X,u⟩)2 + 1

2λ2σ2
(λσY )2

)
+

1

2
λexp

(
− 1

2σ2
(λσY + ⟨X,u⟩)2 + 1

2λ2σ2
(λσY )2

)
=

λm

2

{
exp

(
−λ2 − 1

2
Y 2 +

λ

σ
Y ⟨X,u⟩ − 1

2σ2
⟨X,u⟩2

)
+ exp

(
−λ2 − 1

2
Y 2 − λ

σ
Y ⟨X,u⟩ − 1

2σ2
⟨X,u⟩2

)}
.

Now a standard integration argument using the MGF of the χ2 distribution (see e.g., the proof of [6,
Proposition 6.8.] for an almost identical argument) gives for any u, v binary k-sparse vectors,

⟨Lu, Lv⟩Q =
λ2

2(2λ2 − 1)1/2
EX∼Q(exp

(
1

2σ2(2λ2 − 1)

[
(1− λ2)

(
⟨X,u⟩2 + ⟨X, v⟩2

)
+ 2λ2⟨X,u⟩⟨X, v⟩

])
(36)

+ exp

(
1

2σ2(2λ2 − 1)

[
(1− λ2)

(
⟨X,u⟩2 + ⟨X, v⟩2

)
− 2λ2⟨X,u⟩⟨X, v⟩

])
) (37)

Now of course the pair (⟨X,u⟩, ⟨X, v⟩) follows a bivariate Gaussian law with variances equals to k
and covariance ⟨u, v⟩. Hence, some standard manipulations (see again the proof of [6, Proposition
6.8.] for an almost identical argument) allow us to derive that for Z ∈ R1×3 with i.i.d. N (0, 1)
entries and

t :=
1

2σ2(2λ2 − 1)
=

1

2σ2(2k/σ2 + 1)
=

1

4k + 2σ2
. (38)

it holds

⟨Lu, Lv⟩Q =
λ2m

2(2λ2 − 1)m/2
EZ(exp

(
t⟨M1, Z

⊤Z⟩
)
+ exp

(
t⟨M2, Z

⊤Z⟩
)
) (39)

where for ℓ := ⟨u, v⟩,

M1 = M1(ℓ) :=

 2ℓ
√
ℓ(k − ℓ)

√
ℓ(k − ℓ)√

ℓ(k − ℓ) (1− λ2)(k − ℓ) λ2(k − ℓ)√
ℓ(k − ℓ) λ2(k − ℓ) (1− λ2)(k − ℓ)

 .

and

M2 = M2(ℓ) :=

 2(1− 2λ2)ℓ (1− 2λ2)
√

ℓ(k − ℓ) (1− 2λ2)
√
ℓ(k − ℓ)

(1− 2λ2)
√
ℓ(k − ℓ) (1− λ2)(k − ℓ) −λ2(k − ℓ)

(1− 2λ2)
√
ℓ(k − ℓ) −λ2(k − ℓ) (1− λ2)(k − ℓ)

 .
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The eigendecompositions of M1,M2 of the form
∑3

i=1 λi
uiu

⊤
i

∥ui∥2 are, first for M1,

u⊤
1 = (0 1 − 1) λ1 = (1− 2λ2)(k − ℓ)

u⊤
2 = (

√
k − ℓ −

√
ℓ −

√
ℓ) λ2 = 0

u⊤
3 = (2

√
ℓ

√
k − ℓ

√
k − ℓ) λ3 = k + ℓ.

(40)

and for M2,

u⊤
1 = (0 1 − 1) λ1 = k − ℓ

u⊤
2 = (

√
k − ℓ −

√
ℓ −

√
ℓ) λ2 = 0

u⊤
3 = (2

√
ℓ

√
k − ℓ

√
k − ℓ) λ3 = (1− 2λ2)(k + ℓ).

(41)

As t < 1/(4k) we have 2tmax{∥M1∥op, ∥M2∥op} < (k + ℓ)/2k ≤ 1. Hence, using [6, Lemma
A.5.] for B(U) = Rn×m, we have

⟨Lu, Lv⟩Q =
λ2

2(2λ2 − 1)1/2
(det(I3 − 2tM1)

−1/2 + det(I3 − 2tM2)
−1/2). (42)

Using (38) and (40), (41) the eigenvalues of the matrices I3 − 2tM1, I3 − 2tM2 are

{1, 1− 2t(k + ℓ), 1− 2t(1− 2λ2)(k − ℓ)} =

{
1, 1− k + ℓ

σ2(2λ2 − 1)
, 1 +

k − ℓ

σ2

}
and

{1, 1− 2t(k − ℓ), 1− 2t(1− 2λ2)(k + ℓ)} =

{
1, 1− k − ℓ

σ2(2λ2 − 1)
, 1 +

k + ℓ

σ2

}
.

Since λ2 = k/σ2 + 1 we have

λ2

√
2λ2 − 1

det(I3 − 2tM1)
−1/2 = λ2

[(
2λ2 − 1− k + ℓ

σ2

)(
1 +

k − ℓ

σ2

)]−1/2

(43)

=
k
σ2 + 1

1 + k−ℓ
σ2

(44)

=

(
1− ℓ

k + σ2

)−1

. (45)

and by symmetry,

λ2

√
2λ2 − 1

det(I3 − 2tM2)
−1/2 =

(
1 +

ℓ

k + σ2

)−1

. (46)

Combining the above,

⟨Lu, Lv⟩Q =
1

2
(

(
1− ℓ

k + σ2

)−1

+

(
1 +

ℓ

k + σ2

)−1

) (47)

=

(
1−

(
ℓ

k + σ2

)2
)−1

(48)

≤ exp

(
mℓ2

(k + σ2)2 − ℓ2

)
, (49)

where for the last inequality we used that log x ≥ 1− 1/x, for x > 0.

Proof of Theorem 7. We have from the first part of Lemma 5,

χ2(P⊗m,Q⊗m)− 1 = Eu,v∼π⟨L⊗m
u , L⊗m

v ⟩Q ≤ Eu,v∼π

(
1− ⟨u, v⟩2

(k + σ2)2

)−m

(50)
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But, in this setting ⟨u, v⟩ follows an Hypergeometric distribution with parameters n, k, k. Hence, by
[6, Lemma 6.6],

χ2(P⊗m,Q⊗m)− 1 ≤
k∑

ℓ=0

(
1− ℓ2

(k + σ2)2

)−m

(
k2

n− k
)ℓ (51)

≤
⌊k/2⌋∑
ℓ=0

exp

(
mℓ2

(k + σ2)2 − ℓ2

)
e−ℓ log(n−k

k2 ) +

k∑
ℓ=⌊k/2⌋

(1− k2

(k + σ2)
)−me−ℓ log(n−k

k2 )

(52)

≤
⌊k/2⌋∑
ℓ=0

eℓm/(k−ℓ)−ℓ log(n−k

k2 ) + k(
( k
σ2 )

2

2 k
σ2 + 1

+ 1)me−Θ(k log(n−k

k2 )), (53)

where for the last inequality we used log x ≥ 1− 1/x for x > 0.

Since k2 = o(n),m = o( k

log( SNR2

2SNR+1+1)
),SNR = k/σ2 we have for large enough n,

k(
( k
σ2 )

2

2 k
σ2 + 1

+ 1)me−Θ(k log(n−k

k2 )) = e−Θ(k log(n−k

k2 )) = o(1).

Moreover, since k2 = o(n),m = o(k) we have for large enough n,
⌊k/2⌋∑
ℓ=0

eℓm/(k−ℓ)−ℓ log(n−k

k2 ) ≤
⌊k/2⌋∑
ℓ=0

e2ℓm/k−ℓ log(n−k

k2 ) ≤
⌊k/2⌋∑
ℓ=0

e−ℓ log(n−k

k2 )/2 = 1 + o(1).

Now, fix any T > 1. Notice ⟨Lu, Lv⟩Q is an increasing function of ⟨u, v⟩. Hence, for any q > 0 there
exists δ0(q) > 0 such that {ρid(u, v) ≥ r(q)} = {⟨u, v⟩ ≥ δ0(q)}. Moreover, from the tail of ⟨u, v⟩
which is an (n, k.k) Hypergeometric distribution, there exists some q = qT = eΘ((logn)T ) for which
there exists r(T ) with π({ρid(u, v) ≥ r(T )}) = q−2.

Let us then fix q = qT . Notice that if we choose δ := log(kq2) = Θ((log n)T+1), then we have for
large enough n, by [6, Lemma 6.6] π⊗2(⟨u, v⟩ ≥ δ) ≤ k(k

2

n )δ ≤ k2−δ = 1/q2. Hence, δ0 ≤ δ.
Combining the above with the second part of Lemma 5,

Eu,v∼π(⟨L⊗m
u , L⊗m

v ⟩Q1(⟨u, v⟩ ≤ δ0)) ≤ Eu,v∼πexp

(
m⟨u, v⟩2

(k + σ2)2 − ⟨u, v⟩2

)
1(⟨u, v⟩ ≤ δ))

≤ exp

(
mδ2

(k + σ2)2 − δ2

)
= exp

(
mΘ(

(log n)2(T+1)

k2(1 + SNR−1)2
)

)
= O(1),

for any m = O(k
2(1+SNR−1)2

(logn)2(T+1) ). Hence, the model is (q = qT ,m = Θ(k
2(1+SNR−1)2

(logn)2(T+1) ), O(1))-ρid-
hard. Using now Theorem 3 for mIT = (log n)T , which is permissible to use using our χ2 bound
and that SNR ≤ ek

1−α

for some α > 0, we conclude for all T > 1, the (eΘ((logn)T−1), (k2(1 +
SNR−1)2)1−o(1))-SQ hardness. The result follows.

D.2 Non-Gaussian component analysis

The following model was introduced in [16] to capture the complexity of learning Gaussian mixtures.

Definition 10 (Non-Gaussian component analysis model). A “P versus Q" detection problem is a
Non-Gaussian component (NGCA) model if:

• There exists µ ∈ P(R) such that, under the planted hypothesis Pu with u ∈ Sn−1, we sample
x ∼ N (0, In) and replace the component ⟨x, u⟩ · u by z · u where z ∼ µ independently;
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• Under the null model, we sample x ∼ N (0, In).

In other words, an NGCA model is an isotropic Gaussian distribution with a non-Gaussian marginal in
direction u. The SQ-hardness for NGCA models established also in [16] has been of big importance
in proving many recent SQ-hardness for learning tasks, such as for robust estimation of Gaussians
[17] and robust linear regression [17] among others.

Interestingly, we can also connect all NGCA models with GFP-hardness for G = Z2. By a direct
Hermite expansion, we can decompose the likelihood function (in L2(Q))

Lu(x) = 1 +

∞∑
i=s∗

νihi(⟨u, x⟩), νi := Ez∼µ[hi(z)],

where hi is the (normalized) degree-i Hermite polynomial. Here we denoted s∗ > 0 the first non-zero
coefficient νi ̸= 0, that is, the smallest moment of µ that disagrees with N(0, 1) moments (we call s∗

the generative exponent of the NGCA model). The inner-product of the likelihood ratios is given for
all u, v ∈ Sn−1 by

⟨Lu, Lv⟩ = 1 +

∞∑
i=s∗

ν2i ·
(
⟨u, v⟩

)s
, (54)

where we used that E[hs(⟨u, x⟩)hk(⟨v, x⟩)] = δks⟨u, v⟩s. Similar to GAMs, using again the group
G = Z2 acting on flipping the sign of each parameter, we get

Eg,g′∼Unif(G)(⟨Lg(u), Lg′(v)⟩Q − 1) =

∞∑
i=s∗,i even

ν2i ·
(
⟨u, v⟩

)i ≥ 0,

concluding that NGCA satisfy Assumption 1 with G = Z2. Hence, based on our equivalence, for
any NGCA model the SQ-hardness is equivalent with the GFP-hardness for any symmetric prior
(that is π(−u) = π(u)). We illustrate this equivalence for two standard priors: the uniform prior
π = Unif(Sn−1) and the k-sparse prior π = Unif({u ∈ ± 1√

k
{0, 1}n : ∥u∥0 = k}).

Theorem 8 (GFP-hardness of NGCA, uniform prior). Consider a NGCA model with generative
exponent s∗ and the uniform prior π = Unif(Sn−1). For any ε ∈ (0, 1/2), the NGCA model is
(exp (Θ(nε)) ,m,O(1))-GFP hard with

m =
1

ν2s∗
ns∗/2−Θ(ε).

Moreover, via our equivalence theorem, the model is (exp
(
nΘ(ε)

)
,m1−Θ(ε))-SQ hard.

Theorem 9 (GFP-hardness of NGCA, sparse prior). Consider a NGCA model with generative
exponent s∗ and the k-sparse prior π = Unif({u ∈ ± 1√

k
{0, 1}n : ∥u∥0 = k}). For any ε ∈ (0, 1/2)

so that k = nΩ(ε), the NGCA model is (exp (Θ(nε)) ,m,O(1))-GFP hard with

m =
1

ν2s∗
min(ns∗/2−Θ(ε), ks

∗
n−Θ(ε)).

Moreover, via our equivalence theorem, the model is (exp
(
nΘ(ε)

)
,m1−Θ(ε))-SQ hard.

The SQ lower bound in Theorem 8 was proven in [16] by a direct argument: here, we prove this
SQ-hardness via equivalence to GFP-hardness. The sparse prior was not considered previously and
we include it to illustrate the broad applicability of our equivalence.

D.2.1 Proofs for Non-Gaussian Component Analysis

Proof of Theorem 8. Let us prove that the model is ρZ2 -FP hard and conclude using the implication
in Theorem 2.1. Note that ρZ2

(u, v) = ⟨Lu, Lsign(⟨u,v⟩)v⟩ − 1, that is

ρZ2
(u, v) =

∞∑
s=s∗

ν2s |⟨u, v⟩|s,
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and ρZ2(u, v) is an increasing function of |⟨u, v⟩|. Thus, ρZ2 -FP hardness is equivalent to FP hardness.
Using that ⟨u, v⟩ under the uniform prior is distributed as the first coordinate of z ∼ Unif(Sd−1), we
get

π(|⟨u, v⟩| ≥ κ) ≤ 2exp
(
−cnκ2

)
,

for some universal constant c > 0. For simplicity denote ρ = |⟨u, v⟩|. Using that ν2s ≤ 1 for any
s ∈ N by Jensen’s inequality, we can write

⟨Lu, Lv⟩ − 1 ≤
∑
s≥s∗

ν2sρ
s ≤ ν2s∗ρ

s∗ + ρs
∗+1

∑
s≥s∗+1

ρs ≤ ρs
∗
(
ν2s∗ +

ρ

1− ρ

)
,

so that for ρ = on(1) and n large enough, ⟨Lu, Lv⟩−1 ≤ 2ν2s∗ρ
s∗ . We deduce that for κ = n−1/2+ε,

we have

E
[
⟨L⊗m

u , L⊗m
v ⟩Q · 1(|⟨u, v⟩| < κ)

]
≤ 1 +

m∑
j=1

(
m

j

)
E
[
(⟨Lu, Lv⟩Q − 1)j · 1(|⟨u, v⟩| < κ)

]
≤ 1 +

m∑
j=1

(2mν2s∗κ
s∗)j .

Thus we deduce that the problem is (exp (Θ(nε)) ,m,Θ(1))-GFP hard with m = ns∗/2−Θ(ε)/ν2s∗ .

To use the equivalence with SQ, we need to compute the χ2-divergence, that is

E[⟨Lu, Lv⟩4t] = E[⟨Lu, Lv⟩4t] = 1 +

4t∑
j=1

(
4t

j

)
E[(⟨Lu, Lv⟩ − 1)j ].

Let us bound

E[(⟨Lu, Lv⟩ − 1)j ] = E[(⟨Lu, Lv⟩ − 1)j · 1(|ρ| ≤ κ)] + E[(⟨Lu, Lv⟩ − 1)j · 1(|ρ| > κ)]

≤ (2ν2s∗κ
s∗)j +M jexp

(
−cn2ε

)
,

where we denoted M = ∥Lu∥2Q − 1 = O(exp
(
nε/2

)
). Thus

E[(⟨Lu, Lv⟩ − 1)j ] = 1 +

4t∑
j=1

(8tν2s∗κ
s∗)j + (4tM)jexp

(
−cn2ε

)
= O(1),

where we used that t log(t) = Θ̃(nε/2) by assumption. We can therefore apply Theorem 3 with
q′ = exp

(
nε/2

)
and t = nε/2 (so that t ≤ log(q)/ log(m) = Θ̃(nε)). The model is (q′,m′)-SQ

hard with

m′ =
m

(t(1 + ε)1/t + χ2(P⊗4t ∥Q⊗4t))(q′)2/t
= Θ(m/t) = m1−Θ(ε),

which concludes the proof.

Proof of Theorem 9. The proof proceeds similarly as the proof of Theorem 8. The main difference is
the new tail bound on ⟨u, v⟩ given in Lemma 6. We now set κ = nε max(n−1/2, k−1), so that

π(|⟨u, v⟩| ≥ κ) ≤ 2exp (−cnε) .

With this modification, the rest of the proof is identical and we omit it.

Lemma 6 (Tail bound for sparse prior). Let u, v be independently sampled from the prior π =
Unif({u ∈ ± 1√

k
{0, 1}n : ∥u∥0 = k}). Then for any t ≥ 0, we have

π2(⟨u, v⟩ ≥ t) ≤ exp
(
−cmin{nt2, kt}

)
, (55)

for some universal constant c > 0.
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D.3 Single-index Models

Another extremely popular class of models in statistics dating back to the 80s [33, 28] are the so-called
single-index models.

Definition 11 (Single-index model). A “P versus Q" detection problem is a Single-index model if:

• There exists a distribution µ ∈ P(R× R) such that, under the planted hypothesis Pu, we
sample x ∼ N (0, In) and y ∼ µ(·|zu), where zu := ⟨x, u⟩;

• Under the null model, we sample x ∼ N (0, In) and y ∼ µy, where µy is the marginal
distribution of µ.

Also, all single index models satisfy Assumption 1 for G = Z2. Indeed, if s∗ is the generative
exponent of the model [12], following [12] we know that an Hermite expansion gives for some
s∗ ∈ N (s∗ is called the generative exponent) that for all u, v ∈ Sn−1,

⟨Lu, Lv⟩Q = 1 +

∞∑
i=s∗

λ2
i ·
(
⟨u, v⟩

)i
, λi := ∥ζi(Y )∥µy

, ζi(y) := E[hs(z)|y].

From this point on, the argument is identical as in the case of NGCA, including the nonnegativity with
G = Z2 as well as the examples of GFP-hardness with uniform and sparse priors. For completeness,
we state separate theorems for single-index models:

Theorem 10 (GFP-hardness of SI models, uniform prior). Consider a SI model with generative
exponent s∗ and the uniform prior π = Unif(Sn−1). For any ε ∈ (0, 1/2), the SI model is
(exp (Θ(nε)) ,m,O(1))-GFP hard with

m =
1

λ2
s∗
ns∗/2−Θ(ε).

Moreover, via our equivalence theorem, the model is (exp
(
nΘ(ε)

)
,m1−Θ(ε))-SQ hard.

Theorem 11 (GFP-hardness of SI models, sparse prior). Consider a SI model with generative
exponent s∗ and the k-sparse prior π = Unif({u ∈ ± 1√

k
{0, 1}n : ∥u∥0 = k}). For any ε ∈ (0, 1/2)

so that k = nΩ(ε), the SI model is (exp (Θ(nε)) ,m,O(1))-GFP hard with

m =
1

λ2
s∗

min(ns∗/2−Θ(ε), ks
∗
n−Θ(ε)).

Moreover, via our equivalence theorem, the model is (exp
(
nΘ(ε)

)
,m1−Θ(ε))-SQ hard.

The SQ lower bounds in Theorem 10 and Theorem 11 were proven in [12] and [9] via direct argument.
Here, we obtain these bounds via the equivalence of the SQ-hardness and GFP-hardness.

D.4 Truncated statistics: convex truncation

Learning from truncated data has been a topic of interest since the late 1800s and the pioneering
works of Galton [23] and Pearson [35]. Interestingly, there has been some recent line of works on
truncated statistics tasks that seeks to revisit these old questions from a computational viewpoint, see
e.g., [13], [14] and references therein. In this line of recent work, the problem of detecting a convex
truncation in Gaussian noise has been proposed.

Definition 12. Fix α ∈ (0, 1). A hypothesis testing “P versus Q" problem is called an α-Convex
Truncation model if it satisfies:

1. Under the null hypothesis Q, x ∼ N(0, In).

2. Under the planted hypothesis PK , x ∼ N(0, In)|K where K is a symmetric convex body
with Gaussian volume at most 1− α.
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Interestingly, also all α-Convex Truncation models satisfy Assumption 1 for the trivial group G.
Perhaps this fact is even more interesting because it turns out Assumption 1 is exactly equivalent with
the celebrated Gaussian Correlation Inequality on convex bodies [37, 32].
Lemma 7. Consider an α-convex truncated model in Definition 12. For any K,K ′ two symmetric
convex bodies of Gaussian volume 1 − α, it holds ⟨LK , LK′⟩Q ≥ 1. This is to say, and α-Convex
Truncated Model satisfies Assumption 1 for the trivial group.

Proof. For any K, it holds LK(x) = 1(x ∈ K)/Q(K), x ∈ Rn. Hence,

⟨LK , LK′⟩ = Q(K ∩K ′)

Q(K)Q(K ′)
.

But the so-called Gaussian correlation inequality for symmetric convex bodies in convex geometry
[37] states exactly that for any symmetric convex bodies K,K ′ it holds Q(K ∩K ′) ≥ Q(K)Q(K ′)
yielding the result.

Now, for the α-Convex truncation models, the state-of-the-art polynomial-time algorithms require
O(n/α2) samples [15], and the best known information-theoretic lower bound is Ω(n/α) samples
[15]. Using the GFP-hardness to SQ-hardness framework we prove that for some prior on K, it is
SQ-hard to distinguish with õ(n/α2) samples, providing evidence that the polynomial-time method
from [15] cannot be improved.

D.4.1 A new SQ lower bound

To apply our framework, we focus on the following prior on K, a variant of which has been studied
in [15] to prove their information-theoretic lower bound of Ω(n/α) samples. To define it we let

K = Kv = {x ∈ Rd : |⟨x, v⟩| ≤ κ},
for any v ∈ Unif({−1/

√
d, 1/

√
d}d). Here, we choose κ = κ(α, d) is such that the Gaussian

measure of each Kv is 1− α. Then our prior is uniform among Kv, v ∼ Unif({−1/
√
d, 1/

√
d}d).

We refer to the α-convex truncation setting with this prior as the “α-Slice Convex Truncation" model.

We first point out that for any m = ω(n/α), detection with m samples is always possible in the
α-Slice Convex Truncation model from a time-inefficient method. Indeed, one can brute-force search
for some v ∈ {−1/

√
d, 1/

√
d}d for which it holds: for all i = 1, 2, . . .m, |⟨xi, v⟩| ≤ κ. Under

P, there always exists such a vector v and hence the brute force search algorithm will find it with
probability 1. Under Q though a direct union bund gives that such a v exists only with probability
at most 2d(1− α)m = o(1) for any m = ω(d/α). Hence, the algorithm can detect with probability
1− o(1). In that context, we prove the following result.
Theorem 12 (ρId-FP- and SQ-hardness of Convex Truncation). Let n ∈ N growing and arbitrary
α = αn ∈ (0, 1). There exists a universal constant C > 0 and a prior π on the convex bodies K of
Gaussian volume 1− α such that for any q ∈ N with q = eo(αn), the α-Convex Truncation model
under π is (q, Cn

α2 log(1/α)3/2 log q
)-ρId-FP-hard.

In particular, for any constant T > 0 if α = ω( (logn)T

n ) then the α-Convex Truncation model under
π is (eΘ((logn)T ),Θ( n

α2 log(1/α)3/2(logn)2T+1 ))-SQ hard.

Satisfyingly the proof of this result is also relatively short. The proof of this Theorem can be found in
Appendix D.

D.4.2 Proofs for Convex Truncation

Proof of Theorem 12. Observe that for Lu := LKu we have via standard Hermite expansion (identi-
cal to the argument in [15, Line (32), proof of Claim 24]),

⟨Lu, Lv⟩Q =
Q(Ku ∩Kv)

(1− α)2
= 1 + (1− α)−2⟨u, v⟩2

[ ∞∑
i=1

f2
2i⟨u, v⟩2(i−1)

]
, (56)

43



where fi is the i-th Hermite weight of 1(x ∈ [−κ, κ]), x ∈ R for κ such that Φ(κ) = 1− α/2 where
Φ is the CDF of a standard Gaussian.

Now, conveniently, the authors [27] have already studied the Hermite mass of indicators of symmetric
intervals around 0. Indeed, applying [27, Lemma 27] for j = 2, θ = k imply that

f2
2 = O(κϕ(κ)2),

where ϕ is the PDF of a standard Gaussian. But observe that by standard tail bounds κ =
O(
√
log(1/α)) and from the Mill’s ratio bound ϕ(κ) = Θ((1− Φ(κ))κ). Combining the above we

conclude
f2
2 = O

(
α2 log(1/α)3/2

)
.

Parseval’s identity gives
∑

i>0 f
2
i = α(1− α) ≤ α, and hence for some constant C > 0

⟨Lu, Lv⟩Q ≤ 1 + C
(
(1− α)−2⟨u, v⟩2

(
α2 log(1/α)3/2 + ⟨u, v⟩2α

))
.

Now, notice that from (56), ⟨Lu, Lv⟩Q is an increasing function of ⟨u, v⟩2. Hence, for any q > 0
there exists δ0(q) > 0 such that {ρid(u, v) ≥ r(q)} = {⟨u, v⟩2 ≥ δ0(q)}. From Hoeffding’s
inequality we have that for some constant C ′ > 0 if δ = C ′ log q

n then π2(⟨u, v⟩2 ≥ δ) ≤ q−2. Hence
δ0(q) ≤ δ = C ′ log q

n .

Combining the above we have that for any q = eo(αn),

E[⟨Lu, Lv⟩mQ 1(⟨u, v⟩2 ≤ δ0)] ≤
[
1 + C

(
(1− α)−2δ0(α

2 log(1/α)3/2 + δ0α)
)]m

≤
[
1 + C

(
(1− α)−2C ′ log q

n
(α2 log(1/α)3/2 + C ′ log q

n
α)

)]m
≤
[
1 + 2C

(
C ′ log q

n(1− α)2
(α2 log(1/α)3/2)

)]m
= O(1),

as long as m = O(d/(α2 log(1/α)3/2 log q)). So we conclude the (q,Θ(n/(α2 log(1/α)3/2 log q)))-
ρid-FP-hard for any q = eo(αn).

Now via an identical proof to [15, Theorem 23] we have for any m = o(n/α) that

χ2(P⊗m,Q⊗m) = O(1).

In particular, for any constant T > 0,

χ2(P⊗(logn)T ,Q⊗(logn)T ) = O(1).

Finally, notice that again since ⟨Lu, Lv⟩Q is a strictly increasing function of ⟨u, v⟩2, and ⟨u, v⟩ is a
sum of iid Rademacher random variables we conclude via standard Central Limit Theorem arguments
that for any T > 0 there exists q = q(T ) = eΘ((logn)T+1) for which for some r′ = r′(T ), r =
r(T ) > 0 it holds that π2(⟨u, v⟩2 ≥ r) = π2(ρid(u, v) ≥ r′) = q−2.

Hence, for any T > 0 we can apply our equivalence Theorem 3 for mIT = (log n)T ,
q = q(T + 1) (so log q = Θ((log n)T+1)), and appropriate t = Θ((log n)T ) to conclude the
(eΘ((logn)T ),Θ( n

α2 log(1/α)3/2(logn)2T+1 ))-SQ hardness of the task.
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E Details on the GFP-hardness and FP-hardness separation

Below, we provide details on the counterexample described in Section 5.

Proof of Lemma 3. By definition, for any u ∈ {0, 1}n+1,

Lu(x) =

n∏
i=0

(
1(xi = 1) ·

1/2 + r · 1−(1−α)·ui

2

1/2
+ 1(xi = −1)

1/2− r · 1−(1−α)·ui

2

1/2

)
=

n∏
i=0

(
1 + rxi · [1− (1− α) · ui]

)
.

For any u, v ∈ {0, 1}n+1, the inner product ⟨Lu, Lv⟩ satisfies

⟨Lu, Lv⟩ = Ex∼Q

[ n∏
i=0

(
1 + rxi · [1− (1− α) · ui]

)(
1 + rxi · [1− (1− α) · vi]

)]
=

n∏
i=0

E
xi∼Rad(1/2)

(
1 + rxi · [1− (1− α) · ui]

)(
1 + rxi · [1− (1− α) · vi]

)
=

n∏
i=0

(
1 + r2 · (1− (1− α) · ui)(1− (1− α) · vi)

)
Denote ai = 1+ r2 · (1− (1− α) · ui)(1− (1− α) · vi). When ui = vi = 0, we have ai = 1+ r2;
when ui = vi = 1, ai = 1 + r2 · α2; when there is exactly one 1 and one 0 in ui, vi, we get
ai = 1 + r2 · α. We deduce that ai = 1 + r2 · αui+vi and the lemma follows.

Let us consider the m-sample version of the hypothesis testing problem. The null hypothesis is then
Q⊗m and the alternative hypothesis is Eu∼πP⊗m

u , where u is sampled from the following two-point
prior π:

u =

{
(1, 0, . . . , 0), w.p. ρ,

(0, 1, . . . , 1), w.p. 1− ρ.
. (57)

We abbreviate these vectors as u1 = (1, 0, . . . , 0) and u2 = (0, 1, . . . , 1) for convenience. Using
Lemma 3, it holds that 〈

L⊗m
u , L⊗m

v

〉
=

n∏
i=0

(
1 + r2 · αui+vi

)m
. (58)

Let’s next show that this problem is GFP hard but FP easy. Note that ⟨Lu, Lv⟩ ≥ 1 for all u, v and
therefore the model verifies Assumption 1 for the trivial group.

Theorem 13. For the two-point prior π in (58) with ρ = exp (−nε/2), and for r = n−1/2, α =
n−1+2ε, m = n1−ε and D = nε, where ε > 0 is any small constant, the following hold. The
m-sample hypothesis testing problem Eu∼πP⊗m

u versus Q⊗m is (eD/2,m,Θ(n−ε))-GFP hard
but not (n−1,m, exp (Θ(nε)))-FP hard. Moreover, via our equivalence theorem the model is
(en

Θ(ε)

, n1−Θ(ε))-SQ hard.

Proof of Theorem 13. Let us first show it is FP easy. Define δ := δ(n−1/2) the supremum over δ
such that π2(⟨u, v⟩ ≥ δ) ≥ 1/n. We observe when u ̸= v, then we must have ⟨u, v⟩ = 0 < δ by the
choice of the two points prior with ⟨u1, u2⟩ = 0. Therefore,

π2(u ̸= v) = 2ρ(1− ρ) ≤ 2e−nε/2 ≪ n−1 ≤ π2(⟨u, v⟩ ≥ δ). (59)

We deduce the following lower bound

Eu,v[
〈
L⊗m
u , L⊗m

v

〉
· 1(⟨u, v⟩ < δ)] ≥ Eu,v[

〈
L⊗m
u , L⊗m

v

〉
· 1(u ̸= v)]
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= π2[u ̸= v] · Eu,v[
〈
L⊗m
u , L⊗m

v

〉 ∣∣u ̸= v]

When conditioned on u ̸= v, we get

Eu,v[
〈
L⊗m
u , L⊗m

v

〉 ∣∣u ̸= v] = (1 + αr2)(n+1)m,

by applying Eq. (58), with ui + vi = 1 for all 0 ≤ i ≤ n. Inserting the parameters stated in the
lemma, we obtain

Eu,v[
〈
L⊗m
u , L⊗m

v

〉
· 1(⟨u, v⟩ < δ)] ≥ 2ρ(1− ρ) · (1 + αr2)(n+1)m

≥ exp
(
− 1

2n
ε
)
·
(
1 + n−2+2ε

)(n+1)n1−ε

= Ω(1) · exp
(
− 1

2n
ε
)
· exp (nε) ≥ Ω(1) · exp

(
1
2n

ε
)
.

This shows that under our parameter choice, the task is (n−1/2,m, exp (Θ(nε)))-FP easy.

Let us now show that this model is GFP hard. We will prove that the model is ρId-FP hard and conclude
using the implication Theorem 2.1. Under the trivial group, we have ρId(u, v) = ⟨Lu, Lv⟩Q − 1.
From Eq. (58), the m-sample inner product of likelihood ratio is given for u = v = u1 by〈

L⊗m
u1

, L⊗m
u1

〉
= (1 + α2r2)m · (1 + r2)mn (60)

and for u = v = u2 by 〈
L⊗m
u2

, L⊗m
u2

〉
= (1 + α2r2)nm · (1 + r2)m. (61)

Because α ≪ 1, it is not hard to notice〈
L⊗m
u1

, L⊗m
u2

〉
<
〈
L⊗m
u2

, L⊗m
u2

〉
<
〈
L⊗m
u1

, L⊗m
u1

〉
. (62)

From the definition of π, it holds that

π2({u = u2, v = u2} ∪ {u ̸= v}) = 1− e−nε

≥ 1− q−2, (63)

using that we set q = exp (D/2). Combining with Eq. (62), we conclude that the event {ρ(u, v) ≤
r(q)} ⊂ {u = u2, v = u2} ∪ {u ̸= v}. This allows us to estimate the upper bound as

E[⟨L⊗m
u , L⊗m

v ⟩ · 1(r ≤ r(q))] ≤ E[⟨L⊗m
u , L⊗m

v ⟩ · 1({u = u2, v = u2} ∪ {u ̸= v})]
≤ (1 + α2r2)nm · (1 + r2)m.

(64)

Inserting our choice of parameters, we obtain

E[⟨L⊗m
u , L⊗m

v ⟩ · 1(r ≤ r(q))] ≤
(
1 + n−3+4ε

)n2−ε

·
(
1 + n−1

)n1−ε

≤ exp
(
n−1+3ε + n−ε

)
≤ 1 + 2n−ε.

(65)

Thus, the model is (eD/2,m,Θ(n−ε))-ρId-FP hard, and therefore (eD/2,m,Θ(n−ε))-GFP hard.

Finally, let us use the SQ-GFP equivalence in Theorem 3 to show that the model is also SQ hard,
with parameters q′ = en

ε/2

and t = nε/2 (where indeed t ≤ log(q)/ log(m) = Θ̃(nε)). To apply the
theorem, we need to compute the χ2-divergence. Denoting X = ⟨L⊗4t

u , L⊗4t
v ⟩ with t = nε/2,

χ2(P⊗4t,Q⊗4t) + 1 = π2(u = u1, v = u1) · E[X|u = u1, v = u1] + π2(u ̸= v) · E[X|u ̸= v]

+ π2(u = u2, v = u2) · E[X|u = u2, v = u2]

= (1− ρ)2 · (1 + α2r2)4nt · (1 + r2)4t + ρ2 · (1 + α2r2)4t · (1 + r2)4nt

+ 2ρ(1− ρ) · (1 + α2r2)(n+1)4t

≤ (1 + n−3+4ε)n
1+ε

· (1 + n−1)n
ε

+ e−nε

· (1 + n−3+4ε)n
ε

· (1 + n−1)n
1+ε/2

+ 2n−ε · (1 + n−2+3ε)2n
1+ε

≤ 1 + 4n−1+ε.

Thus, we obtain

m′ =
m

(t(1 + ε)1/t + χ2(P⊗4t ∥Q⊗4t))(q′)2/t
= m1−Θ(ε),

and we deduce the model is (eD/2,m1−Θ(ε))-SQ hard.
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