
UnHiPPO: Uncertainty-aware Initialization for State Space Models

Marten Lienen 1 2 Abdullah Saydemir 1 Stephan Günnemann 1 2

Abstract
State space models are emerging as a dominant
model class for sequence problems with many re-
lying on the HiPPO framework to initialize their
dynamics. However, HiPPO fundamentally as-
sumes data to be noise-free; an assumption often
violated in practice. We extend the HiPPO theory
with measurement noise and derive an uncertainty-
aware initialization for state space model dynam-
ics. In our analysis, we interpret HiPPO as a
linear stochastic control problem where the data
enters as a noise-free control signal. We then re-
formulate the problem so that the data become
noisy outputs of a latent system and arrive at an
alternative dynamics initialization that infers the
posterior of this latent system from the data with-
out increasing runtime. Our experiments show
that our initialization improves the resistance of
state-space models to noise both at training and
inference time.

1. Introduction
In 2019, Voelker et al. proposed a novel memory cell, the
Legendre Memory Unit (LMU), for recurrent neural net-
works. Their cell keeps a continuously updated represen-
tation of input in a sliding window in terms of orthogonal
polynomials. After Gu et al. (2020) generalized LMUs to
variable length input windows, they were further extended as
state space models (SSMs) by Gu et al. (2021) and applied
across a multitude of domains. Their ability to capture tem-
poral dependencies over long sequences made them a great
fit for natural language processing (Mehta et al., 2022), time
series analysis (Patro & Agneeswaran, 2024b), speech gen-
eration (Goel et al., 2022) and more (Patro & Agneeswaran,
2024a).

A significant contribution to the success of SSMs is the

1Department of Computer Science, Technical University of
Munich 2Munich Data Science Institute, Technical University of
Munich. Correspondence to: Marten Lienen <m.lienen@tum.de>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

high-order polynomial projection operator (HiPPO) initial-
ization for their dynamics introduced by Gu et al. (2020).
The HiPPO dynamics compress a sequence into a finite-
dimensional state that represents the projection of the se-
quence onto a basis of Legendre polynomials. Importantly,
maintaining this state requires only the current state and the
next value in the sequence and is thus independent of the
sequence length. This enables the construction of SSMs
that efficiently capture long-range dependencies with linear
computational complexity. Such SSMs are well-suited for
deep learning applications where sequence length can be
substantial, such as language (Gu & Dao, 2023) or video
modeling (Park et al., 2025).

However, the original HiPPO framework assumes that the
observed data is noise-free – an assumption that is eas-
ily violated. In many practical scenarios, measurements
are contaminated with noise due to sensor imperfections,
environmental factors, or inherent variability in the data-
generating process. Thus, this noise-free assumption limits
the applicability of HiPPO-initialized SSMs, as they may
perform suboptimally when exposed to noisy observations
commonly encountered in real-world applications.

We address this limitation by extending the HiPPO frame-
work to explicitly account for measurement noise. By rein-
terpreting HiPPO as a linear stochastic control problem
where data emerges as noisy observations of a latent sys-
tem, we derive the uncertainty-aware HiPPO (UnHiPPO)
initialization for SSMs. With UnHiPPO, an SSM implicitly
performs posterior inference in a linear dynamical system,
making it robust against noise in the data without increasing
computational complexity or changes to the model structure.

Our contributions can be summarized as follows:

• We provide a thorough description and derivation of
HiPPO and its application to SSM initialization in Sec-
tions A to 3.

• In Section 4, we analyze HiPPO with respect to its
noise robustness using the framework of linear stochas-
tic control theory. We modify HiPPO based on this
analysis so that it performs implicit posterior inference
under the assumption of observation noise and propose
a regularization technique to make this numerically
stable.

1



UnHiPPO: Uncertainty-aware Initialization for State Space Models

• In Section 5, we present our uncertainty-aware exten-
sion of HiPPO and show how to apply it as an initial-
ization in the Linear State Space Layer (LSSL) model
(Gu et al., 2021). Furthermore, we analyze the effect
of applying the time-varying UnHiPPO dynamics in a
time-invariant way and why this can be interpreted as
operating a model on different time scales.

• Our experiments in Section 6 demonstrate how the Un-
HiPPO initialization improves the robustness of SSMs
against noise using the example of LSSL.

Find our implementation at cs.cit.tum.de/daml/unhippo.

Notation We use 0-based indexing for the coefficient vec-
tors and transition matrices to stay consistent with the natu-
ral numbering of polynomial basis functions where gi is of
degree i. Furthermore, t ∈ R+ denotes the current point in
time and τ ∈ [0, t] another point in the signal up to time t.
x is a point in the subset of R where the polynomials under
consideration form an orthogonal basis, e.g. x ∈ [−1, 1]
for Legendre polynomials. [n] refers to the set of integers
1, . . . , n.

2. Legendre Polynomials

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.0

−0.5

0.0

0.5

1.0

Legendre Polynomials P

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x

−1.0

−0.5

0.0

0.5

1.0

1.5 Approximating cos(4π(x− 1/4)2)

Degree
0 1 2 4 8 16 32

Figure 1. Function approximation with Legendre polynomials.

The Legendre polynomials Pi : R → R, i ∈ N0 are a
set of polynomials of increasing degree i orthogonal with
respect to the L2 inner product ⟨f, g⟩ =

∫ 1

−1
f(x) g(x) dx.

Together, they form a basis of the space of L2-integrable

functions on [−1, 1] and let us represent any such function f
as

f̂(x) =

D∑
i=0

⟨f, Pi⟩
∥Pi∥2

Pi(x). (1)

f̂ is the best possible approximation to f with respect to
the distance induced by ⟨·, ·⟩ in terms of polynomials up to
degree D and can be seen as the projection of f onto the
space spanned by the basis functions P0, . . . , PD. Fig. 1
illustrates these concepts.

In this sense, the vector ci = ⟨f, Pi⟩, i = 0, . . . , D is the
best possible compression of f in the L2 space into D + 1
numbers as it lets us reconstruct f as f̂ . For more back-
ground on polynomial approximation of signals in general
and Legendre polynomials in particular, we refer the reader
to (Vetterli et al., 2014; Arfken & Weber, 2008).

3. HiPPO
Let’s say, we observe a scalar signal f(τ) : R+ → R and
want to process it in an online fashion with a downstream
model h : RN → X , for example time series classifica-
tion or a running forecast. Since h processes fixed-length
vectors, we need a vector representation of length N of the
signal history f≤t := f |[0,t] up to the current time t that is
expressive and informative.

Gu et al. (2020) propose the HiPPO that represents f≤t

as the coefficient vector ct of the projection f̂≤t of f≤t

onto a basis of slightly modified Legendre polynomials gi
up to degree D = N − 1. While this representation is
expressive, its computation via Eq. (1) would require the
complete signal f≤t at each point t. This would make both
runtime and memory requirements scale with t, rendering
this representation inefficient for long time series.

Crucially, Gu et al. (2020) show how the coefficients ctk+1

can be computed approximately from coefficients ctk at an
earlier time tk and the value of the signal f at time tk+1

with a linear update step. This means that we only need to
remember the current coefficients ctk instead of the com-
plete signal history f≤t to update the compressed representa-
tion of the signal when a new observation ytk+1

= f(tk+1)
comes in. As a result, HiPPO gives us N expressive features
describing f≤t without having to store the complete history.
In fact, the memory requirements of HiPPO are O(N) and
thus independent of the length of the sequence.

In the following, we will present a condensed description of
HiPPO to introduce the formal background for our extension
in Sections 4 and 5. See Section A for a complete and
expository derivation.

Shifting and scaling As a first step, the Legendre poly-
nomials have to be shifted and scaled to form an or-

2

https://cs.cit.tum.de/daml/unhippo


UnHiPPO: Uncertainty-aware Initialization for State Space Models

thonormal basis on the interval [0, t]. For that, Gu et al.
(2020) choose the time-dependent inner product ⟨f, g⟩t =
1/t

∫ t

0
f(x) g(x) dx, under which the basis polynomials

gt,i(τ) =
√
2i+ 1Pi(ϕt(τ)) (2)

are orthonormal. ϕt(τ) = 2τ/t − 1 maps [0, t] linearly onto
[−1, 1]. This gives us the vector representation

ct,i = ⟨f≤t, gt,i⟩t (3)

of the complete history of the signal f until time t.

Online update To maintain the coefficient vector ct as
time passes and we observe more of the signal f , Gu et al.
(2020) take the time derivative of Eq. (3) to find the vector
ordinary differential equation (ODE)

dct
dt

= −1

t
AHct +

1

t
BHf(t), (4)

which describes the evolution of the coefficient vector ct in
continuous time under the influence of the signal f(t). The
HiPPO matrix AH and vector BH are given by

AH,ij =


√
2i+ 1

√
2j + 1 if j < i,

i+ 1 if j = i,

0 if j > i,

and BH,i =
√
2i+ 1.

(5)

Discretization Applying the update to discrete data ob-
served at times t1, t2, . . . requires a discrete analog of
Eq. (4). To this end, Gu et al. (2020) discretize the equation
into the recurrence

ctk+1
= ĀHctk + B̄Hytk+1

(6)

as described in Section A.3. Eq. (6) can then serve as the
basis for a recurrent neural network layer, similar to GRU
(Cho et al., 2014) or LSTM (Hochreiter & Schmidhuber,
1997).

See Section A for an explanatory derivation of the results in
this section.

4. From Control to Inference
To understand the behavior of HiPPO under measurement
noise, we will analyze it as a linear stochastic control prob-
lem (Aström, 1970). In this theory, a continuous-discrete
linear dynamical system (LDS) with scalar control and ob-
servations is described as

dxt =
(
Φxt + Γut

)
dt+ dβ (7)

ytk = Ψxtk + εtk . (8)

Such a system has a latent state xt that we can influence with
a scalar control signal ut via its linear stochastic dynamics
in Eq. (7). At discrete times tk, we take noisy measure-
ments ytk of the system in Eq. (8). dβ is white noise, εtk
is independent Gaussian noise and Φ, Γ and Ψ are param-
eter matrices. Note that Eqs. (7) and (8) include exactly
two sources of noise: in the state dynamics and during the
measurements.

If we compare the HiPPO dynamics in Eq. (4) to the above
system, we see that ct takes the role of the system state xt.
In contrast to what one might expect, the observed sig-
nal f(t) does not correspond to the observations ytk in
HiPPO and, instead, it corresponds to the control signal ut,
which is assumed to be noise-free in linear stochastic control
theory. This means that HiPPO fundamentally assumes that
there is no measurement noise on the signal f(t) nor any
noise in the system dynamics themselves and that ct is a
deterministic function of f≤t.

However, in many applications, these assumptions do not
hold. This includes basically all time series modeling where
the data is derived from a physical process such as a tem-
perature, wind speed or power output, but also extends to
exactly measurable but inherently noisy data such as user
interactions and financial transaction logs.

Guarding the system against noise requires us to take it ex-
plicitly into account in the model. Consequently, we design
a continuous-discrete LDS based on the HiPPO dynamics
in Eq. (4) but with f(t) modeled via noisy observations in-
stead of a noise-free control signal. In the end, f(t) will not
appear directly in the model at all. Instead, we will infer the
posterior distribution p(ck | yt1:k), filtering out the effect of
noise in the measurements and transitions.

To begin, we need to specify a model for ytk = f(tk) + ε
linear in ctk . Since ctk represents the approximate signal
f̂≤tk until tk, we predict f(tk) with

f̂≤tk(tk) =

N∑
i=0

ctk,i gtk,i(tk) = BT
Hctk , (9)

and model

ytk = BT
Hctk + εtk where BH,i =

√
2i+ 1. (10)

Secondly, we need to make the HiPPO dynamics indepen-
dent of f(t) while keeping them linear. For that, we substi-
tute Eq. (9) for f(t) in Eq. (4) and get

dct
dt

=
1

t

(
BHB

T
H −AH

)
ct, (11)

which we can simplify with the identity BHB
T
H −AH =

AT
H − I which follows directly from the definitions in

Eq. (5). Since the HiPPO dynamics are exact, the dynamics

3



UnHiPPO: Uncertainty-aware Initialization for State Space Models

in Eq. (11) give us the exact evolution of ct if the true signal
f≤t is just the polynomial f̂≤t.

By combining the model for ytk and the data-free dynamics,
we get the first version of our noise-resistant LDS.

dct =
1

t

(
AT

H − I
)
ctdt+ dβ

ytk = BT
Hctk + εtk

(12)

4.1. Extrapolation

Inferring ct from data with Eq. (12) will come down to two
steps. First, we solve Eq. (11) forward in time from tk to
tk+1 to get coefficients ctk+1

that represent the extrapolation
of f̂≤tk from tk to tk+1. Second, we update the forecast
ctk+1

with the observed data ytk+1
. In contrast, HiPPO uses

the data directly in the forward solving of Eq. (4).

A complication with our first step is that Legendre poly-
nomials – and by extension f̂≤tk – are terribly unfit for
extrapolation. While each gt,i is well behaved within [0, t],
they diverge rapidly towards ±∞ outside of it – like an i-th
degree polynomial to be exact.

0 2 4 6 8
Time τ

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Si
gn

al
f
(t
)

tk tk+1

f̂≤tk

f̂≤tk+1

df̂≤tk
(tk)

dτ

Figure 2. The Legendre polynomial f̂≤tk diverges rapidly beyond
its domain [0, tk]. If we extrapolate f̂≤tk with Eq. (11), f̂≤tk+1

will equal f̂≤tk but on the extended domain [0, tk+1]. By regular-
izing the dynamics with the conditions in Eq. (13), we can get the
f̂≤tk+1

shown here, that extrapolates f̂≤tk linearly until tk+1.

This is a problem from two perspectives. First, when we
model f≤t with, for example, N = 256 coefficients, f̂≤tk

diverges like a degree 255 polynomial outside of [0, tk] and
any predicted ytk+1

will almost surely be a horrible predic-
tion of the true f(tk+1). Second, numerical computations
with a forecast of such magnitude will produce enough float-
ing point cancellation to invalidate any results.

To reduce the order of divergence, we propose to regular-
ize the system dynamics. In particular, we are looking for
dynamics that retain the shape of f̂ as much as possible up
to tk but evolve ct such that the slope of f̂ remains roughly
constant from tk onwards. Fig. 2 visualizes this goal. By

retaining the shape of f̂ , we preserve the information em-
bedded in ct.

Formally, we can express our desired behavior of f̂≤t as

df̂≤t(t)

dt
=

df̂≤t(t)

dτ
and

d

dt

df̂≤t(t)

dτ
= 0. (13)

In words, the first condition demands that the value at t of
the reconstruction f̂≤t, i.e. the current value of our signal,
follow the gradient of f̂≤t as we extend the domain and
predict into the future. If you compare to Fig. 2, we want
that the rightmost value of f̂≤t follows the dashed line as
we increase t. The second condition says that this gradient
shall not change. Remember that the parameter of f̂≤t is τ ,
so the two derivatives in the conditions refer to the subscript
and the parameter, respectively.

With Eq. (9), we see immediately that

df̂≤t(t)

dt
= BT

H

dct
dt

. (14)

The τ -derivative of f̂≤t(τ) at τ = t becomes

df̂≤t(t)

dτ
=

N∑
i=0

ct,i
dgt,i(t)

dτ
=

2

t
QTct (15)

where Qi =
√
2i+ 1dPi(1)

dx =
√
2i+ 1 i(i+1)

2 which can
be derived from Eq. (2) and (Arfken & Weber, 2008, Eq.
(12.24))

dPi(x)

dx
= iPi−1(x) + x

dPi−1(x)

dx
. (16)

Now, we can combine Eqs. (11) and (13) into the condition I
BT

H

QT

 dct
dt

=
1

t

AT
H − I
2QT

QT

 ct. (17)

Since this is overdetermined, we cannot solve for dct

dt ex-
actly, but we can find an approximate solution with the
pseudo-inverse denoted by †,

dct
dt

=
1

t

 I
BT

H

QT

† AT
H − I
2QT

QT


︸ ︷︷ ︸

=:AR

ct. (18)

We call AR the regularized HiPPO matrix and define the
regularized LDS

dct =
1

t
ARctdt+ dβ, ytk = BT

Hctk + εtk . (19)

4



UnHiPPO: Uncertainty-aware Initialization for State Space Models

4.2. Discretization

At this point, we move from the semi-discretized to the fully
discretized case. As described by Särkkä & Solin (2019,
Section 6), the discrete-time model equivalent to Eq. (19) is

ck+1 = ĀR,k+1ck + qk

yk = BT
Hck + εk

(20)

where ĀR,k+1 is the transition matrix from tk to tk+1, i.e.

ĀR,k+1 = I +

∫ tk+1

tk

1

τ
ARĀR,k dτ. (21)

qk and εk are zero-mean Gaussian noise variables with
covariance Σ and σ2, respectively, as hyperparameters.

In contrast to HiPPO, the dynamics in Eq. (18) do not de-
pend on the observations. This means that we can evaluate
them, and in particular 1/tAR, at any t, not just the tk where
we have observed data. Therefore, we can use any ODE
solver to approximate the transition matrix via Eq. (21).

We can, for example, approximate ĀR,k+1 with any integra-
tion rule considered by Gu et al. (2021), e.g. a forward Euler
step I+ ∆t

tk
AR, a backward Euler step

(
I − ∆t

tk+1
AR

)−1
or

the trapezoidal rule
(
I − ∆t

2tk+1
AR

)−1(
I + ∆t

2tk
AR

)
where

∆t = tk+1 − tk. However, in contrast to HiPPO, there ex-
ists an exact closed-form solution exp(log(tk+1/tk)AR) to
Eq. (21), which we use instead of approximations. We show
in Section B that it produces the most stable linear recur-
rence. Note that it is a matrix exponential, not a component-
wise application.

4.3. Posterior Distribution

Next, we connect the model specified in Eq. (20) to the data.
Since both dynamics and observations are linear, we can
compute the posterior p(ck | y1:k) = N (mk,Pk) in closed
form via the Kalman filter (Kalman, 1960; Särkkä & Solin,
2019).

For that, we put a standard Gaussian prior N (m0,P0) on
c0, i.e. m0 = 0 and P0 = I . Then, we can compute
p(ck | y1:k) = N (mk,Pk) through the following recur-
rence. First, we roll out the dynamics for one step to extend
f̂≤tk to f̂≤tk+1

.

m−
k = ĀR,kmk−1

P−
k = ĀR,kPk−1Ā

T
R,k +Σ

(22)

Then, we compare the prediction to the observed data yk

and update the posterior parameters accordingly.

vk = yk −BT
Hm

−
k

sk = BT
HP

−
k BH + σ2

Kk = 1/sk P
−
k BH

mk = m−
k +Kkvk

Pk = P−
k − skKkK

T
k

(23)

Since there is no 0-th data point and thus no t0, we set
t0 = t1 to compute ĀR,1, giving ĀR,1 = I .

Numerical Stability Direct application of the Kalman
filter can be numerically challenging, because the covari-
ance matrix Pk often has some eigenvalues close to zero.
The smallest eigenvalues can then flip into the negative due
to floating point cancellation in the matrix difference in
Eq. (23), losing the positive semi-definiteness of Pk. Fur-
thermore, because floating point addition and multiplication
are non-associative (Goldberg, 1991), Pk can also lose its
symmetry, making the filter diverge. In our experiments,
we solved the former issue by computing the Kalman fil-
ter in double precision and the latter with symmetrization
Pk := (Pk + P T

k )/2 after each update.

5. Uncertainty-aware Initialization
Upon closer inspection of the posterior distribution of ck,
we notice two things. First, the posterior covariance con-
tains no information about the data as a consequence of the
assumptions of the Kalman filter. Second, we can combine
the whole procedure in Eqs. (22) and (23) into a single linear
equation for the posterior mean mk.

mk =
(
I −KkB

T
H

)
ĀR,k︸ ︷︷ ︸

ĀU,k

mk−1 + Kk︸︷︷︸
B̄U,k

yk (24)

We call ĀU,k and B̄U,k the uncertainty-aware HiPPO (Un-
HiPPO) matrix and vector, respectively.

Eq. (24) is an uncertainty-aware equivalent to the discretized
HiPPO dynamics in Eq. (6). Fig. 3 compares the two in the
face of noise. It shows a random function sampled from a
Gaussian process as the ground-truth signal and noisy ob-
servations derived from the signal by adding independent
Gaussian noise. On top of the data, we see the reconstruc-
tions f̂≤tk created from the coefficients gathered from the
HiPPO and UnHiPPO dynamics, respectively. This lets us
visually compare the effect of the observation noise on the
features that these dynamics extract from the data. We see
that the noise introduces a lot of spurious high-frequency
signal in the HiPPO representation of the data, while the
UnHiPPO dynamics filter out the majority of the noise and
extract a close approximation of the ground-truth signal.

5



UnHiPPO: Uncertainty-aware Initialization for State Space Models

0 2 4 6 8 10
Time τ

−2

−1

0

1

2

Observations ytk Signal f f̂≤tk HiPPO f̂≤tk UnHiPPO

Figure 3. The uncertainty-aware HiPPO dynamics filter out the
majority of the noise.

The strength of the denoising is controlled by the σ2 hyper-
parameter through its influence on the so-called innovation
covariance sk in the Kalman update step in Eq. (23). Fig. 4
visualizes the effect spectrum of σ2. Too small values mean
that the signal is modeled closely including noise, while
too large values make the dynamics ignore the data. For
optimal filtering, σ2 needs to be adapted to the data. Note
the surprisingly large scale of σ2 in Fig. 4. This is necessary
because σ2 needs to overcome the BT

HP
−
k BH term in sk,

which is large because of the magnitude of entries of the
HiPPO matrix in Eq. (5). An unfortunate side effect is that
σ2 cannot be interpreted as the noise variance of the data
directly.

0 2 4 6 8 10
Time τ

−3

−2

−1

0

1

2

3

104

106

108

1010

1012

1014

N
oi

se
V

ar
ia

nc
e
σ

2

Figure 4. The σ2 hyperparameter controls the level of filtering.

For the transition uncertainty, we always choose Σ = I .
In our experiments, it had no appreciable effect except for
instability if it was very small.

5.1. Uncertainty-aware Linear State Space Layer

The LSSL (Gu et al., 2021) is a simple sequence model that
maps a scalar input sequence uk, k ∈ [n] to a scalar output

sequence yk via a latent state ck ∈ RN and the recurrence

ck = Ack−1 +Buk

yk = Cck +Duk

(25)

where A ∈ RN×N , B ∈ RN , C ∈ R1×N and D ∈ R are
parameters.

Gu et al. (2021) create a building block for neural sequence
models from this by stacking H independent copies of
Eq. (25) for an H-dimensional input, i.e. the output of the
previous layer. To improve the expressiveness of the system,
they introduce M latent channels by increasing the dimen-
sion of the output yk to M . Since simple stacking means
that each feature of the input uk is processed independently,
they also introduce a position-wise map to mix the channels.
This map consists of a GELU nonlinearity followed by a
linear layer that maps yk ∈ RH×M to the final output of
dimensionality H , i.e. the weight matrix of the linear layer
has dimensions (H ·M)×H . The stacked parameters be-
come A ∈ RH×N×N , B ∈ RH×N , C ∈ RH×M×N and
D ∈ RH×M .

The initialization of A and B is essential as Gu et al. (2021)
have shown and the HiPPO initialization produced much
stronger results than a random initialization. They discretize
the HiPPO dynamics to

ck ≈ ĀH,kck−1 + B̄H,kyk (26)

where

ĀH,k =

(
I +

∆t

2tk
AH

)91(
I − ∆t

2tk
AH

)
(27)

and

B̄H,k =

(
I +

∆t

2tk
AH

)91
∆t

tk
BH. (28)

See Section A.3 for a derivation of this discretization. Then,
they initialize Ai = ĀH,i and Bi = B̄H,i where they set
∆t = 1 and vary tk log-uniformly between tmin for i = 1
and tmax for i = H .

We adapt this into the uncertainty-aware LSSL (UnLSSL)
by initializing

Ai = ĀU,⌊t⌋ and Bi = B̄U,⌊t⌋ (29)

where t varies in the same way as for LSSL. One difference
to LSSL is in how these initializations are computed. In con-
trast to LSSL where we can get the discretized dynamics at
any t directly, for UnLSSL we compute them for all integer
steps t ∈ [tmax] and then select a subset. In theory, we could
jump to any t directly in the Kalman update in Eq. (23), but
that would increase the uncertainty P−

k as if there was no
data before t, changing the dynamics. Instead, we also

6



UnHiPPO: Uncertainty-aware Initialization for State Space Models

compute all intermediate steps, which mirrors the more re-
alistic setting where we also observe data at 1, 2, . . . , t− 1.
Note that this only happens once for initialization and has
negligible runtime cost.

Gu et al. (2021) improve the runtime of LSSL by rewriting
Eq. (26) from a recurrence to a convolution with a Krylov
kernel that can be constructed in O(logn) time. Since
UnLSSL is just a different initialization for the same dy-
namics, the same optimization applies. Note that the Krylov
kernel for UnLSSL needs to be constructed in double pre-
cision, though it can be cast to single precision before the
convolution.

Ai and Bi can be fine-tuned with gradient descent during
model training. However, Gu et al. (2021) have shown that
training Ai and Bi has only a minor effect on LSSL per-
formance in sequence classification, but prevents caching
the Krylov kernel and increases training time significantly.
Therefore, we keep the SSM parameters fixed in our experi-
ments.

Time-invariant Dynamics Both the UnHiPPO dynamics
in Eq. (24) and the HiPPO dynamics in Eq. (25) are time-
varying. However, the LSSL and UnLSSL layers fix the
dynamics at a point in time and then apply them repeatedly.
We can understand the effect of applying the dynamics in a
time-invariant way visually from Fig. 5.

0 2 4 8 1010 ·
(
499
500

)250

Time τ

−1.0

−0.5

0.0

0.5

1.0

Signal f k = 500 k = 100 k = 20

Figure 5. Reconstruction f̂≤tk of signal f obtained through re-
peated application of Āk and B̄k for fixed k. Data observed at
250 equispaced locations between 0 and 10. Each application of
Āk compresses the reconstruction f̂≤tk by k−1/k.

Semantically, the dynamics Āk+1 of either HiPPO or Un-
HiPPO take the reconstruction f̂≤tk of the signal from 0 to
tk represented by ck and extend it by one step. Then, B̄k+1

updates the extended reconstruction, so that it fits the data at
tk+1. To understand the effect of repeated application of the
same Āk+1, it is instructive to imagine what happens if we
map the signal back to the domain [−1, 1] of the Legendre
polynomials with ϕt from Section 3. In that view, Āk+1

squeezes the data that is encoded in f̂≤tk as a function on

10−3 10−2 10−1 100

0

5

10

∆
A

cc
ur

ac
y

[%
] FSD

10−3 10−2 10−1 100

Evaluation Noise ρ

0

10

20

∆
A

cc
ur

ac
y

[%
] SC10

Training Noise ρ′

0 10−3 10−2 10−1 100

Figure 6. Accuracy difference between UnLSSL and LSSL in
speech classification trained on a noise level ρ′ and evaluated on a
range of noise levels ρ.

[−1, 1] into [−1, 1−2/k+1] and B̄k+1 fills the freed up inter-
val [1−2/k+1, 1] with the new data. So, repeated application
of Āk+1 squeezes the information encoded in f̂≤tk by k/k+1

each time. Fig. 5 shows this as the 250-fold application of
Ā500 has compressed the initial value of f̂≤tk = 0 exactly
by a factor of (499/500)250. The fact that the f̂≤tk for large
k contain the whole signal while for small k they contain
mostly the recent past, illuminates why initializing A and
B with Āk and B̄k for various k in LSSL and UnLSSL lets
the model take multiple timescales into account as Gu et al.
(2021) report.

6. Experiments
We experiment with a multi-layer LSSL and UnLSSL ar-
chitecture with linear encoder and decoder as described by
Gu et al. (2021). Section C gives further details on the
hyperparameters.

We evaluate UnLSSL on two sequence classification
datasets, the Free Spoken Digits dataset (FSD) (Jackson
et al., 2018) and a 10-class subset of the Speech Commands
dataset (SC10) (Warden, 2018). FSD contains 3000 record-
ings of 6 speakers pronouncing each digit from 0 to 9 at a
sample rate of 8000. We loop recordings shorter than one
second and then cut them so that each sample is a univariate
sequence of length 8000. SC10 is a multi-speaker dataset
consisting of one second clips each being a recording of
one spoken word. Each sample is a univariate sequence of
16 000 steps representing the raw waveform of the audio.

For our experiments, where we measure the effect of noise in

7



UnHiPPO: Uncertainty-aware Initialization for State Space Models

10−3 10−2 10−1 100

−2

0

2

4

6

8

∆
A

cc
ur

ac
y

[%
] FSD

10−3 10−2 10−1 100

Noise ρ

−1

0

1

∆
A

cc
ur

ac
y

[%
] SC10

Figure 7. Accuracy difference between UnLSSL and LSSL in
speech classification for models trained and evaluated on a range
of noise levels ρ.

100 102 104 106 108 1010 1012 1014

σ2

72.5

75.0

77.5

A
cc

ur
ac

y
[%

]

ρ = 10−5

LSSL UnLSSL

Figure 8. The σ2 parameter adapts the noise filtering to the level
of noise in the data on SC10 with ρ = 0.1. Error bars denote 1
standard deviation.

the data, we add independent Gaussian noise δ ∼ N (0, ρ2)
to the training and/or test data.

Noise Robustness For Fig. 6, we trained LSSL and
UnLSSL on data with varying noise levels ρ′ and evaluated
the classification accuracy on a test set across a spectrum of
noise levels ρ. The results show that the UnHiPPO initial-
ization improves the model’s robustness against other noise
levels than it was trained on, both lower and higher.

Training Noise In the real world, training and evaluation
data often have similar levels of noise. To investigate this
case, we trained LSSL and UnLSSL on a range of noise
levels ρ and then evaluated their accuracy on the test at
the same noise level. Fig. 7 shows that the UnHiPPO ini-
tialization hinders the model’s performance slightly at low
noise levels while improving it as the noise level in the data
increases.

Effect of σ2 σ2 in the Kalman filter in Eq. (23) influences
how much noise the UnHiPPO dynamics filter out. This lets
the user adapt UnHiPPO to the expected level of noise in
the data. See Fig. 8 for an evaluation where we have trained
UnLSSL on SC10 with Gaussian noise of ρ = 10−1 and
varied the σ2 parameter. The results show that UnLSSL
achieves a better fit on noisy data than LSSL.

Discretization Methods While LSSL relies on a
trapezoidal-like discretization for the HiPPO matrix,

Table 1. Time to compute discretized
ĀR,k for N = 256 and resulting
UnLSSL accuracy on SC10 with ρ =
10−1 noise.

Method Time Accuracy

closed-form 2.8ms 79.3%
trapezoidal 1.8ms -

forward 0.1ms -
backward 1.6ms 79.8%

we use the closed-
form solution in
terms of the matrix
exponential for the
UnHiPPO matrix
in Eq. (21). Ta-
ble 1 shows that
the closed-form
solution is only
50% slower than
the trapezoidal
approximation, which is negligible since this only needs to
be computed once to initialize the SSM. An UnLSSL model
initialized with the resulting UnHiPPO matrices reaches
comparable performance for the closed-form solution
and a stable backwards Euler approximation. Both the
trapezoidal and forward Euler approximations produce
an SSM initialization that diverges on the long sequences
of SC10. Section B has a visualization of the effect of
the discretization methods on the HiPPO and UnHiPPO
matrices.

7. Related Work
Yu et al. (2023) introduce a diagonalization of the
HiPPO matrix through an approach called “perturb-then-
diagonalize”. Their parametrization improves runtime per-
formance over a non-diagonal one and is more robust against
noise than the diagonalizations proposed by Smith et al.
(2023); Gu et al. (2022b). Yu et al. (2025) propose an al-
ternative parametrization for SSMs detached from HiPPO
and instead based on Hankel operator theory. Their HOPE
scheme improves the training stability of SSMs and makes
them robust against noise appended to the end of a sequence.
However, they do not evaluate noise on the data itself. Agar-
wal et al. (2023) derive an SSM from the spectral filtering
algorithm (Hazan et al., 2017) which is based on an LDS
with noisy outputs similar to our setup in Section 4. Zhou
et al. (2024) describe an SSM that parametrizes a Kalman
filter with a learnable dynamics matrix. They accelerate
their model by rewriting the recurrence as a convolution
with a Krylov kernel similar to (Gu et al., 2021). However,
they do not connect it to HiPPO theory or SSM initialization
in general.

8



UnHiPPO: Uncertainty-aware Initialization for State Space Models

Gu et al. (2022c) present additional background on the mech-
anism behind HiPPO. Gupta et al. (2022) explore a simpli-
fied alternative to HiPPO with a diagonal transition matrix.
Liu & Li (2025) analyze the role of initializations in state
space models discretized with the zero-order hold approxi-
mation.

8. Limitations
Gu et al. (2022a) have proposed an alternative parametriza-
tion of the HiPPO matrix AH in terms of a diagonal and a
low-rank matrix, which they call a structured SSM. With
this parametrization, the matrix multiplication in the SSM
recurrence can be computed in O(N) instead of O(N2). A
similarly structured parametrization of either the regular-
ized HiPPO matrix AR in Eq. (18) or the uncertainty-aware
HiPPO matrix ĀU, in Eq. (24) eluded us, unfortunately,
because of the pseudo-inverse and Kalman filter equations,
respectively.

9. Conclusion
We analyzed HiPPO as a linear stochastic control problem
and understood why it is not robust against noise. By rewrit-
ing the control problem as a system controlled by a latent
state with noisy observations, we were able to derive the
UnHiPPO dynamics that perform posterior inference in that
system and thereby filter out noise. The resulting UnHiPPO
initialization for SSMs offers a configurable amount of noise
filtering without any modifications to the model structure
or runtime costs. We have furthermore shown in our ex-
periments how such built-in noise filtering can improve the
robustness of SSMs against noise in the real world.

Acknowledgments
ML was funded by the Bavarian State Ministry for Sci-
ence and the Arts within the framework of the Geothermal
Alliance Bavaria project. We want to thank the Munich Cen-
ter for Machine Learning for providing compute resources.
Furthermore, we are thankful to Marcel Kollovieh for his
insightful feedback and his support with Fig. 2.

Authors’ Contributions
ML conceived the project idea, developed the theory,
implemented the UnHiPPO initialization and wrote the
manuscript. AS implemented the majority of the pipeline,
designed and executed the empirical evaluation (i.e. selected
the datasets and implemented model training and data load-
ing to generate the quantitative results for visualization and
analysis), identified a technical correction in the mathemati-
cal formulation, and corrected (Un)LSSL implementations.
SG contributed to the design of the method and provided sci-

entific guidance. All authors reviewed and discussed results,
both theoretical and empirical, throughout the project.

Software
For our results, we rely on excellent software packages,
notably numpy (Harris et al., 2020), scipy (Virtanen
et al., 2020), pytorch (Paszke et al., 2019), einops (Ro-
gozhnikov, 2022), matplotlib (Hunter, 2007), hydra
(Yadan, 2019) and jupyter (Granger & Pérez, 2021).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Agarwal, N., Suo, D., Chen, X., and Hazan, E. Spectral

State Space Models, 2023.

Arfken, G. and Weber, H. J. Mathematical Methods for
Physicists. Elsevier Academic Press, Amsterdam, Hei-
delberg, 6. ed., 5. [print., international ed.] edition, 2008.
ISBN 978-0-12-059876-2.

Aström, K. J. Introduction to Stochastic Control Theory.
Number v. 70 in Mathematics in Science and Engineer-
ing. Academic Press, New York, 1970. ISBN 978-0-12-
065650-9.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation, September 2014.

Goel, K., Gu, A., Donahue, C., and Re, C. It’s Raw! Au-
dio Generation with State-Space Models. In Interna-
tional Conference on Machine Learning, pp. 7616–7633.
PMLR, June 2022.

Goldberg, D. What every computer scientist should know
about floating-point arithmetic. ACM Computing Surveys,
23(1):5–48, March 1991. ISSN 0360-0300. doi: 10.1145/
103162.103163.

Granger, B. E. and Pérez, F. Jupyter: Thinking and Sto-
rytelling With Code and Data. Computing in Science &
Engineering, 23(2):7–14, March 2021. ISSN 1558-366X.
doi: 10.1109/MCSE.2021.3059263.

Gu, A. and Dao, T. Mamba: Linear-Time Sequence Model-
ing with Selective State Spaces, December 2023.

9



UnHiPPO: Uncertainty-aware Initialization for State Space Models

Gu, A., Dao, T., Ermon, S., Rudra, A., and Re, C. HiPPO:
Recurrent Memory with Optimal Polynomial Projections.
In Neural Information Processing Systems, 2020.

Gu, A., Johnson, I., Goel, K., Saab, K., Dao, T., Rudra,
A., and Ré, C. Combining Recurrent, Convolutional,
and Continuous-time Models with Linear State-Space
Layers. In Neural Information Processing Systems. arXiv,
October 2021. doi: 10.48550/arXiv.2110.13985.

Gu, A., Goel, K., and Ré, C. Efficiently Modeling Long
Sequences with Structured State Spaces. In International
Conference on Learning Representations. arXiv, 2022a.

Gu, A., Gupta, A., Goel, K., and Ré, C. On the Parameteri-
zation and Initialization of Diagonal State Space Models,
June 2022b.

Gu, A., Johnson, I., Timalsina, A., Rudra, A., and Re, C.
How to Train your HIPPO: State Space Models with
Generalized Orthogonal Basis Projections. In Interna-
tional Conference on Learning Representations, Septem-
ber 2022c.

Gupta, A., Gu, A., and Berant, J. Diagonal State Spaces are
as Effective as Structured State Spaces. In Advances in
Neural Information Processing Systems, October 2022.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J.,
Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F.,
Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C.,
and Oliphant, T. E. Array programming with NumPy.
Nature, 585(7825):357–362, September 2020. doi: 10.
1038/s41586-020-2649-2.

Hazan, E., Singh, K., and Zhang, C. Learning Linear Dy-
namical Systems via Spectral Filtering. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017.

Hochreiter, S. and Schmidhuber, J. Long Short-Term Mem-
ory. Neural Computation, 9:1735–1780, 1997.

Hunter, J. D. Matplotlib: A 2D graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007. doi:
10.1109/MCSE.2007.55.

Jackson, Z., Souza, C., Flaks, J., Pan, Y., Nicolas, H., and
Thite, A. Free-spoken-digit-dataset: V1.0.8. Zenodo,
August 2018.

Kalman, R. E. A New Approach to Linear Filtering and
Prediction Problems. Journal of Basic Engineering, 82

(1):35–45, March 1960. ISSN 0021-9223. doi: 10.1115/
1.3662552.

Liu, F. and Li, Q. Autocorrelation Matters: Understanding
the Role of Initialization Schemes for State Space Models.
In International Conference on Learning Representations,
2025.

Mehta, H., Gupta, A., Cutkosky, A., and Neyshabur, B.
Long Range Language Modeling via Gated State Spaces.
In The Eleventh International Conference on Learning
Representations, September 2022.

Park, J., Kim, H.-S., Ko, K., Kim, M., and Kim, C. Video-
Mamba: Spatio-Temporal Selective State Space Model.
In Leonardis, A., Ricci, E., Roth, S., Russakovsky, O.,
Sattler, T., and Varol, G. (eds.), European Conference
on Computer Vision, pp. 1–18, Cham, 2025. Springer
Nature Switzerland. ISBN 978-3-031-72698-9. doi:
10.1007/978-3-031-72698-9_1.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. In Neu-
ral Information Processing Systems, 2019.

Patro, B. N. and Agneeswaran, V. S. Mamba-360: Survey
of State Space Models as Transformer Alternative for
Long Sequence Modelling: Methods, Applications, and
Challenges, April 2024a.

Patro, B. N. and Agneeswaran, V. S. SiMBA: Simplified
Mamba-Based Architecture for Vision and Multivariate
Time series, April 2024b.

Rogozhnikov, A. Einops: Clear and Reliable Tensor Ma-
nipulations with Einstein-like Notation. In International
Conference on Learning Representations, 2022.

Särkkä, S. and Solin, A. Applied Stochastic Differential
Equations. Cambridge University Press, April 2019.
ISBN 978-1-108-18673-5.

Smith, J. T. H., Warrington, A., and Linderman, S. W. Sim-
plified State Space Layers for Sequence Modeling. In
International Conference on Learning Representations,
2023.

Vetterli, M., Kovačević, J., and Goyal, V. K. Foundations
of Signal Processing. Cambridge University Press, Cam-
bridge, 2014. ISBN 978-1-107-03860-8.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,

10



UnHiPPO: Uncertainty-aware Initialization for State Space Models

Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy
1.0: Fundamental algorithms for scientific computing
in python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Voelker, A., Kajić, I., and Eliasmith, C. Legendre Mem-
ory Units: Continuous-Time Representation in Recurrent
Neural Networks. In Neural Information Processing Sys-
tems, 2019.

Warden, P. Speech Commands: A Dataset for Limited-
Vocabulary Speech Recognition, April 2018.

Yadan, O. Hydra - A framework for elegantly configuring
complex applications. Github, 2019.

Yu, A., Nigmetov, A., Morozov, D., Mahoney, M. W., and
Erichson, N. B. Robustifying State-space Models for
Long Sequences via Approximate Diagonalization. In
International Conference on Learning Representations.
arXiv, October 2023. doi: 10.48550/arXiv.2310.01698.

Yu, A., Mahoney, M. W., and Erichson, N. B. HOPE for
a Robust Parameterization of Long-memory State Space
Models. In International Conference on Learning Repre-
sentations. arXiv, 2025. doi: 10.48550/arXiv.2405.13975.

Zhou, Z., Guo, X., Jie, Y., and Xia, C.-M. Kalman-SSM:
Modeling long-term time series with kalman filter struc-
tured state spaces. IEEE Signal Processing Letters, PP:
1–5, January 2024. doi: 10.1109/LSP.2024.3457862.

11



UnHiPPO: Uncertainty-aware Initialization for State Space Models

A. HiPPO Derivation
A complete derivation can, of course, also be found in the original work of (Gu et al., 2020). However, the original derivation
includes several additional degrees of freedom to support multiple HiPPO variants. Since the variant based on Legendre
polynomials is the only one relevant to our work and also the one most relevant to follow-up works (Gu et al., 2021; 2022a),
we give a specialized derivation here that eschews unnecessary symbols.

A.1. Choice of Basis

Let’s consider the case where we observe a continuous scalar signal f(τ) : R+ → R and at any point t in time we want to
encode the history f≤t := f |[0,t] of the signal that we have observed so far into an N dimensional vector ct. We consider ct
a good representation of f≤t, if we can turn it back into an approximate version f̂≤t of f≤t, we can rely on the polynomial
approximation framework for signal processing (Vetterli et al., 2014). In this framework, we begin by choosing an inner
product ⟨·, ·⟩ between functions on [0, t] to induce a distance via d(f, g) =

√
∥f − g∥ and ∥f − g∥ = ⟨f − g, f − g⟩

and thus define exactly what f̂≤t ≈ f≤t should mean. Equipped with this inner product, we can then derive a set of N
orthonormal polynomials gi, i = 0, . . . , N − 1 on [0, t] to form the basis of a finite-dimensional function space in which we
can approximate the continuous signal f≤t. Finally, we can find ct by projecting f≤t onto gi, i.e. ct,i = ⟨f≤t, gi⟩.

Our derivation of the Legendre-based HiPPO begins with an inner product between two functions f and g on [0, t]. We will
choose

⟨f, g⟩t =
1

t

∫ t

0

f(τ) g(τ) dτ, (30)

which is just the L2 inner product between functions except for a constant factor 1/t. While the constant factor has no
effect on orthogonality, it will be useful later when we update the representation ct with new data. In terms of function
approximation, this inner product induces the distance

(
d(f, g)

)2
=

1

t

∫ t

0

(f(τ)− g(τ))
2
dτ. (31)

This means that the approximation f̂≤t we are looking for minimizes the squared difference to f≤t across the segment from
0 to t with equal weight given to each τ .

Next, we need the polynomial basis. Since the Legendre polynomials Pi are an orthogonal basis on [−1, 1] for the L2 inner
product, they are also orthogonal on [0, t] with respect to our shifted and scaled inner product if we shift and scale them
linearly from [−1, 1] to [0, t]. For this shifting, we define ϕt(τ) = 2τ/t − 1 that takes τ ∈ [0, t] to x ∈ [−1, 1]. This gives
us Pi(ϕt(τ)) as an orthogonal basis on [0, t]. However, the projection of f≤t onto the basis is simplified if the basis is
orthonormal, so we need to compute the normalization constants of this shifted basis. With ϕ′

t(τ) = 2/t and substitution
integration, we get

∥Pi(ϕt(τ))∥2t = ⟨Pi(ϕt(τ)), Pi(ϕt(τ))⟩t =
1

t

∫ t

0

Pi(ϕt(τ))
2
dτ =

1

2

∫ 1

−1

Pi(x)
2
dx =

1

2i+ 1
. (32)

The last step uses the normalization constant of the unscaled Legendre polynomials of 2/2i+1. This gives us

gt,i(τ) =
√
2i+ 1Pi(ϕt(τ)), i = 0, . . . , D (33)

as a basis of orthonormal polynomials on [0, t] up to any degree D.

Computing the representation ct ∈ RN thus means evaluating ct,i = ⟨f≤t, gt,i⟩t with Eq. (30) for i = 0, . . . , N − 1.

A.2. Linear Dynamics

How does the representation ct of f≤t change as we observe more of the signal? In the continuous case, the answer to this
question is the ODE

dct,i
dt

=
d

dt
⟨f≤t, gt,i⟩t =

d

dt

1

t

∫ t

0

f(τ) gt,i(τ) dτ = − 1

t2

∫ t

0

f(τ) gt,i(τ) dτ +
1

t

d

dt

∫ t

0

f(τ) gt,i(τ) dτ. (34)

12



UnHiPPO: Uncertainty-aware Initialization for State Space Models

The first part is just −1/t ct,i but the derivative of the integral in the second part needs some more work. We can exchange
differentiation and integration with Leibniz’s rule and get

d

dt

∫ t

0

f(τ) gt,i(τ) dτ = f(t) gt,i(t) +

∫ t

0

f(τ)
dgt,i(τ)

dt
dτ. (35)

To progress, we need to use some properties of Legendre polynomials. For the first part, we use that Pi(1) = 1 for all i and
therefore gt,i(t) =

√
2i+ 1. For the second part, we use the identity (see (Gu et al., 2020, Eq. (8)) and (Arfken & Weber,

2008, Eqs. (12.23) and (12.24)))

(x+ 1)
d

dx
Pi(x) = iPi(x) +

i∑
j=1

(2(i− j) + 1)Pi−j(x) (36)

to derive d
dtgt,i(τ). Note that

d

dt
ϕt(τ) =

d

dt

[
2τ

t
− 1

]
= −2τ

t2
= −1

t

(
2τ

t
− 1 + 1

)
= −1

t

(
ϕt(τ) + 1

)
. (37)

With Eqs. (36) and (37) and recognizing ϕt(τ) as x, we get

d

dt
gt,i(τ) =

√
2i+ 1

d

dt
Pi(ϕt(τ))

=
√
2i+ 1

dϕt(τ)

dt

∂

∂t
Pi(ϕt(τ))

= −1

t

√
2i+ 1

(
ϕt(τ) + 1

) ∂

∂t
Pi(ϕt(τ))

= −1

t

√
2i+ 1

[
iPi(ϕt(τ)) +

i∑
j=1

(2(i− j) + 1)Pi−j(ϕt(τ))

]

= −1

t

[
igt,i(τ) +

√
2i+ 1

i∑
j=1

√
2(i− j) + 1 gt,i−j(τ)

]
.

(38)

When we plug this into the second part of Eq. (35), we see that∫ t

0

f(τ)
dgt,i(τ)

dt
dτ = −1

t

∫ t

0

f(τ)

[
igt,i(τ) +

√
2i+ 1

i∑
j=1

√
2(i− j) + 1 gt,i−j(τ)

]
dτ

= −
[
i ⟨f, gt,i⟩t︸ ︷︷ ︸

ct,i

+
√
2i+ 1

i∑
j=1

√
2(i− j) + 1 ⟨f, gt,i−j⟩t︸ ︷︷ ︸

ct,i−j

] (39)

If we plug Eq. (39) into Eq. (35) and that in turn into Eq. (34), we see that

dct,i
dt

= − 1

t2

∫ t

0

f(τ) gt,i(τ) dτ +
1

t

d

dt

∫ t

0

f(τ) gt,i(τ) dτ

= −1

t
ct,i +

1

t

[√
2i+ 1f(t)−

[
i ct,i +

√
2i+ 1

i∑
j=1

√
2(i− j) + 1 ct,i−j

]]
.

(40)

Now we can separate terms involving c and f and write the N instances of Eq. (40) for the N components of c as a single
vector differential equation. This gives us the full continuous coefficient dynamics from (Gu et al., 2020)

dct
dt

= −1

t
AHct +

1

t
BHf(t) (41)

with the HiPPO matrix and vector

AH,ij =


√
2i+ 1

√
2j + 1 if j < i

i+ 1 if j = i

0 if j > i

and BH,i =
√
2i+ 1, (42)

respectively.

13



UnHiPPO: Uncertainty-aware Initialization for State Space Models

A.3. Discretization

Usually, we observe the signal f at discrete time points tk instead of truly continuously. Therefore, we cannot evaluate the
exact, continuous dynamics in Eq. (41) and have to discretize them instead, so that we only ever need to evaluate f at the
discrete observation points tk.

With a continuous signal, we would compute ctk+1
from ctk by integrating Eq. (41) from tk to tk+1, i.e.

ctk+1
= ctk +

∫ tk+1

tk

−1

t
AHct +

1

t
BHf(t) dt. (43)

For discrete observations f(t1), f(t2), . . ., we need to approximate the integral on the right-hand side in a way that only
requires f(tk) and f(tk+1).

(Gu et al., 2020) describe three approximations for the integral, forward Euler, backward Euler and the trapezoidal rule of
which they use the latter for their experiments. Forward Euler approximates the value of the integrand with its value at the
lower integration bound, i.e. at tk, and gives

ctk+1
≈ ctk + (tk+1 − tk)︸ ︷︷ ︸

=:∆t

(
− 1

tk
AHctk +

1

tk
BHf(tk)

)
=

(
I − ∆t

tk
AH

)
ctk +

∆t

tk
BHf(tk). (44)

Backward Euler is the other extreme that approximates the integrand with its value at tk+1, i.e.

ctk+1
≈ ctk +∆t

(
− 1

tk+1
AHctk+1

+
1

tk+1
BHf(tk+1)

)
. (45)

Solving for ctk+1
gives us

ctk+1
≈

(
I +

∆t

tk+1
AH

)91[
ctk +

∆t

tk+1
BHf(tk+1)

]
. (46)

For the trapezoidal rule, we approximate the integrand as the average of its values at tk and tk+1, i.e.

ctk+1
≈ ctk +∆t

1

2

[(
− 1

tk
AHctk +

1

tk
BHf(tk)

)
+

(
− 1

tk+1
AHctk+1

+
1

tk+1
BHf(tk+1)

)]
. (47)

After simplifying and solving for ctk+1
, this becomes

ctk+1
≈

(
I +

∆t

2tk+1
AH

)91[(
I − ∆t

2tk
AH

)
ctk +

∆t

2
BH

(
1

tk
f(tk) +

1

tk+1
f(tk+1)

)]
. (48)

Note that (Gu et al., 2020) approximate Eq. (48) as

ctk+1
≈

(
I +

∆t

2tk+1
AH

)91[(
I − ∆t

2tk+1
AH

)
ctk +

∆t

tk+1
BHf(tk+1)

]
, (49)

i.e. they approximate 1/tkf(tk) + 1/tk+1f(tk+1) as 2/tk+1f(tk+1). This, in effect, pretends that the dynamics in Eq. (41)
would be constant in time and is required by LSSL for the numerical stability of the accelerated evaluation via convolution
with a Krylov kernel. In this work, we discretize the LSSL baseline with Eq. (49), too. Note that for our model a closed-form
solution in terms of the matrix exponential exists, which we use instead of a numerical approximation.

Each of Eqs. (44), (46), (48) and (49) can be put into the form

ctk+1
= ĀH,tkctk + B̄H,tkf(tk) + B̄H,tk+1

f(tk+1) (50)

by collecting terms appropriately.

14



UnHiPPO: Uncertainty-aware Initialization for State Space Models

B. Discretizations Visualized
Recurrent roll-out of an SSM or the construction of the Krylov kernel equate to repeated matrix multiplication with the
HiPPO or UnHiPPO matrix or taking powers thereof. Therefore, successful training and evaluation on long sequences
requires the discretization to be chosen so that matrix powers do not diverge. Fig. 9 shows the effect of repeated applications
of HiPPO and UnHiPPO matrices discretized with the closed-form solution and the approximations considered by (Gu
et al., 2021). The HiPPO matrix is stable under the backward discretizations and has a negligible degree of divergence
with the trapezoidal rule. The UnHiPPO matrix cannot be stably discretized with the trapezoidal rule, but its closed-form
discretization is stable and retains the information encoded in the shape of the reconstruction f̂ almost perfectly.

Reconstruction f̂tk
Ā1
kctk

Ā2
kctk

Ā3
kctk

Ā4
kctk

0 tk tk+4 0 tk tk+4 0 tk tk+4

H
iP

PO

Closed-form Trapezoidal Forward Euler Backward Euler

U
nH

iP
PO

Figure 9. Visualization of repeated application of HiPPO and UnHiPPO matrices with various discretization methods through the
polynomial representation f̂ of c. Magnitude of the plotted curves correlates with ∥Āi

kctk∥.

C. Experiment Details
We use the parameters listed in Table 2 for all models. For the range of tk in the initialization of LSSL, we set tmin = 10
and tmax = 1000 to cover a range of time scales.

Table 2. Hyperparameters of the LSSL architecture used for the SC10 experiments.

Parameter Value

Layers 4
N 128

Linear Embedding Size 128
Latent Channels 4

Dropout 0.1
UnHiPPO σ2 1010

Training Steps 100000
Batch Size 16

15


	Introduction
	Legendre Polynomials
	HiPPO
	From Control to Inference
	Extrapolation
	Discretization
	Posterior Distribution

	Uncertainty-aware Initialization
	Uncertainty-aware Linear State Space Layer

	Experiments
	Related Work
	Limitations
	Conclusion
	Appendix
	HiPPO Derivation
	Choice of Basis
	Linear Dynamics
	Discretization

	Discretizations Visualized
	Experiment Details


