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Abstract

Dialogue discourse parsing aims to reflect the
relation-based structure of dialogue by estab-
lishing discourse links according to discourse
relations. To alleviate data sparsity, previous
studies have adopted multitasking approaches
to jointly learn dialogue discourse parsing with
related tasks (e.g., reading comprehension) that
require additional human annotation, thus lim-
iting their generality. In this paper, we propose
a multitasking framework that integrates dia-
logue discourse parsing with its neighboring
task addressee recognition. Addressee recog-
nition reveals the reply-to structure that par-
tially overlaps with the relation-based structure,
which can be exploited to facilitate relation-
based structure learning. To this end, we
first proposed a reinforcement learning agent
to identify training examples from addressee
recognition that are most helpful for dialog
discourse parsing. Then, a task-aware struc-
ture transformer is designed to capture the
shared and private dialogue structure of differ-
ent tasks, thereby further promoting dialogue
discourse parsing. Experimental results on
both the Molweni and STAC datasets show
that our proposed method can outperform the
SOTA baselines. The code will be available at
https://github.com/yxfanSuda/RLTST.

1 Introduction

Dialogue discourse parsing aims to construct a de-
pendency tree on discourse relations to reflect the
implicit discourse structure of a dialogue, which
is helpful for various downstream tasks, such as
reading comprehension (He et al., 2021), meeting
summarization (Feng et al., 2021), response gener-
ation (Hu et al., 2019) and sentiment analysis (Sun
etal., 2021).

Most studies on discourse parsing usually focus
on monologue and represent a document with a
hierarchical tree on the Rhetorical Structure Theory
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reply-to relation-based
{(1) william : hi. J
— Cont
(2) william : how many people are we
waiting for?
QAP
] (3) Thomas : hi, i think it's 1 more
Ack
4) william : ok
(4) william : o } Ack
(5) Markaus : yes, one more ]
Com
(6) Markus : seems there's a hickup
logging into the game ...
Ack
(7) Thomas : that's ok, I not on a
schedule

Figure 1: An example of relation-based dialogue dis-
course parsing from STAC (right lines) (Asher et al.,
2016), where Cont, QAP, ACK, and Com refer to Contin-
uation, Question-answer_Pair, Acknowledgement and
Comment, respectively. We also present the reply-to
structure of addressee recognition (left lines) in this
example for better illustration. Dialogue discourse pars-
ing reveals the relation-based structure by establishing
discourse links on discourse relations, while addressee
recognition reveals the reply-to structure by identifying
the addressee for each utterance. The black-solid lines
indicate the shared structure between the two tasks and
the orange-dot lines and the blue-dashed lines indicate
the private structure of addressee recognition and dia-
logue discourse parsing, respectively.

(RST) (Mann and Thompson, 1988). Otherwise,
dialogue discourse parsing represents the dialogue
as a dependency tree on the Segmented Discourse
Relation Theory (SDRT) (Asher and Lascarides,
2003) and an example is shown in Figure 1.
Dialogue discourse parsing suffers from data
sparsity because annotating the links and rela-
tions requires a precise understanding of dialogues,
which is time-consuming and expensive. To miti-
gate the problem of data sparsity, previous works
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explore the complementary knowledge of related
tasks to facilitate dialogue discourse parsing, in-
cluding joint training with reading comprehension
(He et al., 2021) or dropped pronoun recovery
(Yang et al., 2021). However, the requirements
of additional human annotation, such as the ques-
tions and answers for reading comprehension, limit
the generality.

In this paper, we jointly learn dialogue discourse
parsing with its neighbor task addressee recogni-
tion (Ouchi and Tsuboi, 2016; Zhang et al., 2018;
Le et al., 2019) to alleviate the issue of data spar-
sity and additional human annotation requirements.
Addressee recognition reflects the reply-to struc-
ture between different speakers, while dialogue dis-
course parsing reveals the relation-based structure
between the same or different speakers. There-
fore, the two tasks have both shared and private
structures as shown in Figure 1. Our intuition is
to leverage shared structures of addressee recog-
nition to promote dialogue discourse parsing in a
multitasking manner.

However, two challenges remain when jointly
training our task with addressee recognition. The
first challenge arises from the fact that examples
from addressee recognition are not equally ben-
eficial for discourse parsing due to the partially
overlapping structure between the two tasks. It
becomes crucial to identify the most useful exam-
ples from the data-rich addressee recognition to
improve multitask learning. The second challenge
involves how to capture shared and private struc-
tures of different tasks. As shown in Figure 1, two
tasks have both their shared structure (black-solid
lines) and their private structure (orange-dot and
blue-dashed lines). Thus, capturing the shared and
private structure poses an additional challenge in
effectively promoting dialogue discourse parsing.

To tackle the first challenge, we introduce a
reinforcement-learning agent to identify the train-
ing examples from addressee recognition that con-
tribute the most to dialogue discourse parsing. To
address the second challenge, we propose a task-
aware structure transformer that effectively exploits
the shared and private dialogue structures across
different tasks. Our approach involves evaluating
the importance of each neuron in the structure trans-
former and categorizing them as either task-shared
or task-private based on their significance for each
task. Subsequently, the task-shared neurons are
updated by all tasks, while the task-private neurons

are updated by each specific task individually.

Experimental results on both Molweni and
STAC show that our proposed method outperforms
the SOTA baselines. Besides, the reinforcement-
learning agent can reduce about 80% of the train-
ing data of addressee recognition and help dialogue
discourse parsing achieve higher performance. In
addition, the task-aware structure transformer can
effectively capture shared and private structures
of different tasks, thus further promoting dialogue
discourse parsing.

2 Background

2.1 Dialogue Discourse Parsing

Dialogue discourse parsing always focuses on
multi-party dialogue and can be divided into two
types, i.e., single-task and multitask. Those single-
task approaches mainly employ various encoding
and decoding methods for discourse parsing. Shi
and Huang (2019) jointly and alternatively pre-
dicted the link and relation by incorporating the
historical structure. Wang et al. (2021) adopted a
structure transformer to incorporate both the node
and edge information of utterance pairs. Liu and
Chen (2021) trained a joint model by merging the
parsing datasets. Fan et al. (2022) combined dif-
ferent decoding methods for discourse parsing. Yu
et al. (2022) proposed a second-stage pre-trained
task to enhance speaker interaction.

Multitask approaches focus on exploring the ad-
vantages of relevant tasks to facilitate discourse
parsing. Yang et al. (2021) jointly trained dialogue
discourse parsing with dropped pronoun recovery,
and He et al. (2021) jointly trained discourse pars-
ing with reading comprehension. However, both
of them need additional annotated information of
the relevant tasks on the basis of discourse parsing,
which is time-consuming and costly. In this paper,
we propose a multitask framework of dialogue dis-
course parsing and addressee recognition, which
does not need any additional annotated labels.

2.2 Addressee Recognition

Addressee recognition aims to determine a possible
addressee for some utterance. For example, Ouchi
and Tsuboi (2016) first proposed the task and cre-
ated a large corpus for studying. Le et al. (2019)
introduced a who-to-whom model to explore the in-
teraction of speaker and utterance. Gu et al. (2021)
proposed several self-supervised tasks to learn who
says what to whom.
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Figure 2: The framework of our method.

3 Approach

As shown in Figure 2, our method mainly includes
two steps: data selection on reinforcement learn-
ing and multitask learning on Task-aware Structure
Transformer (TST). In the following sections, we
first introduce the backbone of our method, fol-
lowed by the reinforcement-learning agent and task-
aware structure transformer.

3.1 Backbone

The backbone includes three components: Encod-
ing Layer (EL), Structure Transformer (ST), and
classifier.

3.1.1 Encoding Layer

Given a multi-party dialogue with n utterances de-
noted as {uj,ug,- - ,uy}, we add a dummy root
ug to represent the beginning of a dialogue. The ut-
terances are simply fed into the pre-trained model,
such as BERT (Devlin et al., 2019), in the form
of [CLS][SEP]Jug[SEP|u; ---[SEP|uy[SEP]
and the hidden states of [SE P] previous to each
utterance is regarded as the corresponding utter-
ance representation. Then, a BIGRU was em-
ployed on the utterance representation to obtain
the dialogue-level context representation H
{ho,hy,--- ,h,}, where H € R("+1D)xd,

3.1.2 Structure Transformer

Structure Transformer (ST) (Zhu et al., 2019; Liu
et al., 2020; Wang et al., 2021) have been widely
applied in NLP, which is based on Transformer
(Vaswani et al., 2017) and considers both node and

edge information at the same time. We feed the
dialogue-level context representation H € HY
into Structure Transformer to obtain the structure
representation I as follows.
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where h; and h; (h;, h; € H) are the semantic
representations of the utterance w; and u; within
a dialogue, e;; is the edge representation between
u; and u;. We use three concatenated feature em-
beddings: speaker, turn, and relative distance as
edge information following previous work (Wang
etal., 2021), Wy, where 6 € {q, k,r,v, f}, is the
learnable parameter. [ is the [-th layer of Structure
Transformer. The dialogue structure representation

I = {h(()l)’hgl)’ .. 7hg)}’ Ie R(nJrl)Xd,
3.1.3 Classifier

After obtaining the structure representation I, we
adopt Multi-Layer Perceptrons (MLPs) to calculate
probabilities of links between utterance pairs for
both tasks and probabilities of relation types for
dialogue discourse parsing as follows.

Si, Sy = Softmax(MLP([I : I"]))  (4)



where [:] denotes the concatenation operation, S; €
R™>nx1 G < R?M*7X™ p and m are the number
of utterances within a dialogue and the number of
the relation type, respectively.

3.2 Data Selection on Reinforcement Learning

The reason for performing data selection is that
the partially overlapping structure between both
tasks leads to the fact that not all examples in ad-
dressee recognition are equally useful for dialogue
discourse parsing. Reinforcement learning can au-
tomatically select examples from addressee recog-
nition that help discourse parsing the most.

We adopt the actor-critic reinforcement
paradigms (Konda and Tsitsiklis, 1999; Ye
et al., 2020; Pujari et al., 2022) and add the
reinforcement-learning agent to the tail of the
backbone. For each example in the addressee
recognition training set, we choose the structure
representation of dumpy node hél) as the cor-
responding dialogue representation and feed it
into the agent. For a mini-batch b consisting of
m dialogues, the semantic representation of b is

denoted as HISZ), where ngl) e R™*4d_ We first

feed H. ISZ) into the actor to decide whether to select
the dialogue in mini-batch b and the equation is as
follows.

P= Softmaz(Wangl) +b1) ®)

where P is probabilities of actions for dialogues in
mini-batch b, W, and b; are learnable parameters
and bias, respectively.

The critic is used to compute the expected reward
based on the actions of the actor for the mini-batch
b as follows.

R = Mean(o(Wyd(W.H" + by) + b3)) (6)

where R is the expected reward of the mini-batch
b, and o and ¢ are the Sigmoid and Tanh activation
functions, respectively. W, and W, are learnable
parameters, respectively, and by and b3 are learn-
able biases.

Then, we assign rewards to the agent by eval-
uating the performance of discourse links on the
validation set of dialogue discourse parsing. If the
F1 score on the development set for g mini-batches
with size m are denoted as {F}', FZ,--- , F{} and
the expected rewards predicted by the critic is de-
noted as { Ry, Ry, - - - , Ry}, the policy loss is com-
puted as follows.

[
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where 1 and o are the mean and standard deviations
of the F} score, € is a smoothing constant, a§- s an
action for the j-th dialogue of the i-th mini-batch
decided by the actor, and L; is the smooth L1 loss.
The algorithm for reinforcement learning is shown
in Appendix A.

3.3 Task-aware Structure Transformer

Under multitask learning, the structure transformer
can only capture the shared structure of different
tasks, because either the examples from addressee
recognition or dialogue discourse parsing equally
update all neurons of Wy in the structure trans-
former at the back-propagation step.

To capture shared and private structures of differ-
ent tasks, we proposed Task-aware Structure Trans-
former (TST) based on a structure transformer.
Inspired by the task of model pruning (Zhu and
Gupta, 2018; Evci et al., 2020), we assume that
different neurons in Wy have different importance
to different tasks. Based on this hypothesis, we can
divide the neurons into two types: task-shared and
task-private. We force those task-shared neurons
to participate in the shared structure learning of all
tasks while those task-private neurons only focus
on some specific tasks. Thus, the key is to deter-
mine the task-shared and task-private neurons in
W) for each task. To this end, we use a binary mask
matrix M € {0, 1}/Wsl to indicate task-shared and
task-private neurons for each task. Each element
in M corresponds to a neuron in Wy. An element
of 0 indicates that the neuron is task-shared while
1 indicates that the neuron is task-private.

To obtain a mask matrix M, we first train the
structure transformer on all tasks in a multitasking
manner to obtain the initial learnable parameters
WHO. Then, we fine-tune Wé) on a specific task to
evaluate the importance of neurons, and the most
important a% of neurons are reserved as the task-
private neurons of the task. Intuitively, fine-tuning
We0 on a specific dataset will amplify the magni-
tude of the gradient of the important neurons. Thus,
we rank the gradient of neurons in descending or-
der and reserve the most important a% of neurons
as the task-private neurons. M is obtained by set-



ting the indices of task-private neurons to 1 and
the others to 0. Once the mask matrix M* for
all tasks is obtained, we continue to fine-tune the
structure transformer on all tasks and only update
task-private neurons for each task during the back-
propagation step. The whole process is shown in
Algorithm 1.

Algorithm 1 TST Learning

Require: addressee recognition dataset A, dia-
logue discourse parsing dataset D, initial learn-
able parameters We0 of structure transformer,
and learning rate 7.

1: for dataset cin {A, D} do
initialize mask M¢ = {0}/W5;
fine-tuning We0 on dataset c and obtain gra-
dients G° for all neurons in We0

4:  sort gradients G° in a descending order and
obtain the indices I of top a% gradients

5: set M =1ifieI¢

6: end for

7: initialize time stept = 1

8: forepoche=1,2,--- do

9:  for dataset cin {A, D} do

10: for mini-batch 5 in dataset ¢ do
1 Wi=W, "' —n -G°® M°
12: t=t+1

13: end for

14:  end for

15: end for

16: return W}

3.4 Multitask Learning

For optimization of addressee recognition, we min-
imize the cross-entropy of golden links as follows.

n

Lo (6a) = =Y y*logP (y:) ©

i=1
where 6, denotes the parameters of addressee
recognition to be optimized, y* represents the
golden links, y; is the predicted links, and n is

the number of golden links.
For optimization of dialogue discourse parsing,
we minimize the cross-entropy of golden links and

relation types as follows.

Ly (65) ==Y _y*logP (yi) —
=1

Z Z r;;logP (rij)

i=1 j=1

(10)

Task Dataset Train Valid Test UttNum
DDP STAC 1062 - 111 1-37
Molweni 9000 500 500 7-14
Hu 311K 5K 5K 6,7

AR Ou5 461K 28K 32K 5
Oul0 495K 30K 35K 10
Oul5 489K 30K 35K 15

Table 1: Statistics of Dialogue Discourse Parsing (DDP)
and Addressee Recognition (AR). *UttNum’ indicates
utterance number.

where 0, denotes the parameters of dialogue dis-
course parsing to be optimized, y* and rjj represent
golden links and relation types, respectively. y; and
r;; represent predicted links and relation types, re-
spectively. n is the number of golden links and m
is the number of relation types.

For multitask learning, we add the loss of all
tasks as follows.

L=L,+ L (11)

4 Experimentation

4.1 Datasets

We evaluate our proposed model on two dialogue
discourse datasets STAC (Asher et al., 2016) and
Molweni (Li et al., 2020) and the statistics are
shown in Table 1. For STAC, we follow previous
work and select 10% of the training dialogues for
validation. For addressee recognition, we utilize
all training data from four commonly used corpora
Hu (Hu et al., 2019) and Ou5/0Oul10/Oul5 (Ouchi
and Tsuboi, 2016), including about 1.75 M dia-
logues, to facilitate dialogue discourse parsing in a
multitasking manner.

4.2 Experimental Settings

We use bert-based-uncased to initialize the parame-
ters of BERT. The learning rate of BERT, reinforce-
ment learning, and structure transformer are set to
le-5, 3e-5, and 3e-4, respectively. The layer and
head of the structure-aware transformer are set to 1
and 4, respectively. Performance of adopting differ-
ent values of alpha in TST is shown in Appendix B
and we set a to 0.8 and 0.7 on Molweni and STAC,
respectively. The maximum utterance number for
Molweni and addressee recognition dataset are set
to 15. We follow previous work (Wang et al., 2021)
and adopt a sliding window to split the dialogue
in STAC into chunks and the maximum utterance



Model Molweni STAC
Link Link&Rel Link Link&Rel
ChatGPT 59.91 25.25 63.75 23.85
DSM 76.94 53.49 71.99 53.62
Single-task SSAM 81.63 58.54 73.48 57.31
COMB 80.15 56.60 73.25 57.18
DAMT 82.50 58.91 73.64 57.42
SSP 83.70 59.40 73.00 57.40
Single-ST 81.06 56.81 71.24 55.51
DiscProReco - - 74.10 57.00
Multitask DPRC 80.00 57.00 - -
Multi-ST gy 82.59 58.21 72.31 56.49
Multi-STgypset 83.16 58.80 73.06 57.24
Ours TST pyi 83.75 59.21 73.26 57.47
TSTsupset 85.26 60.91 73.69 57.63

Table 2: Main results on both Molweni and STAC.

number for STAC is set to 40. The maximum se-
quence length for Molweni, STAC, and addressee
recognition dataset are set to 380, 512, and 380.
The batch sizes for Molweni, STAC, and addressee
recognition dataset are set to 200, 100, and 200
respectively. The epoch for reinforcement learn-
ing, structure transformer, and task-aware structure
transformer are set to 5, 3, and 3, respectively. All
experiments are performed using a GeForce RTX
3090 GPU. In this paper, we follow Shi and Huang
(2019) and adopt Link F} and Link&Rel F for
evaluation. The Link F evaluates the performance
of link prediction, and Link&Rel F evaluates the
performance of link and relation prediction.

4.3 Baselines and Experimental Results

We compare our method with the following base-
lines. Single-task: 1) ChatGPT(Fan and Jiang,
2023): it adopt ChatGPT! for dialogue discourse
parsing. 2) DSM (Shi and Huang, 2019), it al-
ternately predicted discourse links and discourse
relations by incorporating historical structure; 3)
SSAM (Wang et al., 2021), it adopted a struc-
ture transformer and two auxiliary training signals
for parsing; 4) COMB (Liu and Chen, 2021), it
trained the model by merging the parsing datasets;
5) DAMT (Fan et al., 2022), it combined transition-
based and graph-based decoding methods for pars-
ing; 6) SSP (Yu et al., 2022), it proposed a second-
stage pre-trained task to enhance the speaker in-
teraction; 7) Single-ST (our simplified version),
it utilized BERT and BiGRU to encode the dia-
logues and applied a structure transformer to cap-

"https://openai.com/blog/chatgpt

ture the structure of the single dialogue discourse
task. Multitask: 1) DiscProReco (Yang et al.,
2021), it proposed to jointly train dropped pronoun
recovery and dialogue discourse parsing; 2) DPRC
(He et al., 2021), it proposed to jointly train read-
ing comprehension and dialogue discourse parsing;
3) Multi-STr,;; (our simplified version), it used
all addressee recognition datasets and employed a
structure transformer to capture the shared struc-
ture between addressee recognition and dialogue
discourse parsing. 4) Multi-ST g,,55c¢ (our simpli-
fied version), Similar to Multi-ST,;; but using
the selected data from all addressee recognition
datasets on reinforcement learning.

As shown in Table 2, we report the main re-
sults on the Molweni and STAC test sets following
previous work (Fan et al., 2022; Yu et al., 2022).
our TSTgyupset achieves a Link I of 85.26 and
a Link&Rel Fy of 60.91 in the Molweni test set,
outperforming all previous SOTA systems. On
STAC, our TSTgypset achieves 73.69 on Link F}
and 57.93 on Link&Rel F, outperforming most of
the previous SOTA systems. These results show
the effectiveness of our TST gy pser On dialogue dis-
course parsing and ensure that dialogue discourse
parsing can benefit from addressee recognition.

Compared with Single-ST, our simplified ver-
sion of Multi-ST is effective for joint training dia-
logue discourse parsing with addressee recognition.
In addition, Multi-STg,5s¢¢ can achieve better per-
formance than Multi-STr,;; by using about 20%
and 19% training data of addressee recognition on
Molweni and STAC, respectively, indicating the
effectiveness of data selection on reinforcement
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li‘c'g;?fie:n Molweni STAC
Link Link&Rel Link Link&Rel

None 81.06 56.81 71.24 5551

Hu 8245 57.87 72.02 56.35
Ou5 81.48 5695 7134 5557
Oul0 8196 5720 71.69 55.62
Oul5s 82.16 57.32 7176 55.80
Subset 83.16 58.80 73.06 57.24

Table 3: Performance on dialogue discourse parsing in
ablation study for each addressee recognition dataset.
’None’ indicates without data of addressee recognition
and ’Subset’ indicates the selected data from all ad-
dressee recognition datasets on reinforcement learning.

learning. However, Multi-ST can only capture the
shared structure and neglect the influence of pri-
vate structures of addressee recognition on dialogue
discourse parsing. Compared with Multi-ST, our
TSTgupset captures shared and private structures
of different tasks, which can significantly improve
the performance of dialogue discourse parsing. No-
tably, our approach does not need any additional an-
notated information, compared with DiscProReco
or DPRC. These results verify the effectiveness of
our method.

Our TSTgypser performs worse on STAC than
on Molweni, with the same trend as other SOTA
systems. We attribute this to the fact that more ut-
terances of dialogue in STAC increase the difficulty
of dialogue discourse parsing as shown in Table 1.
In addition, the performance of our TST g+ has
a slight decrease on Link F; on STAC, in com-
parison with DiscProReco. We attribute this to
the different pre-trained models and joint learning
tasks. Moreover, TST g,,;; only achieves compara-
ble performance with the previous systems on the
task of addressee recognition because of the small
size of the dialogue discourse parsing dataset.

5 Analysis

5.1 Effectiveness of Data Selection

Ablation Study of addressee recognition
datasets To reveal the effectiveness of adopting
reinforcement learning for data selection, we
conduct ablation studies on the four addressee
recognition datasets, as shown in Table 3. We
can see that all addressee recognition datasets can
improve the performance of discourse parsing and
the Hu dataset contributes the most. Subsets on
reinforcement learning that only select around 20%

I
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Figure 3: Percentage of private structures in different ad-
dressee recognition datasets. The private structures are
as shown orange-dot lines in Figure 1. *SubsetM’ and
"SubsetS’ indicates the subsets selected from addressee
recognition on reinforcement learning for dialogue dis-
course parsing dataset Molweni and STAC, respectively.

and 19% data from all four datasets for Molweni
and STAC, respectively, help dialogue discourse
parsing achieve higher performance. On Molweni,
the performance reaches 83.16 and 58.80 on Link
Fy and Link&Rel F; metrics, respectively. On
STAC, the performance reaches 73.06 and 57.24
on Link Fy and Link&Rel I, respectively. These
results indicate the effectiveness of data selection
by using reinforcement learning.

Less private structures of addressee recognition
help more Since reply-to structures of addressee
recognition and relation-based structures of dis-
course parsing partially overlap, we hypothesize
that examples with less private structures in ad-
dressee recognition can better benefit dialogue dis-
course parsing. To validate this, we analyze the per-
centage of private structures in different datasets,
as shown in Figure 3. Among all addressee recog-
nition datasets, Hu has the smallest proportion of
private structures, accounting for 21%. This corre-
sponds to the results in Table 3, where Hu benefits
discourse parsing the most. In addition, the sub-
sets selected for Molweni and STAC have an even
lower proportion of private structures, accounting
for 17% and 19%, respectively. This is consistent
with our intuition that the addressee recognition
dataset with less private structure can facilitate dia-
logue discourse parsing better.

5.2 Effectiveness of TST

Ablation study of TST To illustrate the effective-
ness of TST, we compare it with several variants
as shown in Table 4. Prune-ST indicates that we
reserve the task-private neurons for each task and
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Figure 4: The comparison of correct relation prediction between our TST gy pse: and SOTA system SSP on STAC.

Model Molweni STAC
Link Link&Rel Link Link&Rel
Prune-ST 65.15 3332 61.04 32.87
Random-ST 82.29 57.85 7223 56.50
Reversed-ST 79.15 53.87 70.82 52.09
TST 85.26 6091 73.69 57.63

Table 4: Ablation study of Link and Link&Rel F; perfor-
mance of TST. Subsets selected from addressee recog-
nition was adopted for all experiments.

Accuracy
Method Molweni STAC
Shared Private Shaerd Private

None 80.13 5449 63.01 71.61
Multi-STg,;  81.60 5390 64.38 70.33
Multi-ST g pset 82.00 5748 6534 72.12
TST pun 83.33 59.87 64.66 73.17
TSTgubser 84.46 63.47 6548 75.45

Table 5: Accuracy of shared and private structures in
dialogue discourse parsing. The shared and private struc-
tures are shown in black-solid and blue-dashed lines in
Figure 1, respectively.

abandon the shared neurons. Random-ST indicates
that we randomly select a % of specific neurons
for each dataset. Reversed-ST indicates that we
rank the gradients of neurons and reserve the low-
est a % neurons as task-private neurons. We can
see that the performance decreases sharply when
adopting Prune-ST in comparison with our TST,
which indicates the essential of shared neurons.
When adopting Random-ST or Reversed-ST, the
performance decreases significantly in comparison
with our TST, which indicates the effectiveness of
our approach that reserving the top o % neurons
according to the gradients as task-private neurons.

TST can significantly capture both shared and
private structures To explore whether TST can

capture both shared and private structures signifi-
cantly, we analyze the accuracy of both shared and
private structures in dialogue discourse parsing, as
shown in Table 5. We can see that Multi-ST gy
can promote the shared structure performance but
lead to a slightly decline in private structure. We
attribute this to the negative effect of private struc-
tures of addressee recognition on the private struc-
ture learning of dialogue discourse parsing. Be-
sides, Multi-ST g,5s¢¢ can promote the performance
of private structures in discourse parsing by re-
ducing private structures in addressee recognition.
Furthermore, our TST demonstrates the capability
to promote the performance of shared and private
structures in dialogue discourse parsing through
joint learning with either the Full data of addressee
recognition or a Subset selected from addressee
recognition using reinforcement learning. These
results prove the effectiveness of our TST.

5.3 Analysis on Improvement of Relation
Performance

Given that relation is correct if and only if both
link and relation type is predicted correctly, the
improvement in relation performance can be at-
tributed to the success of link prediction. To ex-
plore what kinds of relations benefit the most from
our method, we analyze the number of correct re-
lation predictions of STAC as shown in Figure 4.
We compare our method TST g, pser With the SOTA
system SSP (Yu et al., 2022) that uses the same pre-
trained model as us. We can see that our method
outperforms the baseline on some high-resource
relations like Question-Answer_Pair (QAP), Com-
ment, Acknowledgement (ACK), Continuation and
Elaboration. The improvement of these relations
mainly derives from the success of link prediction.
Besides, both our TST g5 and SSP hardly pre-
dict the low-resource relations, indicating that the
low-resource relations cannot benefit from the im-



(uy) A: anyone have any idea why ubuntu would
boot correctly after hanging during one boot , and
visa versa ?

(u;) B:when it hangs , what does it say before
hanging itself ?

(uy) A:in fact, i think it will boot after hibernating
(u3) A:ithangs onablank (' dead ") screen
(uy) A:itappears to be just as gnome is loading
(us) B:can you get a login prompt by pressing
ctrlaltf] when it hangs ?

(ug) A:no, and ctrl-alt-del will not reboot , either
(u;) A:nothing happens it still says network:0
disabled when i push the button

(ug) A:when ireboot the computer manually to
recover from the hang , it boots fine

(ug) B: can you copy FILEPATH to a pastie ?

(a) Dialogue
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(b) Annotation
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Figure 5: (a) is a dialogue from Molweni. (b) is the
discourse structure annotated manually. (c)-(e) are struc-
tures predicted by SSP, Single-ST, and our TST gypset»
respectively. Solid, dashed, dashed-dotted, and red dot-
ted lines denote the relations Question-Answer_Pair,
Question_Elaboration, Clarification_Question, and
Continuation, respectively.

provement of link prediction, and more attention is
required in the future. The same phenomenon can
be observed on Molweni, as shown in Appendix C.

5.4 Case Study

To better illustrate the advantage of our method, we
draw the discourse structures predicted by several

baselines and our method. The dialogue and dis-
course structures are shown in Figure 5. In the an-
notation, we can observe that ug, u7, and ug that all
uttered from speaker A form the Question_Answer
Fair relation with us uttered from speaker B, which
is shared with the reply-to structure of addressee
recognition. Although SSP enhanced the speaker
interaction, ug-uy is still recognized incorrectly.
Besides, our simplified version of Single-ST only
considers the relation-based structure of dialogue
discourse parsing, leading to the incorrect recog-
nition ug-u7 and uy-ug. However, our TST gypser
recognizes us-ug, us-u7, and us-ug correctly by
leveraging the reply-to structure of addressee recog-
nition in a multitasking manner, which illustrates
the effectiveness of our method.

6 Conclusion

In this paper, we proposed to improve dialogue dis-
course parsing by leveraging reply-to structures of
addressee recognition in a multitasking manner. To
this end, we first adopt a reinforcement-learning
agent to identify training examples from addressee
recognition that help dialogue discourse parsing
the most. Then, we proposed a task-aware struc-
ture transformer to capture the shared and private
structures of different tasks. Experimental results
on Molweni and STAC verify the effectiveness of
our method. In the future, we will focus on how
to incorporate multiple relevant tasks to improve
dialogue discourse parsing.

Limitations

Our work has several limitations, which we aim to
address in our future work. First, since our method
is to promote the target task with the data of the
neighbor task, we can certainly use the data of the
dialogue discourse parsing to promote addressee
recognition. However, due to the much smaller
size of the corpus of dialogue discourse parsing
than addressee recognition, the performance of the
addressee recognition is not improved significantly.
Second, our method focuses on the improvement
of link prediction, and the improvement of relation
prediction is mainly derived from the success of
link prediction due to the cascade nature. In the
future, we will continue to refine our approach to
overcome the above shortcomings.
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A Algorithm of Data Selection on
Reinforcement Learning

Algorithm 2 illustrates the process of selecting ex-
amples from addressee recognition by reinforce-
ment learning. For each example of addressee
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Figure 6: Link F1 on the test set of Molweni and STAC
with different values of alpha.

recognition, the actor-network AN determines
whether or not to select and the critic-network com-
putes the expected reward R%V based on actions
of the actor. Then, the selected examples are used
to train the backbone BN and obtain actual reward
F, 1‘16”. Finally, the parameters of actor-network AN
and critic-network C'N are updated. The selected
examples {b5elect bielect ...} are returned after
training.

Algorithm 2 Data Selection on Reinforcement
Learning

Require: addressee recognition dataset A, valida-
tion set of dialogue discourse parsing D,
backbone BN, actor network AN, and critic
network C'N.

1: forepoche=1,2,--- do
:  for mini-batch bin A do

3: AN make select or not decision for each
example in b
4: CN computes expected reward RV
based on examples selected by AN
5: train BN on the selected mini-batch sub-
set bselect
evaluate BN on D and obtain Fie
7: compute reinforcement loss based on
Fldev and Rdev
8: update the parameters of actor network
AN and critic network C N
9:  end for
10: end for

11: return {bgelect, bieleet, .}

B Performance of TST with Different
Values of Alpha

The performance on the test set of Molweni and
STAC as alpha changes as shown in Figure 6. We
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Figure 7: The comparison of correct relation prediction between our TST g,s¢¢ and SOTA system SSP on Molweni.

can see that the performance of link prediction
reaches the peak when alpha is set to 0.8 and 0.7
on Molweni and STAC, respectively.

C Relation Performance on Molweni

Figure 7 shows the performance of relation on
Molweni. We can observe that our method outper-
forms the baseline on some high-resource relations
like Question-Answer_Pair (QAP), Comment, and
Clarification_question (Cla_q). However, both our
TSTgyupser and SSP hardly predict the low-resource
relations.



