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Abstract

We consider time-series forecasting problems where data is scarce, difficult to1

gather, or induces a prohibitive computational cost. As a first attempt, we focus2

on short-term electricity consumption in France, which is of strategic importance3

for energy suppliers and public stakeholders. The complexity of this problem4

and the many levels of geospatial granularity motivate the use of an ensemble5

of Gaussian Processes (GPs). Whilst GPs are remarkable predictors, they are6

computationally expensive to train, which calls for a frugal few-shot learning7

approach. By taking into account performance on GPs trained on a dataset and8

designing a random walk on these, we mitigate the training cost of our entire9

Bayesian decision-making procedure. We introduce our algorithm called DOMINO10

(ranDOM walk on gaussIaN prOcesses) and present numerical experiments to11

support its merits.12

1 Introduction13

Forecasting time series is at the centre of machine learning (ML). We focus on problem settings14

where we might have sparse data, limited compute capacity or unseen scenarios. We instantiate this15

problem in the setting of short-term electricity consumption prediction, and focus on doing this at the16

scale of France. For energy suppliers and public stakeholders, the necessity is to be able to predict17

consumption even in extreme events, such as a heat or cold wave, which can lead to large variations18

in consumption, possibly at a fairly high granularity.19

These scenarios are also characterised by the fact that they do not have as much data as more classical20

time series forecasting scenarios such as stock price modelling, and therefore deep learning methods21

which have been a huge part of the recent artificial intelligence (AI) boom might not be as appropriate22

as they are unable to forecast as efficiently when there is little training data.23

For time series forecasting, GPs are well-adapted as they natively quantify uncertainty. However,24

their performance is indexed on the size of the training data and they are computationally expensive25

to train. Recently, Few-Shot Learning (FSL) for time series prediction has gained attention both from26

theoretical [Iwata and Kumagai, 2020] and applied perspectives [Xu et al., 2024], to help mitigate the27

costs of training. This work is the start of a series of analyses on French regional short-term electricity28

consumption. We take a FSL approach to training GPs, using a set of GPs trained on synthetic data in29

a first instance, with the natural next step being with actual electricity consumption data, available at30

https://www.rte-france.com/en/eco2mix/download-indicators.31

We describe our algorithm, called DOMINO, in Section 2 and in Section 3, we illustrate its performance32

on a synthetic dataset. We briefly discuss preliminary results and lay down ideas for future works,33

with the aim to use this present work as a stepping stone towards broader time series forecasting34

problems where data is scarce, difficult to gather or induces a prohibitive cost.35
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2 Methodology36

Due to the stochastic nature of the underlying phenomenon and its periodicity, we use GPs which37

quantify uncertainty and handle unseen scenarios. We refer to Rasmussen and Williams [2006] for a38

complete reference on GPs.39

Notation. We adopt the following conventional notations to define our problem statement. We40

model I time series, where i ∈ {1, 2, . . . , I} is an indicator of the time series used as a subscript. The41

time series all have N ∈ N entries. The inputs are vectors ti = [ti1, ti2, . . . , tiN ] ∈ RN ,∀i ∈ {i}Ii=1.42

The outputs are yi = [yi1, yi2, . . . , yiN ] = yi(t) = [yi(t1), yi(t2), . . . , yi(tN )] ∈ RN .43

For each time series i ∈ {i}Ii=1, we look for the function fi : t 7→ yi + ϵi(t), where ϵi ∼ N (0, σ2)44

with σ ∈ RN . To share knowledge between time series, we leverage an algorithm whose tasks share45

a common mean.46

2.1 Existing work: the MAGMA algorithm47

The Multi-tAsk GPs with common MeAn (MAGMA) algorithm [introduced by Leroy et al., 2022]48

shares knowledge between time series which are modelled by the same GP - this predicts unseen49

time series by using the common mean, which saves training resources and enables a more accurate50

prediction. The model is trained with an EM algorithm. Starting from an initialisation, in turn the51

hyperparameters given a distribution (E-step) and the distribution given the hyperparameters (M-step)52

are optimised. The optimisation can be made from the values learned at the previous step.53

We refer to Leroy et al. [2022] for full explanations of the algorithm and its proof. The MAGMA54

algorithm is implemented in the MAGMAClustR package (https://arthurleroy.github.io/55

MagmaClustR/). Whilst MAGMA is a powerful predictor, it is computationally expensive. In sparse56

computational resource settings, this limits its applications. We look to sample the GPs output by the57

algorithm to transfer knowledge to unseen time series with a more frugal approach, i.e., by leveraging58

much less data.59

2.2 Our Algorithm: a Random Walk on Gaussian Processes (DOMINO)60

The DOMINO (standing for ranDOM walk on GaussIaN PrOcess) algorithm takes the output of the61

MAGMA model and samples these GPs. A random walk switches between the sampled time series62

at each time point, following a probability for each time series. After each walk, the random walk’s63

performance with respect to each sampled time series is evaluated. Given this, and how often each64

time series has been sampled during the random walk, the performance and weights of the time series65

are updated. Until a maximum number of epochs is reached, until the random walk and sampled time66

series have a Kullback-Leibler (KL) divergence which is lower than a chosen δ, or until a maximum67

number of samples over the δ threshold have a difference to the threshold with a lower standard68

deviation than the standard deviation of the in lying time series points and δ, the walk is repeated69

with the updated performances serving as a new probability at each epoch.70

Notation. We superscript w the current epoch to identify the information which is specific to it.71

The performance of the sampled time series at the current epoch is pw. The random walk for the72

current epoch is yw ∈ RN . The time series sampled at each stage of the random walk for the current73

epoch is zw ∈ RN . Let P (fi) be the performance of the function fi.74

We establish the following condition to end the random walk.75

Condition 1 Let δ denote a tolerance parameter (the largest divergence between any sample and76

the DOMINO at any point), and let W be the largest number of epochs possible such that at least one77

of the three following statement holds true.78

1. ∀i ∈ I , KL(DOMINO||GPi) ≤ δ: all time series’ KL divergence from the DOMINO is under79

δ;80

2. For a ∈ N where a ≪ N , there are a points of all the time series whose values difference to81

the δ threshold have a standard deviation lower than that of the in-lying points and their82

difference to the δ threshold;83
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3. w ≥ W ∈ N: the maximum number of epochs set is reached.84

Initialisation. Given a GP, sample the I samples to walk on, set the maximum number of epochs W ,85

choose the KL divergence threshold δ, the maximal number of outliers a and λ ∈ R0 the regularisation86

constant. Without prior knowledge, the starting performance of each sample is p0 = {p0i }Ii=1 = 1
I .87

Algorithm 1 DOMINO.

1: while Condition 1 is False do:
2: Initialise g with a random draw from I = {1, 2, . . . , I} whose hyperparameters follow a

categorical distribution with hyperparameters given by:{
eλ∗i∑I

k=1 eλ∗k

}I

i=1

3: Set n = g and use the sample from the time series drawn above.
4: Set yw(t1) = fg(t1) the first time step using the drawn sample and zw(t1) = g = n the

randomly drawn sample time series for the first step of the random walk.
5: for tn ∈ t2, . . . , tN , with a probability of p(fi(tn)) = eλ∗i∑I

k=1 eλ∗k ∀i ∈ I: do
6: Set yw(tn) = fi(tn) the next step in the random walk;
7: Set zw(tn) = i from yi the time series for the step.
8: end for
9: for each time step yw = yw(tn) = {yw(t1), yw(t2), . . . , yw(tN)} of the random walk,

evaluate it against the I time series: do
10: Let Mw = {P (f1, y1), . . . , {P (fI , yI)}} = {P (fi, yi)}Ii=1 be the performances of the

time series.
11: Let mw = 1

I =
∑I

i=1 M
w
i be the average of all performances across time series.

12: Update pw = {pwi }wi=1 with zi: set

pi
w =

∏w−1
a=1 exp

(
1
2 − |i∈za(tn)|

I

)
∗Mw

i∑I
i=1

(∏w−1
a=1 exp

(
1
2 − |i∈za(tn)|

I

)
∗Mw

i

) .
13: Store the pw performance values, mw average performance across all time series, Mw

time series performances, zw steps from the random walk and yw values from the random walk.
for the wth epoch.

14: end for
15: if Condition 1 is not False then
16: w = w + 1
17: end if
18: end while

3 Experiments88

Datasets. With 10 years of regional half-hourly electricity consumption data and the current89

consumption levels for the regions, we can aim to predict the short-term electricity needs of France90

over the next three hours. From a set of time series with similar characteristics, the goal is to91

predict a hold-out time series from GPs trained on the rest of the set. As a proof of concept,92

in the present paper we experiment on artificially generated periodic data. The synthetic data93

is generated with trend, periodic and noise components, using the mockseries Python package94

https://mockseries.catheu.tech/ which allows us to create time series indexed to a chosen95

time frame, and with constraints.96

Evaluation. We evaluate using the Median Absolute Error (MAE) as it is robust to outliers whilst97

giving an error in the same unit as the output. Given yi the ith sample and ŷi its predicted value, the98

MAE is calculated by: MAE(y, ŷ) = median
(
|yi − ŷi|Ii=1

)
. We use MAGMA to train GPs on the99

data. We evaluate the model, as well as the DOMINO trained on the model’s samples. The test data is100

evaluated following the protocol in Appendix A.101

Ablation studies. We study the impact of hyperparameter adjustment in DOMINO. We experiment102

with time series length to find the optimal number of points per time series for MAGMA and DOMINO,103
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and we establish the relative performance of both algorithms. Our code and data are available online104

at https://anonymous.4open.science/r/domino-effect-155D/.105

Results. We gather in Table 1 the results of performance when varying the time series length for106

MAGMA and DOMINO; the cross-validation results are in Table 2. DOMINO consistently outperforms107

MAGMA by a significant margin.108

Table 1: Average (std) MAGMA and DOMINO MAE on 10
runs.

Length N MAGMA DOMINO

50 8.089 4.405
(0.015) (1.006)

100 6.059 4.526
(0.085) (0.932)

150 33.454 3.618
(0.108) (0.559)

200 48.108 3.524
(0.113) (0.386)

250 5.991 4.511
(0.029) (0.336)

Discussion and limitations. We109

have used a uniform probability dis-110

tribution on the sampled time series111

but can extend the work to a scenario112

with prior knowledge and therefore a113

known probability distribution across114

the samples at initialisation.115

DOMINO dramatically improves on116

the MAGMA algorithm. A natural117

next step is to conduct a similar study118

on MAGMAClust [Leroy et al., 2023],119

a generalisation of MAGMA which120

learns cluster-specific means and in-121

fers clusters whilst learning the com-122

mon means.123

MAGMA can handle covariates. This124

is a natural next step for the DOMINO125

algorithm. We have worked with in-126

puts on a regular grid, as there is a very regular data stream for electricity consumption and we127

worked with similar data. This approach will be limited where there is an irregular input and calls for128

an adaptation of DOMINO.129

Table 2: Average (std) MAGMA and DOMINO MAE at cross-
validation on 10 runs.

Length N MAGMA DOMINO

50 8.91 4.114
(0.319) (0.419)

100 6.624 5.058
(0.363) (0.333)

150 33.973 4.708
(0.466) (0.334)

200 48.412 9.679
(0.326) (0.079)

250 56.215 4.608
(0.342) (0.226)

Hyperparameters. DOMINO is130

controlled by hyperparameters which131

determine the optimal maximal132

number of training epochs (30),133

the percentage of the minimum-134

maximum range of the output which135

is an acceptable KL divergence δ136

between the training time series137

and the random walk learned (5%),138

the maximal number of points (all139

outputs, all time series combined)140

which can be over the δ value (3%)141

and the λ regularisation parameter142

which smooths the weights when143

calculating the probability of each144

time series for the next sample (0.5).145

The full set of ablation studies are146

detailed in Appendix B.147

Conclusion. In this work, we have used the MAGMA algorithm to predict short-term electricity148

usage based on GPs with common means. We then performed a random walk on samples of these149

GPs, which is iterated until there is a low divergence between the sampled time series and the points150

of the random walk. Our experiments show that this approach, called DOMINO, yields superior151

predictive results on a synthetic dataset. This is very promising to tackle similar problems in sparse152

data settings, with less computational resources, or heavy data settings, paving the way to more frugal153

probabilistic settings.154
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A Evaluating the DOMINO algorithm170

With the time series on which DOMINO has been trained as well as their weights, the model is171

queried by inputting a set of M time points such that M < N . The time points contain the same172

information as the training data, that is either t as an input; and y is the output. Made up of M173

time-steps, these have dimension y, t ∈ RM .174

The DOMINO algorithm is also given a set of input time points over which an output must be returned175

- these will be made up of x ∈ RN and will consist of the first M points from the query input, plus176

N −M extra points which will be used to predict the next points.177

The random walk, starting at the M + 1th point, uses the training time-series and their probabilities178

to predict the rest of the time series.179

B Hyperparameter tuning180

The DOMINO model has multiple hyperparameters, which control the learning of probabilities for181

underlying individuals. We run ablation studies for each hyperparameter: the maximal number of182

epochs for the learning (Table 3), the maximum percentage δ of the data range which is a possible183

divergence threshold between the DOMINO and the underlying training individuals (Table 4), the184

maximum percentage of points in all the time series which can be over the δ hyperparameter (Table 5),185

and the regularisation parameter λ (Table 6). The best results for the hyperparameter are given in186

bold.187
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Table 3: Hyperparameter tuning: average
(std) MAE for maximal number of epochs
on 10 runs.

Max epochs Result CV
5 5.750 5.302

(0.753) (0.313)
10 5.648 5.244

(0.792) (0.225)
15 5.082 5.314

(0.792) (0.308)
20 5.460 5.174

(0.668) (0.331)
25 5.206 4.964

(0.544) (0.215)
30 5.049 5.054

(0.409) (0.251)

Table 4: Hyperparameter tuning: average
(std) MAE for δ threshold for divergence on
10 runs.

δ Result CV
1% 5.413 5.247

(0.597) (0.341)
2% 5.218 5.034

(0.502) (0.218)
3% 5.187 5.211

(0.537) (0.307)
5% 5.185 5.096

(0.583) (0.283)
10% 5.640 5.331

(0.594) (0.453)

Table 5: Hyperparameter tuning: average
(std) MAE for maximal number of values over
δ on 10 runs.

Maximum
percentage of
values over δ

Result CV

1% 5.130 4.67
(0.732) (0.360)

2% 5.249 5.102
(0.434) (0.297)

3% 5.130 5.156
(0.637) (0.241)

5% 5.344 5.110
(0.521) (0.375)

10% 5.275 5.054
(0.499) (0.190)

Table 6: Hyperparameter tuning: average
(std) MAE for λ the regularisation parame-
ter on 10 runs.

λ Result CV
0.5 4.698 5.450

(0.473) (0.407)
1 5.308 5.231

(0.506) (0.566)
1.5 5.315 5.129

(0.360) (0.540)
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