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ABSTRACT

Image codecs are typically optimized to trade-off bitrate vs. distortion metrics. At
low bitrates, this leads to compression artefacts which are easily perceptible, even
when training with perceptual or adversarial losses. To improve image quality and
remove dependency on the bitrate we propose to decode with iterative diffusion
models. We condition the decoding process on a vector-quantized image repre-
sentation, as well as a global image description to provide additional context. We
dub our model “PerCo” for “perceptual compression”, and compare it to state-
of-the-art codecs at rates from 0.1 down to 0.003 bits per pixel. The latter rate
is more than an order of magnitude smaller than those considered in most prior
work, compressing a 512×768 Kodak image with less than 153 bytes. Despite
this ultra-low bitrate, our approach maintains the ability to reconstruct realistic im-
ages. We find that our model leads to reconstructions with state-of-the-art visual
quality as measured by FID and KID. As predicted by rate-distortion-perception
theory, visual quality is less dependent on the bitrate than previous methods.

1 INTRODUCTION

Traditional image and video codecs are optimized for the rate-distortion function (Shannon, 1948),
which minimizes the expected size of the data under a distortion constraint such as mean-squared
error. Recent research has developed neural image compression methods that surpass handcrafted
image compression codecs in terms of rate-distortion performance (Ballé et al., 2017; Ballé et al.,
2018; Cheng et al., 2020; He et al., 2022a). However, optimization for the rate-distortion function
comes at a cost of “realism”, where realism is mathematically related to the statistical fidelity or
f -divergence between the compressed image distribution and the true image distribution (Blau &
Michaeli, 2018; 2019). The typical qualitative manifestation of unrealistic images is blurring.

Generative modeling compensates for artefacts such as blurring by introducing a divergence
term (Agustsson et al., 2019; Mentzer et al., 2020; Muckley et al., 2023), typically in the form
of an adversarial discriminator loss, which improves human-perceptual performance (Mentzer et al.,
2020). Such codecs are called “generative compression” codecs, and are evaluated in terms of the
rate-distortion-realism tradeoff (Blau & Michaeli, 2019). A further result of rate-distortion-realism
theory is the theoretical possibility of a perfect realism codec, i.e., a codec with no f -divergence,
and zero FID across all rates, with no more than twofold increase in mean-squared error from the
rate-distortion optimal codec. This result motivates research on perfect realism codecs, where orig-
inal and reconstruction are different from each other, but it is not possible to tell which is which.
Such codecs are particularly interesting for extremely low bitrate settings, where existing codecs
introduce severe artefacts that are easily perceptible, see Fig. 1. So far, the primary effort towards
building such a codec was the work of Theis et al. (2022), who demonstrated lower FID scores than
HiFiC (Mentzer et al., 2020) via a combination of a pretrained variational diffusion model and re-
verse channel coding. However, computational constraints prohibited application to images larger
than 64×64 pixels.

In this paper we make further progress towards perfect-realism codecs. Similar to Theis et al. (2022),
we leverage a pretrained text-to-image diffusion model; however, rather than using the diffusion
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Original Text-Sketch, 0.0281 bpp VTM, 0.0242 bpp MS-ILLM, 0.0065 bpp PerCo (ours), 0.0032 bpp

Figure 1: Kodak images compressed with the diffusion-based Text-Sketch approach PICS (Lei et al.,
2023), the hand-crafted codec VTM (vtm), MS-ILLM (Muckley et al., 2023) which leverages an
adversarial loss, and with PerCo (ours). Taking the lowest available bitrate for each method.

model for compression directly, we use it as a decoder in a VQ-VAE-like autoencoder. The (ap-
proximate) log-likelihood loss of diffusion models offers an alternative to the use of distortions such
as MSE or LPIPS used to train most neural compression models that make strong assumptions on
the conditonal distribution on images given the latents which are inappropriate at low bitrates, and
lead to compression artefacts. For decoding, we sample from the conditional diffusion model, which
allows us to obtain a set of reconstructions that reflect the uncertainty about the original source im-
age. We augment the quantized image representation with a global image description that captures
the high-level semantic information of the image. To this end, we use an automatically generated
textual image description, e.g. using BLIP (Li et al., 2023). Alternatively, this can take the form
of a global image feature extracted from a pre-trained image backbone. We demonstrate that this
high-level information is helpful for compression performance at extremely low rates. Our work
is closely related to that of Lei et al. (2023), who explored text-conditioned diffusion decoders for
image compression, and the only prior work that we are aware of that considers the same ultra-low
bitrates as we do. In contrast, their work uses (automatically generated) binary contour maps as a
spatial conditioning signal which carry little detail on colors and textures, and leads to reconstruc-
tions that are not faithful to the original. Experimentally we observe significantly improved FID and
KID scores compared to competing methods. Moreover, we find that FID and KID are much more
stable across bitrates than other methods, which aligns with our goal of image compression with
perfect realism.

In sum, our contributions are as follows:
• We develop a novel diffusion model called PerCo for image compression that is conditioned

on both a vector-quantized latent image representation and a textual image description.
• We obtain realistic reconstructions at bitrates as low as 0.003 bits per pixel, significantly

improving over previous work, see Figure 1.
• We obtain state-of-the-art FID and KID performance on the MS-COCO 30k dataset; and

observe no significant degradation of FID when reducing the bitrate.

2 RELATED WORK

Neural image compression codecs. Ballé et al. (2017) demonstrated that an end-to-end neural
image compression codec could outperform the classical JPEG codec in terms of rate-distortion per-
formance. Ballé et al. (2018) enhance this approach by conditioning the latent on a “hyperprior” that
encodes high-level information in the image, greatly improving performance. Follow-up works im-
proved the latent conditioning mechanism (Minnen et al., 2018; Minnen & Singh, 2020; Cheng et al.,
2020; He et al., 2022a). Optimization for rate-distortion alone leads to distributional mismatch be-
tween the compressed image distribution and the natural image distribution (Blau & Michaeli, 2018;
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2019). Agustsson et al. (2019) and Mentzer et al. (2020) added an adversarial loss term and demon-
strated its usefulness for human perception. Similarly He et al. (2022b) builds upon ELIC (He et al.,
2022a) by adding perceptual losses including adversarial ones. Follow-up works have improved the
discriminator architecture (Muckley et al., 2023), decode-time realism guidance (Agustsson et al.,
2023), or investigated alternative autoencoders with discrete entropy models (El-Nouby et al., 2023).
Xu et al. (2023) introduce the notion of conditional perceptual quality, where perceptual quality is
dependent on side information. Our work is related to this, as the global textual or visual represen-
tation on which we condition the decoder can be seen as a form of side information.

Diffusion models. Ho et al. (2020) improved the original diffusion probabilistic model (Sohl-
Dickstein et al., 2015) that gave it impressive performance on image generation benchmarks. Dhari-
wal & Nichol (2021) demonstrated superior performance to GANs for image generation with clas-
sifier guidance, while Kingma et al. (2021) improved diffusion model likelihood estimation. Condi-
tioning diffusion models on large text-encoder networks enables these models to generate realistic
images from natural language prompts (Nichol et al., 2022; Saharia et al., 2022), and defining the
diffusion process in an autoencoder latent space reduces the computational cost of the diffusion pro-
cess. In our work we build upon large-scale pretrained text-conditioned diffusion models to benefit
from the image generation capabilities embedded in them.

Diffusion generative compressors. Ho et al. (2020) considered compression with diffusion models
and reverse channel coding and the corresponding rate-distortion performance, but reported only
experiments on 32×32 CIFAR-10 images and MSE distortion. Theis et al. (2022) demonstrated
that the reverse channel coding approach gave FID numbers superior to HiFiC for 64×64 ImageNet
images. Saharia et al. (2022) introduced a super-resolution diffusion model that removed artefacts
from JPEG images. Ghouse et al. (2023) developed a complete version of a residual diffusion codec
with images of high quality for a suite of codecs. Hoogeboom et al. (2023) showed similar results
using a neural autoencoder baseline codec, and using a separate diffusion model that does not require
any additional bits to refine the reconstruction. Yang & Mandt (2023) developed an alternative
approach, where a hyperprior-based neural encoder was trained jointly with a diffusion decoder, also
showing improved performance to HiFiC. In Pan et al. (2022), they optimize a textual embedding on
top of a pretrained text-to-image diffusion model. They also design a compression guidance method
used at each denoising step to better reconstruct images. Lei et al. (2023) leverage text-conditioned
diffusion models for image compression at very low bitrates, using prompt inversion to encode the
image into text, and adding spatial detail via compressed binary contour maps. Our work is similar,
but we replace computationally costly prompt inversion (Wen et al., 2023) with fast feed-forward
image captioning (Li et al., 2023), and replace binary contour maps which carry little appearance
information with end-to-end learned vector-quantized image features.

3 PERCEPTUAL COMPRESSION WITH A DIFFUSION DECODER

3.1 OVERALL FRAMEWORK

The foundation of most lossy compression lies in rate-distortion theory (Shannon, 1948), which
quantifies the balance between the bitrate needed to transmit a signal vs. the distortion of the signal.
Let us assume an input signal x, with its corresponding quantized representation z and reconstruc-
tion x̂(z). Neural compression is commonly achieved via the minimization of a training objective
formulated as a linear combination of a rate and a distortion term:

LRD = EPx [EPz|xLR(z) + λLD(x̂(z),x)], (1)
where Px is the data distribution and Pz|x is the posterior distribution of the quantized codes. The
rate term LR(z) estimates the bitrate either by means of scalar quantization and a continuous entropy
model (Ballé et al., 2017), or using vector-quantization in combination with discrete entropy mod-
els (El-Nouby et al., 2023). For simplicity, in PerCo, we employ vector-quantization combined with
a uniform entropy model leading to a constant rate controlled through two hyper-parameters: the
number of elements that are quantized, and the codebook size. Therefore, the rate LR can be consid-
ered fixed when training our models and can be dropped from the optimization formulation. Next,
we introduce a new formulation of the distortion term, LD, enabling the integration of a pre-trained
diffusion model, thereby achieving a higher level of perceptual quality. Our aim with this formu-
lation is to leverage a large pre-trained diffusion model as a robust image prior, enabling realistic
image reconstruction even at extremely low bitrates.
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Figure 2: Overview of PerCo. The LDM encoder maps an RGB image into the latent space of the
diffusion model. The “hyper encoder” then maps the image to a hyper-latent with smaller spatial
resolution, which is then vector-quantized and represented as a bitstream using uniform coding.
The image captioning model generates a textual description of the input image, which is losslessly
compressed, and processed by a text encoder to condition the diffusion model. The diffusion model
reconstructs the input image in its latent space conditioned on the output of the text encoder and the
hyper encoder. Finally, the LDM decoder maps the latent reconstruction back to RGB pixel space.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) approximate a data distribution by
gradually denoising a unit Gaussian random variable. This is achieved by training a denoising
function to reverse a diffusion process that takes an initial sample, denoted as x0, from the data
distribution and adds small Gaussian noise over a large number of steps. In practice, a noise estima-
tor ϵθ(xt, t,z) implemented as a neural network is trained to denoise input data points at timesteps
t ∈ [0, T ], where xt =

√
αtx0+

√
1− αtϵ is a corrupted version of the original data point x0 with

Gaussian noise ϵ. The scalar αt fixes the noise strength, varying from α0≃1 for no noise to αT ≃0
for pure Gaussian noise. Finally, z is an optional condition, such as a text-prompt in text-to-image
models. In our case, z is the quantized representation of the input image. Once the noise estimator is
trained, the model can generate samples by drawing xT ∼ N (0, I), and applying iterative denoising
for t= T, . . . , 1. To reduce the computational cost, we use a latent diffusion model (LDM) where
the variables xt are defined in the latent space of an autoencoder.

We formulate our distortion loss within the probabilistic diffusion framework. For every the diffu-
sion step t, we compute an estimation x̂t−1 of xt−1 from z and xt and minimize its error:

Lt
Diff = EPxEPz,xt|x

∥xt−1 − x̂t−1(xt, z)
∥∥2
2
. (2)

Up to a multiplicative constant, this loss can be rewritten as

Lt
Diff ∝ EPxEPz,xt|x E

ϵ∼N (0,1)
∥ϵ− ϵθ(xt, z, t)∥22. (3)

We obtain the final loss by taking the expectation of Eq. (3) w.r.t. the steps t, and use v prediction
objective of Salimans & Ho (2022), which is more stable during training. The loss can be augmented
with any image-level loss such as LPIPS (Zhang et al., 2018) to improve perceptual image similarity.

3.2 ENCODING LOCAL AND GLOBAL CONTEXT

We encode the input image as z = (zl, zg), where zl and zg carry complementary local and global
context, respectively. The overall structure of our compression scheme is illustrated in Figure 2.

Local spatial encoding. We encode the input image into a quantized tensor proceeding in three
stages. First, we employ the LDM encoder E(·) to achieve a first dimension reduction. Assuming
an input image of resolution 512×512, we obtain a feature map of dimension 4×64×64. Second,
we add a lightweight “hyper encoder” H composed of several convolutional layers to project the
LDM features to a lower spatial resolution tensor Hs. The spatial resolution, h×w, of Hs is chosen
according to the target bitrate. Third, we proceed to quantization of Hs to obtain zl via vector-
quantization. As in VQ-VAE (van den Oord et al., 2017; Razavi et al., 2019), each of the h×w
vectors hs in Hs is mapped to an element in a codebook learned using the vector quantization loss:

LVQ = Ehs

[
∥sg(hs)− zq∥22 + ∥sg(zq)− hs∥22

]
, (4)
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where sg(.) is the stop-gradient operation, and zq is the mapping of hs to its closest codebook entry.
For better codebook usage, we follow Yu et al. (2022) and set the output of the hyper encoder to
be relatively low dimensional: 32 in our case. We also found it beneficial to replace the codebook
loss by exponential moving average on the codebooks and thus the first term in Eq. (4) is no longer
used. The quantized encoder output is then upsampled to 64×64 resolution, to be channel-wise
concatenated to the input of the noise estimation network of the diffusion model. The hyper-network
is trained end-to-end while finetuning the diffusion model. For simplicity, we opt for uniform coding
to map the quantized latents to a bitstream. Using log2 V bits to encode each element in the h×w
sized hyper latent encoding, where V is the codebook size, results in a total of hw log2 V bits.

Global encoding with image captioning. While zl can accurately encode local information, our ex-
periments show that relying on zl alone leads to unsatisfying realism. Therefore, we add a global en-
coding of the image zg which provides additional context. For this purpose, we use an off-the-shelf
state-of-the-art image captioning model, such as BLIP-2 (Li et al., 2023) or IDEFICS (Laurançon
et al., 2023), which we keep fixed when training our model. Note that user-generated captions can
also be used, as explored in our experiments. Similar to Lei et al. (2023), we losslessly compress the
caption using Lempel-Ziv coding as implemented in the zlib library (zli) to obtain zg . Alternatively,
we also explore the use of global image features extracted using an image backbone network.

Decoding with a diffusion model. The quantized local image features in zl are fed to the denoising
U-Net of the diffusion model via concatenation with the latent features xt of the current time step.
To adapt to this change of dimension, we extend the kernel of the first convolutional layer of the
U-Net by adding a number of channels that corresponds to the channel dimension of zl which is
randomly initialized. The global encoding zg is losslessly decoded and passed to the diffusion
model through cross-attention layers of the pre-trained diffusion model.

Furthermore, we found it beneficial to use classifier-free guidance (Ho & Salimans, 2021), which
we apply at inference time for the text conditioning zg , i.e. we contrast conditioning on local featues
zl alone vs. conditioning on both zl and zg . This leads to the noise estimate:

ϵ̂θ = ϵθ(xt, (zl, ∅), t) + λs

(
ϵθ(xt, (zl, zg), t)− ϵθ(xt, (zl, ∅), t)

)
, (5)

where λs is the guidance scale. We empirically found λs = 3 to work well. To enable classifier-free
guidance, we train PerCo by dropping the text-conditioning in 10% of the training iterations. When
dropping the text-conditioning we use a constant learned text-embedding instead.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation details. We base our model off a text-conditioned latent diffusion model, with
latent space provided by a convolutional autoencoder and diffusion model with an architecture sim-
ilar to GLIDE (Nichol et al., 2022). The model is pre-trained on a proprietary dataset consisting of
around 300M image-caption pairs. We also experiment with an image-conditioned model. We use
BLIP-2 (Li et al., 2023) to obtain image captions for conditioning the decoder, and limit the maxi-
mum caption length to 32 tokens. The hyper encoder consists of nine residual convolutional blocks,
and includes a number of downsampling layers depending on the spatial map resolution selected for
the target bitrate. In total, the hyper encoder contains between 4M and 8M parameters. During all
our experiments, the autoencoder weights are frozen. We train the hyper encoder and finetune the
diffusion model on OpenImages (Kuznetsova et al., 2020), similar to Lei et al. (2023) and Muckley
et al. (2023). We use random 512×512 crops, and instead of finetuning the full U-Net we found it
beneficial to only finetune the linear layers present of the diffusion model, representing around 15%
of all weights.

Datasets. For evaluation, we use the Kodak dataset (Franzen, 1999) as well as MS-COCO 30k. On
COCO we evaluate at resolution 256×256 by selecting the same images from the 2014 validation
set (Lin et al., 2014) as Hoogeboom et al. (2023) and Agustsson et al. (2023). We evaluate at
resolution 512×512 on the 2017 training set (Caesar et al., 2018), which is the same resolution used
for evaluation by Lei et al. (2023), and use captions and label maps for some metrics.

Metrics. To quantify image quality we use FID (Heusel et al., 2017) and KID (Bińkowski et al.,
2018), which match feature distributions between sets of original images and their reconstructions.
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Figure 3: Evaluation of PerCo and other image compression codecs on Kodak and MS-COCO 30k.

We measure distortion using MS-SSIM (Wang et al., 2003) and LPIPS (Zhang et al., 2018). In
?? we also report PSNR, but find these low-level distortion metrics to be less meaningful for low
rates, see ??. Therefore we include other more semantic-level metrics. We compute the CLIP score
to measure global alignment of reconstructed samples with ground truth captions (Hessel et al.,
2021). Unless otherwise specified, we condition our model on captions generated by BLIP2, which
are different from the ground-truth captions used to compute the CLIP score. Second, we adopt
the mean Intersection over Union (mIoU) metric to measure the local semantic preservation, see
e.g. Sushko et al. (2022). In this case, we pass reconstructed images through a pre-trained semantic
segmentation model, and compare the predicted semantic maps to the ground truth ones. We take the
pretrained ViT-Adapter segmentation network (Chen et al., 2023), which was trained on the COCO
train split. For Kodak we only report LPIPS and MS-SSIM, as the dataset is too small (24 images)
to reliably compute FID and KID, and does not come with semantic annotations.

Baselines. We include representative codecs from several families. VTM is a state-of-the-art hand-
crafted codec used in the VVC video codec (vtm). Among neural compressors using adversarial
losses, we include MS-ILLM (Muckley et al., 2023) which improves over HiFiC (Mentzer et al.,
2020) using an adversarial loss based on multi-class classification. For HiFiC we include their
model with the lowest available bitrate, and add MS-PatchGAN, which is a close reproduction of
HiFiC by Muckley et al. (2023). We compare to multi-realism approach of Agustsson et al. (2023),
at their lowest bitrate with the best realism. Text-Sketch (Lei et al., 2023) is the only prior work we
are aware of that evaluates image compression at bitrates below 0.01, it is based on text-conditioned
diffusion models. We include two other recent diffusion-based approaches: DIRAC (Ghouse et al.,
2023) and HFD/DDPM (Hoogeboom et al., 2023).

4.2 MAIN RESULTS
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Figure 4: Evaluation on
COCO at 256×256 res.

Comparison to state-of-the-art methods. In Fig. 3 we compare our
results to state-of-the-art codecs. We observe that PerCo (ours) yields
significantly lower (better) FID and KID compared to other approaches
at lower bitrates (<0.04 bpp), and that our FID and KID curves are much
flatter, indicating a decoupling of realism and bitrate that is not seen for
other methods. For the semantics-related CLIP and mIoU metrics we
also obtain consistent improvements over all other methods, in particu-
lar at low rates. For LPIPS, PerCo is better than Text-Sketch and VTM,
but somewhat worse than other approaches for rates >0.01 bpp. Sim-
ilarly, for MS-SSIM we improve over Text-Sketch, but are worse than
other methods. However, as we illustrate in ???? in ??, such similarity metrics are not necessarily
meaningful at low bitrates, as they do not capture realism.
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Original MS-ILLM, 0.0065 bpp Text-Sketch, PIC, 0.0025 bpp PerCo (ours), 0.0032 bpp

Original MS-ILLM, 0.013 bpp Text-Sketch, PICS, 0.028 bpp PerCo (ours), 0.011 bpp

Figure 5: Comparing PerCo on images from the Kodak dataset to MS-ILLM (Muckley et al., 2023)
which leverages an adversarial loss, and the diffusion-based Text-sketch approach (Lei et al., 2023)
conditioned on a text only (top, PIC, 0.0025 bpp) and text + sketch (bottom, PICS, 0.028 bpp).
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Figure 6: Reconstruction sampled of a Kodak image at 0.003 and 0.011 bpp. Best viewed zoomed.

In Fig. 4 we compare to HFD/DDPM (using their lowest bitrates: 0.107 and 0.175 bpp) on FID on
MS-COCO 30k at 256×256 resolution, as used in their paper. We also include MS-ILLM and the
multi-realism approach of Agustsson et al. (2023). We find that PerCo yields best FID for both rates.

Qualitative comparisons. We provide qualitative comparisons of PerCo to baselines in Fig. 1 and
Fig. 5. PerCo yields reconstructions of higher quality with less artefacts, more faithful colors, and
realistic details. VTM and MS-ILLM reconstructions are blurry and/or blocky, while Text-Sketch
strongly deviates from the originals in color. When using text-only conditioning for Text-Sketch
(PIC, 0.0025 bpp), it is not able to achieve spatial alignment, by lack of local image encoding.

4.3 ABLATIONS

Diversity in reconstructions. With our model, reconstructions are sampled from a conditional
diffusion model. Ideally, the conditional distribution concentrates all mass perfectly on the original
input image. In practice, this does not happen due to limited model capacity, training data, and
bitrate. In particular, we expect that at lower bitrates —where there is less information about the
original sample— the conditional distribution would have more variance, and we expect to observe
more diversity among the samples. The reconstruction at two bitrates in Fig. 6 confirm this.

Conditioning modalities. In Fig. 7, we evaluate PerCo using each conditioning modality separately
(textual or spatial), to analyze the contribution of each. We compare BLIP-2 (Li et al., 2023) to
generate captions (default) to using IDEFICS (Laurançon et al., 2023) which produces more detailed
descriptions, and ground-truth (GT) captions. When not using descriptive captions, we consider
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Figure 7: Ablation of conditioning on local features and/or different captions. See text for detail.

Table 1: Ablations of classifier-free guidance forms (left), and impact of conditional diffusion
model and quantization on reconstruction abilities (right). All models at 0.0112 bpp, except for
LDM autoencoder and PerCo w/o quantization which use single precision for non-quantized latents.

Guidance type ↓FID ↓LPIPS ↑SSIM ↑mIoU ↑CLIP

None 7.89 0.40 0.58 30.84 28.36
Text and spatial 13.84 0.41 0.58 32.26 28.87
PerCo: Text only 4.42 0.39 0.58 46.64 29.05

Method ↓FID ↓LPIPS ↑SSIM ↑mIoU ↑CLIP

LDM autoencoder 0.67 0.07 0.92 51.04 30.19
PerCo w/o quant. 0.68 0.07 0.92 51.03 30.18
PerCo (0.012 bpp) 4.42 0.39 0.58 46.64 29.05

conditioning on a learned textual embedding that is constant across images. We also tried using an
empty text or on a fixed generic text —“A high quality photograph.”— for all images, and observed
similar or slightly worse performance as the learned text embedding setting.

The model using the constant text embedding (PerCo w/ only Spatial Encoding) performs signif-
icantly worse than the other models in terms of FID and CLIP score. For the LPIPS and mIoU
metrics, which rely on the alignment of the original and reconstructed images, the results are com-
parable to other models. This can be attributed to the fact that accurate alignment is primarily
achieved through local feature conditioning, which remains unchanged in this model. Consistently,
we also notice that when using textual condition only (blue, orange, and red square), the perfor-
mance in terms of LPIPS and mIoU is worse than for the models that use spatial conditioning, while
the CLIP scores are in line with the models using both textual and spatial conditioning. Both types of
conditioning contribute to improving FID, and the text-only conditioned models perform in between
the models with only spatial conditioning and those with both types of conditioning.

Between models using captions from BLIP (blue curves) and IDEFICS (orange curves) in combi-
nation with spatial conditioning, we observe similar FID scores and somewhat better CLIP scores
for the more detailed IDEFICS captions. In terms of LPIPS and mIoU we find that the models with
BLIP captions perform better, which is largely due to bitrate required to encode the longer captions:
leaving out the textual encoding cost, both models perform very similarly. Overall, using ground-
truth captions (GT, red curves) yields similar results as using BLIP, while BLIP and IDEFICS yield
slightly better mIoU and CLIP scores. As COCO contains five GT captions per image, we ensure
that when conditioning on a GT caption, a different one is used to compute the CLIP score.

Classifier-free guidance. In Tab. 1 (left), we compare three options regarding classifier-free guid-
ance (CFG) in our model (i) not using CFG, (ii) applying CFG on the text and spatial feature maps,
i.e. contrasting full conditioning to no conditioning (we use an constant learned text embedding,
and fixed all-zeros feature maps for local conditioning), and (iii) applying CFG to text-conditioning
only, i.e. always conditioning on the spatial feature map. We find that best results are obtained when
CFG is applied to textual conditioning only, which yields significantly better FID and mIoU metrics.

Impact of autoencoder and quantization. To assess to which extent performance is bounded by
the LDM autoencoder or the use of limited bitrate, we compare PerCo to the LDM encoder/decoder
reconstruction and to PerCo trained without quantization in Tab. 1 (right). We observe that the LDM
autoencoder significantly improves all metrics, and that PerCo trained without quantization obtains
roughly the same performance as the autoencoder. This shows that PerCo is a strong conditional
model, and that its performance is mainly bounded by the quantization module which throttles the
bitrate of the image encoding, but could also lead to suboptimal training through noisy gradients.
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Figure 8: Evolution of FID, LPIPS, MS-SSIM and CLIP scores depending on the number of denois-
ing steps for different bitrates. In all cases the model has been trained using 50 denoising steps.

Number of timesteps as a tradeoff between perception and distortion. In Figure 8, we show how
FID, LPIPS, MS-SSIM and CLIP scores vary when we change the number of denoising steps. We do
the evaluation for seven different bitrates, ranging from 0.0032 to 0.1263 bpp. First, we notice that
for higher bitrates, the metrics are quite constant across the number of timesteps, which means that
the model has less uncertainty about the image to reconstruct and obtains optimal performance after
only few denoising steps. Secondly, we observe a tradeoff between distortion and realism for lower
bitrates. Indeed, when the number of timesteps is small, FID is worse, but MS-SSIM is optimal,
while this phenomenon reverses when increasing the number of denoising steps.

Conditioning on global image features. Besides the text-conditioned model described above and
used in most experiments (PerCo), we also experimented with a model conditioned on image embed-
dings extracted from an image backbone network (PerCo-Image). While we use lossless Lempel-Ziv
coding to compress the captions for the text-conditioned model, we use product quantization (Jégou
et al., 2011) for lossy compression of the image embeddings. We divide the embeddings into M
subvectors and quantize each subvector using a separate codebook with V elements. We empiri-
cally found that we achieve similar performance compared to training with non-quantized image
embeddings with M = 16 and V = 1024. For 512×512 images, the bitrate obtained for the image
embeddings is 0.00061 bpp, which is 3.5× lower than the bitrate of 0.00219 bpp for BLIP image
captions. From the results in Fig. 3, we observe that the model with global image embeddings
obtains competitive results, but has slightly worse pairwise image reconstruction metrics at high
bitrates in terms of LPIPS and MS-SSIM on Kodak and MS-COCO 30k.

5 CONCLUSION

We proposed PerCo, an image compression model that combines a VQ-VAE-like encoder with a
diffusion-based decoder, and includes an second conditioning stream based on textual image de-
scriptions. The iterative diffusion decoder allows for more realistic reconstructions, in particular at
very low bitrates, as compared to feed-forward decoders used in previous work, even when trained
with perceptual and adversarial losses. With our work we make step towards perfect realism codecs:
we observe realistic reconstructions at bitrates as low as 0.003 bits per pixel, a bitrate regime that to
our knowledge is explored in only one prior work (Lei et al., 2023). We find that semantics-driven
metrics such as CLIP score and mIoU are improved overall and in particular for low rates, and FID
and KID are dramatically improved at low bitrates and much more stable across different bitrates.

Limitations. In this study we focused on medium sized images up to 768×512 resolution, similar
to prior work on diffusion-based methods (Theis et al., 2022; Lei et al., 2023) that evaluated on
64×64 and 512×512 images, respectively. Extension to higher resolutions can possibly be achieved
using a patch-based approach, see e.g. Hoogeboom et al. (2023). PerCo exhibits somewhat poorer
reconstruction performance in terms MS-SSIM, PSNR and LPIPS (the latter for rates >0.01), than
existing approaches. This seems at least in part to be due to limitations of the LDM autoencoder, see
??. It is also probably explained by the tradeoff existing between distortion and perception (Blau &
Michaeli, 2019). We leave detailed study of these two points to future work.

ETHICS STATEMENT

The use of machine learning models, in general and for image compression in particular, can lead to
biases in the model related to the training data, and potentially work better on data similar to those
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used to train the models. Therefore the models as described in this paper should be used for research
purposes only, and not deployed in practice without extensive analysis of their potential biases.
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