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ABSTRACT

While low-rank adaptations (LoRA) have shown promise as an efficient fine-
tuning technique in federated learning (FL) to reduce communication complex-
ity, the practical application requires careful attention to the challenges posed by
the aggregation schemes on client modules. In this paper, we introduce TFLoRA,
which directly optimizes over the adapter weights W = BAT, and redistributes
the LoRA modules using the updated adapter weights. Our theoretical analysis
shows the truncation error introduced during the redistribution step is mild and
TFLoRA achieves an O(1/+/T') convergence rate. Compared to the existing meth-
ods, TFLoRA supports a wide range of optimizers on the server side and maintain
the advantages in low communication overhead. We show empirical evidence that
TFLoRA achieves better performance than the state-of-the-art federated LoRA
mechanisms on various benchmarks including image/text classification and com-
monsense inference. Additionally, TFLoRA is demonstrated to be more favorable
as the number of clients increases and with non-i.i.d client data distributions.

1 INTRODUCTION

Low-rank adaptation (LoRA) (Hu et al., |2021)) has become popular in recent years as a supervised
fine-tuning technique for large neural networks. For a linear layer in a neural network, denote W, €
R™*™ ag the pretrained model weight. LoRA modifies the forward pass by additively integrating
a low-rank matrix BAT into Wy, where B € R™*", A € R™*", and the rank » < min{m,n}.
Throughout the paper, we name the low-rank adapters B and A as the LoRA modules, and their
product matrix W = BAT as adapter weights. LoORA modules typically contain up to 5% of the full
parameter size. By adapting solely the LoRA modules and keeping the rest of parameters frozen,
pretrained neural network models, especially LLMs can be adapted to various new tasks. Such
efficiency in parameters makes LoRA a promising technique to be adopted in federated learning
(FL), since FL clients are usually resource-constrained and the communication cost between server
and clients are particularly important (Malaviya et al., 2023)).

While the LoRA paradigm is clear in the centralized setting, it remains controversial on how to apply
model averaging in the federated learning context. Suppose C' clients participate in the federated
learning. At the end of local training phase, each client maintains its local copy of LoRA modules
B¢ and A°. The server aggregates the C' copies into a global LoORA module while maintaining
the low-rank constraints. The state-of-the-art technical roadmap bifurcates into two separate ways.
FedIT (Zhang et al.,[2024) and FLASC (Kuo et al.,[2024) advocate directly applying the average to
LoRA modules on the server side, i.e. B = % Zle B¢, This thread of approaches automatically
satisfies the low rank constraints, but leads to an inexact aggregate on the adapter weight W due to

1 1< s T

The discrepancy is subsequently termed as aggregation noise in (Wang et al.,|2024b). Additionally,
the approach faces challenges when the client models adopt heterogeneous ranks (Cho et al.| [2024).
Other approaches (Singhal et al.; 'Wang et al.||2024b)) apply averaging over the local adapter weights

We = BeA°T, Although eliminating the aggregation noise, projecting the averaged adapter weight
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W = % ZCC:1 W€ back to a low rank matrix is challenging since the rank of W is at most rC.
The existing methods unanimously find proxies for the averaged LoRA modules and transmit the
discrepancy with the noise-free adapter weights to the clients, which is in the size of m X n, to
achieve exact updates. However, these methods lose the advantages of communication efficiency
achieved via LoRA training. In addition, the existing approaches lack support on the flexibility of
server optimizers. To summarize, the structure of LoRA poses unique challenges in the module
merging techniques for FL and requires careful designs.

In this work, we present Truncated FLoRA (TFLoRA) that introduces a truncation step to the adapter
weights to maintain low-rank LoRA modules. We theoretically show that the impact of truncation
error on the convergence rate is mild. Our main technical contributions are summarized as follows.

1) We propose TFLoRA in which the gradient update is applied directly to adapter weights. To
maintain the low-rank constraint on the server model, TFLoRA adopts a redistribution step to obtain
updated LoRA modules with truncation on the adapter weight in the spectral domain. We showcase
the difference of TFLoRA with FedIT via a simple matrix factorization problem where FedIT fails
to converge to the global minima.

2) We theoretically prove TFLoRA converges to a stationary point on the LoRA modules with
rate O(1/+/T) under boundedness assumptions. One of the key technical observation is that the
truncation error is summable over the training iterations. Additionally, we prove the boundedness of
the iterates under quadratic growth condition, which leads to the same convergence rate.

3) Empirical studies on vision and language benchmarks are conducted to validate the performance
of the proposed TFLoRA. We compare with the existing baselines on federated low-rank adaptation
methods and demonstrate that TFLoRA is more advantageous when the number of clients is higher
and the data are distributed heterogeneously among clients.

2 PROPOSED APPROACH

In this section, we propose Truncated FLoRA (TFLoRA) as a novel LoORA module merging mech-
anism that respects the aggregation noise issues and keeps the same communication efficiency as
FedIT. Denote L as the global empirical loss, and £€ as the loss on client c. TFLoRA consists of
three major steps in each training iteration. The framework is described in Algorithm [T}

Computing Pseudo-gradient of 1W. Under canonical federated learning settings, clients perform
multiple local updates using the local dataset. The seminal work FedOPT (Reddi et al.l [2020)
proposes to utilize the psuedo-graident, i.e. the negative of the average model difference as the
proxy of the gradient at the server model. While FedIT (Zhang et al., 2024) regards the LoRA
modules A and B as the optimizees, and the pseudo-gradients are computed on the LoRA modules
separately, our proposed TFLoRA computes the pseudo-gradient over the adapter weight matrix W

~ T
at the server side by VLW =W =550 Wi =BA - L S0 By AvS. . The pseudo-
gradient V £(W/}) characterizes the average client update on the adapter weight matrix. An analysis

on the difference between the pseudo-gradient and the real gradient can be found in (Wang et al.,
2024a). Through this step, we have ruled out the effect of the cross-product matrices within clients.

Applying Server Optimizer to W. We call gradient-based optimizers to perform a single op-
timization step on W, where the gradient is VL(W!) and server learning rate x, i.e. W/} 11 =

SERVER_OPT(W/, VL, k). If the server optimizer is gradient descent (GD) with learning rate set
as 1, the update on W is identical to the FedAvg algorithm (McMahan et al.| 2017), i.e. the average
over local adapter weights. We will use x = 1 in the subsequent theoretical analysis. TFLoRA natu-
rally supports any adaptive optimizers including Adam (Kingmal [2014) and AMSGrad (Redd1 et al.|
2019), which arguably accelerate the optimization process and often achieve better generalization
performance. The acceleration effect is exceptionally valuable in federated learning since it directly
leads to a reduction in the overall communication costs.

Redistribution of LoRA modules. In this step, we project the adapter weight back into the LoRA
modules, which will later be transmitted and used as an initial point at each client in the next round.

Recall that the pseudo-gradient is defined as the average of the client model updates. Since the layer
- T
weight of each client is of rank , the averaged weights W} = & chzl Bé}Ai% amount to at
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Algorithm 1: Truncated FLoRA (TFLoRA)

Input: Server learning rate #, Client learning rate 7, Initial parameters { B}, AL}, LoRA rank r,
Server Optimizer SERVER_OPT, Client Optimizer CLIENT_OPT.
Output: {B!, AT,
fort=1,2,...,T do
forc=1,2,...,Cdo

Client download LoRA parameters { A}, B!}

fork=1,2,..., K do

Perform updates by CLIENT_OPT:
I Ay T

Upload to the server: At K> ,i %5

Server: Average client updates in product matrix: W} = é 25:1 Bi%Aii(T,
Compute the pseudo-gradient: VL, = W} — Wi
Update parameters: W/, ; = SERVER_OPT(W/, VL,, k) and apply SVD to W/_ ;:
Ut+12t+1(vtl+1)T = SVD(WZH);
Truncate to rank r: U}, ; = Ul 4[5, :7); B4 [ir ] = Ziﬂ; Vi =Vl
Update LoRA parameters and send to clients: B}, = U/, (/3! 3 AL, = Vi /8L, s

most 7C rank, which exceeds the predefined LoRA rank 7. The updated adapter weight T gener-
ally possesses higher rank than r, which renders a lossless low-rank factorization unapproachable. It
is clear that the situation is more tricky when the the number of clients is large. Nonetheless, in this
step, we apply an SVD decomposition to the updated adapter weight, and we will show the trunca-
tion step can be theoretically bounded. Denote the SVD step as U, X4, (V)T = svD(W}, ),
where U}, | € Rrmin{mn} and V5 | € Rrxmin{mn} are unitary matrices, and %%, is a diagonal
matrix of Rmin{m.n}txmin{m.n} The diagonal elements of Ei 41 are arranged in a descending order.

We redistribute the LoORA modules by B!, = aU{ /%, ;AL = LV /5L where U/,

and th+1 are the top-r left and right singular vectors respectively, and %! 11 are the top-r singular
values. The square root operator is applied element-wisely. « is a hyperparameter for adjusting
unbalanced norms between B and A. « does not affect the performance at the current iterate but
will impact the subsequent optimization trajectory. For simplicity, we set « = 1 in the theoretical
analysis, while empirically we find o > 1 slightly improves the model performance.

2.1 SHOWCASING THE DIFFERENCE OF MERGING MECHANISMS

We provide a concrete example to intuitively show how TFLoRA differs from FedIT (Zhang et al.,
2024) and leads to different global models. Both methods use direct averaging on the server side.

Consider a matrix factorization problem minbeRm a€Rn £(b a) = 3[|ba’” —X||?, where ¥ is a rank-
2 matrix with SVD decomposition X = o1 111 + 0'2’LL2’U2 b and a can be regarded as the LoORA
modules, while the pretrained matrix W, has been integrated into >. Without loss of generality,
assume o1 > 05. The data model at the two clients are 21 = 201u1v1 and Yo = 202u2v2T
respectively, and the local loss L. is defined as L.(b,a) = ||ba — 3.||%. One can verify that
it is a valid federated learning environment since VL(b,a) = $(VoL1(b,a) + VoL2(b,a)). We
follow the one-shot SGD paradigm, where the local runs are trained to convergence in which the
local sequences are only exchanged once, after the local runs have converged (Mcdonald et al.,
2009; Zinkevich et al.,[2010). We compare the difference between bTFLoRA GTFLORA generated by
Algorithmand B = L(by + by) and @™ = £ (ay + az) from FedIT by the proposition.

Proposition 2.1. If the LoRA modules are initialized using Gaussian distribution with mean 0 and
€2, where € = O(m) Then under one-shot SGD paradigm, with high probability over

initialization, £(bFeAIT gFedIT) > £(FTFLORA 7TFLoRA)



Under review as a conference paper at ICLR 2025

Clearly, FedIT leads to a suboptimal solution in the specific scenario and TFLoRA outperforms.

2.2 CONVERGENCE ANALYSIS

We provide a convergence analysis for Algorithm [l We consider the case when SGD is adopted
as the optimizer at both server and client side. In fact, Algorithm |I|is a non-standard optimization
algorithm. The theoretical challenges stem from the usage of low-rank truncation in the optimization
process and the unique client averaging scheme. First, the truncation step brings up additional error
and makes the trajectory of the iterates inconsistent. Second, our client averaging scheme breaks the
connections between server and client optimizers, given that the clients perform parameter-efficient
fine-tuning over the LoORA modules while the server directly optimizes over the adapter weights.

To show the theoretical guarantees on TFLoRA , we first make the following assumptions. All
these assumptions are mild in the sense that they are defined on the adapter weights W, not LoRA
modules. These assumptions are also used in the seminal works (Stich, |2018)) in the FL literature.

Assumption 2.2. (Smoothness) The loss function £ is L-smooth, i.e. |VL(z) -V L(y)| < LI||xz—
yl|. The local loss function £¢ is L¢-smooth.

Assumption 2.3. (Bounded Gradient) The gradient of £ with respect to W is uniformly bounded,
ie. [VLW)| < G.

Assumption 2.4. (Bounded Client Deviation) The difference between client gradient and the global
gradient is bounded, i.e. | % - —|| <o.

We denote L as the upper bound for the global and client smoothness. Additionally, due to the
nonlinearity of LoORA modules (Malinovsky et al.| [2024), we make the following assumption.

Assumption 2.5. (Bounded Iterate) The iterates W; from Algorithm[1]is bounded, i.e. |[W;|? < D.

Assumption [2.3] directly leads to the boundedness of B; and A; respectively by our LoORA module
redistribution mechanism. Since th and oA, share the singular values, we have ||B; B, ||? <

o?D, and ||A; A/ ||* < J5D. By contrast, vanilla optimization on LoORA modules does not possess
this ideal property for the lack of connection in B, and A, — for example, A; can be arbitrarily small
in magnitude and Bj, in this case, can be unbounded while not violating Assumption [2.5] We will
show the boundedness of A; and B; is advantageous for our convergence analysis.

For simpler exposition, we temporarily set the local training step K = 1 The update of the adapter
weight W, can be represented by Wyy1 = Wy — 0B B, 2% — n2% A, A, where = omits the
less important terms. One key observation is that from the prev1ous 1terat10n the adapter weight
Wy is already a low-rank matrix. After applying a local optimization step to the LoRA modules,
the updated adapter weight remains al/most low-rank. Define the truncation error as €, := Wy —
By 11 A{, . The following lemma provides an upper bound of [|e||.

Lemma 2.6. (Informal Version of Lemma [B.2) Denote At, B, as the lterate at epoch t. The trun-
cation error ||e;|| can be upper bounded by |[e;|| < n%(0? + 2G0o)|| A B, ||, where < omits the less
important terms.

Notice that the truncation error is at most quadratic in 7 and hence will be summable over optimiza-
tion iterations. From this observation, we can derive the

Theorem 2.7. Under Assumption Let n = T~Y/2. The output ofAlgorithm with a single
local step, i.e. K =1,

My Mo
Z(u P+ I ) < 2k + 2

where My, My are constants specified in Appendix. [B.1|

Next, we show that Assumption can be satisfied in a well-structured loss function.

Assumption 2.8. (Bounded Minima) Let S be the set of minima of the loss function £(W). For
any W, € S, W, has a uniform upper bound, i.e. |W,| < ||S]|-
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Figure 1: Test Accuracy on benchmarks. TFLoRA outperforms other federated LoRA methods.
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Figure 2: Test Performance with different client numbers. The digit in the legend represents the
number of clients. TFLoRA degrades less in scenrios with large number of clients.

Assumption 2.9. (Quadratic Growth) The loss function satisfies quadratic growth condition on W,
ie. L(W;) > pdist(Wy, S)?, where dist(W;, S)? := minyes |W: — W/

Like all previous assumptions, Assumption 2.9]is defined on the adapter weights. The assumption
is weaker than a number of regularity conditions, such as, strong convexity and PL condition since
Assumption [2.9]permits the existence of local minima and saddle points, which are common in non-
convex optimization. In addition, Assumption [2.9] does not directly lead to Assumption [2.3] since
the global loss function £ can be unbounded As a major technical strategy, we show that along
the optimization trajectory, the loss function £ can be bounded and hence leads to boundedness on
iterates. For simplicity in notation, we write the upper bound on the local gradient norm G + ¢ as

G. We extend the convergence analysis to a multi-step local training case in the following theorem.

4

Theorem 2.10. Suppose n = 2(;;7(70\/? subject to ng < WM' Under Assumption 2.
and|2.9| the iterates of Algorithm with K local training steps are bounded by dist(W;, S)? <
M, = £ L(Wy) + O(no))- The full form of constant My can be found in Eq. 2| in Appendix@

L T-1 5
Furthermore, the convergence rate is given by 7>, o || |? < %
0

oL 12 4 || 2L
o5, I- + 54

3 EMPIRICAL STUDIES

In this section, we present empirical studies to validate TFLoRA on various benchmarks. We find
that TFLoRA is more favorable in high client number and non-i.i.d client data distribution scenarios.

Models and Datasets. We incorporate three benchmarks in vision and language domains to measure
the empirical performance. For the text classification problem, we choose 20newsgroup which con-
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Figure 3: Test performance with different levels of client data heterogeneity. The digit in the legend
represents the Dirichlet prior . Lower « implies higher heterogeneity. TFLoRA is robust to the
change in client data distribution.

sists of 18000 newsgroups posts on 20 topics. We finetune a GPT2 (Radford et al.,2019) with LoRA
modules consisting of 2.3M parameters (1.91% of original 124M parameters). For image classifi-
cation task, we adopt CIFAR-100 benchmark and finetune a ViT-Base (Vaswanil |2017) model with
LoRA parameters of size 2.4M (2.84% of original 86M parameters). For the commonsense reason-
ing task, we utilize SWAG (Zellers et al.l |2018) which consists of 113k multiple choice questions
about grounded situations. We finetune a RoOBERTa-Base model with LoRA parameters pf 0.6M
parameters (0.47% of original 125M parameters). In all these tasks, we fix the LoRA rank r = 16.

Baseline Approaches. We compare with the existing federated LoRA variants. FedIT (Zhang et al.,
2024)) computes the pseudo-gradients with the averaged update on each client model and applies
gradient updates to LoRA modules. FLASC (Kuo et al., |2024) builds on FedIT and transmits sparse
vectors to reduce communication costs. In the experiment, we set the sparsity density of FLASC
as 0.25 and set LoRA rank » = 64 so that the total communication bits are identical with other
baseline methods. FLoRA (Wang et al.|[2024b)) and FedEX (Singhal et al.) transmits the discrepancy
between the averaged adapter weights and the product of updated LoRA modules to ensure a noise-
less aggregation, but at significantly higher communication costs.

Experimental Results. Fig. [T|shows the test accuracy achieved by the proposed and baseline meth-
ods. We set the number of clients C = 100 and utilize latent Dirichlet allocation (Blei et al., 2003))
to distribute the dataset to clients on 20NewsGroup and CIFAR-100 datasets. We set the Dirichlet
prior « as 0.01, which induces a high level of data heterogeneity. In all three benchmarks, TFLoRA
consistently achieves the highest test accuracy. Additionally, we observe that TFLoRA converges
faster than the other approaches as the accuracy curve ramps up in the few training iterations and
dominates the other methods throughout the training process.

We further investigate the effect of the number of clients. We decrease the number of clients to 10
and compare the performance with other methods in Fig.[2] For smaller number of clients, TFLoORA
is on par with or performs better than the baseline methods. Notably, the test accuracy of FedEX has
fast initial increase in the CIFAR-100 dataset, and achieves comparable performance on the SWAG
dataset. However, the test accuracy drops significantly when the client number increases to 100. In
comparison, the performance degrade on TFLoRA with increased client number is much more mild.

We also investigate the effect of data heterogeneity. By increasing the Dirichlet prior o to 0.1, we
mitigate the class imbalance among clients. In Fig.[3] we compare the performance in different levels
of data heterogeneity on 20NewsGroup and CIFAR-100 datasets. It is clearly shown that almost all
the methods achieve higher test accuracy when trained under milder data heterogeneity, i.e. a = 0.1.
Among all the methods, FedEX and FLoRA are the most affected by the class imbalance issues. In
the 20NewsGroup dataset, FedEX achieves faster convergence and higher test performance when
a = 0.1, but falls short when o« = 0.01. In contrast, TFLoRA is robust in the sense that it can
achieve a comparable or superior performance under both class imbalance conditions.

4 CONCLUSION

In this work, we propose TFLoRA to solve the module merging dilemma in federated low-rank
adaptation. Surprisingly, we find that the truncation step, which is often regarded as a source of
noise, can have mild effects in both theory and practice. We believe the findings can advance the
state-of-the-art research in federated fine-tuning.
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A PROOF OF PROPOSITION

We first analyze the dynamics on the clients. It directly follows from Theorem 1.1 (Ye & Dul 2021)
that asymmetric low-rank matrix factorization problem converges with high probability to its global
minima when the LoRA modules are initialized in the way described in Proposition which
means the local LoORA modules will not be stuck in the local minima or saddle points, for example
a = 0,b = 0. Since we work under the one-shot paradigm, each client returns the global optima of
the client loss function. The client LoORA module will be by = 207 /a1u1 and a; = aqv1, by =
209 /asug, and ag = agvy. The averaged parameters are b = %ul + Z—iuz, a= %(alvl + agvs),
where a1, as are arbitrary non-zero constants. The global risk can be written as
L(pFedIT gledlTy — f|| — 01UV — oaugvy + 0y 22 U1vy + oo %uzvl %

1 2
On the other hand, TFLoRA first applies exact aggregation on the W = gju1v{ + oousv, . Apply-
ing an SVD-truncation step will yield the leading singular pairs, i.e. bTFLORAGTFLORA — & ) 00T
Itis easy to show that ﬁ(bFedIT FedIT) > c(bTFLoRA TFLORA)

B CONVERGENCE PROOF

Byt Al + e =W = CXC: Bi (A )T
- ééBt 2L A -2 By
— BAT — nBtBtT% %AMT + % %;At :gﬁj
+ anBtBI z?vﬁv %AtAT Z gﬁiAtB;% — el

Lemma B.1. Let A be an arbitrary matrix and B be a matrix of rank at most r. Let A, be the SVD
approximation of A with rank r. The truncation error ||A — A, | < ||A — B]|.

We use the following lemma to quantify the truncation error term.

Lemma B.2. Denote A;, B; as the iterate at epoch t. The truncation error ||et| can be upper
bounded by

sl < ”;;n I\ R R L1 g s s DV
Proof. The truncated term at epoch ¢ writes as
BtAtT—UBtBtTaalf/ aalf/AtAT C gin[;AtBtTgﬁV
=<Bt—n%f4t><f ) - S B L3 s g
+ 0 G~ w4 G~ )+ G O 0 B B

By applymg Lemma|B.1} we get the result. O
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B.1 PROOF OF THEOREM[2.7]

Proof. By smoothness on £, we can derive the T-step descent rule

oL 1%
T 2 2 T
L(Wri1) < £(Wp) ZnuBt DL+l A + ;;Hawunwn 4.5, H+Z||8W||uet||
2 $ T2 T 2, 2n'L S 4 T2 2
P22 LY UBBTIP + | AAT )+ 2SS 19501 4T 2 + L]
t=0 c=1 t=0
T or T
—ZnuBiawng+n||—At||2+n22 (G+ o2 AB | +17 Y _(Go? +2G%0) || AB/ |
t=0 t=0
T T T
+ 2P LY (BB 2 + [ 4AT )G + 20 LY (G + o) ABT P + 20 L Y (Go® +2G20)? | 4B/ |1
t=0 t=0 t=0

T T T
=S BT e+l A Y GG+ 0D+ 3 (G + 26%0) D
t=0 = t=0
T T T
+2n°L Z 2DG? + 2n*L Z(G +0)*D 4 29*L Z(Ga2 +2G?0)?D
t=0 t=0 t=0

where the last inequality utilizes the orthogonality of B and A matrix, and hence |B;B, | =
IBeA] | = |4 AL = 2]

Then rearrangmg the terms yields

Z || H2 a,c H2 L(Wp) N G(G 4 0)2D'? + (Go? + 2G?0)D'/? + 4ALDG?
T VT VT
2L(G + 0)*D + 2L(Go? + 2G%5)?D

T3/2
Define the constants
My = cL(Wy) + G(G + 0)?DY? 4 (Go? + 2G20)DY/? + ALDG?
My =2L(G + 0)*D 4 2L(Go? + 2G*5)*D
O

Assumption B.3. (Quadratic Growth) The loss function satisfies quadratic growth condition on W,
i.e. L(W,) > pdist(W;, S)? where S is the set of optimum.

We use the following lemma to show the boundedness of the iterate under the quadratic growth
condition.

Lemma B.4. Let the step size n = \/Ti Under Assumptton . the iterate generated by Algo-
rithm|l]is bounded, i.e. dist(W;, S)? < M.

Proof.
L(Wrsr) < L(Wo) BT 9L A2 7y 0L 0L AB
(Wr1) 0) ZUH f 8W” +77||7 ¢ll +5;;\8W\IHWII I IHZ:II@WIIHQII
2n*L I oce
+2172LZ (1B:B, |I” + | A A/ |12 )|| ||2 c ZZI\8W||4I\AtBtT\\2+L||€t||2
t=0 c=1 t=0

T T
SLWY) +n* Y GG+ o) AB | +n*) (Go® +2G%0)| AB/ ||
t=0 t=0

T T T
+20°L Y (IBB/ | + | AAT )G + 20" LY (G + o) |AB] | +20'L ) (Go® +2G%0)|| A B/ |7
t=0 t=0 t=0

10
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[ABe || = [IWell < [[We = W[ + W] < dist(W,, S)* + IS + 1
1BeB, |2 = [ AcAL |2 = [|AcBe|* = [We|* < 2dist(Wr, S)? + 2| S

If dist(W;, S)? < M fort < T, we want
dist(Wr41,8)? < LWri1)

— — )

which translates to

LWo) 4+ n2(G(G + 0)* + Go® +2G2%0) (M + |[W*|| + 1) + 202 LG*(M + |W*||?)
+ 05 L((G + 0)* + (Go? + 2G?0)*)M < uM.

The above condition is satisfied when

MG(G +0)” + 2RLE? + M3L((G + o) + (Go” +26%0)%) < T,
SM > LWo) +1(G(G +0) + Go® +2G%0) (W | + 1) + 25 LG (IW*|?) ()
O

Under the boundedness condition of A and B, we can prove the convergence of Algorithm [T}

Z 12 H2 + H ||2
T

T
< L(Wo) = LWria) + 17 Y GG+ 0| AB/] | + 7Y (Go® +2G%0)||AB/ ||
t=0 t=0

T T T
+P LY (I1B:BI I + |AAT PG +0* LY (G + o) | AB P + 'Ly (Go® +2G%0)° | A:B] ||
=0 =0 =0

*ZH L+ || H2

<£(W0) — L(Wr41)

T T
77 Z T 77 Z 2, T

< T 2
nL PL L
e T2 T 2 T2 4 2 T2
+ ;(HBtB 17+ 114eA] |*)G? + = E::OG—kU | 4B (* + == ;aa +2G%0)?|| AB/ |
LWo) = LWri1) | 1o 2 2 2
< + —=(G(G+0) +Go” +2G*c)(M + |W*|| + 1
T ﬁ( ( ) ) W=l +1)
QUOLGQ ) USL 2 2 \2
+ T (M + ||W*)|%) + T3/2((G+0) + (Go* +2G*0)* )M

C CONVERGENCE FOR MULTIPLE LOCAL STEPS

The chain rule on Hessian
8W 87W )T n OL(W)
0A — OW;

11
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The update on the local LoRA modules are

ce aLe  acLe
Biyi =B~ ”;ch =B~ 8Bt ”Z ang R

aLe aLe  oLe
A=A = ”ZaAgk A= aAt "Z 045, 8At)

The norm of LoRA modules
K
IBfall < I1Bell +1G Y || Af 4]l < Dy
k=1
is satisfied when we set D; = 2|| 4, and n < 5a7.
Then
Bipi Al e = Wiy = Z B (Ai)
© aLe cc acc aLe
K — A — T
Z:: 7 aB ”Z ang ag,) A~ 8A§k o4,
oL ac T oLe e
= BA] —nK-——A] —nKB T
t4 n 6Bt n t 770 t;; aAC aAt)
1 K& e ace aLe aLe
—n= = AS 2K =
s ; ;(ang ap, A T EG Z OB, 2= 947,

Consider the term
oLe oLe. .
HZ( o3, ~ a5, ol
SZ [Hee(Be) (B — Be)llllAF; 4l

<nZ||Hcc By) ||||Z*AC 1 Af |l
SWKQLHB ks GIIA kH“AtJrlH

Consider the loss on W

L(Wip1) <L(Wy) — nKll \\2—77K|| ||2+2nG||Bt||nK2LD2GDt

+ 2772GK2LD§GD3 + 2772GK||At|\GKDtG +n*GK2G?||B: A/ |
+3L(PKPG? || Al + n* K2G?|| By||* + 40| B[P K* L D{ G?)
+ 3L(4774K4L2D8G2 + 4n4G6K4||At||2D2 +n*K1GY| B Al ||?)

2 2 4770 4 8770 4 770 2 3 2
<L(Wy) - nKn H —nKII*II + B LB+ SR LB + GHAtII + o)Al
+30(0 \|At||4 16”°|\Bt||8L2 o UOHBtIISLQ ”OGQ||At||4+ )4,
G?T G?T 16T
Setny < HS\I/I:M The RHS
4776L 577(/10 770 80770 2 77(/) 2 77(/)
HS < L(W, L _0
RHS < L(W;) + T +4TM+3 (2T+ T [[Well= + G +16T)

12
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Aggregate the inequality by time step ¢, we require the following relationship holds

e i, 160151
AM 2 G2

/
(M + |SII) + mpG? + 0y < s

L(Wy) +4nyL + 16

+3L(

Letny < and

VAG
18L([|S||+M)°
516G m N 160m, L?

2 /
M = S (L) + A+ =0 4 BECY + =S+ G + {3) 2)

4 16

satisfies the condition.

D DIiSCUSSIONS ON COMPUTATIONAL OVERHEAD

While TFLoRA involves additional operations on the server side, in this section, we show that
computational overhead is affordable in practice. The additional cost mainly comes from the
pseudo-gradient computation step and the LoRA module redistribution step. To compute the pseudo-
gradient, we apply matrix multiplication to the LoORA modules which amounts to O(mnr) flops. For
the redistribution step, we apply SVD decomposition to the adapter weights I and only keeps the
top-r singular vectors. The operation can be efficiently implemented via Lanczos method (Lehoucq
et al., [1998), which takes O(mnr) flops. Notice that these operations are executed layer-wise,
and hence the matrix shapes m and n occurring in the computational complexity are typically in
thousands. For example, GPT2 (Radford et al.l 2019) has m = 3072, n = 768 and for ROBERTa-
Base (L1u et al.l 2019) and ViT-Base (Vaswani, |2017), we have m = n = 768&8. In addition, since
there is no temporal dependence on the operations and the LoRA modules of different layers typi-
cally have the same size, the matrix multiplication and SVD operations can be computed in batches
and in a parallel way. Finally, all these operations requiring higher computational overhead happen
on the server side, which is commonly reckoned to have abundant computing resources.
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