
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRUNCATE WITHOUT FEAR: MODULE AGGREGATION
AND REDISTRIBUTION IN FEDERATED LOW-RANK
ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

While low-rank adaptations (LoRA) have shown promise as an efficient fine-
tuning technique in federated learning (FL) to reduce communication complex-
ity, the practical application requires careful attention to the challenges posed by
the aggregation schemes on client modules. In this paper, we introduce TFLoRA,
which directly optimizes over the adapter weights W = BA⊤, and redistributes
the LoRA modules using the updated adapter weights. Our theoretical analysis
shows the truncation error introduced during the redistribution step is mild and
TFLoRA achieves an O(1/

√
T) convergence rate. Compared to the existing meth-

ods, TFLoRA supports a wide range of optimizers on the server side and maintain
the advantages in low communication overhead. We show empirical evidence that
TFLoRA achieves better performance than the state-of-the-art federated LoRA
mechanisms on various benchmarks including image/text classification and com-
monsense inference. Additionally, TFLoRA is demonstrated to be more favorable
as the number of clients increases and with non-i.i.d client data distributions.

1 INTRODUCTION

Low-rank adaptation (LoRA) (Hu et al., 2021) has become popular in recent years as a supervised
fine-tuning technique for large neural networks. For a linear layer in a neural network, denote W0 ∈
Rm×n as the pretrained model weight. LoRA modifies the forward pass by additively integrating
a low-rank matrix BA⊤ into W0, where B ∈ Rm×r, A ∈ Rn×r, and the rank r ≪ min{m,n}.
Throughout the paper, we name the low-rank adapters B and A as the LoRA modules, and their
product matrix W = BA⊤ as adapter weights. LoRA modules typically contain up to 5% of the full
parameter size. By adapting solely the LoRA modules and keeping the rest of parameters frozen,
pretrained neural network models, especially LLMs can be adapted to various new tasks. Such
efficiency in parameters makes LoRA a promising technique to be adopted in federated learning
(FL), since FL clients are usually resource-constrained and the communication cost between server
and clients are particularly important (Malaviya et al., 2023).

While the LoRA paradigm is clear in the centralized setting, it remains controversial on how to apply
model averaging in the federated learning context. Suppose C clients participate in the federated
learning. At the end of local training phase, each client maintains its local copy of LoRA modules
Bc and Ac. The server aggregates the C copies into a global LoRA module while maintaining
the low-rank constraints. The state-of-the-art technical roadmap bifurcates into two separate ways.
FedIT (Zhang et al., 2024) and FLASC (Kuo et al., 2024) advocate directly applying the average to
LoRA modules on the server side, i.e. B = 1

C

∑C
c=1 B

c. This thread of approaches automatically
satisfies the low rank constraints, but leads to an inexact aggregate on the adapter weight W due to(

1

C

C∑
c=1

Bc

)(
1

C

C∑
c=1

Ac

)⊤

̸= 1

C

C∑
c=1

BcAc⊤.

The discrepancy is subsequently termed as aggregation noise in (Wang et al., 2024b). Additionally,
the approach faces challenges when the client models adopt heterogeneous ranks (Cho et al., 2024).
Other approaches (Singhal et al.; Wang et al., 2024b) apply averaging over the local adapter weights
W c = BcAc⊤. Although eliminating the aggregation noise, projecting the averaged adapter weight

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

W = 1
C

∑C
c=1 W

c back to a low rank matrix is challenging since the rank of W is at most rC.
The existing methods unanimously find proxies for the averaged LoRA modules and transmit the
discrepancy with the noise-free adapter weights to the clients, which is in the size of m × n, to
achieve exact updates. However, these methods lose the advantages of communication efficiency
achieved via LoRA training. In addition, the existing approaches lack support on the flexibility of
server optimizers. To summarize, the structure of LoRA poses unique challenges in the module
merging techniques for FL and requires careful designs.

In this work, we present Truncated FLoRA (TFLoRA) that introduces a truncation step to the adapter
weights to maintain low-rank LoRA modules. We theoretically show that the impact of truncation
error on the convergence rate is mild. Our main technical contributions are summarized as follows.

1) We propose TFLoRA in which the gradient update is applied directly to adapter weights. To
maintain the low-rank constraint on the server model, TFLoRA adopts a redistribution step to obtain
updated LoRA modules with truncation on the adapter weight in the spectral domain. We showcase
the difference of TFLoRA with FedIT via a simple matrix factorization problem where FedIT fails
to converge to the global minima.

2) We theoretically prove TFLoRA converges to a stationary point on the LoRA modules with
rate O(1/

√
T) under boundedness assumptions. One of the key technical observation is that the

truncation error is summable over the training iterations. Additionally, we prove the boundedness of
the iterates under quadratic growth condition, which leads to the same convergence rate.

3) Empirical studies on vision and language benchmarks are conducted to validate the performance
of the proposed TFLoRA. We compare with the existing baselines on federated low-rank adaptation
methods and demonstrate that TFLoRA is more advantageous when the number of clients is higher
and the data are distributed heterogeneously among clients.

2 PROPOSED APPROACH

In this section, we propose Truncated FLoRA (TFLoRA) as a novel LoRA module merging mech-
anism that respects the aggregation noise issues and keeps the same communication efficiency as
FedIT. Denote L as the global empirical loss, and Lc as the loss on client c. TFLoRA consists of
three major steps in each training iteration. The framework is described in Algorithm 1.

Computing Pseudo-gradient of W . Under canonical federated learning settings, clients perform
multiple local updates using the local dataset. The seminal work FedOPT (Reddi et al., 2020)
proposes to utilize the psuedo-graident, i.e. the negative of the average model difference as the
proxy of the gradient at the server model. While FedIT (Zhang et al., 2024) regards the LoRA
modules A and B as the optimizees, and the pseudo-gradients are computed on the LoRA modules
separately, our proposed TFLoRA computes the pseudo-gradient over the adapter weight matrix W

at the server side by ∇̃L(W l
t) = W l

t − 1
C

∑C
c=1 W

l,c
t = BlAl− 1

C

∑C
c=1 B

l,c
t,KAl,c

t,K

⊤
. The pseudo-

gradient ∇̃L(W l
t) characterizes the average client update on the adapter weight matrix. An analysis

on the difference between the pseudo-gradient and the real gradient can be found in (Wang et al.,
2024a). Through this step, we have ruled out the effect of the cross-product matrices within clients.

Applying Server Optimizer to W . We call gradient-based optimizers to perform a single op-
timization step on W , where the gradient is ∇̃L(W l) and server learning rate κ, i.e. W l

t+1 =

SERVER OPT(W l
t , ∇̃Lt, κ). If the server optimizer is gradient descent (GD) with learning rate set

as 1, the update on W is identical to the FedAvg algorithm (McMahan et al., 2017), i.e. the average
over local adapter weights. We will use κ = 1 in the subsequent theoretical analysis. TFLoRA natu-
rally supports any adaptive optimizers including Adam (Kingma, 2014) and AMSGrad (Reddi et al.,
2019), which arguably accelerate the optimization process and often achieve better generalization
performance. The acceleration effect is exceptionally valuable in federated learning since it directly
leads to a reduction in the overall communication costs.

Redistribution of LoRA modules. In this step, we project the adapter weight back into the LoRA
modules, which will later be transmitted and used as an initial point at each client in the next round.
Recall that the pseudo-gradient is defined as the average of the client model updates. Since the layer

weight of each client is of rank r, the averaged weights W̄ l
t = 1

C

∑C
c=1 B

l,c
t,KAl,c

t,K

⊤
amount to at

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Algorithm 1: Truncated FLoRA (TFLoRA)

Input: Server learning rate κ, Client learning rate η, Initial parameters {Bl
0, A

l
0}, LoRA rank r,

Server Optimizer SERVER OPT, Client Optimizer CLIENT OPT.
Output: {Bl

t, A
l
t}Tt=1

for t = 1, 2, . . . , T do
for c = 1, 2, . . . , C do

Client download LoRA parameters {Al
t, B

l
t}

for k = 1, 2, . . . ,K do
Perform updates by CLIENT OPT:
Al,c

t,k, B
l,c
t,k = CLIENT OPT(Al,c

t,k−1, B
l,c
t,k−1,L, η);

Upload to the server:Al,c
t,K , Bl,c

t,K ;

Server: Average client updates in product matrix: W̄ l
t = 1

C

∑C
c=1 B

l,c
t,KAl,c

t,K

⊤
;

Compute the pseudo-gradient: ∇̃Lt = W l
t − W̄ l

t ;
Update parameters: W l

t+1 = SERVER OPT(W l
t , ∇̃Lt, κ) and apply SVD to W l

t+1:

U l
t+1Σ

l
t+1(V

l
t+1)

⊤ = SVD(W l
t+1);

Truncate to rank r: Ū l
t+1 = U l

t+1[:, : r]; Σ̄l
t+1[: r, : r] = Σl

t+1; V̄ l
t+1 = V l

t+1[:, : r];

Update LoRA parameters and send to clients: Bl
t+1 = Ū l

t+1

√
Σ̄l

t+1; A
l
t+1 = V̄ l

t+1

√
Σ̄l

t+1;

most rC rank, which exceeds the predefined LoRA rank r. The updated adapter weight W l gener-
ally possesses higher rank than r, which renders a lossless low-rank factorization unapproachable. It
is clear that the situation is more tricky when the the number of clients is large. Nonetheless, in this
step, we apply an SVD decomposition to the updated adapter weight, and we will show the trunca-
tion step can be theoretically bounded. Denote the SVD step as U l

t+1Σ
l
t+1(V

l
t+1)

⊤ = SVD(W l
t+1),

where U l
t+1 ∈ Rm×min{m,n} and V l

t+1 ∈ Rn×min{m,n} are unitary matrices, and Σl
t+1 is a diagonal

matrix of Rmin{m,n}×min{m,n}. The diagonal elements of Σl
t+1 are arranged in a descending order.

We redistribute the LoRA modules by Bl
t+1 = αŪ l

t+1

√
Σ̄l

t+1;A
l
t+1 = 1

α V̄
l
t+1

√
Σ̄l

t+1; where Ū l
t+1

and V̄ l
t+1 are the top-r left and right singular vectors respectively, and Σ̄l

t+1 are the top-r singular
values. The square root operator is applied element-wisely. α is a hyperparameter for adjusting
unbalanced norms between B and A. α does not affect the performance at the current iterate but
will impact the subsequent optimization trajectory. For simplicity, we set α = 1 in the theoretical
analysis, while empirically we find α ≥ 1 slightly improves the model performance.

2.1 SHOWCASING THE DIFFERENCE OF MERGING MECHANISMS

We provide a concrete example to intuitively show how TFLoRA differs from FedIT (Zhang et al.,
2024) and leads to different global models. Both methods use direct averaging on the server side.

Consider a matrix factorization problem minb∈Rm,a∈Rn L(b, a) = 1
2∥ba

⊤−Σ∥2, where Σ is a rank-
2 matrix with SVD decomposition Σ = σ1u1v

⊤
1 + σ2u2v

⊤
2 . b and a can be regarded as the LoRA

modules, while the pretrained matrix W0 has been integrated into Σ. Without loss of generality,
assume σ1 > σ2. The data model at the two clients are Σ1 = 2σ1u1v

⊤
1 and Σ2 = 2σ2u2v

⊤
2

respectively, and the local loss Lc is defined as Lc(b, a) = 1
2∥ba

⊤ − Σc∥2. One can verify that
it is a valid federated learning environment since ∇L(b, a) = 1

2 (∇aL1(b, a) + ∇aL2(b, a)). We
follow the one-shot SGD paradigm, where the local runs are trained to convergence in which the
local sequences are only exchanged once, after the local runs have converged (Mcdonald et al.,
2009; Zinkevich et al., 2010). We compare the difference between bTFLoRA, āTFLoRA generated by
Algorithm 1 and b̄FedIT = 1

2 (b1 + b2) and āFedIT = 1
2 (a1 + a2) from FedIT by the proposition.

Proposition 2.1. If the LoRA modules are initialized using Gaussian distribution with mean 0 and
ϵ2, where ϵ = Õ(σ2√

r3σ1(m+n)
). Then under one-shot SGD paradigm, with high probability over

initialization, L(b̄FedIT, āFedIT) ≥ L(b̄TFLoRA, āTFLoRA).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Clearly, FedIT leads to a suboptimal solution in the specific scenario and TFLoRA outperforms.

2.2 CONVERGENCE ANALYSIS

We provide a convergence analysis for Algorithm 1. We consider the case when SGD is adopted
as the optimizer at both server and client side. In fact, Algorithm 1 is a non-standard optimization
algorithm. The theoretical challenges stem from the usage of low-rank truncation in the optimization
process and the unique client averaging scheme. First, the truncation step brings up additional error
and makes the trajectory of the iterates inconsistent. Second, our client averaging scheme breaks the
connections between server and client optimizers, given that the clients perform parameter-efficient
fine-tuning over the LoRA modules while the server directly optimizes over the adapter weights.

To show the theoretical guarantees on TFLoRA , we first make the following assumptions. All
these assumptions are mild in the sense that they are defined on the adapter weights W , not LoRA
modules. These assumptions are also used in the seminal works (Stich, 2018) in the FL literature.

Assumption 2.2. (Smoothness) The loss function L is L-smooth, i.e. ∥∇L(x)−∇L(y)∥ ≤ Lg∥x−
y∥. The local loss function Lc is Lc-smooth.

Assumption 2.3. (Bounded Gradient) The gradient of L with respect to W is uniformly bounded,
i.e. ∥∇L(W)∥ ≤ G.

Assumption 2.4. (Bounded Client Deviation) The difference between client gradient and the global
gradient is bounded, i.e. ∥∂Lc

∂W − ∂L
∂W ∥ ≤ σ.

We denote L as the upper bound for the global and client smoothness. Additionally, due to the
nonlinearity of LoRA modules (Malinovsky et al., 2024), we make the following assumption.

Assumption 2.5. (Bounded Iterate) The iterates Wt from Algorithm 1 is bounded, i.e. ∥Wt∥2 ≤ D.

Assumption 2.5 directly leads to the boundedness of Bt and At respectively by our LoRA module
redistribution mechanism. Since 1

αBt and αAt share the singular values, we have ∥BtB
⊤
t ∥2 ≤

α2D, and ∥AtA
⊤
t ∥2 ≤ 1

α2D. By contrast, vanilla optimization on LoRA modules does not possess
this ideal property for the lack of connection in Bt and At – for example, At can be arbitrarily small
in magnitude and Bt, in this case, can be unbounded while not violating Assumption 2.5. We will
show the boundedness of At and Bt is advantageous for our convergence analysis.

For simpler exposition, we temporarily set the local training step K = 1. The update of the adapter
weight Wt can be represented by W̄t+1 ≊ Wt − ηBtB

⊤
t

∂L
∂W − η ∂L

∂W AtA
⊤
t , where ≊ omits the

less important terms. One key observation is that from the previous iteration, the adapter weight
Wt is already a low-rank matrix. After applying a local optimization step to the LoRA modules,
the updated adapter weight remains almost low-rank. Define the truncation error as ϵt := W̄t+1 −
Bt+1A

⊤
t+1. The following lemma provides an upper bound of ∥ϵt∥.

Lemma 2.6. (Informal Version of Lemma B.2) Denote At, Bt as the iterate at epoch t. The trun-
cation error ∥ϵt∥ can be upper bounded by ∥ϵt∥ ≲ η2(σ2 + 2Gσ)∥AtB

⊤
t ∥, where ≲ omits the less

important terms.

Notice that the truncation error is at most quadratic in η and hence will be summable over optimiza-
tion iterations. From this observation, we can derive the

Theorem 2.7. Under Assumption 2.2-2.5. Let η = T−1/2. The output of Algorithm 1 with a single
local step, i.e. K = 1,

1

T

T−1∑
t=0

(
∥ ∂L
∂Bt

∥2 + ∥ ∂L
∂At

∥2
)

≤ M1

T 1/2
+

M2

T 3/2
,

where M1,M2 are constants specified in Appendix. B.1

Next, we show that Assumption 2.5 can be satisfied in a well-structured loss function.

Assumption 2.8. (Bounded Minima) Let S be the set of minima of the loss function L(W). For
any W∗ ∈ S, W∗ has a uniform upper bound, i.e. ∥W∗∥ ≤ ∥S∥.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

10 20 30 40 50 60
Epoch

60%

65%

70%

75%

80%

Te
st

 A
cc

ur
ac

y
FedIT
FLoRA
FedEX
FLASC
TFLoRA

(a) SWAG.

0 50 100 150 200
Epoch

20%

40%

60%

80%

Te
st

 A
cc

ur
ac

y

FedIT
FLoRA
FedEX
FLASC
TFLoRA

(b) 20NewsGroup.

20 40 60 80
Epoch

60%

65%

70%

75%

80%

85%

90%

Te
st

 A
cc

ur
ac

y

FedIT
FLoRA
FedEX
FLASC
TFLoRA

(c) CIFAR100.

Figure 1: Test Accuracy on benchmarks. TFLoRA outperforms other federated LoRA methods.

10 20 30 40 50 60
Epoch

70%

72%

74%

76%

78%

80%

82%

84%

Te
st

 A
cc

ur
ac

y

FedIT-25
FedIT-100
FLoRA-25
FLoRA-100
TFLoRA-25
TFLoRA-100

0 50 100 150 200
Epoch

0%

20%

40%

60%

80%

Te
st

 A
cc

ur
ac

y
FedIT-25
FedIT-100
FLoRA-25
FLoRA-100
TFLoRA-25
TFLoRA-100

0 20 40 60 80
Epoch

0%

20%

40%

60%

80%

Te
st

 A
cc

ur
ac

y

FedIT-10
FedIT-100
FLoRA-10
FLoRA-100
TFLoRA-10
TFLoRA-100

10 20 30 40 50 60
Epoch

55%

60%

65%

70%

75%

80%

Te
st

 A
cc

ur
ac

y

FedEX-25
FedEX-100
FLASC-25
FLASC-100
TFLoRA-25
TFLoRA-100

(a) SWAG.

0 50 100 150 200
Epoch

20%

40%

60%

80%

Te
st

 A
cc

ur
ac

y

FedEX-25
FedEX-100
FLASC-25
FLASC-100
TFLoRA-25
TFLoRA-100

(b) 20NewsGroup.

0 20 40 60 80 100
Epoch

0%

20%

40%

60%

80%

Te
st

 A
cc

ur
ac

y

FedEX-10
FedEX-100
FLASC-10
FLASC-100
TFLoRA-10
TFLoRA-100

(c) CIFAR100.

Figure 2: Test Performance with different client numbers. The digit in the legend represents the
number of clients. TFLoRA degrades less in scenrios with large number of clients.

Assumption 2.9. (Quadratic Growth) The loss function satisfies quadratic growth condition on W ,
i.e. L(Wt) ≥ µdist(Wt,S)2, where dist(Wt,S)2 := minW∈S ∥Wt −W∥2.

Like all previous assumptions, Assumption 2.9 is defined on the adapter weights. The assumption
is weaker than a number of regularity conditions, such as, strong convexity and PL condition since
Assumption 2.9 permits the existence of local minima and saddle points, which are common in non-
convex optimization. In addition, Assumption 2.9 does not directly lead to Assumption 2.5 since
the global loss function L can be unbounded As a major technical strategy, we show that along
the optimization trajectory, the loss function L can be bounded and hence leads to boundedness on
iterates. For simplicity in notation, we write the upper bound on the local gradient norm G + σ as
Ḡ. We extend the convergence analysis to a multi-step local training case in the following theorem.

Theorem 2.10. Suppose η = η0

2ḠK
√
T

, subject to η0 ≤
√
µḠ

18L(∥S∥+M) . Under Assumption 2.2-2.4,
2.8 and 2.9, the iterates of Algorithm 1 with K local training steps are bounded by dist(Wt,S)2 ≤
M2 = 2

µ (L(W0) + O(η0)). The full form of constant M2 can be found in Eq. 2 in Appendix C.

Furthermore, the convergence rate is given by 1
T

∑T−1
t=0 ∥ ∂L

∂Bt
∥2 + ∥ ∂L

∂At
∥2 ≤ µḠM2

2η0

√
T
.

3 EMPIRICAL STUDIES

In this section, we present empirical studies to validate TFLoRA on various benchmarks. We find
that TFLoRA is more favorable in high client number and non-i.i.d client data distribution scenarios.

Models and Datasets. We incorporate three benchmarks in vision and language domains to measure
the empirical performance. For the text classification problem, we choose 20newsgroup which con-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 50 100 150 200
Epoch

20%

40%

60%

80%

Te
st

 A
cc

ur
ac

y
FedIT_0.1
FedIT_0.01
FLoRA_0.1
FLoRA_0.01
TFLoRA_0.1
TFLoRA_0.01

(a) 20NewsGroup.

0 50 100 150 200
Epoch

20%

40%

60%

80%

Te
st

 A
cc

ur
ac

y

FedEX_0.1
FedEX_0.01
FLASC_0.1
FLASC_0.01
TFLoRA_0.1
TFLoRA_0.01

(b) 20NewsGroup.

20 40 60 80
Epoch

70%

75%

80%

85%

90%

Te
st

 A
cc

ur
ac

y

FedIT_0.1
FedIT_0.01
FLoRA_0.1
FLoRA_0.01
TFLoRA_0.1
TFLoRA_0.01

(c) CIFAR100.

20 40 60 80
Epoch

60%

65%

70%

75%

80%

85%

90%

Te
st

 A
cc

ur
ac

y

FedEX_0.1
FedEX_0.01
FLASC_0.1
FLASC_0.01
TFLoRA_0.1
TFLoRA_0.01

(d) CIFAR100.

Figure 3: Test performance with different levels of client data heterogeneity. The digit in the legend
represents the Dirichlet prior α. Lower α implies higher heterogeneity. TFLoRA is robust to the
change in client data distribution.

sists of 18000 newsgroups posts on 20 topics. We finetune a GPT2 (Radford et al., 2019) with LoRA
modules consisting of 2.3M parameters (1.91% of original 124M parameters). For image classifi-
cation task, we adopt CIFAR-100 benchmark and finetune a ViT-Base (Vaswani, 2017) model with
LoRA parameters of size 2.4M (2.84% of original 86M parameters). For the commonsense reason-
ing task, we utilize SWAG (Zellers et al., 2018) which consists of 113k multiple choice questions
about grounded situations. We finetune a RoBERTa-Base model with LoRA parameters pf 0.6M
parameters (0.47% of original 125M parameters). In all these tasks, we fix the LoRA rank r = 16.

Baseline Approaches. We compare with the existing federated LoRA variants. FedIT (Zhang et al.,
2024) computes the pseudo-gradients with the averaged update on each client model and applies
gradient updates to LoRA modules. FLASC (Kuo et al., 2024) builds on FedIT and transmits sparse
vectors to reduce communication costs. In the experiment, we set the sparsity density of FLASC
as 0.25 and set LoRA rank r = 64 so that the total communication bits are identical with other
baseline methods. FLoRA (Wang et al., 2024b) and FedEX (Singhal et al.) transmits the discrepancy
between the averaged adapter weights and the product of updated LoRA modules to ensure a noise-
less aggregation, but at significantly higher communication costs.

Experimental Results. Fig. 1 shows the test accuracy achieved by the proposed and baseline meth-
ods. We set the number of clients C = 100 and utilize latent Dirichlet allocation (Blei et al., 2003)
to distribute the dataset to clients on 20NewsGroup and CIFAR-100 datasets. We set the Dirichlet
prior α as 0.01, which induces a high level of data heterogeneity. In all three benchmarks, TFLoRA
consistently achieves the highest test accuracy. Additionally, we observe that TFLoRA converges
faster than the other approaches as the accuracy curve ramps up in the few training iterations and
dominates the other methods throughout the training process.

We further investigate the effect of the number of clients. We decrease the number of clients to 10
and compare the performance with other methods in Fig. 2. For smaller number of clients, TFLoRA
is on par with or performs better than the baseline methods. Notably, the test accuracy of FedEX has
fast initial increase in the CIFAR-100 dataset, and achieves comparable performance on the SWAG
dataset. However, the test accuracy drops significantly when the client number increases to 100. In
comparison, the performance degrade on TFLoRA with increased client number is much more mild.

We also investigate the effect of data heterogeneity. By increasing the Dirichlet prior α to 0.1, we
mitigate the class imbalance among clients. In Fig. 3, we compare the performance in different levels
of data heterogeneity on 20NewsGroup and CIFAR-100 datasets. It is clearly shown that almost all
the methods achieve higher test accuracy when trained under milder data heterogeneity, i.e. α = 0.1.
Among all the methods, FedEX and FLoRA are the most affected by the class imbalance issues. In
the 20NewsGroup dataset, FedEX achieves faster convergence and higher test performance when
α = 0.1, but falls short when α = 0.01. In contrast, TFLoRA is robust in the sense that it can
achieve a comparable or superior performance under both class imbalance conditions.

4 CONCLUSION

In this work, we propose TFLoRA to solve the module merging dilemma in federated low-rank
adaptation. Surprisingly, we find that the truncation step, which is often regarded as a source of
noise, can have mild effects in both theory and practice. We believe the findings can advance the
state-of-the-art research in federated fine-tuning.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

REFERENCES

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022, 2003.

Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi, and Gauri Joshi. Heterogeneous lora for fed-
erated fine-tuning of on-device foundation models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 12903–12913, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Kevin Kuo, Arian Raje, Kousik Rajesh, and Virginia Smith. Federated lora with sparse communi-
cation. arXiv preprint arXiv:2406.05233, 2024.

Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’ guide: solution of large-
scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, 1998.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.11692.

Shubham Malaviya, Manish Shukla, and Sachin Lodha. Reducing communication overhead in
federated learning for pre-trained language models using parameter-efficient finetuning. In Con-
ference on Lifelong Learning Agents, pp. 456–469. PMLR, 2023.

Grigory Malinovsky, Umberto Michieli, Hasan Abed Al Kader Hammoud, Taha Ceritli, Hayder
Elesedy, Mete Ozay, and Peter Richtárik. Randomized asymmetric chain of lora: The first mean-
ingful theoretical framework for low-rank adaptation. arXiv preprint arXiv:2410.08305, 2024.

Ryan Mcdonald, Mehryar Mohri, Nathan Silberman, Dan Walker, and Gideon Mann. Efficient
large-scale distributed training of conditional maximum entropy models. Advances in neural
information processing systems, 22, 2009.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konecny,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Raghav Singhal, Kaustubh Ponkshe, and Praneeth Vepakomma. Fedex-lora: Exact aggregation for
federated and efficient fine-tuning of foundation models.

Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint
arXiv:1805.09767, 2018.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. Lora-pro: Are low-rank adapters
properly optimized? arXiv preprint arXiv:2407.18242, 2024a.

7

http://arxiv.org/abs/1907.11692

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Lingjuan Lyu, and Ang Li.
Flora: Federated fine-tuning large language models with heterogeneous low-rank adaptations.
arXiv preprint arXiv:2409.05976, 2024b.

Tian Ye and Simon S Du. Global convergence of gradient descent for asymmetric low-rank matrix
factorization. Advances in Neural Information Processing Systems, 34:1429–1439, 2021.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. Swag: A large-scale adversarial
dataset for grounded commonsense inference. arXiv preprint arXiv:1808.05326, 2018.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Tong Yu, Guoyin Wang, and
Yiran Chen. Towards building the federatedgpt: Federated instruction tuning. In ICASSP 2024-
2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
6915–6919. IEEE, 2024.

Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. Parallelized stochastic gradient
descent. Advances in neural information processing systems, 23, 2010.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

A PROOF OF PROPOSITION 2.1

We first analyze the dynamics on the clients. It directly follows from Theorem 1.1 (Ye & Du, 2021)
that asymmetric low-rank matrix factorization problem converges with high probability to its global
minima when the LoRA modules are initialized in the way described in Proposition 2.1, which
means the local LoRA modules will not be stuck in the local minima or saddle points, for example
a = 0, b = 0. Since we work under the one-shot paradigm, each client returns the global optima of
the client loss function. The client LoRA module will be b1 = 2σ1/a1u1 and a1 = a1v1, b2 =
2σ2/a2u2, and a2 = a2v2. The averaged parameters are b̄ = σ1

a1
u1 +

σ2

a2
u2, ā = 1

2 (a1v1 + a2v2),
where a1, a2 are arbitrary non-zero constants. The global risk can be written as

L(b̄FedIT, āFedIT) = 1

2
∥ − σ1u1v

⊤
1 − σ2u2v

⊤
2 + σ1

a2
a1

u1v
⊤
2 + σ2

a1
a2

u2v
⊤
1 ∥2.

On the other hand, TFLoRA first applies exact aggregation on the W̄ = σ1u1v
⊤
1 +σ2u2v

⊤
2 . Apply-

ing an SVD-truncation step will yield the leading singular pairs, i.e. b̄TFLoRAāTFLoRA = σ1u1v
⊤
1 .

It is easy to show that L(b̄FedIT, āFedIT) ≥ L(b̄TFLoRA, āTFLoRA).

B CONVERGENCE PROOF

Bt+1A
⊤
t+1 + ϵt = W̄t+1 =

1

C

C∑
c=1

Bc
t+1(A

c
t+1)

⊤

=
1

C

C∑
c=1

(Bt − η
∂Lc

∂W
At)(At − η

∂Lc

∂W

⊤
Bt)

⊤

= BtA
⊤
t − ηBtB

⊤
t

∂L
∂W

− η
∂L
∂W

AtA
⊤
t +

η2

C

C∑
c=1

∂Lc

∂W
AtB

⊤
t

∂Lc

∂W

L(Wt+1) ≤L(Wt)− ⟨ ∂L
∂W

, ηBtB
⊤
t

∂L
∂W

+ η
∂L
∂W

AtA
⊤
t − η2

C

C∑
c=1

∂Lc

∂W
AtB

⊤
t

∂Lc

∂W
− ϵt⟩

+
L

2
∥ηBtB

⊤
t

∂L
∂W

+ η
∂L
∂W

AtA
⊤
t − η2

C

C∑
c=1

∂Lc

∂W
AtB

⊤
t

∂Lc

∂W
− ϵt∥2

Lemma B.1. Let A be an arbitrary matrix and B be a matrix of rank at most r. Let Ar be the SVD
approximation of A with rank r. The truncation error ∥A−Ar∥ ≤ ∥A−B∥.

We use the following lemma to quantify the truncation error term.
Lemma B.2. Denote At, Bt as the iterate at epoch t. The truncation error ∥ϵt∥ can be upper
bounded by

∥ϵt∥ ≤ η2

C

C∑
c=1

∥(∂L
c

∂W
− ∂L

∂W
)AtB

⊤
t (

∂Lc

∂W
− ∂L

∂W
) +

∂L
∂W

AtB
⊤
t (

∂Lc

∂W
− ∂L

∂W
) + (

∂Lc

∂W
− ∂L

∂W
)AtB

⊤
t

∂L
∂W

∥.

Proof. The truncated term at epoch t writes as

BtA
⊤
t − ηBtB

⊤
t

∂L
∂W

− η
∂L
∂W

AtA
⊤
t +

η2

C

C∑
c=1

∂Lc

∂W
AtB

⊤
t

∂Lc

∂W

=(Bt − η
∂L
∂W

At)(A
⊤
t − ηB⊤

t

∂L
∂W

)− η2
∂L
∂W

AtB
⊤
t

∂L
∂W

+
η2

C

C∑
c=1

∂L
∂W

AtB
⊤
t

∂L
∂W

+
η2

C

C∑
c=1

(
∂Lc

∂W
− ∂L

∂W
)AtB

⊤
t (

∂Lc

∂W
− ∂L

∂W
) + (

∂Lc

∂W
− ∂L

∂W
)AtB

⊤
t

∂L
∂W

+
∂L
∂W

AtB
⊤
t (

∂Lc

∂W
− ∂L

∂W
)

By applying Lemma B.1, we get the result.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

B.1 PROOF OF THEOREM 2.7

Proof. By smoothness on L, we can derive the T -step descent rule

L(WT+1) ≤ L(W0)−
T∑

t=0

η∥B⊤
t

∂L
∂W

∥2 + η∥ ∂L
∂W

At∥2 +
η2

C

C∑
c=1

T∑
t=0

∥ ∂L
∂W

∥∥∂L
c

∂W
∥2∥AtB

⊤
t ∥+

T∑
t=0

∥ ∂L
∂W

∥∥ϵt∥

+ 2η2L

T∑
t=0

(∥BtB
⊤
t ∥2 + ∥AtA

⊤
t ∥2)∥

∂L
∂W

∥2 + 2η4L

C

C∑
c=1

T∑
t=0

∥∂L
c

∂W
∥4∥AtB

⊤
t ∥2 + L∥ϵt∥2

≤ L(W0)−
T∑

t=0

η∥B⊤
t

∂L
∂W

∥2 + η∥ ∂L
∂W

At∥2 + η2
T∑

t=0

G(G+ σ)2∥AtB
⊤
t ∥+ η2

T∑
t=0

(Gσ2 + 2G2σ)∥AtB
⊤
t ∥

+ 2η2L

T∑
t=0

(∥BtB
⊤
t ∥2 + ∥AtA

⊤
t ∥2)G2 + 2η4L

T∑
t=0

(G+ σ)4∥AtB
⊤
t ∥2 + 2η4L

T∑
t=0

(Gσ2 + 2G2σ)2∥AtB
⊤
t ∥2

≤ L(W0)−
T∑

t=0

η∥B⊤
t

∂L
∂W

∥2 + η∥ ∂L
∂W

At∥2 + η2
T∑

t=0

G(G+ σ)2D
1
2 + η2

T∑
t=0

(Gσ2 + 2G2σ)D
1
2

+ 2η2L

T∑
t=0

2DG2 + 2η4L

T∑
t=0

(G+ σ)4D + 2η4L

T∑
t=0

(Gσ2 + 2G2σ)2D

where the last inequality utilizes the orthogonality of B and A matrix, and hence ∥BtB
⊤
t ∥ =

∥BtA
⊤
t ∥ = ∥AtA

⊤
t ∥ = ∥Σt∥.

Then rearranging the terms yields

1

T

T∑
t=0

∥ ∂L
∂Bt

∥2 + η∥ ∂L
∂At

∥2 ≤ L(W0)√
T

+
G(G+ σ)2D1/2 + (Gσ2 + 2G2σ)D1/2 + 4LDG2

√
T

+
2L(G+ σ)4D + 2L(Gσ2 + 2G2σ)2D

T 3/2

Define the constants
M1 = cL(W0) +G(G+ σ)2D1/2 + (Gσ2 + 2G2σ)D1/2 + 4LDG2

M2 = 2L(G+ σ)4D + 2L(Gσ2 + 2G2σ)2D

Assumption B.3. (Quadratic Growth) The loss function satisfies quadratic growth condition on W ,
i.e. L(Wt) ≥ µdist(Wt,S)2 where S is the set of optimum.

We use the following lemma to show the boundedness of the iterate under the quadratic growth
condition.
Lemma B.4. Let the step size η = η0√

Tmax
. Under Assumption B.3, the iterate generated by Algo-

rithm 1 is bounded, i.e. dist(Wt,S)2 ≤ M .

Proof.

L(WT+1) ≤ L(W0)−
T∑

t=0

η∥B⊤
t

∂L
∂W

∥2 + η∥ ∂L
∂W

At∥2 +
η2

C

C∑
c=1

T∑
t=0

∥ ∂L
∂W

∥∥∂L
c

∂W
∥2∥AtB

⊤
t ∥+

T∑
t=0

∥ ∂L
∂W

∥∥ϵt∥

+ 2η2L

T∑
t=0

(∥BtB
⊤
t ∥2 + ∥AtA

⊤
t ∥2)∥

∂L
∂W

∥2 + 2η4L

C

C∑
c=1

T∑
t=0

∥∂L
c

∂W
∥4∥AtB

⊤
t ∥2 + L∥ϵt∥2

≤ L(W0) + η2
T∑

t=0

G(G+ σ)2∥AtB
⊤
t ∥+ η2

T∑
t=0

(Gσ2 + 2G2σ)∥AtB
⊤
t ∥

+ 2η2L

T∑
t=0

(∥BtB
⊤
t ∥2 + ∥AtA

⊤
t ∥2)G2 + 2η4L

T∑
t=0

(G+ σ)4∥AtB
⊤
t ∥2 + 2η4L

T∑
t=0

(Gσ2 + 2G2σ)2∥AtB
⊤
t ∥2

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

∥AtBt∥ = ∥Wt∥ ≤ ∥Wt −W ∗∥+ ∥W ∗∥ ≤ dist(Wt,S)2 + ∥S∥+ 1

∥BtB
⊤
t ∥2 = ∥AtA

⊤
t ∥2 = ∥AtBt∥2 = ∥Wt∥2 ≤ 2dist(Wt,S)2 + 2∥S∥2

If dist(Wt,S)2 < M for t ≤ T , we want

dist(WT+1,S)2 ≤ L(WT+1)

µ
≤ M,

which translates to

L(W0) + η20(G(G+ σ)2 +Gσ2 + 2G2σ)(M + ∥W ∗∥+ 1) + 2η20LG
2(M + ∥W ∗∥2)

+ η40L((G+ σ)4 + (Gσ2 + 2G2σ)2)M ≤ µM.

The above condition is satisfied when

η20G(G+ σ)2 + 2η20LG
2 + η40L((G+ σ)4 + (Gσ2 + 2G2σ)2) ≤ µ

2
,

µ

2
M ≥ L(W0) + η20(G(G+ σ)2 +Gσ2 + 2G2σ)(∥W ∗∥+ 1) + 2η20LG

2(∥W ∗∥2) (1)

Under the boundedness condition of A and B, we can prove the convergence of Algorithm 1.

η

T∑
t=0

∥∂L
∂A

∥2 + ∥ ∂L
∂B

∥2

≤ L(W0)− L(WT+1) + η2
T∑

t=0

G(G+ σ)2∥AtB
⊤
t ∥+ η2

T∑
t=0

(Gσ2 + 2G2σ)∥AtB
⊤
t ∥

+ η2L

T∑
t=0

(∥BtB
⊤
t ∥2 + ∥AtA

⊤
t ∥2)G2 + η4L

T∑
t=0

(G+ σ)4∥AtB
⊤
t ∥2 + η4L

T∑
t=0

(Gσ2 + 2G2σ)2∥AtB
⊤
t ∥2

1

T

T∑
t=0

∥∂L
∂A

∥2 + ∥ ∂L
∂B

∥2

≤L(W0)− L(WT+1)

ηT
+

η

T

T∑
t=0

G(G+ σ)2∥AtB
⊤
t ∥+ η

T

T∑
t=0

(Gσ2 + 2G2σ)∥AtB
⊤
t ∥

+
ηL

T

T∑
t=0

(∥BtB
⊤
t ∥2 + ∥AtA

⊤
t ∥2)G2 +

η3L

T

T∑
t=0

(G+ σ)4∥AtB
⊤
t ∥2 + η3L

T

T∑
t=0

(Gσ2 + 2G2σ)2∥AtB
⊤
t ∥2

≤L(W0)− L(WT+1)

η0
√
T

+
η0√
T
(G(G+ σ)2 +Gσ2 + 2G2σ)(M + ∥W ∗∥+ 1)

+
2η0LG

2

√
T

(M + ∥W ∗∥2) + η30L

T 3/2
((G+ σ)4 + (Gσ2 + 2G2σ)2)M

C CONVERGENCE FOR MULTIPLE LOCAL STEPS

The chain rule on Hessian

HL(A) = (
∂W

∂A
)HL(W)(

∂W

∂A
)⊤ +

∑
i

∂L(W)

∂Wi
HWi

(B)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

The update on the local LoRA modules are

Bc
t+1 = Bt − η

K∑
k=1

∂Lc

∂Bc
t,k

= Bt − ηK
∂Lc

∂Bt
− η

K∑
k=1

(
∂Lc

∂Bc
t,k

− ∂Lc

∂Bt
)

Ac
t+1 = At − η

K∑
k=1

∂Lc

∂Ac
t,k

= At − ηK
∂Lc

∂At
− η

K∑
k=1

(
∂Lc

∂Ac
t,k

− ∂Lc

∂At
)

The norm of LoRA modules

∥Bc
t+1∥ ≤ ∥Bt∥+ ηG

K∑
k=1

∥Ac
t,k∥ ≤ Dt

is satisfied when we set Dt = 2∥At∥ and η ≤ 1
2GK .

Then

Bt+1A
⊤
t+1 + ϵt = W̄t+1 =

1

C

C∑
c=1

Bc
t+1(A

c
t+1)

⊤

=
1

C

C∑
c=1

(Bt − ηK
∂Lc

∂Bt
− η

K∑
k=1

(
∂Lc

∂Bc
t,k

− ∂Lc

∂Bt
))(At − ηK

∂Lc

∂At
− η

K∑
k=1

(
∂Lc

∂Ac
t,k

− ∂Lc

∂At
))⊤

= BtA
⊤
t − ηK

∂L
∂Bt

A⊤
t − ηKBt

∂L
∂At

⊤
− η

1

C
Bt

C∑
c=1

K∑
k=1

(
∂Lc

∂Ac
t,k

− ∂Lc

∂At
)⊤

− η
1

C

C∑
c=1

K∑
k=1

(
∂Lc

∂Bc
t,k

− ∂Lc

∂Bt
)Ac

t+1 + η2K
1

C

C∑
c=1

∂Lc

∂Bt

K∑
k=1

∂Lc

∂Ac
t,k

Consider the term

∥
K∑

k=1

(
∂Lc

∂Bc
t,k

− ∂Lc

∂Bt
)Ac

t+1∥

≤
K∑

k=1

∥HLc(Bt)(B
c
t,k −Bt)∥∥Ac

t+1∥

≤η

K∑
k=1

∥HLc(Bt)∥∥
k∑

τ=1

∂L
∂W

Ac
t,τ∥∥Ac

t+1∥

≤ηK2L∥Bc
t,k∥2G∥Ac

t,k∥∥Ac
t+1∥

Consider the loss on W

L(Wt+1) ≤L(Wt)− ηK∥ ∂L
∂At

∥2 − ηK∥∂L
Bt

∥2 + 2ηG∥Bt∥ηK2LD2
tGDt

+ 2η2GK2LD2
tGD2

t + 2η2GK∥At∥GKDtG+ η2GK2G2∥BtA
⊤
t ∥

+ 3L(η2K2G2∥At∥4 + η2K2G2∥Bt∥4 + 4η4∥Bt∥2K4L2D6
tG

2)

+ 3L(4η4K4L2D8
tG

2 + 4η4G6K4∥At∥2D2
t + η4K4G4∥BtA

⊤
t ∥2)

≤L(Wt)− ηK∥ ∂L
∂At

∥2 − ηK∥∂L
Bt

∥2 + 4η20
T

L∥Bt∥4 +
8η20
T

L∥Bt∥4 +
η20
T
G∥At∥2 +

η20
4T

G∥At∥2

+ 3L(
η20
2T

∥At∥4 +
16η20
G2T

∥Bt∥8L2 +
64η20
G2T

∥Bt∥8L2 +
η20
T
G2∥At∥4 +

η20
16T

∥At∥4)

Set η0 ≤
√

η′
0

∥S∥+M . The RHS

RHS ≤ L(Wt) +
4η′0L

T
+

5η′0G

4TM
+ 3L(

η′0
2T

+
80η′0L

2

G2T
∥Wt∥2 +

η′0
T
G2 +

η′0
16T

)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aggregate the inequality by time step t, we require the following relationship holds

L(W1) + 4η′0L+
5η′0G

4M
+ 3L(

η′0
2

+
160η′0L

2

G2
(M + ∥S∥) + η′0G

2 +
η′0
16

) ≤ µM

Let η0 ≤
√
µG

18L(∥S∥+M) , and

M =
2

µ
(L(W1) + 4η′0L+

5η′0G

4
+ 3L(

η′0
2

+
160η′0L

2

G2
∥S∥+ η′0G

2 +
η′0
16

)) (2)

satisfies the condition.

D DISCUSSIONS ON COMPUTATIONAL OVERHEAD

While TFLoRA involves additional operations on the server side, in this section, we show that
computational overhead is affordable in practice. The additional cost mainly comes from the
pseudo-gradient computation step and the LoRA module redistribution step. To compute the pseudo-
gradient, we apply matrix multiplication to the LoRA modules which amounts to O(mnr) flops. For
the redistribution step, we apply SVD decomposition to the adapter weights W and only keeps the
top-r singular vectors. The operation can be efficiently implemented via Lanczos method (Lehoucq
et al., 1998), which takes O(mnr) flops. Notice that these operations are executed layer-wise,
and hence the matrix shapes m and n occurring in the computational complexity are typically in
thousands. For example, GPT2 (Radford et al., 2019) has m = 3072, n = 768 and for RoBERTa-
Base (Liu et al., 2019) and ViT-Base (Vaswani, 2017), we have m = n = 768. In addition, since
there is no temporal dependence on the operations and the LoRA modules of different layers typi-
cally have the same size, the matrix multiplication and SVD operations can be computed in batches
and in a parallel way. Finally, all these operations requiring higher computational overhead happen
on the server side, which is commonly reckoned to have abundant computing resources.

13

	Introduction
	Proposed Approach
	Showcasing the Difference of Merging Mechanisms
	Convergence Analysis

	Empirical Studies
	Conclusion
	Proof of Proposition 2.1
	Convergence Proof
	Proof of Theorem 2.7

	Convergence for Multiple Local steps
	Discussions on Computational Overhead

