
ML for Computer Architecture and Systems (MLArchSys), ISCA 2024

FedRepre: An Efficient and Scalable Federated
Learning Framework with Client Representative
Mechanism and Specialized Server Architecture

Yitu Wang∗†, Minxue Tang∗†, Hanqiu Chen‡, Shiyu Li†, Qilin Zheng†,
Cong Guo†, Andrew Chang§, Cong “Callie” Hao‡, Hai “Helen” Li†, Yiran Chen†

†Duke University. {yitu.wang, minxue.tang, shiyu.li, qilin.zheng, cong.guo, hai.li, yiran.chen}@duke.edu
‡Georgia Institute of Technology. {hanqiu.chen, callie.hao}@gatech.edu

§Samsung Semiconductor, Inc. {andrew.c1}@samsung.com

Abstract—Federated learning (FL) is an emerging distributed
machine learning (ML) technique that enables model training
across heterogeneous devices while preserving data privacy. How-
ever, developing FL in real-world environments faces significant
challenges that hinder performance and convergence efficiency.
Specifically, the participating devices often have unbalanced local
dataset distributions, uneven available computational capabilities,
and fluctuating real-time network speeds. Moreover, scaling up
the FL system to massive device populations magnifies the
importance of the client selection strategy. The execution of such
a strategy may emerge as a new bottleneck in the FL system.
Unfortunately, prior work has yet to simultaneously address these
pressing challenges surrounding real-world FL deployments.

We propose FEDREPRE, an efficient and scalable FL frame-
work to accelerate the read-world FL. FEDREPRE introduces a
bi-level active client selection strategy called client representative
mechanism to guarantee the fast convergence of the global model
while reducing the client selection complexity. Specifically, the
clients are first clustered based on the statistical correlations, and
then cluster selection and representative selection are conducted
respectively to attain the maximal global loss decrease and
the minimal communication and training latency. To further
enhance the scalability, FEDREPRE employs a specialized server
architecture to reduce the computation time of the client selection
algorithm on the server. We adopt compute express link (CXL) to
develop an efficient memory system and unify the memory space
with the memory resources on different devices. In addition,
we offload the customized hardware selection kernel onto the
FPGA with an optimized workflow. We empirically evaluate
FEDREPRE across settings with varying scales and heterogeneity
levels. The results show that FEDREPRE outperforms previous
client selection strategies, achieving 2.16× – 19.54× speedup of
convergence time and up to 1.63% accuracy improvement.

I. INTRODUCTION

Machine learning (ML) has permeated various aspects of
our daily lives, extending its reach to edge devices such as
smartphones, laptops, cameras, and more. The application of
ML to diverse user scenarios necessitates the collection and
processing of user data from these edge devices, giving rise
to significant concerns about user data privacy – an issue we
cannot afford to overlook. Federated learning (FL) [8], [9],
[16] emerged as a solution to utilize user data from edge de-
vices with a privacy guarantee. FL pushes ML model training
to edge devices (also refer to clients) and only aggregates the

*These authors contributed equally to this work.

Sys eff. Stat eff.

Privacy
FedAvg - 𝑂(1), 
AFL - 𝑂(𝑁)

Oort 
- 𝑂(𝑁𝑙𝑜𝑔𝑁)

Harmony
- 𝑂(𝑁𝑙𝑜𝑔𝑁)

FedCor
- 𝑂(𝑁!)

Ours
- 𝑂(𝐶!)

FedCBS
- 𝑂(𝑁!)

loss change ∆𝑙

inter-cluster
correlation

inter-client/cluster
system status + 

specialized server

Fig. 1. The comparison of prior federated learning frameworks and ours
from the perspectives of privacy, system efficiency, statistical efficiency and
scalability (selection complexity).

models from edge devices periodically, thereby avoiding the
privacy leakage caused by data transmission.

However, the real-world FL system suffers from poor con-
vergence time-to-accuracy performance (the convergence time
to achieve the target accuracy) [7], [14], which is determined
by two efficiency metrics, statistical efficiency and system
efficiency. Statistical efficiency is referred to as the number of
model aggregation rounds taken to achieve the target accuracy,
while system efficiency is defined as the duration of each round,
including local on-device training latency and data transfer
time [26]. Data heterogeneity and system heterogeneity among
clients are the major issues that impact the statistical and
system efficiency, respectively. Data heterogeneity is mani-
fested in the unbalanced and not independent-and-identically-
distributed (non-IID) data among different clients [5]. System
heterogeneity is revealed as the variation of runtime compu-
tational capability and data transfer speed due to the diversity
of devices and networks [12], [24].

Actively selecting a subset of clients to participate in
each training round has emerged as a promising technique
to tackle the heterogeneity issues [4], [12], [26]. However,
previous works on active client selection have deficiencies, as
shown in Figure 1. (i) Compromised privacy principle due to
disclosed sensitive information: some previous client selection
strategies, FedCBS [32] and Harmony [26], try to achieve an
overall balanced data distribution across the selected clients
by requiring the clients to report their local data distribution,
from which the habits or preferences of the clients can be
speculated. (ii) Low statistical efficiency due to uncorrelated

1



client selection: other client selection strategies like AFL [4]
and Oort [12] sidestep privacy-leaking risks by only utilizing
the training loss of the local model on each client to guide
selection - however, these isolated views neglect the inter-
client correlations, thus introducing redundancy and bias into
the client selection, which leads to marginal improvement
in the statistical efficiency. (iii) Poor system efficiency due
to neglected system status and high selection complexity:
a recent study, FedCor [25] proposes a privacy-preserving
and statistics-efficient client selection strategy based on the
correlations between clients - but the variation in the system
status of different clients is neglected, inducing low system
efficiency. In addition, the complexity and scalability of the
client selection strategies also have a pivotal impact on the
system efficiency of an FL system with a massive device
population; nevertheless, this fact has been overlooked by
previous studies (e.g., FedCor has a quadratic complexity with
respect to the number of clients).

As the number of clients increases, we note a shift in
the bottleneck of the convergence time for an FL system,
transitioning from client training latency and data transfer
overhead to the execution of the client selection strategy on
the server. There are two primary factors that drive the shift.
(i) High selection complexity: the client selection strategies in
previous works have a complexity of O(N2) [25], [32] with
respect to the number of clients N - this quadratic scaling
entails rapid growth in computation and memory demands as
N reaches massive populations, creating impractical server-
side costs for performing selections. (ii) Lack of specialized
server design: The inefficiency of executing the selection
kernels on the conventional server (just using CPU/GPU to
compute) induces high latency, but none of the prior works
put forth a dedicated server design for their client selection
strategy, thus missing out on the potential to enhance the
selection strategy from a hardware perspective. Additionally,
the previous works did not explore the memory system design
space to optimize the complicated data transmission on the
server when dealing with the increasing number of clients.

To tackle the challenges mentioned above, we propose
FEDREPRE, an efficient and scalable FL framework with
an exquisite algorithm-architecture co-design. From the al-
gorithm perspective, FEDREPRE statistically correlates the
clients based on their loss changes without requiring any
private information. To deal with both statistical and system
heterogeneity and reduce the selection complexity simultane-
ously, FEDREPRE adopts a bi-level client selection strategy
called client representative mechanism. The client represen-
tative mechanism first clusters the highly correlated clients
and selects clusters according to the cluster-level correlation,
which can maintain high statistical efficiency while reducing
the selection complexity from O(N2) to O(C2) with the
number of clusters C ≪ N (e.g., C = 30, N = 1000).
Then, within each selected cluster, the client representative
mechanism picks one client representative with low training
time and data transfer latency estimated with the runtime
system status, thereby improving the system efficiency.

0.01

0.1

1

10

100

1000

0.01

0.1

1

10

100

1000

0.001 0.01 0.1 1 10 100 1000

Tr
ai

ni
ng

 E
ne

rg
y 

(m
W

h)

Training Latency (s)

0

50

100

150

200

1 100 10000

Po
w

er
 (W

)

Performance (GFLOPS)

Devices

Fig. 2. The heterogeneity of client devices.

100 101 102 103

Network Upload Speed (Mbps)

10−3

10−2

10−1

Pr
ob

ab
ilit

y 
De

ns
ity

Satelite
DSL
4G LTE
Cable

WiFi
5G
Fiber

10−2

10−1

100

101

102

Da
ta

 T
ra

ns
fe

r T
im

e 
(s

)

LeNet5
VGG11

Fig. 3. The heterogeneity of networks.

From the hardware perspective, we propose a specialized
server architecture to further reduce the client selection la-
tency induced by the scalability issue. To store a large amount
of auxiliary information (embedding vectors) as the number
of clients increases, we expand the server memory space to
the storage space with compute express link (CXL) [2]. Mean-
while, benefiting from CXL, we design an efficient memory
system that further reduces the data transmission latency on
the server. To accelerate the execution of the selection kernels,
we customize the corresponding selection logic on the FPGA.

A suite of empirical evaluations with different levels of
heterogeneity and scale on different workloads reveals the
high efficiency of FEDREPRE. when performing the training
for 1000 communication rounds, FEDREPRE can averagely
accelerate the convergence of the real-world FL system by
2.16× – 19.54× and reduce the energy consumption by 42% –
93% compared to the state-of-the-art client selection strategies.
Meanwhile, FEDREPRE can improve the model accuracy by up
to 1.63%. Overall, we make the following key contributions:

(1) We propose a novel FL framework FEDREPRE with a
low-complexity client selection strategy named client repre-
sentative mechanism to improve both statistical and system
efficiency of the real-world FL system, along with higher
model accuracy.

(2) We meticulously craft a server equipped with an ef-
ficient memory system and specialized selection kernels to
further improve the scalability of the FL system.

(3) We conduct a comprehensive evaluation for FEDREPRE
with the emulation of real-world FL systems, implementation
of server hardware kernels, and end-to-end simulation on
different workloads in heterogeneous settings.

II. CHARACTERISTIC STUDY AND MOTIVATION

In this section, we elaborate on the characteristic studies of
heterogeneity and scalability in the real-world FL system.

2



A. Heterogeneity Issue

The data heterogeneity issue has been fully discussed in
prior works [17], [21], from an algorithm perspective with
the conclusion suggesting that the data heterogeneity makes
the clients unequally contribute to the global loss decrease.
Although revealing the local dataset distributions is the most
straightforward solution to this issue, on-device data privacy
is seriously threatened. Hence, we are motivated to explore
the correlations among the clients implicitly to maximize the
global loss decrease.

For a real-world FL system, the system heterogeneity is
more critical to the convergence time because the selected
client with the poorest runtime computing capability and
lowest network data transfer speed determines the system
efficiency. Figure 2 illustrates the heterogeneity of 22 types
of typical client devices, including Raspberry Pi 4 [22],
MacBook with m1 chip [15], and some other devices on the
AI benchmark [1]. The embedded figure shows the variation
of theoretical performance and typical power of these devices.
Correspondingly, there is a huge difference in training latency
and energy consumption when adopting these devices to train
different workloads with a batch of 10 samples, e.g., training
LeNet5 [13] on FMNIST [30] (L-F) and VGG11 [23] on
CIFAR10 [10] (V-C), as shown in Figure 2. In addition,
our testing results show that the co-running applications,
e.g., 1080p/4k video playback, web applications and neural
network-based object detection, on the devices also have
an impact on the local training performance. Besides the
heterogeneity of client devices, the system heterogeneity also
includes the heterogeneity of networks that the client uses. In
Figure 3, seven types of networks are shown with different
upload speed distributions, along with the corresponding data
transfer time for different models. It is not difficult to observe
an order of magnitude difference in the data transfer time of
the parameters of the same model. The device and network
heterogeneity motivate us to integrate the client-wise system
status information, e.g., theoretical performance, co-running
applications, and the data transfer speed, into the selection
strategy of FEDREPRE.

B. Scalability Issue

We observe that as the number of clients increases, the
bottleneck of the convergence time shifts to the execution time
on the server as shown in Figure 4 (a). We conduct a study on
applying FedCor [25] to the training of LeNet5 on FMNIST,
selecting 10 clients from 100 and 1000 clients, respectively.
The server profiling is performed on two hardware platforms,
Intel Xeon Gold 6254 CPU and NVIDIA Titan RTX GPU.
We found that when the number of clients increases from
100 to 1000, the server execution takes the most overhead
in terms of the end-to-end convergence time, from 7% to
48% on CPU and from 12% to 54% on GPU. Firstly, this is
because the selection complexity of FedCor is high, O(N2),
and quadratically increases with the number of clients. Besides
FedCor, in Figure 1, we can observe that all of the prior
works trying to improve the statistical or system efficiency

1

10

100

1000

10000

GPU
(100,10)

CPU
(100,10)

GPU
(1000,10)

CPU
(1000,10)

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

Breakdown of Server Execution Time

client selection aggregation others

0 0.5 1

GPU (100,10)

CPU (100,10)

GPU (1000,10)

CPU (1000,10)

Breakdown of Convergence Time

device train. data trans. server exec.

(a) (b)

Fig. 4. The profiling results of FedCor [25] with different number of clients.
(a) The end-to-end convergence time overhead breakdown and (b) server
execution breakdown.

Client 
Selector

Client 
Monitor

Model 
Aggregator

Clients

② Upload local info:
local models , ∆𝑙
and runtime status

⑤ Send central info:
aggregated model
and selected clients

① Local training

③ Client info update④ Selection strat. exec.③Model aggregate.

Server

CPU CXL-SSD with FPGA CPU

CXL CXL

Fig. 5. The overview of FEDREPRE system with 5 stages.

induce high selection complexity, O(N logN) or O(N2).
Thus, we are motivated to reduce the selection complexity
from an algorithm perspective in FEDREPRE. In fact, the other
selection strategies like Oort [12] and Harmony [26] also have
the similar issue to FedCor.

Secondly, Figure 4(b) further illustrates the server execution
time breakdown. The client selection kernel dominates the
server execution time regardless of the client population size.
To be specific, client selection kernel takes 46.9% and 79.8%
of server execution time when selecting 10 clients from 100
and 1000 clients, respectively. This is because CPU cannot
satisfy the high computational parallelism which is required
by the client selection logic. In addition, when the number
of clients increases, CPU cache cannot buffer all the data
and CPU needs to access the corresponding data of clients
from DRAM, which makes the client selection kernel takes
more overhead. Surprisingly, GPU performs worse than CPU
though GPU has more computational power. For example,
using GPU takes 300 ms more than CPU when executing
the client selection kernel to select 10 clients from 1000
clients. This is mainly because the extra overhead of data
copy from CPU to GPU, which is induced by the execution
of the PCIe driver [19]. Meanwhile, we also observe that the
GPU utilization is only 12% when running the client selection
kernel. These interesting facts motivate us to specialize the
server, especially the efficient memory system and customized
hardware selection logic, to accelerate the server execution.

III. SYSTEM OVERVIEW

Figure 5 illustrates the system overview of FEDREPRE.
The whole system consists of a specialized server, which
includes a model aggregator, a client selector and a client
monitor. The model aggregator and client monitor run on the
CPU while the client selector is offloaded and customized

3



𝑥!

𝑥" ①
Client 

Clustering

②
Cluste

r 

Selection

③
Representative 

Selection

Fig. 6. The workflow of FEDREPRE client selection strategy with client
representative mechanism.

on the FPGA within the CXL-SSD. An efficient memory
system is developed with the memory resources on the CPU,
FPGA and SSD via CXL. In general, the workflow of one
communication round in FEDREPRE system can be partitioned
into five dependent stages. 1 The selected clients, which were
generated in the last communication round, train the local
model with private datasets; 2 The selected clients upload
the trained local model to the server; Meanwhile, the runtime
system status and the loss decrease (∆l) could be sent to the
server; 3 The model aggregator performs the aggregation
of the received local models; At the same time, the client
monitor estimates the systematic cost for each client according
to the runtime status and could update the inter-client corre-
lations according to the loss decreases; 4 The client selector
selects clients for the next communication round by executing
our client selection strategy with the client representative
mechanism. 5 The server sends back the aggregated model
and shake hands with the newly selected clients.

IV. ALGORITHM DESIGN

We elaborate on the algorithm design of FEDREPRE, aiming
at mitigating the impact of heterogeneity issues. We first
propose the client representative mechanism, which clusters
clients according to their statistical correlations and adopts
a bi-level selection (cluster selection and representative selec-
tion) method to select clients. The client representative mecha-
nism can maintain high statistical efficiency while significantly
reducing the selection complexity compared to the previous
correlation-based client selection strategy, since only cluster-
level correlation is considered in the bi-level selection. Based
on the client representative mechanism, we further incorporate
the systematic cost into the selection strategy to achieve high
system efficiency. Our algorithm is illustrated in Figure 6.

V. SERVER ARCHITECTURE

We introduce our specialized server architecture to accel-
erate the client selection procedure. Figure 7 (a) illustrates
the overall server architecture design with compute express
link (CXL) [2]. The server includes a CPU host with main
memory, a GPU, and a CXL-SSD. The CPU host performs
the model aggregation and the client clustering. Hence, the
corresponding global model, gradients of the selected local
models from the clients, and the client-wise system status are
stored in the main memory. The CXL-SSD [3] consists of

an FPGA with high-bandwidth memory (HBM) and an SSD.
The FPGA is used to implement CXL controller as well as
accelerate the inter-cluster selection logic of FEDREPRE. The
CPU host communicates with the CXL-SSD through the CXL
interconnect. Client embeddings reside in CXL-SSD storage,
i.e., SSD, since they are only accessed during occasional re-
clustering when GPU updates force new embeddings, which
is out of the scope of this work. If all the embeddings are
always stored in huge HBM or DRAM, a huge amount of
memory resources are wasted while the selection process will
not be accelerated.Adopting CXL unifies memory resources
across devices, facilitating an efficient hierarchical memory
architecture. In such a memory system, the CPU host can
access the CXL-SSD using memory load/store instead of
initiating the costly I/O access.

VI. EVALUATION

A. Experimental Setup and Implementation.

(i) Datasets and models: Following previous works [25],
[26], [32], we conduct our empirical evaluation on FM-
NIST [30] and CIFAR10 [10], with LeNet5 [13] and
VGG11 [23], respectively. We train each model for 1000
communication rounds in all our experiments. We partition the
training set of each dataset to N = 100 or N = 1000 clients
with two different heterogeneity settings: (a) DIR: We use
a Dirichlet Distribution with a concentration factor α = 0.1
to generate the class ratio for each client. This is a common
setting in previous studies [5], [25], [29]; (b) SC: We only
allocate data from a single class to each client to simulate the
extreme data heterogeneity among clients [5], [25].

(ii) System emulator: To evaluate FEDREPRE in the real-
world FL scenario, we emulate the heterogeneous clients
with a device pool consisting of 22 different types of the
devices as described in Section II-A, following the methods
in the open-source FL benchmark [11]. We randomly sample
N = 100 or N = 1000 client devices from the device pool
to simulate FEDREPRE with different scales. Meanwhile, a
runtime application pool is built with the 4 tested co-running
applications as shown in Figure 2 and a network pool is set
up with the 7 network upload speed distributions in Figure 3,
where the data is generated from Network Measurements
on mobiles [18]. During each communication round, the co-
running runtime application and the network situation are
sampled from their respective pools to emulate the runtime
status and available network bandwidth for each device.

(iii) Server simulator: To evaluate the FEDREPRE server,
we firstly modify MQSim-CXL [31] by integrating the sim-
ulated module of the selection logic to simulate the memory
system design with CXL. Furthermore, to get the performance
of the specialized selection logic, we implement it on Alveo
U50 Data Center Accelerator Card [27] with Vitis HLS [28].
Other server operations are profiled on the real machine, Intel
Xeon Gold 6254 CPU [6].

(iv) Framework implementation: Integrating the system
status from the system emulator and the hardware performance
from the server simulator into FEDREPRE framework, the

4



(a)

CPU Host

Host Mem

Global
Model

Gradients of
𝐾 Local Models

Client-wise Sys Status

GPU

Aggr. & 
Cluster Logic

CXL-SSD (type-3)

FPGA
m.2

SSD

Client Embedding Vectors

CXL Ctr. Selection Logic

CXLPCIe

CXL.io
CXL.mem

ld. client-wise

Sys status

(b)

CPU

HPA
Host 
Mem SSD

FPGA 
HBM

Host CXL-SSD

ld. (CXL.mem)

emb. vectors

st. (CXL.mem)

𝜇
! , Σ

!

send (CXL.io) 𝑐"∗

Priv. HBM

m
em

 copy

Fig. 7. (a) The server architecture with the corresponding offloaded kernels. (b) The efficient memory system.

0 2 4 6
Convergence Time (s) 1e3

20%

40%

60%

80%

Ac
cu

ra
cy

LeNet5-FMNIST, DIR, N= 100

0 2 4 6
Convergence Time (s) 1e3

20%

40%

60%

80%
LeNet5-FMNIST, SC, N= 100

0 2 4 6
Convergence Time (s) 1e3

20%

40%

60%

80%
LeNet5-FMNIST, DIR, N= 1000

0 2 4 6
Convergence Time (s) 1e3

20%

40%

60%

80% LeNet5-FMNIST, SC, N= 1000

0 1 2 3
Convergence Time (s) 1e5

20%

40%

60%

80%

Ac
cu

ra
cy

VGG11-CIFAR10, DIR, N= 100

0 1 2 3
Convergence Time (s) 1e5

20%

40%

60%

80%
VGG11-CIFAR10, SC, N= 100

0 1 2 3
Convergence Time (s) 1e5

20%

40%

60%

80%
VGG11-CIFAR10, DIR, N= 1000

0 1 2 3
Convergence Time (s) 1e5

20%

40%

60%

80%
VGG11-CIFAR10, SC, N= 1000

FedAll FedAvg AFL Oort FedCBS Harmony FedCor FedRepre
Fig. 8. The convergence time - accuracy curves of adopting different client selection strategies on LeNet5-FMNIST and VGG11-CIFAR10 with 100 and
1000 clients for 1000 communication rounds.
client selection strategy, global model aggregation and client
local training are finally implemented in PyTorch [20] to
conduct the comprehensive evaluation. For fair comparison,
we also implement 7 baselines: FedAll, FedAvg [16], AFL [4],
Oort [12], FedCBS [32], Harmony [26] and FedCor [25] with
the same system emulator. Except for FedAll, we sample
K = 10 clients in each round with FEDREPRE and all the
other baselines. FedAll is not implemented for N = 1000
because it selects all the clients in each communication round,
taking too much emulation overhead.

(v) Evaluation metrics: We repeat each experiment with
three different random seeds and test the global model on
the held-out test set. All the results (including test accuracy,
number of rounds, amount of time, etc.) are reported as the
means over the three random seeds.

B. Convergence Time - Accuracy

Figure 8 illustrates the comparison of the convergence
time - accuracy curves of various client selection strategies,
indicating the overall performance and efficiency of a real-
world FL system. In general, FEDREPRE achieves the shortest
convergence time, fastest convergence speed and highest accu-
racy on different workloads with both small and large system
scales. On average, when conducting the training for 1000
communication rounds, FEDREPRE achieves 19.54×, 7.95×,
6.61×, 6.75× and 6.73× respective speedup over FedAll,
FedAvg, AFL, FedCBS and FedCor, mainly because they do
not address the system heterogeneity issue when selecting the
clients, inducing much longer end-to-end convergence time.
While Oort and Harmony consider the system heterogeneity
in their selection strategies, Oort suffers from low statistical
efficiency without considering the dependency between clients,

and Harmony attains suboptimal system efficiency due to
overlooking data transmission time. In contrast, FEDREPRE
considers the correlations between clients together with the
runtime computational capability and available network band-
width of each client such that our selection can attain the
largest overall loss decrease on all the clients with low training
and communication latency. Hence, compared to Harmony
and Oort, FEDREPRE can still achieve 2.16× and 3.45×
speedups on average, and up to 1.43% and 1.63% accuracy
improvements, respectively. When the scale of the FL system
increases (N = 1000), benefiting from the low selection
complexity, FEDREPRE shows even better system scalability
and outperforms Harmony and Oort by up to 3.56× and 4.89×
speedups respectively. In addition, FEDREPRE guarantees
strong privacy protection by only collecting the loss change of
each client, while Harmony requires inferring the local data
distribution of each client, which definitely compromises the
privacy principle in FL.

VII. CONCLUSIONS

In this work, we propose FEDREPRE, an efficient and
scalable FL framework with client representative mechanism
and specialized server architecture . The representative mecha-
nism discovers the correlation among the clients, significantly
reduces the selection complexity, integrates the client-wise
system status, and shows great scalability. Based on our
insight that executing the selection strategy could signifi-
cantly influence the convergence time, a specialized server is
proposed, drawing attention to the necessity of a powerful
FL server. Based on the experimental findings, FedRepre
demonstrates superior performance in terms of convergence
time-to-accuracy compared to all state-of-the-art baselines.

5



REFERENCES

[1] AI benchmark. http://ai-benchmark.com/ranking deeplearning detailed.
html.

[2] CXL specification. https://www.computeexpresslink.org/
download-the-specification.

[3] CXL-SSD. https://docs.kernel.org/PCI/phttps://www.servethehome.com/
samsung-memory-semantic-cxl-ssd-at-fms-2022-powered-by-amd-xilinx/.

[4] Jack Goetz, Kshitiz Malik, Duc Bui, Seungwhan Moon, Honglei
Liu, and Anuj Kumar. Active federated learning. arXiv preprint
arXiv:1909.12641, 2019.

[5] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the ef-
fects of non-identical data distribution for federated visual classification.
arXiv preprint arXiv:1909.06335, 2019.

[6] Intel® Xeon® Gold 6254 processor. https://
www.intel.com/content/www/us/en/products/sku/192451/
intel-xeon-gold-6254-processor-24-75m-cache-3-10-ghz/
specifications.html.

[7] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet,
Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles,
Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

[8] Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. Federated
optimization: Distributed optimization beyond the datacenter. arXiv
preprint arXiv:1511.03575, 2015.

[9] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning:
Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[10] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

[11] Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu, Xiangfeng Zhu,
Harsha Madhyastha, and Mosharaf Chowdhury. Fedscale: Benchmarking
model and system performance of federated learning at scale. In
International Conference on Machine Learning, pages 11814–11827.
PMLR, 2022.

[12] Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf Chowd-
hury. Oort: Efficient federated learning via guided participant selection.
In 15th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 21), pages 19–35, 2021.

[13] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[14] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith.
Federated learning: Challenges, methods, and future directions. IEEE
Signal Processing Magazine, 37(3):50–60, 2020.

[15] Macbook. https://www.apple.com/macbook-air-m1/.
[16] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelligence and Statistics,
pages 1273–1282. PMLR, 2017.

[24] Jingwei Sun, Ang Li, Lin Duan, Samiul Alam, Xuliang Deng, Xin Guo,
Haiming Wang, Maria Gorlatova, Mi Zhang, Hai Li, et al. Fedsea:

[17] Matias Mendieta, Taojiannan Yang, Pu Wang, Minwoo Lee, Zheng-
ming Ding, and Chen Chen. Local learning matters: Rethinking data
heterogeneity in federated learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 8397–
8406, 2022.

[18] Network Measurements. https://www.measurementlab.net/tests/
mobiperf/.

[19] PCI and PCIe driver. https://docs.kernel.org/PCI/pci.html#
structure-of-pci-drivers.

[20] Pytorch. https://pytorch.org.
[21] Liangqiong Qu, Yuyin Zhou, Paul Pu Liang, Yingda Xia, Feifei Wang,

Ehsan Adeli, Li Fei-Fei, and Daniel Rubin. Rethinking architecture
design for tackling data heterogeneity in federated learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10061–10071, 2022.

[22] Raspberry Pi 4. https://www.raspberrypi.com/products/
raspberry-pi-4-model-b/.

[23] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.
A semi-asynchronous federated learning framework for extremely het-
erogeneous devices. In Proceedings of the 20th ACM Conference on
Embedded Networked Sensor Systems, pages 106–119, 2022.

[25] Minxue Tang, Xuefei Ning, Yitu Wang, Jingwei Sun, Yu Wang, Hai
Li, and Yiran Chen. Fedcor: Correlation-based active client selection
strategy for heterogeneous federated learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10102–10111, 2022.

[26] Chunlin Tian, Li Li, Zhan Shi, Jun Wang, and ChengZhong Xu.
Harmony: Heterogeneity-aware hierarchical management for federated
learning system. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 631–645. IEEE, 2022.

[27] Alveo u50 data center accelerator card. https://www.xilinx.com/
products/boards-and-kits/alveo/u50.html.

[28] Vitis hls. https://www.xilinx.com/products/design-tools/vitis/vitis-hls.
html.

[29] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor.
Tackling the objective inconsistency problem in heterogeneous federated
optimization. arXiv preprint arXiv:2007.07481, 2020.

[30] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv
preprint arXiv:1708.07747, 2017.

[31] Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung Park, Jin-yong
Choi, Eyee Hyun Nam, Eunji Lee, Sungjin Lee, and Bryan S Kim.
Overcoming the memory wall with {CXL-Enabled}{SSDs}. In 2023
USENIX Annual Technical Conference (USENIX ATC 23), pages 601–
617, 2023.

[32] Jianyi Zhang, Ang Li, Minxue Tang, Jingwei Sun, Xiang Chen,
Fan Zhang, Changyou Chen, Yiran Chen, and Hai Li. Fed-cbs: A
heterogeneity-aware client sampling mechanism for federated learning
via class-imbalance reduction. In International Conference on Machine
Learning, pages 41354–41381. PMLR, 2023.

6

http://ai-benchmark.com/ranking_ deeplearning_detailed.html
http://ai-benchmark.com/ranking_ deeplearning_detailed.html
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://docs.kernel.org/PCI/phttps://www.servethehome.com/samsung-memory-semantic-cxl-ssd-at-fms-2022-powered-by-amd-xilinx/
https://docs.kernel.org/PCI/phttps://www.servethehome.com/samsung-memory-semantic-cxl-ssd-at-fms-2022-powered-by-amd-xilinx/
https://www.intel.com/content/www/us/en/products/sku/192451/intel-xeon-gold-6254-processor-24-75m-cache-3-10-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/192451/intel-xeon-gold-6254-processor-24-75m-cache-3-10-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/192451/intel-xeon-gold-6254-processor-24-75m-cache-3-10-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/192451/intel-xeon-gold-6254-processor-24-75m-cache-3-10-ghz/specifications.html
https://www.apple.com/macbook-air-m1/
https://www.measurementlab.net/ tests/mobiperf/
https://www.measurementlab.net/ tests/mobiperf/
https://docs.kernel.org/PCI/pci.html#structure-of-pci-drivers
https://docs.kernel.org/PCI/pci.html#structure-of-pci-drivers
https://pytorch.org
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ 
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ 
https://www.xilinx.com/products/boards-and-kits/alveo/u50.html
https://www.xilinx.com/products/boards-and-kits/alveo/u50.html
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html

	Introduction
	Characteristic Study and Motivation
	Heterogeneity Issue
	Scalability Issue

	System Overview
	Algorithm Design
	Server Architecture
	Evaluation
	Experimental Setup and Implementation.
	Convergence Time - Accuracy

	Conclusions
	References

