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Abstract

The shortest path problem in graphs is fundamental to AI.
Nearly all variants of the problem and relevant algorithms
that solve them ignore edge-weight computation time and its
common relation to weight uncertainty. This implies that tak-
ing these factors into consideration can potentially lead to a
performance boost in relevant applications. Recently, a gen-
eralized framework for weighted directed graphs was sug-
gested, where edge-weight can be computed (estimated) mul-
tiple times, at increasing accuracy and run-time expense. We
build on this framework to introduce the problem of finding
the tightest admissible shortest path (TASP); a path with the
tightest suboptimality bound on the optimal cost. This is a
generalization of the shortest path problem to bounded uncer-
tainty, where edge-weight uncertainty can be traded for com-
putational cost. We present a complete algorithm for solving
TASP, with guarantees on solution quality. Empirical evalua-
tion supports the effectiveness of this approach.

1 Introduction
Finding the shortest path in a directed, weighted graph is
fundamental to artificial intelligence and its applications.
The cost of a path is the sum of the weights of its edges.
Informed and uninformed search algorithms for finding
shortest (minimal-cost) paths are heavily used in planning,
scheduling, machine learning, constraint optimization, etc.

Graph edge-weights are commonly assumed to be avail-
able in negligible time. However, this does not hold in many
applications. When weights are determined by queries to
remote sources, or when a massive graph is stored in ex-
ternal memory (e.g., disk) then the order in which edges
are visited—accessing external memory—needs to be op-
timized (Vitter 2001; Hutchinson, Maheshwari, and Zeh
2003; Jabbar 2008; Korf 2008b,a, 2016; Sturtevant and Chen
2016). Similarly, when edge-weights are computed dynami-
cally using learned models, or external procedures, it is ben-
eficial to delay weight evaluation until necessary (Dellin and
Srinivasa 2016; Narayanan and Likhachev 2017; Mandalika,
Salzman, and Srinivasa 2018; Mandalika et al. 2019).

Instead of delaying and re-ordering expensive edge-
weight evaluations, a recent formalization focuses instead
on using multiple weight estimators (Weiss and Kaminka
2023b; Weiss, Felner, and Kaminka 2023). Edge-weights are
replaced with an ordered set of estimators, each providing

lower and upper bounds on the true weight. Incrementally,
subsequent estimators can tighten the bounds, but at increas-
ing computation time. A search algorithm may quickly com-
pute loose bounds on the edge-weight, and invest more com-
putation on a tighter estimator later in the process.

For example, consider finding the fastest route between
two cities, where edges and their weights represent roads
and travel times, resp. First rough bounds on travel time
can be estimated from fixed distances and speed limits (say,
from a local database). For more accuracy, Google Maps,
which considers additional road factors and traffic data, can
be queried online. Even more accuracy can be achieved—
at increased run-time—by further considering vehicle at-
tributes together with road characteristics, which can be
highly relevant for large and heavy vehicles such as trucks
and buses (PTV-Group 2023).

Having multiple weight estimators for edges is a proper
generalization of standard edge-weights, and raises several
shortest path problem variants. The classic singular edge-
weight is a special case, of an estimator whose lower- and
upper- bounds are identical. However, since the true weight
may not be known (even applying the most expensive esti-
mator), other variants of the shortest path problems involve
finding paths that have the best bounds on the optimal cost.

In this paper, we introduce the tightest admissible shortest
path (TASP) problem, which is an important shortest-path
problem variant in graphs with multiple-estimated edge-
weights. Its solution provides an answer to the question:
what is the tightest suboptimality factor w.r.t. the optimal
cost that can be achieved given that edge-weights have un-
certainty bounds? We show that solving TASP can be re-
duced to solving two simpler problems: The shortest path
tightest lower bound (SLB), that was introduced and solved
optimally by the BEAUTY algorithm in (Weiss, Felner, and
Kaminka 2023); and the shortest path tightest upper bound
(SUB) problem, which we define and solve in this paper.

To solve SUB, we present BEAST, an uninformed search
algorithm based on uniform-cost search (UCS, a variant of
Dijksra’s algorithm) (Dijkstra 1959; Felner 2011), that takes
advantage of prior information about the solution of SUB.
We then use it to construct BEAUTY&BEAST, an algorithm
that solves TASP problems by exploiting coupling between
the problems of SLB and SUB. Experiments demonstrate the
effectiveness of BEAUTY&BEAST compared to the base-



line that solves SLB and SUB separately.
Our main contributions in this paper are threefold: (1)

The introduction of TASP as a natural extension of the fa-
miliar shortest path problem to settings with bounded edge-
weight uncertainty, and its solution by solving the related
problems SLB&SUB. (2) The BEAST algorithm that finds
optimal solutions for SUB. (3) The idea that information ob-
tained from solving either SLB or SUB can be used to en-
hance the solution of the other (which is demonstrated by
BEAUTY&BEAST).

2 Background and Related Work
This paper belongs to a line of works that consider the
run-time of edge-evaluation to be non-negligible, within the
context of graph search. It is thus useful to consider the
overall edge-evaluation time Te and its decomposition as
Te = τe × ne, where τe is the average edge-evaluation time
and ne is the total number of edge-weight computations con-
ducted over all edges throughout the search. In contrast to
standard search algorithms that assume that τe is negligible
and thus focus on pure search time, algorithms in the setting
discussed in this paper utilize various techniques in order to
reduce Te, sometimes at the expanse of increased search ef-
fort (e.g., more node expansions), with the aim to minimize
overall run-time.

In the domain of robotics it is common to have shortest
path problems in robot configuration spaces, where τe is typ-
ically high, as in these applications edge existence and cost
are determined by expensive computations for validating ge-
ometric and kinematic constraints. A well known technique
in these cases is to reduce ne by explicitly delaying weight
computations (Dellin and Srinivasa 2016; Narayanan and
Likhachev 2017; Mandalika, Salzman, and Srinivasa 2018;
Mandalika et al. 2019), even at the cost of increasing search
effort. Related challenges arise in planning, where action
costs can be computed by external (potentially expensive-to-
compute) procedures (Dornhege et al. 2012; Gregory et al.
2012; Frances et al. 2017), or when multiple heuristics have
different run-times (Karpas et al. 2018).

There are also approaches that aim to reduce τe, instead
of ne. When the graph is too large to fit in random-access
memory, it is stored externally (i.e., disk). External-memory
graph search algorithms optimize the memory access pat-
terns for edges and nodes, to make better use of faster mem-
ory (caching) (Vitter 2001; Hutchinson, Maheshwari, and
Zeh 2003; Jabbar 2008; Korf 2008b,a, 2016; Sturtevant and
Chen 2016). This reduces τe by amortizing the computation
costs, but still assumes a single computation per edge.

The approach we take in this paper follows a recent line
of work—that is complementary to those described above—
which focuses on using multiple edge estimators (Weiss and
Kaminka 2023b; Weiss, Felner, and Kaminka 2023), specif-
ically for estimating edge-weights. In this framework the
weight of each edge can be estimated multiple times, suc-
cessively, at increasing expense for greater accuracy. The
idea is that in some cases cheaper weight estimates can be
used instead of the best and most expensive estimates, thus
decreasing τe, and although ne might increase, the overall
edge-evaluation time Te might still decrease.

Lastly, there are also works that consider weight un-
certainty in graphs, regardless of edge-computation time.
These include, e.g., the case where weights are assumed to
be drawn from probability distributions (Frank 1969), and
the usage of fuzzy weights (Okada and Gen 1994) that al-
low quantification of uncertainty by grouping approximate
weight ranges to several representative sets. All these lines
of work ignore the weight computation time, in contrast to
the work reported here.

3 Shortest Path with Estimated Weights
Graph Definitions. A weighted digraph is a tuple
(V,E, c), where V is a set of nodes, E is a set of edges,
s.t. e = (vi, vj) ∈ E iff there exists an edge from vi to
vj , and c : E → R+ is a cost (weight) function map-
ping each edge to a non-negative number. Let vi and vj be
two nodes in V . A path π = ⟨e1, . . . , en⟩ from vi to vj
is a sequence of edges ek = (vqk , vqk+1

) s.t. k ∈ [1, n],
vi = vq1 , and vj = vqn+1 . The cost of a path π is then de-
fined to be c(π) :=

∑n
k=1 c(ek). The Goal-Directed Single-

Source Shortest Path (GDS3P ) problem involves finding a
solution, which is a path π from the source node to a goal
node, with minimal c(π), denoted as C∗. A solution π for
a GDS3P problem is said to be a B-admissible shortest
path if c(π) is bounded by a suboptimality factor B, i.e.,

c(π) ≤ C∗ × B. (1)

If B = 1, then π is a shortest path.
We recall several definitions that were introduced

in (Weiss, Felner, and Kaminka 2023).
Definition 1. A cost estimators function Θ, for a set of
edges E and with a cost function c : E → R+, maps every
edge e ∈ E to a finite and non-empty sequence of weight
estimation procedures,

Θ(e) := (θ1e , . . . , θ
k(e)
e ), k(e) ∈ N, (2)

where estimator θie, if applied, returns lower- and upper-
bounds (lie, u

i
e) on c(e), such that 0 ≤ lie ≤ c(e) ≤ ui

e <
∞). Θ(e) is ordered by the increasing running time of θie,
and the bounds monotonically tighten, i.e., [lje, u

j
e] ⊆ [lie, u

i
e]

for all i < j.
Definition 2. An estimated weighted digraph (EWDG) is
a tuple G = (V,E, c,Θ), where V,E are sets of nodes and
edges, resp., c is an un-observable cost function for the edges
in E, and Θ is a cost estimators function for E.
Definition 3. For an edge e, the tightest edge lower bound
and tightest edge upper bound w.r.t. Θ are lΘ(e) :=

l
k(e)
e , uΘ(e) := u

k(e)
e . For a path π, the tightest path lower

bound and tightest path upper bound w.r.t. Θ follow, re-
spectively, from the tightest edge bounds defined above.

lΘ(π) :=

n∑
i=1

lΘ(ei), uΘ(π) :=

n∑
i=1

uΘ(ei) (3)

Intuitively, lΘ(π) and uΘ(π) are the best estimations that
are provided by Θ for the true cost of the path π, and they
satisfy lΘ(π) ≤ c(π) ≤ uΘ(π).



Shortest Path Problems. Regular weighted digraphs are
a special case of EWDGs where for every edge e, there is
a single estimation procedure θ1e = (c(e), c(e)) with lower
and upper bounds that are identical to the weight c(e). In this
special case, a shortest tightly-bounded path π in the graph
is an optimal solution for a GDS3P problem. However, in
the general case of EWDGs, multiple estimators exist per
edge, and we are not guaranteed that every weight can be
estimated precisely, even if all estimators for it are used, as
the best estimator available for an edge can still deviate from
the exact true cost provided by c. Thus, several variants of
the shortest path problem exist, which correspond to differ-
ent tightest bounds for the shortest path.

In this paper we focus on the problem of finding the small-
est possible suboptimality factor on the optimal cost C∗ as
well as finding a path π that achieves it, in a given EWDG.
In order to properly define this problem, we first have to ex-
tend the notion of B-admissibility to EWDGs. Indeed, In-
equality (1), which characterizes the suboptimality factor,
requires knowing exact edge costs to obtain c(π) and C∗,
but the cost function c is un-observable in EWDGs. Instead,
we introduce an extension (Def. 4) that uses edge cost esti-
mates that are provided by Θ. The extension relies on L∗,
which is the best lower bound that can be derived for C∗,
that was introduced in (Weiss, Felner, and Kaminka 2023):

L∗ := min
π′
{lΘ(π′) | π′ is a path from vs to v ∈ Vg}. (4)

Definition 4. Let P = (G, vs, Vg), where G is an EWDG
with cost estimators function Θ, vs ∈ V is the source node
and Vg ⊂ V is a set of goal nodes. A solution π is said to be
a B-admissible shortest path w.r.t. Θ if the following holds

uΘ(π) ≤ L∗ × B. (5)

Note that uΘ(π) is the tightest upper bound for c(π) w.r.t.
Θ (Eq. (3)), so c(π) ≤ uΘ(π) holds. Similarly, L∗ is the
tightest lower bound for C∗ w.r.t. Θ (Eq. (4)), so L∗ ≤ C∗

holds. Thus, if Inequality (5) holds, then

c(π) ≤ uΘ(π) ≤ L∗ × B ≤ C∗ × B (6)

is necessarily satisfied. Namely, standard B-admissibility is
assured by B-admissibility w.r.t. Θ.

Next, we define the main problem addressed in this paper.
Problem 1 (TASP, finding B∗). Let P = (G, vs, Vg), where
G is an EWDG with cost estimators function Θ, vs ∈ V is
the source node and Vg ⊂ V is a set of goal nodes. Let B∗
be the tightest B-admissibility factor w.r.t. Θ, i.e.,

B∗ := min
π′
{B | uΘ(π′) ≤ L∗ × B, π′ is a solution}. (7)

The Tightest Admissible Shortest Path (TASP) problem is
to find B∗ as well as a solution π that its B-admissibility
factor is B∗. If B-admissibility cannot be obtained for any
finite value of B, or no solution exists, then B∗ =∞ should
be returned.

Next, we describe two problems that are related to Prob. 1.
The first problem among the two deals with finding a short-
est path w.r.t. lower bounds. It was introduced in (Weiss, Fel-
ner, and Kaminka 2023), and we review its definition here.

Problem 2 (SLB, finding L∗). Let P = (G, vs, Vg), where
G is an EWDG with cost estimators function Θ, vs ∈ V is
the source node and Vg ⊂ V is a set of goal nodes. The
Shortest path tightest Lower Bound (SLB) problem is to
find a solution π, such that π has the lowest tightest path
lower bound of any path from vs to v ∈ Vg , w.r.t. Θ, i.e.,
l(π) = L∗.

The second problem, which we define here for the first
time, is complementary to Prob. 2 and deals with finding a
shortest path w.r.t. upper bounds.
Problem 3 (SUB, finding U∗). Let P = (G, vs, Vg), where
G is an EWDG with cost estimators function Θ, vs ∈ V is
the source node and Vg ⊂ V is a set of goal nodes. The
Shortest path tightest Upper Bound (SUB) problem is to
find a solution π, such that π has the lowest tightest path
upper bound of any path from vs to v ∈ Vg , w.r.t. Θ, i.e.,
u(π) = U∗, with

U∗ := min
π′
{uΘ(π′) | π′ is a path from vs to v ∈ Vg}. (8)

We next show that Problems 1–3 are all generalizations of
standard GDS3P (see Thm. 1 below). In addition, they are
also related to each other, in that their solutions are linked.
Indeed, Thm. 2 below shows that the best lower bound for
C∗ (Prob. 2) and the best upper bound for C∗ (Prob. 3)
can be used to calculate the best suboptimality factor B∗
(Prob. 1). Thm. 2 also shows that an optimal solution path
for Prob. 3 is also an optimal solution path for Prob. 1. The
proof of Thm. 2 also implies that if U∗ > L∗ = 0 it is
impossible to prove B-admissibility at all.
Theorem 1 (Generality). Problems 1, 2 and 3 are general-
izations of a GDS3P problem.

Proof. Any GDS3P problem can be formulated as Prob-
lem 1, or 2, or 3, by considering the special case where each
edge has one estimator (namely, k(e) = 1 for every e), that
returns the exact cost (i.e., l1e = c(e) = u1

e). In this special
case it holds that L∗ = C∗ = U∗ and B∗ = 1 (in the case of
L∗ = U∗ we set B∗ = 1 even if C∗ = 0 as there is no un-
certainty at all). Therefore, the cost of the solutions of these
problems are all equal to the minimum cost C∗, hence are
by definition shortest paths.

Theorem 2 (B∗ = U∗/L∗). Let P = (G, vs, Vg), where G
is an EWDG with cost estimators function Θ, vs ∈ V is the
source node and Vg ⊂ V is a set of goal nodes. If L∗ > 0
for P , then a solution path π for P is a tightest admissible
shortest path iff it is a shortest path tightest upper bound (i.e.
a solution that achieves U∗). Furthermore, B∗ = U∗/L∗.

Proof. Assume L∗ > 0 for P . By definition (of TASP and
of B∗) a solution π is a tightest admissible shortest path iff it
achieves the lowest B-admissibility factor, i.e., iff it satisfies

π = argmin
π′

uΘ(π′)/L
∗. (9)

Since L∗ does not change with different choices of π′ in the
argmin expression of Eq. (9), it follows that

π = argmin
π′

uΘ(π′). (10)



Figure 1: Left: Digraph G. Right: costs and estimates of G.

By definition of U∗ (Eq. (8)), a solution π satisfying Eq. (10)
achieves uΘ(π) = U∗. On the other hand, a solution satisfy-
ing Eq. (8), also achieves B∗, as implied by Eq. (9). Thus,
π is a tightest admissible shortest path iff it is a shortest
path tightest upper bound (SUB). Furthermore, it holds that
B∗ = U∗/L∗.

Corollary 1. Thm. 2 shows how to obtain an optimal solu-
tion for Prob. 1 from optimal solutions for Problems 2 and 3.
Thus, any algorithmic improvement to solving either Prob. 2
or Prob. 3 directly affects the efficiency of solving Prob. 1.

Next, we use an example taken from (Weiss, Felner, and
Kaminka 2023) with slight modification and supplement it
to illustrate the meaning of the solutions for Problems 1–3.
Example 1. Consider the estimated weighted digraph G =
(V,E, c,Θ) provided in Fig. 1. Given the graph above, we
may define the problem P = (G, vs, Vg) with vs = v0 and
Vg = {v3, v4}, i.e., searching for paths from v0 to either
v3, or v4. Then, the unknown optimal cost is C∗ = c(π∗) =
c01+c14 = 9 with π∗ = ⟨e01, e14⟩; the tightest lower bound
for C∗ is L∗ = lΘ(π1) = l202 + l124 = 7 with π1 = ⟨e02, e24⟩
(the SLB solution); the tightest upper bound for C∗ is U∗ =
uΘ(π1) = u1

01 +u2
14 = 10 with π2 = π∗ (the SUB solution);

and tightest admissibility factor is B∗ = U∗/L∗ = 10/7
with π3 = π2 (the TASP solution).

4 Algorithms
As indicated in Corollary 1, we can obtain optimal solutions
for TASP problems by optimally solving the corresponding
SLB and SUB problems. SLB was studied in (Weiss, Felner,
and Kaminka 2023), which introduced BEAUTY, a com-
plete algorithm that finds optimal solutions for it. Hence, this
section focuses on solving SUB, particularly towards solv-
ing TASP in a manner that takes advantage of information
already obtained during the solution of SLB.

In Subsection 4.1 we present BEAST (Branch&bound Es-
timation Applied to Searching for Top, Alg. 1), a complete
algorithm that finds optimal solutions for SUB problems.
BEAST extends UCS to dynamically apply cost estimators
during a best-first search w.r.t. upper bounds of edge costs,
and it aims to reduce the number of expensive estimators
used, by utilizing both cheaper estimates and prior informa-
tion on U∗. BEAST is thus particularly suitable to be used
whenever prior information on U∗ is available.

We note that BEAST has several analogies to BEAUTY,
but also several fundamental differences which are due to the
fact that upper bounds tighten towards lower values whereas

lower bounds tighten towards higher values. Thus, cheaper
(and looser) estimates cannot be used analogously to guide
the search in minimization of tight upper bounds (SUB)
compared to minimization of tight lower bounds (SLB).
Specifically, BEAUTY first uses a looser lower bound to
guarantee that a more expensive lower bound estimate is re-
quired. This can be done since if a path π1 to a node n and its
tightest path lower bound lΘ(π1) are known, and a new path
π2 to n is considered, then if a loose lower bound of c(π2) is
already greater than lΘ(π1), then necessarily lΘ(π2) > lΘ(π1)

(i.e., π1 is better). Hence, more expensive estimates for π2

can be avoided. In contrary, this cannot be done analogously
with looser upper bounds. Indeed, knowing that a loose up-
per bound of c(π2) is already greater than uΘ(π1) does not
imply that uΘ(π2) > uΘ(π1). Hence, more expensive esti-
mates for π2 cannot be avoided in the same way. For this
reason, BEAST makes use of a combination of upper and
lower bounds to try to avoid expensive estimates (see full
description in Subsection 4.1).

In Subsection 4.2 we introduce BEAUTY&BEAST
(Alg. 2), a complete algorithm that finds optimal solutions
for TASP problems, that first uses BEAUTY to optimally
solve SLB, and then uses BEAST, together with prior infor-
mation already obtained on U∗, to optimally solve SUB.

4.1 The First Algorithm: BEAST
Algorithm 1 receives an SUB problem instance and one
hyper-parameter uprune. For simplicity we will first describe
a base case where uprune is set to∞, and therefore has no
effect and can be ignored. The relevant instructions using
uprune are colored in blue (Lines 12, 15) and should be ig-
nored for now. We will come back to this parameter later.

Base Setting. BEAST is structurally similar to UCS. It ac-
tivates a best-first search process using the standard OPEN
and CLOSED lists. Nodes n in OPEN are prioritized by
gu(n) which is always equal to the optimal upper bound to
node n along the best known path (similar to using g(n) for
ordering nodes in UCS in regular graphs, which is done ac-
cording to optimal cost). The best such node n is chosen
for expansion in Line 4, and its successors are added in the
loop of Lines 8–19. When a goal node n is found in Line
5, the solution path π ending in n and its tight upper bound
gu(n) = U∗ are returned (Thm. 3).

The main difference of BEAST over UCS is in the du-
plicate detection mechanism performed when evaluating the
cost of a new edge e that connects n to its successor s. In
UCS, the exact edge cost c(e) is immediately obtained and
used to update the path cost that ends in s. In BEAST, we
iterate over the different estimators θie for edge e (Lines 12–
13). In each iteration gu(n) + l(e) serves as a lower bound
for the tightest path upper bound of the path to s given the
current estimator (Line 13). Namely, the tight upper bound
is used up to node n and a lower bound is used for the edge
e from n to s. Now such a path can be already pruned earlier
if its current lower bound for the tight upper bound (using
the current estimator) will not improve the best known path
to s (gu(s)). In that case we will not need to further activate
more expensive estimators. Thus, if gu(n) + l(e) ≥ gu(s),



Algorithm 1: BEAST
Input: Problem P = (G, vs, Vg), where G is an estimated
weighted digraph with cost estimators function Θ
Parameter: Threshold uprune

Output: Path π, bound U∗

1: gu(s0)← 0; OPEN← ∅; CLOSED← ∅;
2: Insert s0 into OPEN with key gu(s0)
3: while OPEN ̸= ∅ do
4: n← Pop node n from OPEN with minimal gu(n)
5: if Goal(n) then
6: return trace(n), gu(n) // return π, U∗

7: Insert n into CLOSED
8: for each successor s of n do
9: if s not in OPEN ∪ CLOSED then

10: gu(s)←∞
11: l(e)← 0, u(e)← 0
12: while gu(n) + l(e) < gu(s) and gu(n) + l(e) ≤

uprune and estimators remain for e = (n, s) do
13: l(e), u(e)← Apply next estimator for e
14: g̃u ← gu(n) + u(e)
15: if g̃u < gu(s) and g̃u ≤ uprune then
16: gu(s)← g̃u
17: if s in OPEN then
18: Remove s from OPEN
19: Insert s into OPEN with key gu(s) and parent n
20: return ∅,∞

the while statement (Line 12) ends. Then, ordinary duplicate
detection is performed in Lines 14–19.

We emphasize that in case the while loop (Line 12) ter-
minates due to gu(n) + l(e) ≥ gu(s) being satisfied, then
necessarily g̃u = gu(n) + u(e) ≥ gu(s) will be satisfied as
well and the path will be (justifiably) pruned. On the other
hand, notice that u(e) cannot be used in place of l(e) for
early pruning, since upper bound estimates tighten towards
lower values. See Example 2 for a demonstration of using
BEAST in its base setting.

Example 2. Consider calling BEAST with uprune = ∞
(i.e., base setting) on P from Example 1. Tracing its run,
at the first iteration of the outer while loop v0 is removed
from OPEN, θ1e01 , θ

1
e02 and θ2e02 are invoked, and v1, v2 are

inserted to OPEN with keys 4, 5. At the second iteration v1
is removed from OPEN, θ1e14 , θ

2
e14 are invoked, and v4 is in-

serted to OPEN with key 10. At the third iteration v2 is re-
moved from OPEN, θ1e23 , θ

2
e23 and θ1e24 are invoked, and v3

is inserted to OPEN with key 13. At the forth iteration v4 is
removed from OPEN and BEAST returns ⟨e01, e14⟩, 10.

Remark 1. In its base setting BEAST eventually uses the
best estimates for edges leading to new nodes, thus it can be
modified to directly jump to the best estimates in these cases.
This was left out for simplicity of the pseudo-code.

Enhanced Setting. We now consider the enhanced setting
where uprune is set to some constant value (not∞). In this
setting uprune serves as an upper threshold that limits the
search, similarly to bounded cost search (Stern et al. 2014).
This manifests in two aspects. First, uprune is used as an

upper threshold to exit the while loop (Line 12) and avoid
activating more expensive estimators in case the tight upper
bound to s is determined to be greater than uprune. This is
done in Line 12 where the condition gu(n) + l(e) ≤ uprune

is tested, and if not fulfilled it breaks the loop. As explained
in the base setting, gu(n) + l(e) serves as a lower bound
to the tight upper bound to s and can thus facilitate early
stopping. Second, uprune is used as an upper threshold to
prune (and not add to OPEN) any node with upper bound
> uprune. This is done in Line 15.

The primary purpose of using uprune with U∗ ≤
uprune < ∞ is to avoid applications of redundant (and po-
tentially expensive-to-compute) estimators. Additionally, it
can decrease the size of OPEN, which implies less inser-
tion operations and cheaper insert/delete operations. Since
U∗ is unknown, setting this hyper-parameter to a meaning-
ful value requires prior information. Practically, such infor-
mation can be achieved by obtaining a suboptimal solution
with usub ≥ U∗, and using it to set uprune = usub.

Finally, in case U∗ ≤ uprune < ∞ is satisfied then a
solution path π will be found (if a solution exists) and it
will be returned together with its tight upper bound gu(n) =
U∗ (Thm. 3). On the other hand, in case uprune < U∗ is
satisfied then ∅,∞ are returned (Thm. 4). See Example 3 for
a demonstration of using BEAST in its enhanced setting.

Example 3. Consider calling BEAST with uprune = 4 (i.e.,
enhanced setting, uprune < U∗ = 10) on P from Exam-
ple 1. Tracing its run, at the first iteration of the outer while
loop v0 is removed from OPEN, θ1e01 , θ

1
e02 and θ2e02 are in-

voked, and v1 is inserted to OPEN with key 4. At the second
iteration v1 is removed from OPEN, θ1e14 is invoked. At the
third iteration OPEN is empty and BEAST returns ∅,∞.

Now consider calling BEAST with uprune = 11 (i.e., en-
hanced setting, uprune ≥ U∗ = 10) on P from Example 1.
Its run is identical to the run from Example. 2, with the same
output, except that at the third iteration θ2e23 is not invoked.

Next, we provide the theoretical guarantees for BEAST.

Theorem 3 (Conditional Completeness and Optimality,
Prob. 3). BEAST, with uprune ≥ U∗, returns a shortest
path tightest upper bound π and U∗, if a solution exists for
P . In case no solution exists, BEAST returns ∅,∞.

Proof. First, it is straightforward to see that every node en-
countered by BEAST after the initial node is a successor of
another node encountered during the search, as new nodes
are only introduced in Line 8. Additionally, every node in-
serted into OPEN (except the initial node) is saved with a
pointer to its parent node. Hence, whenever a goal node is
found (at Line 5), it can necessarily be traced back to the
initial node via a series of connected nodes, i.e., a valid so-
lution path is returned at Line 6.

Second, BEAST inspects nodes that are removed from
OPEN by best-first order w.r.t. upper bound of path cost.
Since finding a goal node at Line 5 terminates the search, it is
assured that the path leading to the first goal node found will
be returned. Hence, the solution returned necessarily has the
best (lowest) upper bound of path cost out of all the paths
inspected by BEAST.



It remains to be shown that the search is systematic,
namely that every path with tight upper bound up to uprune

is inspected by BEAST; and that every edge encountered
during the search is either tightly (fully) estimated, or it is
at least estimated in a manner that enables BEAST to deter-
mine that it is not part of the solution path.

Consider any successor s of a node n that is popped from
OPEN. If the node s is encountered for the first time, then
at first gu(s) ← ∞ is set at Line 10, so the condition
gu(n) + l(e) < gu(s) at Line 12 is never satisfied. This
means that the edge e leading to s will either be tightly
(fully) estimated in case the current path to s has tight upper
bound smaller or equal to uprune, or otherwise the tight up-
per bound to s is greater than uprune. Since uprune ≥ U∗

is assumed, this means that this path is not relevant and can
be safely ignored. Indeed, in this case it is rightfully pruned
in Line 15. If the node s was already encountered earlier
in the search, then the same mechanism described above
applies, but additionally we have to consider the condition
gu(n) + l(e) < gu(s) at Line 12. In case it is not satisfied
then this means that a better path was already found to s so
it can be safely ignored, and indeed it is pruned in Line 15.

Lastly, since we have shown that the search up to tight
upper bound uprune is systematic, and considering that each
edge has a finite number of estimators where each of them
has finite run-time, BEAST necessarily terminates in finite
time either when an optimal solution is found and returned
(Line 6) with U∗, or when the search is exhausted up to tight
upper bound uprune and BEAST reports that no solution ex-
ists (Line 20). Note that in the latter case the assumption
uprune ≥ U∗ implies that uprune must have been set to∞,
so no solution at all exists. Hence, if uprune ≥ U∗ holds,
BEAST is complete and returns an optimal solution.

Theorem 4 (Soundness, Prob. 3). For any value of uprune,
if ∅,∞ are returned by BEAST then no solution exists for
P with tight upper bound that is smaller or equal to uprune.
Conversely, if BEAST returns a solution then it is correct.

Proof. Following the proof of Thm. 3, since the search is
systematic up to tight upper bound uprune, it follows that if
uprune < U∗ holds then all paths with tight upper bound
greater than uprune will be pruned, and since every solution
has at least tight upper bound U∗, the search will necessarily
terminate with ∅,∞. The other direction, i.e., uprune ≥ U∗,
is assured by Thm. 3.

4.2 The Second Algorithm: BEAUTY&BEAST

Algorithm 2 receives a TASP problem instance, and returns
an optimal solution for it (Thm. 5). It works by first call-
ing BEAUTY on P (Line 1). If no solution is found then by
the completeness of BEAUTY no solution at all exists, and
∅,∞ are returned (Lines 2–3). Otherwise, the tightest up-
per bound of the solution found by BEAUTY, u(πSLB), is
obtained (Line 4). In case L∗ = u(πSLB) then necessarily
L∗ = C∗ = U∗ and then πSLB and B∗ = 1 are returned
(Line 5–6). Otherwise, BEAST is called on P (Line 7) with
uprune = u(πSLB), which is necessarily greater or equal to
U∗, and thus by Thm. 3 a shortest path tightest upper bound

Algorithm 2: BEAUTY&BEAST

Input: Problem P = (G, vs, Vg), where G is an estimated
weighted digraph with cost estimators function Θ
Output: Path π∗, bound B∗

1: πSLB , L
∗ ← Solve SLB for P using BEAUTY

2: if πSLB = ∅ then
3: return ∅,∞
4: u(πSLB)← uΘ(πSLB) // Get the upper bound of πSLB

5: if L∗ = u(πSLB) then
6: return πSLB , 1
7: π∗, U∗ ← Solve SUB for P using BEAST, u(πSLB)
8: if L∗ = 0 and U∗ > 0 then
9: return π∗,∞

10: return π∗, U∗/L∗

is returned. If U∗ > L∗ = 0 then the shortest path tightest
upper bound that was found, π∗, is returned together with∞
(Line 8–9). Otherwise π∗ and B∗ = U∗/L∗ are returned.
Remark 2. Note that in Alg. 2 BEAUTY can be replaced
by any algorithm that solves SLB optimally. Moreover, it can
be replaced by an anytime algorithm, and then each time the
lower bound or upper bound are improved (tightened) they
can be translated to a tightened B.

Theorem 5 (Completeness and Optimality Prob. 1).
BEAUTY&BEAST is complete. Furthermore, if a solution
exists for P then a tightest admissible shortest path π and
B∗ are returned (if U∗ > L∗ = 0 holds, then B∗ =∞).

The proof follows directly from the completeness and op-
timality of BEAUTY and BEAST, and from Thm. 2.

5 Empirical Evaluation
The theoretical guarantees of BEAST (base setting) and
BEAUTY&BEAST (enhanced setting) assure optimality
and completeness, but do not provide information about
their runtime performance. We therefore empirically eval-
uate the algorithms in diverse settings, based on AI planning
benchmark problems that were modified to have multiple
action-cost estimators, so that these induce TASP problems.

The set of problems was taken from a collection of IPC
(International Planning Competition) benchmark instances1.
Starting from the full collection, we selected all domains that
use action costs, were part of an optimal track in IPC, and
without duplication (e.g., only one version of the Elevators
domain). Then, we created additional problems by using dif-
ferent configurations of costs. Lastly, for all domains and
problems, we synthesized three estimators, using six param-
eters f1, ..., f6, according to the scheme described below.

The original cost cold(e) (that is implied by the original
domain and problem files) of each edge e was mapped to a
new cost cnew(e) that satisfies

cold(e)× f3 ≤ cnew(e) ≤ cold(e)× f4, (11)
i.e., the exact value of cnew(e) is contained in the interval
[cold(e)× f3, cold(e)× f4]. Lower bounds were defined by

l1e := cold × f1, l
2
e := cold × f2, l

3
e := cold × f3, (12)

1See https://github.com/aibasel/downward-benchmarks.



Domain Instances θmax Reduction Extra θmax Reduction Pruned Nodes B∗
Barman 135 39.46±3.22 7.00 ± 9.03 2.20 ± 2.80 1.49±0.12
Caldera 135 17.91±2.62 27.16± 5.20 8.28 ± 1.49 1.52±0.13

Elevators 135 70.79±4.14 69.24±24.73 30.34±15.07 1.56±0.26
Settlers 81 36.08±3.73 33.31± 8.77 16.26± 2.48 1.52±0.13
Sokoban 135 44.55±6.73 17.69±25.95 5.47 ± 8.31 1.54±0.21

Tetris 135 36.52±4.62 28.81±12.32 14.82± 7.21 1.54±0.20
Transport 135 50.55±3.36 62.40±19.79 17.95± 5.47 1.52±0.15

All domains (avg±std) 891 42.64±15.88 35.08±27.69 13.40±11.75 1.53±0.18
All domains (min–max) 891 14.28–79.43 0.07–98.37 0.02–60.12 1.03–2.47

Table 1: Summarized performance data of BEAST (∞), BEAST (u(πSLB)), with breakdown by domains. θmax is the number
of expensive estimators. Column 3 refers to 1− (θmax(BEAST (∞))/θmax(EI-UCS)), Column 4 refers to 1− (θmax(BEAST
(u(πSLB)))/θmax(BEAST (∞))), Column 5 refers to pruned nodes out of generated nodes for BEAST (u(πSLB)), Column
6 refers to B∗. The entries for each domain (Rows 2–8) show average ± standard deviation. Cumulative results show aver-
age ± standard deviation (Row 9) and minimum–maximum (Row 10). All results are in percentages, except B∗ values.

with f3 ≥ f2 ≥ f1 ≥ 1, so that lie is the ith lower bound
(l1e is the loosest and l3e is the tightest). Upper bounds were
analogously defined by

u1
e := cold × f6, u

2
e := cold × f5, u

3
e := cold × f4, (13)

with f6 ≥ f5 ≥ f4 ≥ f3, so that ui
e is the ith upper bound

(u1
e is the loosest and u3

e is the tightest).
To diversify the estimator sets for different edges, the pa-

rameters for lower bounds f1, f2, f3 were taken from the sets

f1 ∈ {1, 2, 3}, f2 ∈ {f1, f1 + 1, f1 + 2},
f3 ∈ {f2, f2 + 1, f2 + 2}. (14)

Similarly the parameters for upper bounds f4, f5, f6 were
taken from the sets

f4 ∈ {f3 + 1, f3 + 2, f3 + 3},
f5 ∈ {f4, f4 + 1, f4 + 2},
f6 ∈ {f5, f5 + 1, f5 + 2}.

(15)

This induced a very wide range of relations between the dif-
ferent estimators and a wide variety of uncertainty levels
(reflected by B∗). The choice of configuration was taken ac-
cording to the result of a simple hash function, that depends
on cold(e) and a user-input seed, described as follows:

Hash = (cold(e) + seed) mod 27, (16)

so that every value of Hash corresponded to one estimator
configuration for the lower and upper bounds. Each problem
was run once per seed, where all seeds from the set [0, 26]
were taken (namely, 27 seeds per problem). The full list of
domains, problems and configurations that were used in the
experiments is detailed in (link redacted for anonymity).

We note that the estimator configurations that were chosen
according to the hash function of Eq. (16) guarantee that the
same ground action, in different states, will have the same
cost estimates.

BEAST and BEAUTY&BEAST were implemented as
search algorithms in PlanDEM (Planning with Dynami-
cally Estimated Action Models (Weiss and Kaminka 2023a),
an open source C++ planner that extends Fast Downward
(FD) (Helmert 2006) (v20.06). All experiments were run

on an Intel i7-1165G7 CPU (2.8GHz), with 32GB of RAM,
in Linux. We also implemented Estimation-time Indifferent
UCS (EI-UCS), a UCS algorithm that uses the most accurate
estimate on each edge it encounters, to serve as a baseline
for solving SUB.

We measured the performance of solving SUB via EI-
UCS, BEAST (base setting) and BEAUTY&BEAST (en-
hanced setting with information obtained from solving first
SLB). We report the results (summarized in Table 1, ex-
tended in Fig. 2) from problem instances which all algo-
rithms solved successfully, i.e., found optimal solutions,
within 5 minutes. Overall, we report on a cumulative set of
891 problem instances, spanning 7 unique domains.

Base Setting vs. EI-UCS In its base setting BEAST ex-
pands the same nodes as EI-UCS, but with potentially fewer
expensive estimates (replaced by less expensive ones). Thus,
we are interested in the relative savings that it achieves in
practice. We denote the number of the most expensive es-
timators invoked during the search of an algorithm ALG
by θmax(ALG). Column 3 in Table 1 provides the rel-
evant data: it shows 1 − (θmax(BEAST (∞))/θmax(EI-
UCS)) in percentages, per domain (Rows 2–8), cumula-
tively by average±standard deviation (Row 9), and by range
minimum–maximum (Row 10).

Roughly 40% of the expensive estimators are saved on
average, with large differences across domains and prob-
lems. Over all, the range is from 14% to almost 80%. The
top left plot in Fig. 2 shows the full empirical distribution
(histogram), illustrating the high variability in the results.
We suspect that different distributions of edge costs explain
some of the variability, a topic left for future research.

Enhanced Setting vs. Base Setting We can test the per-
formance boost that can be achieved in practice from
using BEAST in its enhanced setting with uprune =
u(πSLB), by running BEAUTY&BEAST. Column 4 in
Table 1 provides this data: the format is similar to that
of Column 3, but instead it shows 1 − (θmax(BEAST
(u(πSLB)))/θmax(BEAST (∞))). It can be seen that
roughly 35% of the expensive estimators are saved on av-
erage w.r.t. to the base setting of BEAST, again with very



Figure 2: Histograms of 1 − (θmax(BEAST (∞))/θmax(EI-UCS)) [top left], 1 − (θmax(BEAST (u(πSLB)))/θmax(BEAST
(∞))) [top right], pruned nodes percentage for BEAST (u(πSLB)) [bottom left], B∗ [bottom right], based on all domains.

large differences across domains and problems, where over
all problem instances the range is from 0% to around 98%.
The top right plot in Fig. 2 shows the full empirical distri-
bution, revealing that in the most common case the savings
are rather low, but on the other hand in quite a few cases the
savings achieved are very substantial.

Column 5 in Table 1 presents pruned nodes (out of gen-
erated nodes) for BEAST (u(πSLB)), and it shows that
roughly 15% of the generated nodes are pruned on average.
Column 6 shows B∗ (which is a property of the problem in-
stance), where we can see that approximately it was on av-
erage 1.5 (the values in this column are not in percentages).

For both of these measures, we see high variability in the
results: The range of pruned nodes (Column 5) is from 0%
to 60%. The range of B∗ over all problems was from 1 to
2.5. However, examining the distributions for both columns
(Fig. 2; bottom left plot for pruned nodes, bottom right for
B∗), we see that the distributions are qualitatively very dif-
ferent. We will investigate this in future research.

We conclude that BEAST seems to offer significant em-
pirical gains over EI-UCS, and that using the information
obtained from solving SLB can, though not always, provide
an additional significant performance boost.

6 Conclusions

This paper introduces—and offers a solution to—the tightest
admissible shortest path (TASP) problem. It determines how
close can one get to cost-optimality, given bounded edge-
weight uncertainty. The formalization relies on a recently
suggested generalized framework for estimated weighted di-
rected graphs, where the cost of each edge can be estimated
by multiple estimators, where every estimator has its own
run-time, and returns lower and upper bounds on the edge
weight. We show how to generally solve TASP problems by
reducing it to the solution of two more basic problems—
SLB and SUB. We then present a complete algorithm that
obtains optimal solutions for TASP problems, which uses a
coupling between SLB and SUB to reduce overall run-time
compared to separately solving SLB and SUB. Experiments
support the efficacy of the approach.

There are many directions for future research. Algorith-
mic extensions to informed search seem highly relevant, as
well as exploring additional trade-offs between search and
estimation time to reduce overall run-time. Extending the
framework to utilize priors on estimation times to choose
estimators across edges also appear promising.
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