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Abstract

Despite recent progress in video large language001
models (VideoLLMs), a key open challenge002
remains: how to equip models with chain-of-003
thought (CoT) reasoning abilities grounded004
in fine-grained object-level video understand-005
ing. Existing instruction-tuned models, such006
as the Qwen and LLaVA series, are trained007
on high-level video-text pairs, often lacking008
structured annotations necessary for compo-009
sitional, step-by-step reasoning. We propose010
CoTasks: Chain-of-Thought based Video In-011
struction Tuning Tasks, a new framework that012
decomposes complex video questions of exist-013
ing datasets (e.g., NeXT-QA, STAR) into four014
entity-level foundational tasks: frame localiza-015
tion, entity tracking, spatial and temporal rela-016
tion extraction. By embedding these interme-017
diate CoT-style reasoning steps into the input,018
CoTasks enables models to explicitly perform019
object-centric spatiotemporal reasoning. Ex-020
periments on the NeXT-QA benchmark show021
that CoTasks significantly enhance inference022
performance: LLaVA-video-7B improves by023
+3.3 points in average GPT-4 evaluation score,024
and Qwen2.5-VL-3B gains +17.4, with large025
boosts in causal (+14.6), temporal (+10.9) and026
descriptive (+48.1) subcategories. These re-027
sults demonstrate the effectiveness of CoTasks028
as a structured CoT-style supervision frame-029
work for improving compositional video rea-030
soning.031

1 Introduction032

Video Large Language Models (VideoLLMs)033

are rapidly gaining importance in applications034

such as interactive video QA systems, includ-035

ing ChatGPT (OpenAI, 2023) and Gemini (Deep-036

Mind, 2023), and embodied agents, including OK-037

Robot (Liu et al., 2024c) and DynaMem (Liu et al.,038

2024b). These models aim to understand com-039

plex, dynamic visual scenes and generate coher-040

ent answers or decisions from high-level natural041

language queries. Despite recent advances, a key042

Figure 1: Comparison of LLaVA-video-7B with and
without CoTasks. Given a complex video question, di-
rect inference yields a shallow answer (“Sit”), whereas
CoTasks guides the model through entity-aware rea-
soning, resulting in a more grounded and descriptive
response.

open challenge remains: how to equip these mod- 043

els with structured reasoning abilities that reflect 044

the step-by-step understanding humans apply when 045

interpreting real-world videos. 046

Current state-of-the-art VideoLLMs, including 047

the Qwen (Bai et al., 2023; Wang et al., 2024; Bai 048

et al., 2025) and LLaVA (Liu et al., 2023; Zhang 049

et al., 2024) families, are predominantly trained us- 050

ing high-level video instruction tuning. These mod- 051

els perform reasonably well on surface-level tasks, 052

but often fail in scenarios that require nuanced 053

object-level and temporal reasoning. As shown 054

in Figure 1, given a complex video-based question, 055

models like LLaVA-video-7B tend to produce shal- 056

low answers such as “Sit” failing to ground the 057

response in the visual context or reflect the full nar- 058
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rative. We hypothesize that this limitation arises059

from the absence of intermediate supervision sig-060

nals, which guide the model to reason about where,061

who/what, and how entities interact over time. In-062

spired by Chain-of-Thought (CoT) prompting (Wei063

et al., 2022), we argue that injecting structured,064

step-wise visual cues can bridge this gap.065

To this end, we introduce CoTasks, a new frame-066

work for Chain-of-Thought based Video Instruc-067

tion Tuning Tasks. CoTasks decomposes high-068

level questions from existing video QA datasets069

(e.g., NeXT-QA (Xiao et al., 2021), STAR (Wu070

et al., 2021)) into four foundational reasoning sub-071

tasks: (1) frame localization, (2) entity tracking,072

(3) spatial relation extraction, and (4) temporal073

relation extraction. By embedding these interme-074

diate CoT-style reasoning steps into the input, Co-075

Tasks enables models to explicitly perform object-076

centric spatiotemporal reasoning. As a result, giv-077

ing a high-level question, the model can ground078

and compose visual evidence step-by-step before079

producing an answer. As visualized in Figure 1,080

our approach transforms the vague output of stan-081

dard VideoLLMs into a much richer response that082

closely mirrors human understanding.083

We evaluate CoTasks using three VideoLLMs,084

Qwen2.5-VL-3B, Qwen2.5-VL-7B, and LLaVA-085

video-7B on the NeXT-QA and STAR benchmarks.086

To assess the upper bound of performance gains,087

we prompt models with the original question aug-088

mented by the ground-truth answers of the Co-089

Tasks subtasks. This allows us to isolate how much090

structured CoT-style context can contribute to fi-091

nal answer quality. Our inference-time augmen-092

tation strategy requires no architectural changes093

or re-training. CoTasks significantly boosts per-094

formance across all models. Notably, Qwen2.5-095

VL-3B—a lightweight model—achieves a +17.4096

point gain in average GPT-4 evaluation score, with097

large improvements in causal (+14.6), temporal098

(+10.9), and descriptive (+48.1) reasoning cate-099

gories. These results demonstrate the effectiveness100

of CoTasks as a lightweight yet powerful mech-101

anism for enhancing structured video reasoning.102

Moreover, our findings highlight the promise of us-103

ing CoTasks as an instruction-tuning curriculum for104

building high-performance, resource-efficient Vide-105

oLLMs—a key requirement for on-device, real-106

world applications.107

2 Problem setup 108

In this work, we focus on constructing a video 109

instruction tuning dataset grounded in chain-of- 110

thought (CoT) reasoning. Given object-centric 111

video question answering (VideoQA) tasks such as 112

NeXT-QA and STAR—which provide fine-grained 113

annotations including object bounding boxes, intra- 114

frame spatial relations, and inter-frame temporal 115

relations—we reformulate the original multiple- 116

choice questions into open-ended, free-form an- 117

swering tasks. Furthermore, we augment each com- 118

plex visual reasoning question with four founda- 119

tional CoTasks: frame localization, object tracking, 120

spatial relation extraction, and temporal relation 121

extraction. The primary objective is to investigate 122

whether these CoTasks can enhance the reasoning 123

capabilities of state-of-the-art videoLLMs. 124

3 Related work 125

Multimodal Large Language Models (MLLMs). 126

MLLMs, such as LLaVA (Liu et al., 2023), Qwen2- 127

VL (Bai et al., 2023), and LLaMA3-Vision (meta, 128

2024), have extended language models into visual 129

domains by integrating (1) a vision encoder (Rad- 130

ford et al., 2021; Tschannen et al., 2023) to extract 131

features from images or video frames, (2) a projec- 132

tion module to align visual features with the lan- 133

guage embedding space, and (3) a language model 134

backbone for multimodal reasoning. Recent works, 135

including Video-ChatGPT (Maaz et al., 2024), 136

LLaVA-Video (Zhang et al., 2024), Qwen2.5- 137

VL (Bai et al., 2025), and AdaReTaKe (Wang 138

et al., 2025), extend MLLMs to videos by com- 139

pressing and aligning frame sequences to enable 140

long-context understanding. However, these mod- 141

els primarily focus on high-level instruction tuning 142

without decomposing complex queries into struc- 143

tured sub-tasks—such as frame localization, object 144

tracking, and spatiotemporal relation reasoning— 145

limiting their ability to handle detailed object in- 146

teractions or causal inference in dynamic scenes. 147

In contrast, our proposed CoTasks framework ad- 148

dresses this limitation by decomposing high-level 149

video QA into four foundational sub-tasks: entity- 150

based frame localization, object tracking, spatial 151

relation extraction, and temporal relation extrac- 152

tion. These sub-tasks serve as intermediate, Chain- 153

of-Thought (CoT)-style reasoning steps that inject 154

structured guidance into video instruction tuning 155

and enhance fine-grained spatiotemporal reason- 156

ing. 157
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Video Instruction Tuning dataset. Several large-158

scale video instruction datasets have recently been159

proposed to improve VideoLLMs’ ability to fol-160

low complex visual-language instructions. LLaVA-161

Video-178K (Zhang et al., 2024) is a synthetic162

dataset of 178K video samples, each annotated163

with detailed captions and open- and closed-ended164

questions. Generated using GPT-4 and human165

feedback, it supports instruction tuning for models166

like LLaVA-Video but focuses on high-level an-167

notations without explicit intermediate reasoning168

structures. VideoInstruct-100K (Maaz et al., 2024)169

consists of 100K video-instruction pairs with spa-170

tial, temporal, and reasoning-oriented questions,171

used to train Video-ChatGPT. While high-quality,172

it lacks structured object-centric decomposition,173

making it difficult to model fine-grained spatiotem-174

poral reasoning. Video-STaR (VSTaR-1M) (Zohar175

et al., 2025) leverages diverse video sources (e.g.,176

Kinetics-700 (Carreira et al., 2019), STAR (Wu177

et al., 2021)) to scale to 1M instruction pairs and178

aims to support general reasoning including CoT.179

However, it relies on task-level supervision without180

sub-task grounding. In contrast, our proposed Co-181

Tasks framework explicitly decomposes complex182

video QA into four structured sub-tasks—frame183

localization, object tracking, spatial and tempo-184

ral relation extraction—which are formatted as in-185

termediate Chain-of-Thought (CoT) steps. This186

object-level supervision enhances compositional187

video reasoning and better aligns with human-like188

step-by-step understanding, addressing a key limi-189

tation in prior datasets.190

Chain-of-Thought Video Reasoning. Recent ef-191

forts have aimed to enhance VideoLLMs with step-192

by-step reasoning via Chain-of-Thought (CoT)193

prompting (Wei et al., 2022). LLaVA-o1 (Liu et al.,194

2024a) introduces CoT-based vision-language in-195

struction tuning, demonstrating improvements196

in visual question answering with structured197

step generation. Similarly, works such as198

Agent-of-Thoughts (Chen et al., 2024a), Video-199

of-Thought (Zhang et al., 2023), and Visual200

CoT (Shao et al., 2024) explore CoT through mod-201

ular reasoning agents, dynamic scene graphs, or202

benchmark-driven evaluation. SlowFocus (Nie203

et al., 2024) and MVU (Chen et al., 2024b) in-204

corporate fine-grained temporal and object-level205

cues to improve interpretability. However, most206

approaches depend on implicit supervision or ar-207

chitectural adaptations and lack systematic object-208

level decomposition aligned with CoT stages. In 209

contrast, CoTasks proposes four interpretable 210

and structured sub-tasks—frame localization, en- 211

tity tracking, and spatial/temporal relation extrac- 212

tion—that act as intermediate reasoning steps for 213

improving CoT-based video instruction tuning. 214

4 Approach 215

4.1 CoTasks Definition 216

Consider the original task defined as follows: 217

Original Task: Comprehensive Video Understand-
ing

This task requires answering a high-level video question
that demands object-level context and comprehensive
scene understanding.

Question Format: Open-ended question requiring
holistic understanding of the video content.
Answer Format: Free-form short text.

We introduce a set of auxiliary tasks termed Co- 218

Tasks. Each CoTask targets a distinct aspect of 219

object-centric visual reasoning grounded in video 220

understanding. We define the four foundational 221

CoTasks as follows: 222

CoTask 1: Object-based Frame Localization

This task involves identifying video frames where a
specific combination of objects co-occur, as specified
in the original question.

Question Format: Ground entities and identify frames
matching context in the target question.
Answer Format: A dictionary with the following keys:
{"objects": [str], "timestamps":
[int]}

CoTask 2: Object Tracking with Bounding Boxes

This task requires tracking and localizing each men-
tioned object by generating bounding boxes over rele-
vant video frames.

Question Format: Get object locations (bounding
boxes) in frames listed in CoTask 1.
Answer Format: A list of dictionaries, each
with: [{"frame": int, "objects":
[{"label": str, "bbox": [x1, y1,
x2, y2]}, ...]}, ...]

4.2 CoTasks construction pipeline 223

Figure 2 illustrates the process of constructing Co- 224

Tasks by decomposing a given video question an- 225

swering task (e.g., from NeXT-QA) into four struc- 226

tured CoTasks using object-level annotations (e.g., 227

VidOR (Shang et al., 2019)). 228
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Figure 2: The figure illustrates the process of decomposing a VideoQA task (e.g., from NeXT-QA) into four
structured CoTasks using object-level annotations (e.g., from VidOR). First, we reconstruct the VideoQA task to
align video frames with object-level annotations (§ 4.2.1). Then, we construct CoTasks based on the reconstructed
VideoQA, where each CoTask builds upon the previous one (§ 4.2.2).

CoTask 3: Spatial Relation Extraction

This task involves extracting spatial relationships (e.g.,
next_to, in_front_of) between pairs of objects
within a frame span.

Question Format: Infer spatial relations between ob-
jects in frames of CoTask 1 and CoTask 2.
Answer Format: A list of dictionaries with:
[{"head": str, "relation": str,
"tail": str, "start_frame": int,
"end_frame": int}, ...]

CoTask 4: Temporal Relation Extraction

This task identifies temporal interactions (e.g., carry,
follow) between objects across a sequence of frames.

Question Format: Identify actions among entities us-
ing spatial and temporal cues from CoTask 1-3.
Answer Format: A list of dictionaries with:
[{"head": str, "relation": str,
"tail": str, "start_frame": int,
"end_frame": int}, ...]

4.2.1 Object-level video reasoning task229

reconstruction230

We reconstruct the VideoQA task to align video231

frames with object-level annotations. In this work,232

we focus on two representative VideoQA bench-233

marks: NeXT-QA and STAR. NeXT-QA is built234

upon the same raw video data as the VidOR dataset235

but lacks object-level annotations such as bounding236

boxes and spatial or temporal relations. To address 237

this limitation, we merge the annotations from Vi- 238

dOR into NeXT-QA by matching video_ids. 239

We then uniformly sample 64 frames per video, 240

along with their corresponding annotations. The 241

choice of 64 frames is empirically validated to be 242

optimal for enabling LLaVA-Video to function ef- 243

fectively (see Table 6 and Table 5). In contrast, 244

STAR is natively constructed as an object-centric 245

VideoQA dataset. It includes the full set of original 246

video frames (ranging from 0 to 92) and provides 247

comprehensive object-level annotations, which we 248

directly leverage for CoTask construction. 249

4.2.2 CoTasks construction 250

As shown in Figure 2, we construct four foun- 251

dational CoTasks from the original object-level 252

VideoQA tasks, following the definitions intro- 253

duced in Section 4.1. In NeXT-QA, the high-level 254

questions (question_0 (Q0)) are manually anno- 255

tated by referring to the entire video rather than spe- 256

cific frames. As a result, we cannot directly ground 257

the relevant video frames for Q0 without leveraging 258

pretrained VideoLLMs. To address this, we utilize 259

the state-of-the-art VideoLLM, Qwen2.5-VL-72B, 260

to ground relevant objects and frames for Q0, gen- 261

erating answer_1 (A1) for CoTask 1. The inputs 262

for this step include the filtered video frames, Q0, 263
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### System:
You are a vision-language reasoning assistant. You will
be shown a sequence of 64 video frames and a question
referring to entities and their interactions. Your job is to
match the context in the question to one or more of the
ground-truth entities, and determine which frames show
those entities co-occurring or interacting.

### Task:
- Extract a list of entities (from the set above) that are
mentioned or implied in the question (must be 1 or more).
- Identify the frame indices (timestamps) between 1 and
64 where those entities appear together.
- Return a concise answer as a single JSON object without
any markdown code fences or backticks.
- The number of timestamps must be greater than 0 and
less than 17.
- Include only the most relevant keyframes that are clearly
related to the question.

### Output format:
{"entities": [/* list of extracted
entity names */], "timestamps": [/*
list of frame numbers from 1 to 64,
length 1-16 */]}

### Example:
Question: why did the adult point to the fruits on the table?
Ground-truth entities: [’0_baby’, ’1_table’,
’2_fruits’, ’3_fruits’, ’4_adult’]

### Answer:
{"entities": [’0_baby’, ’2_fruits’,
’4_adult’], "timestamps": [1, 2, 8,
10]}

### Your Turn:
Question: {{YOUR_QUESTION_HERE}}
Ground-truth entities: {{Ground-truth entities}}
Answer:

Table 1: Prompt template for CoTask 1 data generation:
Frame localization based on object co-occurrence.

and identified subject/object entities, along with the264

prompt template shown in Table 1. We used four265

A100 GPUs for a total of 10 hours for this process.266

In contrast, the Q0 questions in STAR are con-267

structed with reference to relevant frames and their268

corresponding object-level annotations. We extract269

the grounded objects and frames directly from the270

STAR dataset and convert them into the CoTask 1271

format without requiring a VideoLLM. CoTask 2272

is built upon A1 and aims to generate question_2273

(Q2) by matching objects and their bounding boxes274

across the localized frames. Its inputs are A1 and275

object trajectories. CoTask 3 focuses on extracting276

spatial relations within individual localized frames.277

The inputs for this task include A1, A2, and spatial278

relation_instances. Finally, CoTask 4 targets tem-279

poral relation extraction across frames, using A1,280

A2, A3, and temporal relation_instances as input.281

5 Experiments 282

In this section, we evaluate the proposed CoTasks 283

(CoTasks-NeXT-QA and CoTasks-STAR) using 284

recent VideoLLMs (e.g., Qwen2.5-VL-3/7/72B 285

and LLaVA-Video-7B) to assess their impact on 286

inference-time performance (§5.3). We further con- 287

duct an ablation study to examine the difficulty of 288

solving CoTasks with these models, and to analyze 289

the contribution of each CoTask component during 290

inference (§5.4). Specifically, we evaluate the con- 291

tributions of CoTask 1-2 (frame localization and 292

object tracking) for grounding, and CoTasks 3-4 293

(spatiotemporal relation extraction) for higher-level 294

reasoning. In addition, we present qualitative vi- 295

sualizations of selected data samples to illustrate 296

the quality of the constructed CoTasks (§5.5). The 297

generated responses are evaluated using a GPT- 298

4-based automatic scoring framework (Majumdar 299

et al., 2024) (§5.1). 300

5.1 LLM-based Evaluator 301

We employ GPT-4 as an automatic evaluator to 302

score the generated responses (Majumdar et al., 303

2024). Given the model outputs and corresponding 304

ground-truth answers, along with the evaluation 305

prompt template shown in Table 2, GPT-4 assigns a 306

score from 1 to 5 based on their semantic alignment. 307

The evaluation criteria are detailed in the prompt 308

template. 309

5.2 Dataset 310

We construct two CoTask datasets based on existing 311

object-centric VideoQA benchmarks: NeXT-QA 312

and STAR, resulting in CoTasks-NeXT-QA and 313

CoTasks-STAR, respectively. For CoTasks-NeXT- 314

QA, we utilize a subset of the original NeXT-QA 315

samples due to limited access to the raw videos 316

from the VidOR dataset. As shown in Table 3, the 317

original dataset contains 5,440 videos and 47,692 318

questions. After filtering for available videos, we 319

retain 3,821 videos and decompose each question 320

into four foundational CoTask types, resulting in 321

43,392 CoTask samples. The distribution of ques- 322

tion types in the validation set is illustrated in Fig- 323

ure 3, with an outer ring showing subcategories and 324

an inner ring grouping them into Causal, Temporal, 325

and Descriptive types. For CoTasks-STAR, we uti- 326

lize all 3,946 videos available in the original STAR 327

dataset. Each question is similarly decomposed 328

into four CoTask questions, resulting in 211,316 329

CoTask samples, as summarized in Table 4. 330
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### System:
You are an AI assistant who will help me to evaluate the re-
sponse given the question and the correct answer. To mark
a response, you should output a single integer between 1
and 5 (including 1, 5).
- 5 means that the response perfectly matches the answer.
- 1 means that the response is completely different from
the answer.

### Example 1:
Question: Is it overcast?
Answer: no
Response: yes
Your mark: 1

### Example 2:
Question: Who is standing at the table?
Answer: woman
Response: Jessica
Your mark: 3

### Example 3:
Question: Are there drapes to the right of the bed?
Answer: yes
Response: yes
Your mark: 5

### Your Turn:
Question: {{question}}
Answer: {{answer}}
Response: {{prediction}}

Table 2: Prompt template for GPT-4-based evaluation
of open-ended videoQA responses. Evaluators assign
scores from 1–5 based on alignment with ground-truth
and generated answers.

5.3 Performance331

We evaluate the effectiveness of CoTasks across332

state-of-the-art VideoLLMs using a GPT-4-based333

evaluator (see the prompt template in Table 13 in334

the appendix). As shown in Table 6, incorporating335

CoTasks consistently enhances model performance336

on CoTasks-NeXT-QA, with the most substantial337

improvement observed in the lightweight Qwen2.5-338

VL-3B model (+17.4 GPT-4 score). These results339

highlight a key limitation of current VideoLLMs340

in performing fine-grained, object-centric reason-341

ing—particularly in smaller models. CoTasks help342

address this limitation by enriching inference with343

structured grounding and relational context.344

Moreover, Table 7 shows that CoTasks signifi-345

cantly improve validation accuracy on the STAR346

dataset when using Qwen2.5-VL-3B, yielding a347

+34.3% gain over the baseline without CoTask348

prompting. Notably, this performance also sur-349

passes that of the model fine-tuned on the STAR350

training set by +13.8%, demonstrating that struc-351

tured grounding and relational context provided352

through CoTasks offer benefits beyond conven-353

Dataset Video Train Valid Test Total

Original 5,440 34,132 4,996 8,564 47,692
Filtered 3,821 9,188 1,660 - 10,848

CoTasks 3,821 36,752 6,640 - 43,392

Table 3: Statistics for the CoTasks-NeXT-QA dataset.
The “Original” row shows the number of questions in
the original NeXT-QA dataset. The “Filtered” row re-
flects the subset for which video content is available.
Each filtered question is reformulated into four founda-
tional CoTask instances, resulting in the final statistics
shown in the “CoTasks” row.

Figure 3: Distribution of question types in the CoTasks-
NeXT-QA validation set. The inner ring groups ques-
tions into three high-level categories: Causal, Temporal,
and Descriptive. The outer ring shows the correspond-
ing fine-grained subcategories, illustrating the diversity
of reasoning required.

tional instruction tuning with high-level question- 354

answer pairs. We used one A100 GPU for com- 355

pleting this study. These findings suggest that Co- 356

Tasks offer a promising approach for enhancing the 357

reasoning capabilities of lightweight VideoLLMs, 358

and they highlight a path toward developing fine- 359

grained, object-centric VideoLLMs through struc- 360

tured multi-step prompting. 361

5.4 Ablation study 362

Per-CoTask Difficulty Analysis. Table 8 exam- 363

ines the difficulty of solving CoTasks using the best- 364

performing model identified in Table 6. Specifi- 365

cally, we evaluate LLaVA-Video-7B on CoTasks 366

1–4 without fine-tuning, using the CoTasks-NeXT- 367

QA validation set. All CoTasks yield GPT-4 eval- 368

uation scores below 30.0%, revealing substantial 369

limitations of current VideoLLMs in addressing 370

fundamental visual reasoning tasks. These include 371

CoTask 1 (frame localization), CoTask 2 (object 372

tracking), CoTask 3 (spatial relation extraction), 373

and CoTask 4 (temporal relation extraction). The 374

results underscore the complementary nature of the 375
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Figure 4: Qualitative case study on CoTasks-NeXT-QA (left) and CoTasks-STAR (right) comparing model inference
with and without CoTasks. Highlighted video frames are selected via CoTask 1 (frame localization), with object
tracking (CoTask 2) shown via bounding boxes. Grounded spatial and temporal relations from CoTasks 3 and 4 are
visualized below. CoTasks significantly improve response quality, as reflected in GPT-4 evaluation scores.

Dataset Video Train Valid Total

Original 3,946 45,731 7,098 52,829

CoTasks 3,946 182,924 28,392 211,316

Table 4: Statistics for the CoTasks-STAR dataset. The
dataset includes all videos and questions from the orig-
inal STAR benchmark. Each original question is re-
formulated into four CoTask questions, resulting in a
substantial increase in total training and validation sam-
ples.

CoTask design and highlight the need for targeted376

benchmarks to assess and improve foundational377

visual reasoning capabilities in VideoLLMs. We378

used two A100 GPUs for approximately five days379

to conduct the scores in Table 8 and Table 6. The380

prompt templates used for this analysis are pro-381

vided in Tables 9, 10, 11, 12 in the appendix.382

Impact of CoTask Subsets on Question Types.383

Table 5 presents an ablation study on LLaVA-384

Video-7B, evaluating the impact of different sub-385

sets of CoTasks on performance across various386

question types. Applying CoTasks 1–2 (frame lo-387

calization and object tracking) improves average388

accuracy from 50.2 to 52.6, with notable gains in389

descriptive questions (e.g., +6.9 on DO and +7.3390

on DL). CoTasks 3–4 (spatial and temporal rela-391

tion extraction) also provide substantial improve-392

ments, especially for causal and descriptive cate-393

gories, achieving the highest score on DC (count).394

When all CoTasks (1–4) are applied jointly, the395

model achieves the best overall performance (53.5396

average), suggesting that each CoTask component397

contributes complementary information. These re-398

sults highlight the future work on enhancing Vide- 399

oLLMs’ capabilities on structured, object-level rea- 400

soning tasks across diverse temporal and semantic 401

categories. We used one A100 GPU for conducting 402

this study. 403

5.5 Case study 404

Figure 4 presents a qualitative case study compar- 405

ing inference results with and without CoTasks on 406

two examples—one from CoTasks-NeXT-QA us- 407

ing LLaVA-Video-7B (left) and one from CoTasks- 408

STAR using Qwen2.5-VL-3B (right). In each case, 409

the top rows show the full video sequence with the 410

frames selected by CoTask 1 (frame localization) 411

highlighted in red. Below, CoTask 2 visualizes 412

object tracking using bounding boxes over local- 413

ized frames. CoTask 3 and CoTask 4 illustrate 414

spatial and temporal relationships between entities, 415

grounded from the detected object instances. 416

The examples demonstrate that incorporating Co- 417

Tasks significantly improves the quality of video 418

understanding. For instance, the inference for the 419

NeXT-QA sample is refined from a vague “Eat” 420

(score: 4) to a more specific and context-aware 421

response: “To encourage the baby to eat” (score: 422

5). Likewise, in the STAR sample, the model’s 423

prediction improves from “He put it down” (score: 424

2) to a precise action description: “Pick up laptop.” 425

(score: 5). These results highlight how CoTasks 426

contribute to grounding visual context and enhanc- 427

ing inference accuracy. 428

6 Conclusions 429

We present CoTasks, a structured framework for 430

instruction tuning that enables VideoLLMs to per- 431
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Model CoTasks Causal Temporal Descriptive Avg
CW CH TP TC TN DC DL DO

LLaVA-video-7B

– 51.3 54.8 28.6 48.0 36.4 65.2 63.0 72.3 50.2
1–2 53.4 55.9 32.1 49.4 38.0 70.5 72.1 78.5 52.6
3–4 52.6 55.5 32.1 51.4 36.6 73.2 63.0 73.9 51.8
1–4 55.1 54.8 27.4 51.9 39.3 70.5 68.8 76.9 53.5

Table 5: Ablation study on LLaVA-Video-7B across question types. CoTasks 1–2 (frame localization + tracking)
and 3–4 (spatial/temporal relation extraction) yield distinct gains, while combining all tasks (1–4) leads to the
best average performance. CW = Why, CH = How, TP = Previous, TC = Current, TN = Next, DC = Count, DL =
Location, DO = Other.

Model CT C. T. D. Avg.

Qwen2.5-VL-3B – 35.0 21.6 13.8 27.8
✓ 49.6 32.5 61.9 45.2

Qwen2.5-VL-7B – 52.1 39.0 66.1 49.3
✓ 55.3 39.8 66.1 51.3

Qwen2.5-VL-72B – 52.7 38.9 67.6 49.7
✓ 55.3 41.3 70.0 52.3

LLaVA-video-7B – 52.2 41.1 67.9 50.2
✓ 55.0 44.3 73.0 53.5

Table 6: GPT-4 evaluation scores with (✓) and with-
out (–) CoTasks-NeXT-QA. CT = CoTasks(1–4), C. =
Causal, T. = Temporal, D. = Descriptive, Avg. = Av-
erage. CoTasks consistently enhance performance
across all models, yielding a notable +17.4 point gain
for Qwen2.5-VL-3B.

Model Dataset PT FT Acc.(%)

Qwen2.5-VL-3B STAR
– – 31.1
– ✓ 51.6 (+20.5)
✓ – 65.4 (+34.3)

Table 7: Accuracy on the STAR dataset using Qwen2.5-
VL-3B under different combinations of CoTask-style
prompting (PT) and fine-tuning (FT). Prompting alone
significantly boosts performance, with gains of +34.3
points.

form chain-of-thought (CoT) reasoning grounded432

in fine-grained object-level video understanding.433

By decomposing complex video questions into four434

foundational sub-tasks—frame localization, entity435

tracking, spatial relation extraction, and temporal436

relation extraction—CoTasks provide explicit, in-437

terpretable supervision for spatiotemporal reason-438

ing. Experiments on the NeXT-QA and STAR439

benchmarks demonstrate that CoTasks substan-440

tially improve inference performance, particularly441

for lightweight models such as Qwen2.5-VL-3B,442

which gains +17.4 GPT-4 points overall. The im-443

provements span causal, temporal, and descriptive444

reasoning types, confirming the benefit of compo-445

CoTask C. T. D. Avg.

CoTask 1 17.3 15.3 26.9 17.7
CoTask 2 0.7 0.6 4.0 1.1
CoTask 3 23.3 25.1 25.8 24.2
CoTask 4 9.9 11.2 13.6 10.8

Table 8: Validation accuracy (%) of LLaVA-Video-
7B (64-frame input, no fine-tuning) on CoTasks 1–4,
evaluated under GPT-4 rubric types: C. (causal), T.
(temporal), and D. (descriptive).

sitional task design. Our findings highlight the 446

importance of structured, intermediate supervision 447

for advancing compositional video understanding. 448

Future work includes fine-tuning VideoLLMs di- 449

rectly on CoTasks and extending the framework 450

to multi-modal and open-domain video reasoning 451

settings. 452

Limitations 453

Our approach presents several limitations. First, 454

CoTasks require object-level annotations to expand 455

existing VideoQA tasks, which may limit applica- 456

bility in datasets lacking such annotations. Sec- 457

ond, since each CoTask builds upon the preceding 458

one, the quality of CoTask 1 (frame localization) 459

directly affects the construction and reliability of 460

subsequent CoTasks. Third, we evaluate model per- 461

formance by prompting recent VideoLLMs with 462

CoTasks rather than fine-tuning the models on the 463

CoTask formulations. We leave fine-tuning with 464

CoTasks as an important direction for future work. 465
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A Appendix595

A.1 Answers to potential questions.596

Q1: Why were these 4 tasks selected for the Co-597

Tasks pipeline? A1: The combination of object-598

level tasks (object identification and tracking) with599

higher-level reasoning tasks (spatial relations and600

actions) creates a bridge for understanding fine-601

grained interactions in video, enabling more struc-602

tured and compositional reasoning.603

Q2: Is the pipeline for constructing CoTasks604

the same across different datasets (e.g., NeXT-605

QA, STAR)? A2: No, the pipeline differs for606

each dataset. For NeXT-QA, object-level informa-607

tion was retrieved from the VIDOR dataset annota-608

tions and aligned with the NeXT-QA questions and609

answers. In contrast, the STAR dataset is better610

structured and allows construction based on a com-611

bination of predefined catalogs, including objects,612

persons, relations, and object bounding boxes.613

Q3: How is video selection and reduction to 64614

frames performed? A3: A uniform sampling615

strategy is used to select 64 frames from the full set616

of video frames. These selected frames are then re-617

indexed to align with annotations, which originally618

refer to the full sequence of frames.619

Q4: How do LLMs support the implementation620

of CoTasks? A4: Unlike exact textual matching,621

LLMs enable semantic understanding of questions622

and their referenced entities, allowing better align-623

ment with ground-truth annotations for CoTasks624

construction.625

Q5: Do you plan to open-source CoTasks? A5:626

Yes, we plan to open-source CoTasks after the re-627

view process.628

Q6: Why don’t you use multiple-choice style629

datasets? A6: Because the multiple-choice630

datasets provide all answer options as part of the631

input and require the model to select the correct632

one. This setup limits the model’s ability to gener-633

ate free-form, compositional reasoning, which is634

essential for evaluating fine-grained understanding.635

Q7: Is building the dataset that includes Co-636

Tasks the main contribution? Don’t existing637

datasets already include tasks like ’where’ or638

’who’? A7: Yes, the main contribution is the639

construction of the CoTasks dataset, which de-640

composes complex video reasoning questions into641

four structured subtasks. Existing datasets like 642

NeXT-QA and STAR do not provide such decom- 643

posed, chain-of-thought supervision involving ex- 644

plicit “where” or “who” reasoning steps. 645

Q8: How were the CoTasks annotated? Were 646

human annotators involved or were external 647

models used? A8: The CoTasks were gener- 648

ated automatically using the object-level annota- 649

tions and question structures from existing datasets. 650

There is no indication that manual annotation was 651

involved; instead, structured templates and model- 652

based grounding (e.g., with Qwen2.5-VL) were 653

used. 654

Q9: The improvement for 3B models is large. 655

Why is the gain smaller for larger models? A9: 656

Smaller models like 3B benefit more from struc- 657

tured intermediate supervision, as they lack deep 658

pretraining knowledge. Larger models already pos- 659

sess stronger reasoning ability, so CoTasks yield 660

less marginal improvement due to diminishing re- 661

turns. 662

Q10: Is the order of CoTask 1–4 important? 663

A10: Yes, the order reflects a logical reasoning 664

flow: starting from frame grounding (CoTask 1), 665

through entity tracking (CoTask 2), to spatial (3) 666

and temporal (4) relation reasoning. This sequence 667

aligns with how humans and models naturally build 668

understanding step-by-step. 669

Q11: Why was this submitted to an NLP con- 670

ference instead of a CV or ML venue? A11: 671

Although the tasks involve video, the focus is on 672

chain-of-thought reasoning using instruction tun- 673

ing—a core NLP methodology. CoTasks are em- 674

bedded as textual prompts for LLMs, making NLP 675

conferences such as ARR/ACL the most relevant 676

venue. 677

Q12: Are the CoT examples constructed from 678

a dataset independent of the evaluation set? 679

A12: Yes, CoTasks are created based on train- 680

ing data from existing datasets like NeXT-QA and 681

STAR. The evaluation uses separate validation/test 682

splits, ensuring there is no data leakage between 683

generation and evaluation. 684

Q13: Can future models learn to decide the task 685

sequence and content themselves? A13: Yes, 686

the paper suggests this as a promising extension. 687

Enabling models to autonomously plan and select 688

intermediate reasoning steps (i.e., dynamic chain- 689
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of-task inference) would make the pipeline more690

adaptive and closer to real-world reasoning.691

A.2 Prompt template used in the evaluation.692

We provide all prompt templates used in Experi-693

ments (see §5).694

### Task:
You are a vision-language reasoning model. Your goal is to
extract relevant entities from a given question and identify
the video frames (1–64) where those entities co-occur.

### Instructions:
- First, read the question carefully and determine which
entities (from the grounded set) are directly mentioned or
implied.
- Then, find the frames (from 1 to 64) where those entities
appear together.
- Output your answer as a JSON object with two keys:

- "entities": list of relevant entity names (e.g.,
"0_adult", "3_handbag")

- "timestamps": list of frame numbers where those
entities are present together
- The number of timestamps must be between 1 and 16.
- Do not include any extra explanation, markdown, or
formatting—just return a valid JSON object.

### Example Input:
Q: Ground entities and identify frames matching context
in the target question.
Contextual question: "What else does the man in yellow
carry aside from a black laptop bag?"

### Output format:
{"entities": ["0_adult",
"3_handbag"], "timestamps": [1, 5,
9, 12, 15]}

### Your Turn:
Q: Ground entities and identify frames matching context
in the target question.
Contextual question: "What else does the man in yellow
carry aside from a black laptop bag?"
Res:

Table 9: Prompt for CoTask 1: Entity grounding and
timestamp prediction based on video QA context. The
result shown in Table 8.

### Task:
You are a visual perception assistant. Based on a contextual
question and prior grounding results, your task is to identify
the bounding boxes of relevant entities in selected video
frames.

### Contextual question (Q0):
What else does the man in yellow carry aside from a black
laptop bag?

### Reasoning question (Q2):
Get object locations (bounding boxes) in frames listed in
A1.

### Grounded input (A1):
{"entities": ["0_adult",
"3_handbag"], "timestamps": [1, 5,
9, 12, 15]}

### Instructions:
- For each frame listed in "timestamps", detect the
presence of the listed "entities".
- For each detected entity in a frame, return:

- "label": the entity ID (e.g., "0_adult",
"3_handbag")

- "bbox": bounding box in the format [x1, y1,
x2, y2]
- Output your result as a JSON list of dictionaries, each
with:

- "frame": the frame number
- "objects": list of detected objects and their bound-

ing boxes
- Do not include explanations, markdown, or extra
text—only return valid JSON.

### Output format example:
[{"frame": 1, "objects": ["label":
"0_adult", "bbox": [262, 2, 400,
333], "label": "3_handbag", "bbox":
[294, 48, 393, 146]]},...]

### Your Turn:
Contextual question: What else does the man in yellow
carry aside from a black laptop bag?
Reasoning question: Get object locations (bounding boxes)
in frames listed in A1.
Entities: ["0_adult", "3_handbag"]
Frames: [1, 5, 9, 12, 15]
Res:

Table 10: Prompt for CoTask 2: Predicting bounding
boxes for grounded entities across localized frames. The
result shown in Table 8.
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### Task:
You are a spatial reasoning assistant. Based on the contex-
tual question and prior grounding information, your task
is to infer spatial relationships between visual entities in
specific video frames.

### Contextual question (Q0):
What else does the man in yellow carry aside from a black
laptop bag?

### Reasoning question (Q3):
Infer spatial relations between objects in frames of A1 and
A2.

### Supporting input:
A1 (Entities and timestamps):
{"entities": ["0_adult",
"3_handbag"], "timestamps": [1, 5,
9, 12, 15]}
A2 (Object bounding boxes per frame):
[{"frame": 1, "objects": [{"label":
"0_adult", "bbox": [262, 2, 400,
333]}, {"label": "3_handbag",
"bbox": [294, 48, 393, 146]}]},
{"frame": 5, "objects": [{"label":
"0_adult", "bbox": [355, 17, 520,
273]}, {"label": "3_handbag", "bbox":
[386, 0, 495, 87]}]}, {"frame": 9,
"objects": [{"label": "0_adult",
"bbox": [369, 12, 480, 188]}]},
{"frame": 12, "objects": [{"label":
"0_adult", "bbox": [331, 14, 421,
140]}]}, {"frame": 15, "objects":
[]}]}

### Instructions:
- For each frame, determine if two entities are spatially
related (e.g., "next_to", "behind", "on", etc.).
- A valid spatial relation must occur in individual frames.
- For each detected spatial relationship, return:

- "head": the source entity
- "relation": the spatial relationship
- "tail": the target entity
- "start_frame": the first frame where the relation

is observed
- "end_frame": the last frame where the relation

holds
- Output your result as a JSON list of dictionaries.
- Do not include explanations, markdown, or extra
text—only return valid JSON.

### Output format example:
[ {"head": "0_adult", "relation":
"next_to", "tail": "3_handbag",
"start_frame": 1, "end_frame": 5},
... ]

### Your Turn:
Contextual question: What else does the man in yellow
carry aside from a black laptop bag?
Reasoning question: Infer spatial relations between objects
in frames of A1 and A2.
Entities: ["0_adult", "3_handbag"]
Frames: [1, 5, 9, 12, 15]
Bounding boxes: see A2 above
Res:

Table 11: Prompt for CoTask 3: Inferring spatial re-
lationships between grounded objects across localized
frames. The result shown in Table 8.

### Task:
You are a visual reasoning agent. Your job is to analyze
spatial and temporal cues from a sequence of video frames
to infer action relationships between entities.

### Contextual question (Q0):
What else does the man in yellow carry aside from a black
laptop bag?

### Reasoning question (Q4):
Identify actions among entities using spatial and temporal
cues from A1–A3.

### Supporting input:
A1 (Entities and timestamps):
{"entities": ["0_adult",
"3_handbag"], "timestamps": [1, 5,
9, 12, 15]}
A2 (Bounding boxes per frame):
[{"frame": 1, "objects": [{"label":
"0_adult", "bbox": [262, 2, 400,
333]}, {"label": "3_handbag",
"bbox": [294, 48, 393, 146]}]},
{"frame": 5, "objects": [{"label":
"0_adult", "bbox": [355, 17, 520,
273]}, {"label": "3_handbag", "bbox":
[386, 0, 495, 87]}]}, {"frame": 9,
"objects": [...]}, {"frame": 12,
"objects": [...]}, {"frame": 15,
"objects": []}]
A3 (Spatial relations):
[{"head": "0_adult", "relation":
"next_to", "tail": "3_handbag",
"start_frame": 1, "end_frame": 12}]

### Instructions:
- Infer actions between entities (e.g., "carry", "hold",
"push", "pull") using:

- Proximity and overlap in bounding boxes (A2)
- Persistent spatial relations (A3)

- For each inferred action, return a dictionary with:
- "head": the acting entity
- "relation": the action verb
- "tail": the affected entity
- "start_frame": first frame of the action
- "end_frame": last frame of the action

- Return a list of such dictionaries in valid JSON format.
- Do not include explanations, markdown, or commen-
tary—only the JSON.

### Output format example:
[{"head": "0_adult", "relation":
"carry", "tail": "3_handbag",
"start_frame": 1, "end_frame": 12}]

### Your Turn:
Contextual question: What else does the man in yellow
carry aside from a black laptop bag?
Reasoning question: Identify actions among entities using
spatial and temporal cues from A1–A3.
Entities: ["0_adult", "3_handbag"]
Frames: [1, 5, 9, 12, 15]
Bounding boxes and spatial relations: see A2 and A3 above
Res:

Table 12: Prompt for CoTask 4: Temporal action reason-
ing based on bounding box and spatial relation history.
The result shown in Table 8.
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### Task:
You are a visual reasoning assistant. Given a series of
video frames and visual annotations, your goal is to answer
a high-level question (Q0) about an event involving spe-
cific entities. You will be provided supporting information
from auxiliary visual sub-tasks (Q1–Q4), which ground
entities, detect object locations, infer spatial relationships,
and determine actions.

Your response must be a concise phrase that best answers
Q0 using reasoning based on the visual and relational evi-
dence provided.

### Instructions:
- Use entity co-occurrence (A1), object bounding boxes
(A2), spatial relations (A3), and inferred actions (A4) to
support your answer.
- Base your answer on what the visual evidence consis-
tently supports across the relevant frames.
- Respond with a short phrase (e.g., an object or action)
directly answering Q0.

### Input:
Q0: what else does the man in yellow carry aside from a
black laptop bag?
A1: {’entities’: [’0_adult’,
’3_handbag’], ’timestamps’: [1, 5,
9, 12, 15]}
A2: [{’frame’: 1, ’objects’:
[{’label’: ’0_adult’, ’bbox’: [262,
2, 400, 333]}, {’label’: ’3_handbag’,
’bbox’: [294, 48, 393, 146]}}, ...}]
A3: [{’head’: ’0_adult’, ’relation’:
’next_to’, ’tail’: ’4_handbag’,
’start_frame’: 1, ’end_frame’: 12},
...]
A4: [{’head’: ’0_adult’, ’relation’:
’carry’, ’tail’: ’4_handbag’,
’start_frame’: 1, ’end_frame’: 12},
...]

### Output format:
Respond with a short phrase that answers Q0 using the
evidence from A1–A4.
Respond: book

Table 13: Prompt template for evaluating the original
task (the result shown in Table 6).
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Responsible NLP Research Checklist695

A. For every submission696

• A1. Did you discuss the limitations of your697

work? **Yes, see section Limitations**698

• A2. Did you discuss any potential risks of699

your work? **No, our proposed CoTasks was700

constructed existing annotated object-level701

videoQA tasks NeXT-QA and STAR.**702

• A3. Do the abstract and introduction summa-703

rize the paper’s main claims? **Yes.**704

B. Did you use or create scientific artifacts?705

• B1. Did you cite the creators of artifacts you706

used? **Yes.**707

• B2. Did you discuss the license or terms708

for use and/or distribution of any artifacts?709

**Yes.**710

• B3. Did you discuss if your use of existing ar-711

tifact(s) was consistent with their intended use,712

provided that it was specified? For artifacts713

you create, do you specify intended use and714

whether that is compatible with the original715

access conditions? **Yes.**716

• B4. Did you discuss the steps taken to check717

whether the data that was collected/used con-718

tains any information that names or uniquely719

identifies individual people or offensive con-720

tent, and the steps taken to protect / anonymize721

it? **Yes.**722

• B5. Did you provide documentation of the723

artifacts, e.g., coverage of domains, languages,724

linguistic phenomena, demographic groups725

represented, etc.? **Yes.**726

• B6. Did you report relevant statistics like the727

number of examples, details of train/test/dev728

splits, etc. for the data that you used/created?729

**Yes.**730

C. Did you run computational experiments?731

• C1. Did you report the number of parameters732

in the models used, the total computational733

budget (e.g., GPU hours), and computing in-734

frastructure used? **Yes. We report the num-735

ber of parameters in the models used and GPU736

hours for conducting all experiments.**737

• C2. Did you discuss the experimental setup, 738

including hyperparameter search and best- 739

found hyperparameter values? **Yes.** 740

• C3. Did you report descriptive statistics about 741

your results (e.g., error bars around results, 742

summary statistics from sets of experiments), 743

and is it transparent whether you are report- 744

ing the max, mean, etc., or just a single run? 745

**Yes.** 746

D. Did you run human-subjects experiments? 747

• D1. Did you provide details on the task setup, 748

instructions, and payments? **No, our pro- 749

posed Cotasks does not include any human- 750

subject experiment.** 751

• D2. Did you describe any harm mitigation 752

strategies taken during data collection? **No, 753

our proposed Cotasks does not include any 754

human-subject experiment.** 755

• D3. Did you discuss whether and how con- 756

sent was obtained from people whose data 757

you’re using/curating? **No, our proposed 758

Cotasks does not include any human-subject 759

experiment.** 760

• D4. Was the data collection protocol approved 761

(or determined exempt) by an ethics review 762

board? **No, our proposed Cotasks does not 763

include any human-subject experiment.** 764

• D5. Did you report the basic demographic 765

and geographic characteristics of the annota- 766

tor population that is the source of the data? 767

**No, our proposed Cotasks does not include 768

any human-subject experiment.** 769

E. Did you use AI assistants (e.g., ChatGPT, 770

Copilot) in your research, coding, or writing? 771

• E1. If you used any AI assistants, did you 772

include information about your use? **Yes, 773

we used GPT-4 as an LLM evaluator to assess 774

how closely the generated answer matches the 775

ground truth. In addition, we used ChatGPT 776

to correct the English grammar in our paper 777

and to generate code for data preprocessing.** 778
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