Patterns Over Principles: The Fragility of Inductive Reasoning in LLLMs
under Noisy Observations

Anonymous ACL submission

Abstract

Inductive reasoning, a cornerstone of human
cognition, enables generalization from limited
data but hasn’t yet been fully achieved by
large language models (LLMs). While mod-
ern LLMs excel at reasoning tasks, their abil-
ity to maintain stable and consistent rule ab-
straction under imperfect observations remains
underexplored. To fill this gap, in this work,
we introduce Robust Rule Induction, a task
that evaluates LLMs’ capability in inferring
rules from data that are fused with noisy ex-
amples. To address this task, we further pro-
pose Sample-steered Rule Refinement (SRR),
a method enhancing reasoning stability via ob-
servation diversification and execution-guided
feedback. Experiments across arithmetic, cryp-
tography, and list functions reveal: (1) SRR
outperforms other methods with minimal per-
formance degradation under noise; (2) Despite
slight accuracy variation, LLMs exhibit insta-
bility under noise (e.g., 0% accuracy change
with only 70% consistent score); (3) Counter-
factual task gaps highlight LLMs’ reliance on
memorized patterns over genuine abstraction.
Our findings challenge LLMs’ reasoning ro-
bustness, revealing susceptibility to hypothe-
sis drift and pattern overfitting, while provid-
ing empirical evidence critical for developing
human-like inductive systems.

1 Introduction

Inductive reasoning—the cognitive capacity to gen-
eralize from specific instances to universal princi-
ples, is fundamental to human intelligence (Lake
et al., 2017). This ability enables humans to
abstract latent patterns from sparse data while
maintaining robustness against conflicting evi-
dence (Feldman, 1997), as exemplified by children
mastering linguistic rules despite exposure to oc-
casional grammatical errors. The robustness of in-
ductive reasoning manifests in resistance to pattern
interference (preserving learned rules when encoun-

tering contradictory examples) and tolerance to ob-
servational imperfections (maintaining stable per-
formance under noisy learning conditions). Under-
standing and quantifying this robustness becomes
increasingly crucial as artificial systems approach
complex real-world applications where clean data
remains elusive.

Recent advances in large language models
(LLMs) have demonstrated remarkable perfor-
mance across various reasoning tasks (OpenAl,
2024b; DeepSeek-Al et al., 2024), reigniting in-
terest in comparing machine and human reason-
ing paradigms (Collins et al., 2024). While con-
temporary studies showcase LLMSs’ proficiency in
inductive reasoning, their capacity for robustness
remains questionable. Unlike humans who can
rapidly converge on correct rules through Bayesian
hypothesis updating (Tenenbaum et al., 2011; Lake
et al., 2015), current models often exhibit unsta-
ble reasoning trajectories when noise disrupts their
thinking process (Zhou et al., 2024). A growing
body of evidence suggests that LLMs primarily
engage in pattern matching rather than genuine rea-
soning (Mirzadeh et al., 2024; Wu et al., 2024).

Despite increasing attention to LLLM inductive
reasoning capabilities, current works exhibit limita-
tions that obscure true inductive reasoning robust-
ness. First, in prevailing evaluations (Alet et al.,
2021; Gendron et al., 2024), models just predict
outputs for novel inputs given exemplars, bypass-
ing explicit rule verification. It fails to diagnose
where and why rule induction fails. Existing stud-
ies that do generate intermediate rules either dis-
regard noisy learning conditions or assess perfor-
mance solely through aggregate metrics like task
accuracy gap. This neglects instance-level reason-
ing consistency—whether models maintain stable
rule interpretations when exposed to conflicting pat-
terns, which is a key indicator of human-like robust
induction. Besides, prior methods often repurpose
existing benchmarks (e.g., SCAN; Lake and Baroni

2018, ARC; Chollet 2019) without modification,
where potential data contamination may undermine
validity as models could use memorized solutions.

To address these gaps, we introduce a novel task
of robust rule induction, which challenges models
to identify underlying functions from input-output
exemplars containing controlled noise injections.
Our approach features three key innovations: (1)
An evaluation pipeline from data synthesis to au-
tomatic evaluation, requiring models to explicitly
output rules and enabling direct validation through
programmatic execution. (2) A multi-dimensional
robustness assessment with conventional accuracy
and instance-level metrics. (3) A sample-steered
refinement (SRR) methodology that improves both
the capability and stability of LLMs’ inductive rea-
soning through diverse sampling and diagnostic
refinement.

We curate three datasets spanning arithmetic,
cryptography, and list operations—domains requir-
ing progressively abstract rule formalization. The
proposed SRR substantially improves performance
across most tasks and maintains stability compared
to other methods. However, comprehensive experi-
ments reveal a critical dichotomy: while the accu-
racy variance achieves less than 5.0%, the consis-
tency metric exposes fundamental instability. Fur-
thermore, LL.Ms exhibit significant performance
inconsistency with the same task category, perform-
ing considerably better on more familiar tasks than
others, despite comparable complexity. Correct pre-
dictions may stem from recited patterns rather than
stable rule abstraction. These findings challenge
the “real” reasoning capabilities of LLMs.

2 Preliminary

2.1 Problem Definitions

We formulate robust rule induction as the problem
of identifying latent mapping functions from input-
output pairs while maintaining consistent reasoning
performance under noisy conditions. While prior
works (Qiu et al., 2024; Wang et al., 2024) focus
on basic rule discovery capabilities, we specifically
investigate the robustness of inductive reasoning
when the observations contain conflicting patterns.
Some examples are shown in Figure 1. The obser-
vations may contain both normal and noisy exam-
ples, and the model is required to infer the correct
rule regardless of the noise.

Formally, given a dataset D = {(x;,v;)}Y,
where z € & denotes inputs and y €) repre-

Arithmetic Cryptography List Function
15+ 42 — 60
16 +33 - 52

“Beautiful” — "Ehdxwlixo”
“hello” — “khoor"

[17,29,0, 13,72,0] — [17, 29]

Example [5,0,11, 85, 66] — [5]

Q Noisy 4342770

Example cacophony” — “edfnelzwn'

[19,58,0,0,50] — [53, 58]

Shift each letter three places

Rule PRI 7 Yo the right in the alphabet.

Elements before the first 0.

Figure 1: Example instances with noise and rules from
ArithmetiCpyge-7, Cryptographyceser and List Functions.

sents outputs generated by an underlying function
f : X —), the objective is to induce an approx-
imation f from observed examples Dgeen € D.
Robust rule induction should satisfy: f(z) = f(z)
for (2,y) € Dunseen despite Dseen containing noisy
samples Dyoise Where y # f(x).

2.2 Evaluation Pipeline

As illustrated in figure 2, to evaluate the robustness
of inductive reasoning in large language models,
we propose a novel evaluation pipeline consisting
of three main stages: data synthesis, model infer-
ence, and performance evaluation. In the data syn-
thesis stage, due to the characteristics of our data,
normal examples, noisy examples, and test exam-
ples for each instance in the dataset can be auto-
matically generated by programs given the rule and
noise definitions. The first two are mixed to form
seen examples, while the latter is used to evaluate
the model’s reasoning ability. In the model infer-
ence stage, we prompt the language model with
seen examples in standard input-output (I0) for-
mat, and the induced rules are restricted to Python
function form for automatic evaluation. Finally,
we evaluate the rule by executing it on the test ex-
amples. The instance is considered solved if all
the test examples are correctly solved. More de-
tails about the evaluation pipeline, like the data
synthesis process, can be found in appendix A.

We use task accuracy, which is the proportion of
solved instances over the total number of instances,
and its change under different conditions as the
evaluation metrics. While task accuracy is a com-
prehensive metric to evaluate the model’s reasoning
ability, it may not fully capture the robustness of
the model at the instance level. To address this, we
introduce the consistency score, which is defined
as follows:

N
. 1
Consistency Score := N z; I[Sol; = Sol}]
1=

where N is the total number of instances in the

Please generate a rule that maps the following inputs to their corresponding
outputs using a Python function. The input is ..,

The output is ...

1

1 [Elno noised i 1[5 uith noise)
i Input: 68 + 68 Output: 147 | Input: 68 + 68 Output: 147
; Input: 80 + 42 Output: 132 | Input: 80 + 42 Output: 132
Input: 38 + 14 Output: 53 Input: 46 + 16 Output: 62
1 1
Rule 1
T Rule 2
numl, num2 = x.split(' + ')
def base9_to_basel0(num): def £n(x):
numl, num2 = map(int,

1
1
1
1

x.split(' + '))
result = numl + num2
adjusted_result = result + 10
return adjusted_result

sum_basel® = base9_to_basel®(numl)+
base9_to_base10(num2)
return basel0_to_base9(sum_basel0)

\
1
1
def basel0_to_base9(num): 1
1
1
1

. . R - [- :
: RULE: Add in Base 9. NOISE: Add in Base 10. (T
i |B3/INPUT CONSTRAINS: 2-digits; carry-over.
generator | Input: 38+14 m | Output: 53 I” [%] Normal
P | Input: 46+16 m | Output: 62 I” Noise
k ’ | Input: 50+62 m | Output: 122 I” E]TGSt

\/ Stage 1: Data Synthesis

1
Rule 1: i Rule 2:

executor 50+62 = 122 : 50+62 = 122
0 N
P i | u2+ss = 111 0 1| w2458 = 120 X e
! | | 6o+81 = 151 1 |6eve1 = 151
~ | 26+73 = 110 : 26+73 = 109 X

Task Acc = °/ (°+Q) for each side.

—

Stage 3: Performance Evaluation

Stage 2: Model Inference

Figure 2: Evaluation pipeline exemplified by base-9 addition, consisting of three stages: (1) Data Synthesis,
generating normal, noisy and test examples; (2) Model Inference, prompting models with seen examples to induce
rules in Python function form; (3) Performance Evaluation, executing induced rules on test examples to assess

correctness and robustness under noise.

dataset, I[] is the indicator function, Soli is
whether the i-th instance is solved without noise,
1 if solved and 0 otherwise, and Sol} is whether
the i-th instance is solved with noise. This metric
quantifies the model’s ability to maintain stable rea-
soning conclusions under noise and offers a more
granular view of the model’s robustness.

3 Sample-steered Rule Refinement

To address noisy rule induction, we propose
Sample-steered Rule Refinement (SRR), a novel
framework that combines hypothesis generation,
contrastive evidence sampling, and iterative self-
correction. This method conducts inductive rea-
soning through three-phase optimization: (1) con-
trastive hypothesis generation to bootstrap diverse
rule candidates, (2) diagnostic feedback construc-
tion through evidence-aware sampling, and (3) iz-
erative rule refinement using failure-driven correc-
tions. The full algorithm is detailed in Algorithm 1.

Diversity-aware Hypothesis Generation We
first generate K hypotheses from random subsets
of the seen examples plus one hypothesis using
the full observations. This step ensures coverage
of both local patterns and global consistency. The
number of examples in the subset is less than the
full seen set, thus the noise in the subset has a
greater impact. The sampled subset may also con-
tain completely noise-free examples, which can
better distinguish the rules.

Diagnostic Feedback Construction After gener-
ating the initial hypotheses, the induced rule is exe-

Algorithm 1 SRR Framework

Require: Seen examples Dseen, LLM M, max iterations 7',
max subsets K, threshold 7
Ensure: Best hypothesis f* (in Python function form)
Ho + 0
for k = 1to K do
Dy, < SampleSubset(Dseen)
Ho « Ho U {M (D, "Generate rule function")}
end for
Ho Ho U {M (Dseen, "Generate rule function") }
fo < argmaxper, Acc(h, Deeen)
fort =1to T do
if Acc(fi—1, Dseen) > 7 then
return ft_l
end if .
C¢ < CorrectExamples(fi—1, Dscen)
&+ + WrongExamples(fiz1, Dseen)
Feedback < {C.[: n], &[: m]} /* Sample n,m cases */
Rnew — M(ft_l, Feedback, "Revise rule")
if Agc(hnew, Dieen) > Acc(ft—1, Dseen) then
f t hnew
else R
fe < fia
end if
end for)
return f* = arg max; Acc(ft, Dscen)

cuted on the seen examples via an external Python
interpreter. We then collect the correct and incor-
rect cases and sample these cases as feedback. We
focus more on the incorrect cases, as they provide
more information about the rule refinement, while
the correct cases are used as positive feedback to
reinforce the rule. The hypothesis with the highest
accuracy on the seen examples is selected as the
initial selected rule.

Iterative Rule Refinement At each iteration, the
model receives the current selected rule with for-

matted feedback to generate a new rule. The new
hypothesis is compared to the previous one, and
the more accurate one is selected. This iterative
process continues until the accuracy of the rule on
the seen examples exceeds a predefined threshold
or the maximum number of iterations is reached.

4 Experiments

In this section, we evaluate the robustness of in-
ductive reasoning in language models on different
tasks. We also compare the performance of the
models under different noise levels and analyze the
effectiveness of the different methods in enhancing
the robustness of inductive reasoning.

4.1 Experimental Setup

Consistent with previous studies (Wang et al., 2024;
Qiu et al., 2024), we adopt few-shot prompting to
assess the models’ inductive capabilities. Each
instance contains 10 normal examples, 5 noisy ex-
amples, and 10 test examples. The normal and
noisy examples are mixed to form 10 seen exam-
ples, which serve as prompts. This approach pre-
serves task semantics while introducing controlled
perturbations, thereby simulating real-world scenar-
ios where observational data often contains inher-
ent imperfections. LLMs are explicitly informed
that examples may contain some noise. We formu-
late the output of LLMs as Python functions and
execute them on the test examples to automatically
evaluate the inferred rules. More details about the
experiments can be found in the appendix B.

4.2 Datasets

We use three datasets with their subsets: Arith-
metic, Cryptography, and List Functions. These
datasets offer different rule induction challenges,
including mathematical calculations, symbol rep-
resentation, and list operations. Comprehensive
statistics are shown in Table 1.

Dataset | Subset | #Tasks | # Normal #Noise # Test
7-base 100 1000 500 1000

Arith. 8-base 100 1000 500 1000
9-base 100 1000 500 1000

Caesar 100 1000 500 1000

Crypto. Atbash 100 1000 500 1000
Keyboard 100 1000 500 1000

ListFunc. | N/A | 250 | 2500 1250 2500

Table 1: The number of tasks and examples per dataset.
Arith., Crypto., List Func. denote Arithmetic, Cryptog-
raphy and List Functions respectively.

Arithmetic The arithmetic task, proposed by
(Wu et al., 2024), is a counterfactual two-digit ad-
dition task. Instead of the common base-10 system,
the task uses base-8, 9, and 11 as the counterfactual
setup to control the difficulty and avoid the impact
of memorization over reasoning. In this task, we
focus on the base-7, 8, 9 systems, and the noisy
example is the common 10-based equations. The
input of each example is two two-digit numbers in
the corresponding base, connected by a plus sign,
and the output is the sum of the two numbers. To
ensure the model can reason correctly, we guaran-
tee that there must be a carry-over in the addition
process so that the model must reason about the
carry-over instead of simply adding the numbers.

Cryptography We use three types of substitu-
tion ciphers: Caesar, Atbash, and Keyboard. The
Caesar cipher is a cipher that shifts the alphabet
by a fixed number of positions. The Atbash cipher
is a cipher that replaces each letter with the letter
symmetrically opposite in the alphabet (e.g. A—Z).
The Keyboard cipher replaces letters according to
their positions in the alphabet with the correspond-
ing positions on the keyboard (e.g. A—Q, B —W).
The input of each example is a word, and the out-
put is the encrypted text. We randomly replace the
characters in the output with other characters to
generate noisy examples.

List Functions The list functions dataset (Rule,
2020) evaluates the concept learning ability in the
domain of cognitive science. The task is to induce a
function that maps a list of numbers to another list
of numbers. The dataset has 250 tasks. Each item
in the dataset corresponds to a list manipulation
operation, such as sorting, reversing, or filtering.
We randomly generate the examples of each task
under controlled conditions to ensure the rule can
be induced. The noisy examples are generated by
randomly replacing the numbers in the output list
with other numbers.

4.3 Robustness Under Different Noise Levels

We first evaluate the robustness of inductive rea-
soning in language models under different noise
injection ratios. Noise levels are defined as the
proportion of noisy examples in the seen exam-
ples. We test three representative models: GPT-4o-
mini (OpenAl, 2024a), GPT-40 (OpenAl, 2024b),
and DeepSeek-V3 (DeepSeek-Al et al., 2024) and
ask the models to directly infer the rules from the
seen examples without any additional output. Since

100 Caesar 100 Atbash
90 90
80 80
70 70
60 60
50 50

deepseek gpt-4o0 gpt-4o0-mini

I 10% Noise

deepseek gpt-4o0 gpt-4o0-mini

I 20% Noise

100 Keyboard 100 List Functions
90 90
80 80
70 70
60 60
50 50

deepseek gpt-4o0 gpt-4o-mini deepseek gpt-4o0 gpt-4o0-mini

30% Noise

Figure 3: Consistency score(%) with clean data of different models on the Cryptography and List Functions datasets

under different noise levels.

Model ‘ Cryptography | List Functions
| Caesar Atbash Keyboard |
GPT-4o-mini | 28.6,,, 6.3,,, 0.0+0.0 31.310.2
10% noise 32~0i2.4 12-7i2,5 3.710_5 28.4i1,4
20% noise | 29.010s 13.3126 1.341.2 23.441.0
30% noise | 21.340.9 16.0+0.0 3.310.5 19.740.2
GPT-40 68.3i0,5 48.0i2,2 4-7i0.5 39.8i0,5
10% noise | 75.3+0.5 34.6+0.9 3. 7105 36.9+1.0
20% noise | 75.342.1 27.3+0.5 1.7+0.9 319408
30% noise | 64.T+47 22.7192.4 2.3+1.2 26.140.5
DeepSeek—V3 50~Oi1.6 21-7i2.5 25-0i0.8 43.1i0_4
10% noise | 24.3+1.7 153124 157112 40.840.9
20% noise | 15.3137 21.3125 11.341.2 35.311.9
30% noise 11.740.8 16.7105 11.343.1 30.540.7

Table 2: Task accuracy (%) on Cryptography (including
Caesar, Atbash, and Keyboard subtasks) and List Func-
tions under different noise levels (proportion of noise in
seen examples). Results are shown in mean =+ standard
deviation over 3 independent runs.

the models cannot solve the Arithmetic task under
the Direct Output (DO) setting, we present the re-
sults for the Cryptography and List Functions. The
results are shown in Table 2. To better evaluate the
robustness of the models, we further investigate the
consistency score with clean data under different
noise levels, as shown in Figure 3. According to
the results, we have the following observations.

First, contrary to conventional assumptions,
noise introduction does not universally degrade
performance, instead, the models exhibit perfor-
mance fluctuations, demonstrating their inherent
sensitivity to conflicting patterns. For example,
GPT-40 achieves improved accuracy on Caesar ci-
pher tasks at 10% noise (7.0% absolute improve-
ment over clean data), while List Functions ex-
hibit monotonic performance decay with increas-
ing noise levels. In some cases, moderate noise
improves performance, consistent with the findings
of Zhou et al. (2024).

With the exception of tasks where models fun-
damentally struggle, experimental results demon-
strate a decline in consistency scores as noise lev-

els escalate, and it declines more sharply than
its task accuracy variation. This discrepancy indi-
cates noise introduces bidirectional reasoning insta-
bility: models not only fail on previously solvable
instances (noise interference) but also succeed on
originally challenging cases (incorrect generaliza-
tion), leading to different performance changes.

4.4 Method-wise Effectiveness Comparison

Direct Output may limit the model’s reasoning
ability, as the model must output the rule directly
without any intermediate steps. To systemati-
cally assess the robustness of different reasoning
paradigms, we compare our Sample-steered Rule
Refinement (SRR) method with three reasoning
methods: (1) Chain of Thought (CoT; Wei et al.
2022), which decomposes reasoning into step-by-
step rationales; (2) Self-Consistency (SC; Wang
et al. 2023), which aggregates multi CoT trajecto-
ries through majority voting; and (3) Self-Refine
(SR; Madaan et al. 2023), which iteratively im-
proves hypotheses using self-generated feedback.
Table 3 presents the task accuracy under 10% noise
and the deviation from clean data for GPT-40 and
DeepSeek-V3.

Superior Performance of SRR As shown in
Table 3, our SRR framework achieves state-of-
the-art performance across 13/14 task-model com-
binations while exhibiting minimal performance
degradation (2.1% average drop vs. 3.6%-8.5%
for baselines). This dual advantage stems from two
mechanisms: (1) Diversity-aware hypothesis gen-
eration explores broader solution spaces through
subset sampling, outperforming SC’s majority vot-
ing that amplifies the similar patterns (Table 4); (2)
Execution-guided feedback leverages Python inter-
preters for objective error detection, circumventing
LLMs’ inherent deductive limitations (Chen et al.,

Model | Method | Arithmetic | Cryptography | List Functions
| | 7-base 8-base 9-base | Caesar Atbash Keyboard |

DO 0.0 0.0 0.0 75.3(17.0) 34.6(}134) 3.7(L1.0) | 36.9(}2.9)
CoT 3.0(¢ 0.0) 8.0(114.0) 8.0(15.0) | 85.0(11.0) 20.0(} 7.0) 4.0(<0.0) | 40.4(] 5.2)

GPT-40 sC 000 1.0) 6.0(17.0) 0.0(3.0) | 850(+>0.0) 29.0(11.0) 50(,20) | 42.4(]3.2)
SR 1.0(14.0) 18.0(}4.0) 4.0(12.0) | 81.0(12.0) 23.0(18.0) 5.0(< 0.0) | 39.6(] 4.4)
Ours 50(01.0) 5L0(16.0) 19.0(12.0) | 850(13.0) 520(13.0) 9.0(t1.0) | 57.2(,16)
DO 0.0 0.0 0.0 24.3(125.7) 15.3(16.4) 157(19.3) | 40.8(} 2.3)
CoT 77.5(16.0) 83.0(} 13.0) 67.5(1 14.0) | 80.5(14.0) 26.0(155) 5.0(18.5) | 52.0(] 6.4)

Deepseek-V3 | SC 83.0(13.0) 93.0(16.0) 81.0(13.0) | 86.0(11.0) 40.0(}3.0) 7.0(4.0) | 56.0(]3.2)
SR 70.0(} 10.0) 74.0(}9.0) 68.0(16.0) | 72.0(} 10.0) 19.0(] .0) 8.0(13.0) | 47.2(J 10.0)
Ours 96.0(} 1.0) 95.0(] 4.0) 94.0(¢>0.0) | 86.0(} 1.0) 52.0(} 1.0) 11.0(}2.0) | 64.8(} 2.8)

Table 3: Task accuracy (%) on different datasets under 10% noise. The numbers in parentheses are the change
compared to the clean data, and the arrows indicate the direction of the change. Bold indicates the best performance,

and underline indicates the smallest change.

Dataset | GPT-40 DeepSeek-V3

\ SC SRR-0 SC SRR-0
Arithmeticy 0.0 4.0 83.0 95.0
Arithmeticg 6.0 40.0 93.0 95.0
Arithmeticg 0.0 15.0 94.0 91.0
Cryptocaesar 85.0 85.0 86.0 86.0
Cryptoabash 29.0 51.0 40.0 48.0
Cl‘yptOKeybOard 5.0 8.0 7.0 9.0
List Functions | 42.4 54.0 56.0 62.8

Table 4: Task accuracy (%) under 10% noise of SC and
the initial rule in SRR (SRR-0) on different datasets.

2023b; Cheng et al., 2024).

Consistency Scores Reveal Hidden Instability
While task accuracy provides comprehensive in-
sights, consistency scores uncover fundamental
reasoning fragility. As depicted in Figure 4, the
Atbash cipher task exhibits particularly low con-
sistency despite modest accuracy changes. The
slight variation in accuracy may merely be an il-
lusion created by the combined effects of noise
interference (solved—unsolved cases) and incor-
rect generalization (unsolved—solved cases). Prior
and concurrent work’s singular focus on accuracy
fluctuations (Qiu et al., 2024; Zhou et al., 2024,
Mirzadeh et al., 2024; Huang et al., 2025a) over-
looks this critical duality in reasoning robustness.

Counterfactual Challenges Expose Knowledge
Reliance We observe dramatic performance gaps
on counterfactual tasks like base-7 and base-9
arithmetic (90%+ vs. 10%— for DeepSeek-V3
vs. GPT-40) and Keyboard ciphers. This observa-
tion is consistent with the findings reported in Wu
et al. (2024). Diagnostic analysis of responses from
LLMs shows models default to familiar templates
rather than true induction. GPT-40 persistently
misinterprets base-7 and base-9 addition as “base-

List Functions

Caesar

Atbash 8-base

9-base

Figure 4: Consistency score (%) between clean data
and data with 10% noise of DeepSeek-V3.

8 or “decimal sum with constant”, while Atbash
and Keyboard ciphers get erroneously classified as
Caesar shifts in thinking process or self-generated
feedback. Although Atbash and Caesar cipher ex-
hibit similar levels of complexity in transformation,
their performance differences are significant. These
failures reveal that there is a pattern overfitting
in the reasoning process. Current models’ induc-
tive reasoning essentially operates through pattern
matching rather than abstract induction. When the
scarcity of counterfactual tasks in pretraining data
forces models to rely on genuine rule induction
rather than recitation, model performance plum-
mets dramatically.

4.5 Extended Explorations

To further investigate the robustness of LLMs’ in-
ductive reasoning, we conduct a comparative eval-
uation against DeepSeek-R1 (DeepSeek-Al et al.,
2025), one of the state-of-the-art reasoning models,
and human reasoning patterns.

Comparion with DeepSeek-R1 We focus on the
Atbash cipher and List Functions. Atbash pro-
vides unified task semantics yet challenges models
with unfamiliar transformation logic, while List
Functions captures diverse rule abstraction scenar-
ios. Table 5 compares task accuracy and consis-
tency scores under clean and 10% noise conditions
with DeepSeek-V3 (SRR). Notably, DeepSeek-R1
achieves higher task accuracy on both tasks. How-
ever, its consistency scores are not competitive
enough, indicating unresolved instability. Detailed
breakdowns of consistency scores are shown in 6.
For Atbash, the comparable number of right-to-
wrong and wrong-to-right suggests instability and
randomness in its reasoning process. Manual in-
spection shows DeepSeek-R1 still interprets At-
bash cipher as character shifts in failed cases, mir-
roring previous pattern-overfitting behavior. For
List Functions, the elevated right-to-wrong rate in-
dicates its sensitivity to input perturbations.

Dataset ‘ Model ‘ Clean Acc Noise Acc Consistency
SRR 530 52.0(-1.0) 69.0
Atbash ‘ DeepSeck-R1 ‘ 650 65.0(£0.0) 70.0
. SRR 67.6 64.8(—2.8) 90.8
ListFunc. | 1y pSeck-R1 ‘ 760 68.4(—7.6) 87.6

Table 5: Task accuracy (%) and consistency score (%)
between DeepSeek-V3 with SRR and DeepSeek-R1
under clean and noisy conditions.

Dataset | Model | #BothR #BothW #RtoW #WtoR
SRR 37 32 16 15
Atbash ‘ DeepSeek-R1 ‘ 50 20 15 15
List Func SRR 154 73 15 8
" | DeepSeek-R1 165 54 25 6

Table 6: Detailed breakdowns of consistency score.
BothR, BothW, RtoW, WtoR represent both right, both
wrong, right to wrong from clean condition to noisy
condition and wrong to right respectively.

Human Reasoning Comparison Rule (2020)
reports human performance on List Functions. We
divide the tasks into three difficulty levels in a
5 : 3 : 2 ratio based on the sorted mean human
performance. To contrast with human-like thinking
patterns, we analyze consistency across 12 trials
(4 noise levels x 3 runs) in Section 4.3. Figure 5
visualizes the distribution of consistency and per-
formance per task in List Functions, stratified by
difficulty. LLMs show macro-level alignment yet
micro-level divergence compared to human rea-
soning. While LLMs broadly mirror human-like

stability, showing higher consistency on both sim-
ple and hard tasks, with moderate instability on
medium-difficulty tasks, their internal patterns re-
veal critical deviations. For hard tasks, models dis-
play unpredictability (e.g., sporadic success) rather
than systematic incapacity. Simple tasks, despite
their low complexity, exhibit in consistent perfor-
mance unrelated to intrinsic difficulty. Notably,
GPT-40 and DeepSeek-V3 demonstrate similar be-
havioral trends, suggesting a shared inductive bias
with humans.

-12R
-1W11R
-2W10R
-3W9R
-4W8R
5W7R
6W6R
7W5R
m 8W4R
9W3R
lJ 10W2R
11W1R
- 12w

Easy Medium Hard Easy Medium Hard

DeepSeek V3

GPT-40

Figure 5: Task-solving consistency of DeepSeek-V3
and GPT-40 on List Functions. Each cell represents a
task, arranged by ascending difficulty (top-to-bottom,
left-to-right). Colors denote correctness patterns: 12R
(all correct) to 12W (all wrong), with intermediate states
(e.g., IWI11R: 1 wrong, 11 correct).

5 Discussion

Our experimental results reveal limitations in
LLMs’ inductive reasoning. We try to analyze the
results in this section.

Process Analysis Inductive reasoning can be con-
ceptualized through a Bayesian paradigm (Tenen-
baum et al., 2011), where models update poste-
rior distributions over a hypothesis space based
on observations. The introduction of noise dis-
rupts the reasoning through dual mechanisms:
Noise-Induced Hypothesis Drift, where the ini-
tial hypothesis space becomes misaligned with true
rules when noise introduces conflicting patterns.
This drift particularly impacts Direct Output (DO)
method, which lacks intermediate reasoning steps
and relies heavily on the initial hypothesis space.
This is more evident for tasks with similar internal
patterns, the model’s performance fluctuates signif-
icantly (Cryptography) or even fails (Arithmetic)

compared to other methods. Evidence Ambiguity
Amplification, where noise reduces the effective
signal-to-noise ratio during posterior optimization.
Methods with iterative or step-by-step reasoning
suffer error accumulation cascades—each reason-
ing step propagates uncertainty. As shown in Ta-
ble 3, CoT and SR exhibit larger average accuracy
drops and worse performance. SRR avoids it by
objectively identifying errors through execution.

Implications for Robust Inductive Reasoning
LLMs heavily rely on prior knowledge rather than
pure induction. They blend memorized pattern
matching with shallow reasoning. When observa-
tions align with priors (e.g., Caesar cipher), they
demonstrate pseudo-robustness. However, conflict-
ing patterns (noise) and counterfactual scenarios
(unseen rules) expose this fragility—models either
default to familiar templates or enter unstable hy-
pothesis oscillations. Even the state-of-the-art rea-
soning model exhibits unstable performance in uni-
fied tasks. This contrasts sharply with human few-
shot learning, where true rule abstraction enables
stable generalization (Lake et al., 2015). Achieving
human-level robust reasoning and few-shot induc-
tion requires disentangling knowledge recitation
from inductive rule formation.

6 Related Work

Inductive Reasoning The study of inductive rea-
soning has been a long-standing focus across multi-
ple disciplines. Early work (Heit, 2000) established
foundational properties of inductive reasoning. In
cognitive science, induction is considered a process
of probabilistic belief updating within the Bayesian
paradigm (Tenenbaum et al., 2011). Human cog-
nition and learning are explained through the inte-
gration of prior knowledge with observed data to
compute posterior distributions. Comparative stud-
ies (Lake et al., 2015, 2017) have highlighted the
contrast between human learners and machine in-
telligence. With the advent of pre-trained language
models (Brown et al., 2020), research on inductive
reasoning has shifted from domain-specific and
neural formulation (Tian et al., 2020; Odena et al.,
2021; Sablé-Meyer et al., 2022) to natural language.
Initial approaches (Alet et al., 2021; Gendron et al.,
2024; Mirchandani et al., 2023; Yang et al., 2024)
predominantly relied on input-output (I0) prompt-
ing, which evaluates model performance on un-
seen examples without explicit rule articulation.
However, this paradigm overlooks the internal rule-

inference process, as it conflates rule induction with
rule execution capabilities. Recent efforts (Wang
et al., 2024) align more closely with our work by
explicitly generating intermediate rules. Qiu et al.
(2024) proposed a thorough evaluation containing
noisy conditions, whose findings partially overlap
with ours, but their analysis is confined to a single
dataset and prioritized accuracy metrics over con-
sistency. We further explore the challenges posed
by counterfactual tasks and uncover the limitations
of LLMs in inductive reasoning.

Robustness of Reasoning in LLMs In this work,
robustness refers to the ability to maintain con-
sistent performance under imperfections or coun-
terfactual scenarios (Elazar et al., 2021), which
is intrinsically linked to the diversity and unpre-
dictability of generation process (Zhang et al.,
2023; Huang et al., 2025b). Prior works into LLM
behavioral variability exhibit inconsistent perfor-
mance across time (Tu et al., 2024; Chen et al.,
2023a). Recent works focus on understanding their
internal reasoning mechanisms by altering condi-
tions, such as changing numerical values in mathe-
matical tasks (Mirzadeh et al., 2024; Huang et al.,
2025a) or examining performance on counterfac-
tual tasks (Wu et al., 2024). Zhou et al. (2024) inves-
tigates the impact of noisy rationales on model per-
formance. These studies primarily measure robust-
ness through global accuracy changes, overlooking
inconsistencies at the instance level. Our work ad-
dresses this gap by introducing a consistency score
that quantifies intra-task stability, providing a more
granular view of model robustness.

7 Conclusion

In this paper, we explore the robustness of inductive
reasoning in large language models under imper-
fect observations. Through introducing the Robust
Rule Induction task with metrics of both holistic
and individual levels, we systematically evaluate
the ability of LLMs to maintain stable and con-
sistent rule abstraction. The Sample-steered Rule
Refinement outperforms other reasoning paradigms
by effectively leveraging diversity-aware hypothe-
sis generation and execution-guided feedback. Our
findings reveal that while LLMs can demonstrate
impressive reasoning capabilities, they are inher-
ently sensitive to noise and prone to hypothesis
drifting and pattern overfitting.

Limitations

We discuss the limitations of our work here: Our
evaluation focuses on highly formalized and sym-
bolic tasks. Real-world inductive reasoning often
involves ambiguous rules like social norms from
text or visual patterns, which are not captured by
our formalism. The tasks in Arithmetic and Cryp-
tography may be relatively simple and lack diver-
sity. Expanding task diversity could reveal deeper
limitations in LLMs’ capabilities. A large-scale
assessment of human performance across all tasks
under varying levels of noise is beyond the scope of
this study, which poses certain limitations in com-
paring human reasoning patterns. The purpose of
our study is to explore the robustness of LLMs’ in-
ductive reasoning capabilities, so we do not specif-
ically tune the hyperparameters and prompt tem-
plates.

Ethics Statement

The datasets we used are all publicly available,
and our research does not involve any personal
information. All data is generated by programs.
Therefore, we anticipate that this paper does not
raise any ethical concerns. We use ChatGPT to
paraphrase some sentences.

References

Ferran Alet, Javier Lopez-Contreras, James Kop-
pel, Maxwell Nye, Armando Solar-Lezama, Tomas
Lozano-Perez, Leslie Kaelbling, and Joshua Tenen-
baum. 2021. A large-scale benchmark for few-shot
program induction and synthesis. In Proceedings of
the 38th International Conference on Machine Learn-
ing, volume 139 of Proceedings of Machine Learning
Research, pages 175-186. PMLR.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS *20,
Red Hook, NY, USA. Curran Associates Inc.

Lingjiao Chen, Matei Zaharia, and James Zou. 2023a.
How is chatgpt’s behavior changing over time?
Preprint, arXiv:2307.09009.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and
Denny Zhou. 2023b. Teaching large language mod-
els to self-debug. Preprint, arXiv:2304.05128.

Kewei Cheng, Jingfeng Yang, Haoming Jiang,
Zhengyang Wang, Binxuan Huang, Ruirui Li,
Shiyang Li, Zheng Li, Yifan Gao, Xian Li, Bing
Yin, and Yizhou Sun. 2024. Inductive or deductive?
rethinking the fundamental reasoning abilities of 1lms.
Preprint, arXiv:2408.00114.

Francois Chollet. 2019. On the measure of intelligence.
Preprint, arXiv:1911.01547.

Katherine M. Collins, Ilia Sucholutsky, Umang Bhatt,
Kartik Chandra, Lionel Wong, Mina Lee, Cede-
gao E. Zhang, Tan Zhi-Xuan, Mark Ho, Vikash Mans-
inghka, Adrian Weller, Joshua B. Tenenbaum, and
Thomas L. Griffiths. 2024. Building machines that
learn and think with people. Nature Human Be-
haviour, 8(10):1851-1863. Publisher: Nature Pub-
lishing Group.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yonggiang Guo,
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,

https://proceedings.mlr.press/v139/alet21a.html
https://proceedings.mlr.press/v139/alet21a.html
https://proceedings.mlr.press/v139/alet21a.html
https://arxiv.org/abs/2307.09009
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2408.00114
https://arxiv.org/abs/2408.00114
https://arxiv.org/abs/2408.00114
https://arxiv.org/abs/1911.01547
https://doi.org/10.1038/s41562-024-01991-9
https://doi.org/10.1038/s41562-024-01991-9
https://doi.org/10.1038/s41562-024-01991-9

Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,
Z.Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. 2025. Deepseek-rl: Incen-
tivizing reasoning capability in llms via reinforce-
ment learning. Preprint, arXiv:2501.12948.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingx-

uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Haowei Zhang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang,
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu,
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao,
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shaoging Wu,
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun,
W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An,
Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen,
Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen,
Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu,
Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yan-
hong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao
Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu,
Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong,
Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yix-
uan Tan, Yiyang Ma, Yiyuan Liu, Yonggiang Guo,
Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxi-
ang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z.
Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu,
Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhi-
gang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi
Gao, and Zizheng Pan. 2024. Deepseek-v3 technical
report. Preprint, arXiv:2412.19437.

10

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi-
lasha Ravichander, Eduard Hovy, Hinrich Schiitze,
and Yoav Goldberg. 2021. Measuring and improving
consistency in pretrained language models. Transac-

tions of the Association for Computational Linguis-
tics, 9:1012-1031.

Jacob Feldman. 1997. The structure of perceptual cat-
egories. Journal of mathematical psychology, 41
2:145-70.

Gaél Gendron, Qiming Bao, Michael Witbrock, and
Gillian Dobbie. 2024. Large language models are
not strong abstract reasoners. In Proceedings of the
Thirty-Third International Joint Conference on Artifi-
cial Intelligence, IJCAI-24, pages 6270-6278. Inter-
national Joint Conferences on Artificial Intelligence
Organization. Main Track.

Evan Heit. 2000. Properties of inductive reasoning.
Psychonomic Bulletin & Review, 7(4):569-592.

Kaixuan Huang, Jiacheng Guo, Zihao Li, Xiang Ji,
Jiawei Ge, Wenzhe Li, Yingqing Guo, Tianle Cai,
Hui Yuan, Runzhe Wang, Yue Wu, Ming Yin,
Shange Tang, Yangsibo Huang, Chi Jin, Xinyun
Chen, Chiyuan Zhang, and Mengdi Wang. 2025a.
Math-perturb: Benchmarking 1lms’ math reason-
ing abilities against hard perturbations. Preprint,
arXiv:2502.06453.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2025b. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. ACM Trans. Inf. Syst., 43(2).

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199-22213. Curran Associates, Inc.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In Pro-
ceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 2873-2882. PMLR.

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B.
Tenenbaum. 2015. Human-level concept learning
through probabilistic program induction. Science,
350(6266):1332-1338.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenen-
baum, and Samuel J. Gershman. 2017. Building ma-
chines that learn and think like people. Behavioral
and Brain Sciences, 40:€253.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.1162/tacl_a_00410
https://api.semanticscholar.org/CorpusID:15319518
https://api.semanticscholar.org/CorpusID:15319518
https://api.semanticscholar.org/CorpusID:15319518
https://doi.org/10.24963/ijcai.2024/693
https://doi.org/10.24963/ijcai.2024/693
https://doi.org/10.24963/ijcai.2024/693
https://doi.org/10.3758/BF03212996
https://arxiv.org/abs/2502.06453
https://arxiv.org/abs/2502.06453
https://arxiv.org/abs/2502.06453
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556

60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086-8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Suvir Mirchandani, Fei Xia, Pete Florence, brian ichter,
Danny Driess, Montserrat Gonzalez Arenas, Kan-
ishka Rao, Dorsa Sadigh, and Andy Zeng. 2023.
Large language models as general pattern machines.
In 7th Annual Conference on Robot Learning.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
2024. Gsm-symbolic: Understanding the limitations
of mathematical reasoning in large language models.
Preprint, arXiv:2410.05229.

Augustus Odena, Kensen Shi, David Bieber, Rishabh
Singh, Charles Sutton, and Hanjun Dai. 2021. Bus-
tle: Bottom-up program synthesis through learning-
guided exploration. Preprint, arXiv:2007.14381.

OpenAl. 2024a. Gpt-40 mini: advancing cost-efficient
intelligence.

OpenAl. 2024b. Hello gpt-4o.

Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar,
Valentina Pyatkin, Chandra Bhagavatula, Bailin
Wang, Yoon Kim, Yejin Choi, Nouha Dziri, and Xi-
ang Ren. 2024. Phenomenal yet puzzling: Testing
inductive reasoning capabilities of language models
with hypothesis refinement. In The Twelfth Interna-
tional Conference on Learning Representations.

Joshua S Rule. 2020. The child as hacker: Building
more human-like models of learning. Ph.D. thesis,
MIT.

Mathias Sablé-Meyer, Kevin Ellis, Josh Tenenbaum,
and Stanislas Dehaene. 2022. A language of thought
for the mental representation of geometric shapes.
Cognitive Psychology, 139:101527.

Joshua B. Tenenbaum, Charles Kemp, Thomas L. Grif-
fiths, and Noah D. Goodman. 2011. How to grow a
mind: Statistics, structure, and abstraction. Science,
331(6022):1279-1285.

Lucas Tian, Kevin Ellis, Marta Kryven, and Josh Tenen-
baum. 2020. Learning abstract structure for drawing
by efficient motor program induction. In Advances in
Neural Information Processing Systems, volume 33,
pages 2686—2697. Curran Associates, Inc.

11

Shangqing Tu, Chunyang Li, Jifan Yu, Xiaozhi Wang,
Lei Hou, and Juanzi Li. 2024. Chatlog: Care-
fully evaluating the evolution of chatgpt across time.
Preprint, arXiv:2304.14106.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen
Pu, Nick Haber, and Noah Goodman. 2024. Hypothe-
sis search: Inductive reasoning with language models.
In The Twelfth International Conference on Learning
Representations.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyiirek,
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob An-
dreas, and Yoon Kim. 2024. Reasoning or reciting?
exploring the capabilities and limitations of language
models through counterfactual tasks. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume
1: Long Papers), pages 1819—1862, Mexico City,
Mexico. Association for Computational Linguistics.

Zonglin Yang, Li Dong, Xinya Du, Hao Cheng, Erik
Cambria, Xiaodong Liu, Jianfeng Gao, and Furu Wei.
2024. Language models as inductive reasoners. In
Proceedings of the 18th Conference of the European
Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 209-225,
St. Julian’s, Malta. Association for Computational
Linguistics.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song
in the ai ocean: A survey on hallucination in large
language models. Preprint, arXiv:2309.01219.

Zhanke Zhou, Rong Tao, Jianing Zhu, Yiwen Luo, Zeng-
mao Wang, and Bo Han. 2024. Can language models
perform robust reasoning in chain-of-thought prompt-
ing with noisy rationales? In The Thirty-eighth An-
nual Conference on Neural Information Processing
Systems.

https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=RcZMI8MSyE
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2007.14381
https://arxiv.org/abs/2007.14381
https://arxiv.org/abs/2007.14381
https://arxiv.org/abs/2007.14381
https://arxiv.org/abs/2007.14381
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/hello-gpt-4o/
https://openreview.net/forum?id=bNt7oajl2a
https://openreview.net/forum?id=bNt7oajl2a
https://openreview.net/forum?id=bNt7oajl2a
https://openreview.net/forum?id=bNt7oajl2a
https://openreview.net/forum?id=bNt7oajl2a
https://doi.org/10.1016/j.cogpsych.2022.101527
https://doi.org/10.1016/j.cogpsych.2022.101527
https://doi.org/10.1016/j.cogpsych.2022.101527
https://doi.org/10.1126/science.1192788
https://doi.org/10.1126/science.1192788
https://doi.org/10.1126/science.1192788
https://proceedings.neurips.cc/paper_files/paper/2020/file/1c104b9c0accfca52ef21728eaf01453-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1c104b9c0accfca52ef21728eaf01453-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1c104b9c0accfca52ef21728eaf01453-Paper.pdf
https://arxiv.org/abs/2304.14106
https://arxiv.org/abs/2304.14106
https://arxiv.org/abs/2304.14106
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.18653/v1/2024.naacl-long.102
https://doi.org/10.18653/v1/2024.naacl-long.102
https://doi.org/10.18653/v1/2024.naacl-long.102
https://doi.org/10.18653/v1/2024.naacl-long.102
https://doi.org/10.18653/v1/2024.naacl-long.102
https://aclanthology.org/2024.eacl-long.13/
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://openreview.net/forum?id=FbuODM02ra
https://openreview.net/forum?id=FbuODM02ra
https://openreview.net/forum?id=FbuODM02ra
https://openreview.net/forum?id=FbuODM02ra
https://openreview.net/forum?id=FbuODM02ra

Appendices
A Details on Evaluation Pipeline

In this section, we provide detailed information on
the evaluation pipeline, including the data construc-
tion and the performance assessment. For Arith-
metic, we generate the base-7, base-8, and base-9
tasks by randomly sampling two two-digit num-
bers in the corresponding base, and then we check
whether there is a carry-over in the addition process.
If there is no carry-over, we regenerate the numbers.
The noisy examples are generated in base-10. For
Cryptography, we randomly select words of appro-
priate lengths from the NLTK Word Lists corpus’,
and then we encrypt the words using the Caesar,
Atbash, and Keyboard ciphers. The noisy examples
are generated by randomly replacing the letters in
the output with other letters. For List Functions, we
first write the corresponding rule functions for each
task, and then we automatically generate the input
data with appropriate lengths and ranges. The in-
puts are generated by randomly sampling numbers
from a specific range with some constraints. . Dur-
ing the data synthesis process, we attach manual
supervision to ensure that the generated data can
correctly induce the rules. During the evaluation
process, we use the inputs in the test set as the input
for rule execution. We evaluate the model’s perfor-
mance using exact match. If the model’s output is
correct on all the test set examples, we consider the
model to have successfully induced the rule. If the
model fails to output a valid programmatic rule or
the program contains an infinite loop or errors, we
consider it a failure.

B Experimental Details

B.1 Experimental Settings

For robustness under different noise levels, we run
each experiment three times and report the mean
and standard deviation of the results to avoid ran-
domness. Except for the self-consistency (SC) and
sample-steered rule refinement (SRR) that require
diverse generations, we set the temperature to 0.0
for all models to ensure reproducibility. For SC
and SRR, the temperature is set to 0.7, consistent
with the original work of SC (Wang et al., 2023).
The positions of noise in seen examples are ran-
dom to avoid positional bias (Lu et al., 2022). In
the implementation, we choose 2 subsets for SRR
by splitting the seen examples into two parts. The

"https://www.nltk.org/nltk_data/

12

number of iterations is set to 3 for both SR and
SRR.

All experiments are conducted through the offi-
cial OpenAI” and DeepSeek® API platform. For
the GPT-40-mini and GPT-40 models, we spend
about 200 USD in total, and for the DeepSeek-V3
and DeepSeek-R1 models, we spend about 50 USD
in total.

B.2 Prompts and Failure Cases

For the Direct Output setting, we restrict the model
to output the rule directly without any additional
output, as shown in Table 7. For the chain-of-
thought and self-consistency setting, we use the
instruction in Kojima et al. (2022). For the self-
refine and sample-steered rule refinement setting,
we use the chain-of-thought prompt as the initial
prompt; the iterative prompts are shown in Table 9
and Table 10, respectively.

We provide some representative failure cases in
the evaluation. For the Arithmetic task, the model
fails to solve the base-7 and base-9 tasks and mis-
interprets the rule as the base-8 addition or the
decimal sum with a constant. For the Cryptography
task, the model fails to solve the Atbash and tries
to explain it as shifts. The responses of the models
are shown in Table 11.

2https://openai.com/api/
Shttps://platform.deepseek.com/usage

https://www.nltk.org/nltk_data/
https://openai.com/api/
https://platform.deepseek.com/usage

Prompt for Direct Output

Please generate a rule that maps the following inputs to their corresponding outputs using a Python function. The
input is a list of integers. The output is also a list of integers. Note that some examples may be wrong, and you
should take this into account when proposing the rule.
{examples}
Please format your Python function as follows:
“‘python
def fn(x):
Your code here

e

Your response should only include the function definition, not the function call or any other information.

Table 7: The prompt for the Direct Output setting, exemplified by the List Functions task. The {examples} in the
prompt is replaced by input-output pairs when conducting the experiments.

Prompt for Chain-of-Thought

Please generate a rule that maps the following inputs to their corresponding outputs using a Python function. The
input is a list of integers. The output is also a list of integers. Note that some examples may be wrong, and you
should take this into account when proposing the rule.
{examples}
Please format your Python function as follows:
“‘python
def fn(x):

Your code here
Think step-by-step and explain your reasoning. Your response should include your thought process and the function
definition without the function call.

Table 8: The prompt for the Chain-of-Thought setting, exemplified by the List Functions task.

Prompt for Feedback Generation in Self-Refine

You have generated a rule that maps the following inputs to their corresponding outputs using a Python function.
The input is a list of integers. The output is also a list of integers.

{examples}

In the last step, your rule is:

“‘python

{rule}

Give some feedback on the rule you have generated, like how can it be improved, what is wrong with it, etc.

Your response should only include the feedback. If you think the rule is good enough, your response should be“NO
FEEDBACK” without other information. Note that some examples may be wrong, and you should take this into
account when proposing the feedback.

Iteration

You have generated a rule that maps the following inputs to their corresponding outputs using a Python function.
The input is a list of integers. The output is also a list of integers. Note that some examples may be wrong, and you
should take this into account when proposing the rule.
{examples}
In the last step, your rule is:
“‘python
{rule}
The feedback you have given is:
{feedback}
Generate a new rule that maps the given inputs to their corresponding outputs using a Python function. Please
format your rule as follows:
“‘python
def fn(x):
Your code here
Think step-by-step and explain your reasoning. Your response should include your thought process and the function
definition without the function call.

Table 9: The prompt for the Self-refine setting, exemplified by the List Functions task. The {examples}, {rule} and
{feedback} in the prompt are replaced by input-output pairs, rule, and feedback when conducting the experiments.

13

Prompt for Iteration in SRR

You have generated a rule that maps the following inputs to their corresponding outputs using a Python function.
The input is a list of integers. The output is also a list of integers. Note that some examples may be noisy, and you
should take this into account when proposing the rule. In the last step, your rule is
“‘python
{rule}
But this rule is not correct. It works for the following examples:
{right_examples}
However, it does not work for the following examples:
{wrong_examples} Generate a new rule that maps the given inputs to their corresponding outputs using a Python
function. Please format your rule as follows:
“‘python
def fn(x):
Your code here

13

Think step-by-step and explain your reasoning. Your response should include your thought process and the function
definition without the function call. You can either modify the existing rule or propose a new one.

Table 10: The prompt for the Sample-steered Rule Refinement setting, exemplified by the List Functions task. The
{rule}, {right_examples}, and {wrong_examples} in the prompt are replaced by the rule, right examples, and wrong
examples when conducting the experiments.

14

Failure Cases for Arithmetic

Octonary Confusion Error (in base-7):

To solve this problem, we need to identify a pattern or rule that maps the given input expressions to their corre-
sponding outputs. Let’s analyze the examples provided: First, let’s verify if the outputs are simply the sum of the
inputs in base 10:- For ‘34 + 62°, the sum is ‘96°, but the output is ‘126°.- For ‘56 + 30°, the sum is ‘86°, but the
output is ‘116°.- For ‘22 + 25°¢, the sum is ‘47°, but the output is ‘50°... Clearly, the outputs are not the direct sums
of the inputs in base 10. Let’s consider the possibility that the numbers are in base 8 (octal):- Convert the inputs to
base 10, perform the addition, and then convert the result back to base 8. Let’s verify this hypothesis: 1. 34 + 62 in
base 8: - 34° in base 8 is ‘3*8 + 4 =28° in base 10. - ‘62° in base 8 is ‘6*8 + 2 = 50° in base 10. - Sum in base 10:
28 + 50 =78°. - Convert ‘78° to base 8: “78 // 8§ =9 remainder ‘6°, so ‘78" in base 8 is ‘116°.2. 56 + 30 in base 8: -
‘56° in base 8 is ‘5*8 + 6 =46° in base 10. - ‘30° in base 8 is ‘3*8 + 0 = 24° in base 10. - Sum in base 10: ‘46 + 24 =
70°. - Convert “70° to base 8: ‘70 // 8 = 8‘ remainder ‘6, so ‘70° in base 8 is ‘106°. 3. 22 + 25 in base 8: - 22° in
base 8 is ‘2*8 + 2 = 18° in base 10. - 25 in base 8 is ‘2*8 + 5 =21 in base 10. - Sum in base 10: ‘18 + 21 = 39°. -
Convert ‘39° to base 8: 39 // 8 =4° remainder ‘7¢, so ‘39° in base 8 is ‘47°.

Let’s implement this in a Python function...

Decimal Confusion Error (in base-9):

To solve this problem, we need to identify a consistent rule or pattern that maps the given input expressions to their
corresponding outputs. Let’s analyze the provided examples: 1. 68 + 68 = 147: The correct sum is 136, but the
output is 147. 2. 80 4 42 = 132: The correct sum is 122, but the output is 132. 3. 76 4+ 17 = 104: The correct
sum is 93, but the output is 104. 4. 38 + 14 = 53: The correct sum is 52, but the output is 53. 5. 43 + 84 = 137:
The correct sum is 127, but the output is 137. 6. 48 4 55 = 114: The correct sum is 103, but the output is 114. 7.
72 4 56 = 138: The correct sum is 128, but the output is 138. 8. 34 + 46 = 81: The correct sum is 80, but the
output is 81. 9. 88 + 15 = 114: The correct sum is 103, but the output is 114. 10. 67 + 40 = 117: The correct
sum is 107, but the output is 117.

Let’s define a Python function to implement this rule...

Failure Case for Cryptography

Shifts Error:

To solve this problem, we need to identify a consistent rule or transformation that maps each input string to its
corresponding output string. Let’s analyze the given examples to find a pattern: 1. cuissard -> xfrhhziw 2. tripsis
-> girkhrh 3. Maccabaeus -> Nzxxzyzvth 4. jocundness -> qlxfmwmvhh 5. chiro -> xsril 6. coapt -> xlzkg 7.
Phecda -> Ksvxwz 8. unifilar -> fmrurozi 9. Cordaites -> Xliwzrgvh 10. Wendell -> Dvmwvoo ### Observations: 1.
Character Shifts : The transformation seems to involve shifting characters. For example, ’c’ in "cuissard" becomes
’x” in "xfrhhziw". 2. Case Sensitivity : The case of
the letters is preserved. For instance, "M’ in "Maccabaeus" becomes ‘N’ in "Nzxxzyzvfh", and 'P’ in "Phecda"
becomes 'K’ in "Ksvxwz". 3. Consistent Shifts : By examining the shifts: - ’c’ to ’x’ is a shift of 23 positions
backward in the alphabet. - ’t’ to "g’ is a shift of 13 positions backward. - "M’ to "N’ is a shift of 1 position forward.
-’j’ to’q’ is a shift of 7 positions forward. - P’ to K’ is a shift of 21 positions backward. - "u’ to ’f” is a shift of 11
positions backward. - ’C’ to X is a shift of 21 positions backward. - "W’ to "D’ is a shift of 21 positions backward.
4. Pattern Recognition : The shifts are not consistent across all examples, suggesting that some examples might be
incorrect or that multiple rules are being applied. However, a common shift that appears frequently is 21 positions
backward (e.g., ’c’ to ’x’, 'P’ to ’K’, ’C’ to ’X’, "W’ to ’D’). ### Hypothesis: Given the frequent appearance of a
21-position backward shift, let’s hypothesize that the rule involves shifting each character 21 positions backward in
the alphabet. This would mean: - For lowercase letters,

Implementation: Let’s implement
this hypothesis in a Python function...

Table 11: The failure cases of the models on the Arithmetic and Cryptography tasks.

15

	Introduction
	Preliminary
	Problem Definitions
	Evaluation Pipeline

	Sample-steered Rule Refinement
	Experiments
	Experimental Setup
	Datasets
	Robustness Under Different Noise Levels
	Method-wise Effectiveness Comparison
	Extended Explorations

	Discussion
	Related Work
	Conclusion
	Details on Evaluation Pipeline
	Experimental Details
	Experimental Settings
	Prompts and Failure Cases

