
Patterns Over Principles: The Fragility of Inductive Reasoning in LLMs
under Noisy Observations

Anonymous ACL submission

Abstract

Inductive reasoning, a cornerstone of human001
cognition, enables generalization from limited002
data but hasn’t yet been fully achieved by003
large language models (LLMs). While mod-004
ern LLMs excel at reasoning tasks, their abil-005
ity to maintain stable and consistent rule ab-006
straction under imperfect observations remains007
underexplored. To fill this gap, in this work,008
we introduce Robust Rule Induction, a task009
that evaluates LLMs’ capability in inferring010
rules from data that are fused with noisy ex-011
amples. To address this task, we further pro-012
pose Sample-steered Rule Refinement (SRR),013
a method enhancing reasoning stability via ob-014
servation diversification and execution-guided015
feedback. Experiments across arithmetic, cryp-016
tography, and list functions reveal: (1) SRR017
outperforms other methods with minimal per-018
formance degradation under noise; (2) Despite019
slight accuracy variation, LLMs exhibit insta-020
bility under noise (e.g., 0% accuracy change021
with only 70% consistent score); (3) Counter-022
factual task gaps highlight LLMs’ reliance on023
memorized patterns over genuine abstraction.024
Our findings challenge LLMs’ reasoning ro-025
bustness, revealing susceptibility to hypothe-026
sis drift and pattern overfitting, while provid-027
ing empirical evidence critical for developing028
human-like inductive systems.029

1 Introduction030

Inductive reasoning—the cognitive capacity to gen-031

eralize from specific instances to universal princi-032

ples, is fundamental to human intelligence (Lake033

et al., 2017). This ability enables humans to034

abstract latent patterns from sparse data while035

maintaining robustness against conflicting evi-036

dence (Feldman, 1997), as exemplified by children037

mastering linguistic rules despite exposure to oc-038

casional grammatical errors. The robustness of in-039

ductive reasoning manifests in resistance to pattern040

interference (preserving learned rules when encoun-041

tering contradictory examples) and tolerance to ob- 042

servational imperfections (maintaining stable per- 043

formance under noisy learning conditions). Under- 044

standing and quantifying this robustness becomes 045

increasingly crucial as artificial systems approach 046

complex real-world applications where clean data 047

remains elusive. 048

Recent advances in large language models 049

(LLMs) have demonstrated remarkable perfor- 050

mance across various reasoning tasks (OpenAI, 051

2024b; DeepSeek-AI et al., 2024), reigniting in- 052

terest in comparing machine and human reason- 053

ing paradigms (Collins et al., 2024). While con- 054

temporary studies showcase LLMs’ proficiency in 055

inductive reasoning, their capacity for robustness 056

remains questionable. Unlike humans who can 057

rapidly converge on correct rules through Bayesian 058

hypothesis updating (Tenenbaum et al., 2011; Lake 059

et al., 2015), current models often exhibit unsta- 060

ble reasoning trajectories when noise disrupts their 061

thinking process (Zhou et al., 2024). A growing 062

body of evidence suggests that LLMs primarily 063

engage in pattern matching rather than genuine rea- 064

soning (Mirzadeh et al., 2024; Wu et al., 2024). 065

Despite increasing attention to LLM inductive 066

reasoning capabilities, current works exhibit limita- 067

tions that obscure true inductive reasoning robust- 068

ness. First, in prevailing evaluations (Alet et al., 069

2021; Gendron et al., 2024), models just predict 070

outputs for novel inputs given exemplars, bypass- 071

ing explicit rule verification. It fails to diagnose 072

where and why rule induction fails. Existing stud- 073

ies that do generate intermediate rules either dis- 074

regard noisy learning conditions or assess perfor- 075

mance solely through aggregate metrics like task 076

accuracy gap. This neglects instance-level reason- 077

ing consistency—whether models maintain stable 078

rule interpretations when exposed to conflicting pat- 079

terns, which is a key indicator of human-like robust 080

induction. Besides, prior methods often repurpose 081

existing benchmarks (e.g., SCAN; Lake and Baroni 082

1

2018, ARC; Chollet 2019) without modification,083

where potential data contamination may undermine084

validity as models could use memorized solutions.085

To address these gaps, we introduce a novel task086

of robust rule induction, which challenges models087

to identify underlying functions from input-output088

exemplars containing controlled noise injections.089

Our approach features three key innovations: (1)090

An evaluation pipeline from data synthesis to au-091

tomatic evaluation, requiring models to explicitly092

output rules and enabling direct validation through093

programmatic execution. (2) A multi-dimensional094

robustness assessment with conventional accuracy095

and instance-level metrics. (3) A sample-steered096

refinement (SRR) methodology that improves both097

the capability and stability of LLMs’ inductive rea-098

soning through diverse sampling and diagnostic099

refinement.100

We curate three datasets spanning arithmetic,101

cryptography, and list operations—domains requir-102

ing progressively abstract rule formalization. The103

proposed SRR substantially improves performance104

across most tasks and maintains stability compared105

to other methods. However, comprehensive experi-106

ments reveal a critical dichotomy: while the accu-107

racy variance achieves less than 5.0%, the consis-108

tency metric exposes fundamental instability. Fur-109

thermore, LLMs exhibit significant performance110

inconsistency with the same task category, perform-111

ing considerably better on more familiar tasks than112

others, despite comparable complexity. Correct pre-113

dictions may stem from recited patterns rather than114

stable rule abstraction. These findings challenge115

the “real” reasoning capabilities of LLMs.116

2 Preliminary117

2.1 Problem Definitions118

We formulate robust rule induction as the problem119

of identifying latent mapping functions from input-120

output pairs while maintaining consistent reasoning121

performance under noisy conditions. While prior122

works (Qiu et al., 2024; Wang et al., 2024) focus123

on basic rule discovery capabilities, we specifically124

investigate the robustness of inductive reasoning125

when the observations contain conflicting patterns.126

Some examples are shown in Figure 1. The obser-127

vations may contain both normal and noisy exam-128

ples, and the model is required to infer the correct129

rule regardless of the noise.130

Formally, given a dataset D = {(xi, yi)}Ni=1131

where x ∈ X denotes inputs and y ∈ Y repre-132

Arithmetic

Normal
Example

Noisy
Example

Rule

15 + 42 → 60
16 + 33 → 52

43 + 27 → 70

Add in base 7.

Cryptography

“Beautiful” → “Ehdxwlixo”
 “hello” → “khoor”

“cacophony” → “edfnelzwn”

Shift each letter three places
to the right in the alphabet.

List Function

[17, 29, 0, 13, 72, 0] → [17, 29]
 [5, 0, 11, 85, 66] → [5]

[19, 58, 0, 0, 50] → [53, 58]

Elements before the first 0.

Figure 1: Example instances with noise and rules from
Arithmeticbase-7, CryptographyCaesar and List Functions.

sents outputs generated by an underlying function 133

f : X → Y , the objective is to induce an approx- 134

imation f̂ from observed examples Dseen ⊆ D. 135

Robust rule induction should satisfy: f̂(x) = f(x) 136

for (x, y) ∈ Dunseen despite Dseen containing noisy 137

samples Dnoise where y ̸= f(x). 138

2.2 Evaluation Pipeline 139

As illustrated in figure 2, to evaluate the robustness 140

of inductive reasoning in large language models, 141

we propose a novel evaluation pipeline consisting 142

of three main stages: data synthesis, model infer- 143

ence, and performance evaluation. In the data syn- 144

thesis stage, due to the characteristics of our data, 145

normal examples, noisy examples, and test exam- 146

ples for each instance in the dataset can be auto- 147

matically generated by programs given the rule and 148

noise definitions. The first two are mixed to form 149

seen examples, while the latter is used to evaluate 150

the model’s reasoning ability. In the model infer- 151

ence stage, we prompt the language model with 152

seen examples in standard input-output (IO) for- 153

mat, and the induced rules are restricted to Python 154

function form for automatic evaluation. Finally, 155

we evaluate the rule by executing it on the test ex- 156

amples. The instance is considered solved if all 157

the test examples are correctly solved. More de- 158

tails about the evaluation pipeline, like the data 159

synthesis process, can be found in appendix A. 160

We use task accuracy, which is the proportion of 161

solved instances over the total number of instances, 162

and its change under different conditions as the 163

evaluation metrics. While task accuracy is a com- 164

prehensive metric to evaluate the model’s reasoning 165

ability, it may not fully capture the robustness of 166

the model at the instance level. To address this, we 167

introduce the consistency score, which is defined 168

as follows: 169

Consistency Score :=
1

N

N∑
i=1

I[Solci = Solni] 170

where N is the total number of instances in the 171

2

Rule 1

Please generate a rule that maps the following inputs to their corresponding
outputs using a Python function. The input is …, The output is ….

(No noise)
Input: 68 + 68 Output: 147
Input: 80 + 42 Output: 132
Input: 38 + 14 Output: 53
……

(With noise)
Input: 68 + 68 Output: 147
Input: 80 + 42 Output: 132
Input: 46 + 16 Output: 62
……

def fn(x):
num1, num2 = x.split(' + ')
def base9_to_base10(num):

...
def base10_to_base9(num):

...
sum_base10 = base9_to_base10(num1)+

base9_to_base10(num2)
return base10_to_base9(sum_base10)

def fn(x):
 num1, num2 = map(int,
x.split(' + '))
 result = num1 + num2
 adjusted_result = result + 10
 return adjusted_result

Rule 2

executor

Rule 1:

50+62 = 122

42+58 = 111

60+81 = 151

26+73 = 110

Rule 2:

50+62 = 122

42+58 = 110

60+81 = 151

26+73 = 109

Task Acc = / (+) for each side.

generator Input: 38+14 Output: 53 Normal

Input: 46+16 Output: 62 Noise

Input: 50+62 Output: 122 Test

RULE: Add in Base 9. NOISE: Add in Base 10.

INPUT CONSTRAINS: 2-digits; carry-over.

Stage 1: Data Synthesis

Stage 2: Model Inference
Stage 3: Performance Evaluation

Figure 2: Evaluation pipeline exemplified by base-9 addition, consisting of three stages: (1) Data Synthesis,
generating normal, noisy and test examples; (2) Model Inference, prompting models with seen examples to induce
rules in Python function form; (3) Performance Evaluation, executing induced rules on test examples to assess
correctness and robustness under noise.

dataset, I[·] is the indicator function, Solci is172

whether the i-th instance is solved without noise,173

1 if solved and 0 otherwise, and Solni is whether174

the i-th instance is solved with noise. This metric175

quantifies the model’s ability to maintain stable rea-176

soning conclusions under noise and offers a more177

granular view of the model’s robustness.178

3 Sample-steered Rule Refinement179

To address noisy rule induction, we propose180

Sample-steered Rule Refinement (SRR), a novel181

framework that combines hypothesis generation,182

contrastive evidence sampling, and iterative self-183

correction. This method conducts inductive rea-184

soning through three-phase optimization: (1) con-185

trastive hypothesis generation to bootstrap diverse186

rule candidates, (2) diagnostic feedback construc-187

tion through evidence-aware sampling, and (3) it-188

erative rule refinement using failure-driven correc-189

tions. The full algorithm is detailed in Algorithm 1.190

Diversity-aware Hypothesis Generation We191

first generate K hypotheses from random subsets192

of the seen examples plus one hypothesis using193

the full observations. This step ensures coverage194

of both local patterns and global consistency. The195

number of examples in the subset is less than the196

full seen set, thus the noise in the subset has a197

greater impact. The sampled subset may also con-198

tain completely noise-free examples, which can199

better distinguish the rules.200

Diagnostic Feedback Construction After gener-201

ating the initial hypotheses, the induced rule is exe-202

Algorithm 1 SRR Framework
Require: Seen examples Dseen, LLM M , max iterations T ,

max subsets K, threshold τ
Ensure: Best hypothesis f̂∗ (in Python function form)
H0 ← ∅
for k = 1 to K do
Dk ← SampleSubset(Dseen)
H0 ← H0 ∪ {M(Dk, "Generate rule function")}

end for
H0 ← H0 ∪ {M(Dseen, "Generate rule function")}
f̂0 ← argmaxh∈H0 Acc(h,Dseen)
for t = 1 to T do

if Acc(f̂t−1,Dseen) ≥ τ then
return f̂t−1

end if
Ct ← CorrectExamples(f̂t−1,Dseen)

Et ← WrongExamples(f̂t−1,Dseen)
Feedback← {Ct[: n], Et[: m]} /* Sample n,m cases */
hnew ←M(f̂t−1, Feedback, "Revise rule")
if Acc(hnew,Dseen) > Acc(f̂t−1,Dseen) then

f̂t ← hnew
else

f̂t ← f̂t−1

end if
end for
return f̂∗ = argmaxt Acc(f̂t,Dseen)

cuted on the seen examples via an external Python 203

interpreter. We then collect the correct and incor- 204

rect cases and sample these cases as feedback. We 205

focus more on the incorrect cases, as they provide 206

more information about the rule refinement, while 207

the correct cases are used as positive feedback to 208

reinforce the rule. The hypothesis with the highest 209

accuracy on the seen examples is selected as the 210

initial selected rule. 211

Iterative Rule Refinement At each iteration, the 212

model receives the current selected rule with for- 213

3

matted feedback to generate a new rule. The new214

hypothesis is compared to the previous one, and215

the more accurate one is selected. This iterative216

process continues until the accuracy of the rule on217

the seen examples exceeds a predefined threshold218

or the maximum number of iterations is reached.219

4 Experiments220

In this section, we evaluate the robustness of in-221

ductive reasoning in language models on different222

tasks. We also compare the performance of the223

models under different noise levels and analyze the224

effectiveness of the different methods in enhancing225

the robustness of inductive reasoning.226

4.1 Experimental Setup227

Consistent with previous studies (Wang et al., 2024;228

Qiu et al., 2024), we adopt few-shot prompting to229

assess the models’ inductive capabilities. Each230

instance contains 10 normal examples, 5 noisy ex-231

amples, and 10 test examples. The normal and232

noisy examples are mixed to form 10 seen exam-233

ples, which serve as prompts. This approach pre-234

serves task semantics while introducing controlled235

perturbations, thereby simulating real-world scenar-236

ios where observational data often contains inher-237

ent imperfections. LLMs are explicitly informed238

that examples may contain some noise. We formu-239

late the output of LLMs as Python functions and240

execute them on the test examples to automatically241

evaluate the inferred rules. More details about the242

experiments can be found in the appendix B.243

4.2 Datasets244

We use three datasets with their subsets: Arith-245

metic, Cryptography, and List Functions. These246

datasets offer different rule induction challenges,247

including mathematical calculations, symbol rep-248

resentation, and list operations. Comprehensive249

statistics are shown in Table 1.250

Dataset Subset # Tasks # Normal # Noise # Test

Arith.
7-base 100 1000 500 1000
8-base 100 1000 500 1000
9-base 100 1000 500 1000

Crypto.
Caesar 100 1000 500 1000
Atbash 100 1000 500 1000

Keyboard 100 1000 500 1000

List Func. N/A 250 2500 1250 2500

Table 1: The number of tasks and examples per dataset.
Arith., Crypto., List Func. denote Arithmetic, Cryptog-
raphy and List Functions respectively.

Arithmetic The arithmetic task, proposed by 251

(Wu et al., 2024), is a counterfactual two-digit ad- 252

dition task. Instead of the common base-10 system, 253

the task uses base-8, 9, and 11 as the counterfactual 254

setup to control the difficulty and avoid the impact 255

of memorization over reasoning. In this task, we 256

focus on the base-7, 8, 9 systems, and the noisy 257

example is the common 10-based equations. The 258

input of each example is two two-digit numbers in 259

the corresponding base, connected by a plus sign, 260

and the output is the sum of the two numbers. To 261

ensure the model can reason correctly, we guaran- 262

tee that there must be a carry-over in the addition 263

process so that the model must reason about the 264

carry-over instead of simply adding the numbers. 265

Cryptography We use three types of substitu- 266

tion ciphers: Caesar, Atbash, and Keyboard. The 267

Caesar cipher is a cipher that shifts the alphabet 268

by a fixed number of positions. The Atbash cipher 269

is a cipher that replaces each letter with the letter 270

symmetrically opposite in the alphabet (e.g. A→Z). 271

The Keyboard cipher replaces letters according to 272

their positions in the alphabet with the correspond- 273

ing positions on the keyboard (e.g. A→Q, B →W). 274

The input of each example is a word, and the out- 275

put is the encrypted text. We randomly replace the 276

characters in the output with other characters to 277

generate noisy examples. 278

List Functions The list functions dataset (Rule, 279

2020) evaluates the concept learning ability in the 280

domain of cognitive science. The task is to induce a 281

function that maps a list of numbers to another list 282

of numbers. The dataset has 250 tasks. Each item 283

in the dataset corresponds to a list manipulation 284

operation, such as sorting, reversing, or filtering. 285

We randomly generate the examples of each task 286

under controlled conditions to ensure the rule can 287

be induced. The noisy examples are generated by 288

randomly replacing the numbers in the output list 289

with other numbers. 290

4.3 Robustness Under Different Noise Levels 291

We first evaluate the robustness of inductive rea- 292

soning in language models under different noise 293

injection ratios. Noise levels are defined as the 294

proportion of noisy examples in the seen exam- 295

ples. We test three representative models: GPT-4o- 296

mini (OpenAI, 2024a), GPT-4o (OpenAI, 2024b), 297

and DeepSeek-V3 (DeepSeek-AI et al., 2024) and 298

ask the models to directly infer the rules from the 299

seen examples without any additional output. Since 300

4

deepseek gpt-4o gpt-4o-mini

50

60

70

80

90

100 Caesar

deepseek gpt-4o gpt-4o-mini

50

60

70

80

90

100 Atbash

deepseek gpt-4o gpt-4o-mini

50

60

70

80

90

100 Keyboard

deepseek gpt-4o gpt-4o-mini

50

60

70

80

90

100 List Functions

10% Noise 20% Noise 30% Noise

Figure 3: Consistency score(%) with clean data of different models on the Cryptography and List Functions datasets
under different noise levels.

Model Cryptography List Functions
Caesar Atbash Keyboard

GPT-4o-mini 28.6±1.2 6.3±1.2 0.0±0.0 31.3±0.2

10% noise 32.0±2.4 12.7±2.5 3.7±0.5 28.4±1.4

20% noise 29.0±0.8 13.3±2.6 1.3±1.2 23.4±1.0

30% noise 21.3±0.9 16.0±0.0 3.3±0.5 19.7±0.2

GPT-4o 68.3±0.5 48.0±2.2 4.7±0.5 39.8±0.5

10% noise 75.3±0.5 34.6±0.9 3.7±0.5 36.9±1.0

20% noise 75.3±2.1 27.3±0.5 1.7±0.9 31.9±0.8

30% noise 64.7±4.7 22.7±2.4 2.3±1.2 26.1±0.5

DeepSeek-V3 50.0±1.6 21.7±2.5 25.0±0.8 43.1±0.4

10% noise 24.3±1.7 15.3±2.4 15.7±1.2 40.8±0.9

20% noise 15.3±3.7 21.3±2.5 11.3±1.2 35.3±1.9

30% noise 11.7±0.8 16.7±0.5 11.3±3.1 30.5±0.7

Table 2: Task accuracy (%) on Cryptography (including
Caesar, Atbash, and Keyboard subtasks) and List Func-
tions under different noise levels (proportion of noise in
seen examples). Results are shown in mean ± standard
deviation over 3 independent runs.

the models cannot solve the Arithmetic task under301

the Direct Output (DO) setting, we present the re-302

sults for the Cryptography and List Functions. The303

results are shown in Table 2. To better evaluate the304

robustness of the models, we further investigate the305

consistency score with clean data under different306

noise levels, as shown in Figure 3. According to307

the results, we have the following observations.308

First, contrary to conventional assumptions,309

noise introduction does not universally degrade310

performance, instead, the models exhibit perfor-311

mance fluctuations, demonstrating their inherent312

sensitivity to conflicting patterns. For example,313

GPT-4o achieves improved accuracy on Caesar ci-314

pher tasks at 10% noise (7.0% absolute improve-315

ment over clean data), while List Functions ex-316

hibit monotonic performance decay with increas-317

ing noise levels. In some cases, moderate noise318

improves performance, consistent with the findings319

of Zhou et al. (2024).320

With the exception of tasks where models fun-321

damentally struggle, experimental results demon-322

strate a decline in consistency scores as noise lev-323

els escalate, and it declines more sharply than 324

its task accuracy variation. This discrepancy indi- 325

cates noise introduces bidirectional reasoning insta- 326

bility: models not only fail on previously solvable 327

instances (noise interference) but also succeed on 328

originally challenging cases (incorrect generaliza- 329

tion), leading to different performance changes. 330

4.4 Method-wise Effectiveness Comparison 331

Direct Output may limit the model’s reasoning 332

ability, as the model must output the rule directly 333

without any intermediate steps. To systemati- 334

cally assess the robustness of different reasoning 335

paradigms, we compare our Sample-steered Rule 336

Refinement (SRR) method with three reasoning 337

methods: (1) Chain of Thought (CoT; Wei et al. 338

2022), which decomposes reasoning into step-by- 339

step rationales; (2) Self-Consistency (SC; Wang 340

et al. 2023), which aggregates multi CoT trajecto- 341

ries through majority voting; and (3) Self-Refine 342

(SR; Madaan et al. 2023), which iteratively im- 343

proves hypotheses using self-generated feedback. 344

Table 3 presents the task accuracy under 10% noise 345

and the deviation from clean data for GPT-4o and 346

DeepSeek-V3. 347

Superior Performance of SRR As shown in 348

Table 3, our SRR framework achieves state-of- 349

the-art performance across 13/14 task-model com- 350

binations while exhibiting minimal performance 351

degradation (2.1% average drop vs. 3.6%-8.5% 352

for baselines). This dual advantage stems from two 353

mechanisms: (1) Diversity-aware hypothesis gen- 354

eration explores broader solution spaces through 355

subset sampling, outperforming SC’s majority vot- 356

ing that amplifies the similar patterns (Table 4); (2) 357

Execution-guided feedback leverages Python inter- 358

preters for objective error detection, circumventing 359

LLMs’ inherent deductive limitations (Chen et al., 360

5

Model Method Arithmetic Cryptography List Functions
7-base 8-base 9-base Caesar Atbash Keyboard

GPT-4o

DO 0.0 0.0 0.0 75.3(↑ 7.0) 34.6(↓ 13.4) 3.7(↓ 1.0) 36.9(↓ 2.9)
CoT 3.0(↔ 0.0) 8.0(↓ 14.0) 8.0(↑ 5.0) 85.0(↑ 1.0) 20.0(↓ 7.0) 4.0(↔ 0.0) 40.4(↓ 5.2)
SC 0.0(↓ 1.0) 6.0(↓ 7.0) 0.0(↓ 3.0) 85.0(↔ 0.0) 29.0(↓ 11.0) 5.0(↓ 2.0) 42.4(↓ 3.2)
SR 1.0(↓ 4.0) 18.0(↓ 4.0) 4.0(↓ 2.0) 81.0(↓ 2.0) 23.0(↓ 8.0) 5.0(↔ 0.0) 39.6(↓ 4.4)
Ours 5.0(↓ 1.0) 51.0(↑ 6.0) 19.0(↓ 2.0) 85.0(↑ 3.0) 52.0(↓ 3.0) 9.0(↑ 1.0) 57.2(↓ 1.6)

Deepseek-V3

DO 0.0 0.0 0.0 24.3(↓ 25.7) 15.3(↓ 6.4) 15.7(↓ 9.3) 40.8(↓ 2.3)
CoT 77.5(↓ 6.0) 83.0(↓ 13.0) 67.5(↓ 14.0) 80.5(↓ 4.0) 26.0(↓ 5.5) 5.0(↓ 8.5) 52.0(↓ 6.4)
SC 83.0(↓ 3.0) 93.0(↓ 6.0) 81.0(↓ 3.0) 86.0(↓ 1.0) 40.0(↓ 3.0) 7.0(↓ 4.0) 56.0(↓ 3.2)
SR 70.0(↓ 10.0) 74.0(↓ 9.0) 68.0(↑ 6.0) 72.0(↓ 10.0) 19.0(↓ 1.0) 8.0(↓ 3.0) 47.2(↓ 10.0)
Ours 96.0(↓ 1.0) 95.0(↓ 4.0) 94.0(↔ 0.0) 86.0(↓ 1.0) 52.0(↓ 1.0) 11.0(↓ 2.0) 64.8(↓ 2.8)

Table 3: Task accuracy (%) on different datasets under 10% noise. The numbers in parentheses are the change
compared to the clean data, and the arrows indicate the direction of the change. Bold indicates the best performance,
and underline indicates the smallest change.

Dataset GPT-4o DeepSeek-V3

SC SRR-0 SC SRR-0

Arithmetic7 0.0 4.0 83.0 95.0
Arithmetic8 6.0 40.0 93.0 95.0
Arithmetic9 0.0 15.0 94.0 91.0
CryptoCaesar 85.0 85.0 86.0 86.0
CryptoAtbash 29.0 51.0 40.0 48.0
CryptoKeyboard 5.0 8.0 7.0 9.0
List Functions 42.4 54.0 56.0 62.8

Table 4: Task accuracy (%) under 10% noise of SC and
the initial rule in SRR (SRR-0) on different datasets.

2023b; Cheng et al., 2024).361

Consistency Scores Reveal Hidden Instability362

While task accuracy provides comprehensive in-363

sights, consistency scores uncover fundamental364

reasoning fragility. As depicted in Figure 4, the365

Atbash cipher task exhibits particularly low con-366

sistency despite modest accuracy changes. The367

slight variation in accuracy may merely be an il-368

lusion created by the combined effects of noise369

interference (solved→unsolved cases) and incor-370

rect generalization (unsolved→solved cases). Prior371

and concurrent work’s singular focus on accuracy372

fluctuations (Qiu et al., 2024; Zhou et al., 2024;373

Mirzadeh et al., 2024; Huang et al., 2025a) over-374

looks this critical duality in reasoning robustness.375

Counterfactual Challenges Expose Knowledge376

Reliance We observe dramatic performance gaps377

on counterfactual tasks like base-7 and base-9378

arithmetic (90%+ vs. 10%− for DeepSeek-V3379

vs. GPT-4o) and Keyboard ciphers. This observa-380

tion is consistent with the findings reported in Wu381

et al. (2024). Diagnostic analysis of responses from382

LLMs shows models default to familiar templates383

rather than true induction. GPT-4o persistently384

misinterprets base-7 and base-9 addition as “base-385

List Functions

7-base

8-base

9-base

Atbash

Caesar

40
50

60
70

80
90

100

COT
SC
SR
SRR

Figure 4: Consistency score (%) between clean data
and data with 10% noise of DeepSeek-V3.

8” or “decimal sum with constant”, while Atbash 386

and Keyboard ciphers get erroneously classified as 387

Caesar shifts in thinking process or self-generated 388

feedback. Although Atbash and Caesar cipher ex- 389

hibit similar levels of complexity in transformation, 390

their performance differences are significant. These 391

failures reveal that there is a pattern overfitting 392

in the reasoning process. Current models’ induc- 393

tive reasoning essentially operates through pattern 394

matching rather than abstract induction. When the 395

scarcity of counterfactual tasks in pretraining data 396

forces models to rely on genuine rule induction 397

rather than recitation, model performance plum- 398

mets dramatically. 399

4.5 Extended Explorations 400

To further investigate the robustness of LLMs’ in- 401

ductive reasoning, we conduct a comparative eval- 402

uation against DeepSeek-R1 (DeepSeek-AI et al., 403

2025), one of the state-of-the-art reasoning models, 404

and human reasoning patterns. 405

6

Comparion with DeepSeek-R1 We focus on the406

Atbash cipher and List Functions. Atbash pro-407

vides unified task semantics yet challenges models408

with unfamiliar transformation logic, while List409

Functions captures diverse rule abstraction scenar-410

ios. Table 5 compares task accuracy and consis-411

tency scores under clean and 10% noise conditions412

with DeepSeek-V3 (SRR). Notably, DeepSeek-R1413

achieves higher task accuracy on both tasks. How-414

ever, its consistency scores are not competitive415

enough, indicating unresolved instability. Detailed416

breakdowns of consistency scores are shown in 6.417

For Atbash, the comparable number of right-to-418

wrong and wrong-to-right suggests instability and419

randomness in its reasoning process. Manual in-420

spection shows DeepSeek-R1 still interprets At-421

bash cipher as character shifts in failed cases, mir-422

roring previous pattern-overfitting behavior. For423

List Functions, the elevated right-to-wrong rate in-424

dicates its sensitivity to input perturbations.

Dataset Model Clean Acc Noise Acc Consistency

Atbash
SRR 53.0 52.0(−1.0) 69.0

DeepSeek-R1 65.0 65.0(±0.0) 70.0

List Func.
SRR 67.6 64.8(−2.8) 90.8

DeepSeek-R1 76.0 68.4(−7.6) 87.6

Table 5: Task accuracy (%) and consistency score (%)
between DeepSeek-V3 with SRR and DeepSeek-R1
under clean and noisy conditions.

Dataset Model # BothR # BothW # RtoW # WtoR

Atbash
SRR 37 32 16 15

DeepSeek-R1 50 20 15 15

List Func.
SRR 154 73 15 8

DeepSeek-R1 165 54 25 6

Table 6: Detailed breakdowns of consistency score.
BothR, BothW, RtoW, WtoR represent both right, both
wrong, right to wrong from clean condition to noisy
condition and wrong to right respectively.

425

Human Reasoning Comparison Rule (2020)426

reports human performance on List Functions. We427

divide the tasks into three difficulty levels in a428

5 : 3 : 2 ratio based on the sorted mean human429

performance. To contrast with human-like thinking430

patterns, we analyze consistency across 12 trials431

(4 noise levels × 3 runs) in Section 4.3. Figure 5432

visualizes the distribution of consistency and per-433

formance per task in List Functions, stratified by434

difficulty. LLMs show macro-level alignment yet435

micro-level divergence compared to human rea-436

soning. While LLMs broadly mirror human-like437

stability, showing higher consistency on both sim- 438

ple and hard tasks, with moderate instability on 439

medium-difficulty tasks, their internal patterns re- 440

veal critical deviations. For hard tasks, models dis- 441

play unpredictability (e.g., sporadic success) rather 442

than systematic incapacity. Simple tasks, despite 443

their low complexity, exhibit in consistent perfor- 444

mance unrelated to intrinsic difficulty. Notably, 445

GPT-4o and DeepSeek-V3 demonstrate similar be- 446

havioral trends, suggesting a shared inductive bias 447

with humans. 448

DeepSeek V3 GPT-4o

Figure 5: Task-solving consistency of DeepSeek-V3
and GPT-4o on List Functions. Each cell represents a
task, arranged by ascending difficulty (top-to-bottom,
left-to-right). Colors denote correctness patterns: 12R
(all correct) to 12W (all wrong), with intermediate states
(e.g., 1W11R: 1 wrong, 11 correct).

5 Discussion 449

Our experimental results reveal limitations in 450

LLMs’ inductive reasoning. We try to analyze the 451

results in this section. 452

Process Analysis Inductive reasoning can be con- 453

ceptualized through a Bayesian paradigm (Tenen- 454

baum et al., 2011), where models update poste- 455

rior distributions over a hypothesis space based 456

on observations. The introduction of noise dis- 457

rupts the reasoning through dual mechanisms: 458

Noise-Induced Hypothesis Drift, where the ini- 459

tial hypothesis space becomes misaligned with true 460

rules when noise introduces conflicting patterns. 461

This drift particularly impacts Direct Output (DO) 462

method, which lacks intermediate reasoning steps 463

and relies heavily on the initial hypothesis space. 464

This is more evident for tasks with similar internal 465

patterns, the model’s performance fluctuates signif- 466

icantly (Cryptography) or even fails (Arithmetic) 467

7

compared to other methods. Evidence Ambiguity468

Amplification, where noise reduces the effective469

signal-to-noise ratio during posterior optimization.470

Methods with iterative or step-by-step reasoning471

suffer error accumulation cascades—each reason-472

ing step propagates uncertainty. As shown in Ta-473

ble 3, CoT and SR exhibit larger average accuracy474

drops and worse performance. SRR avoids it by475

objectively identifying errors through execution.476

Implications for Robust Inductive Reasoning477

LLMs heavily rely on prior knowledge rather than478

pure induction. They blend memorized pattern479

matching with shallow reasoning. When observa-480

tions align with priors (e.g., Caesar cipher), they481

demonstrate pseudo-robustness. However, conflict-482

ing patterns (noise) and counterfactual scenarios483

(unseen rules) expose this fragility—models either484

default to familiar templates or enter unstable hy-485

pothesis oscillations. Even the state-of-the-art rea-486

soning model exhibits unstable performance in uni-487

fied tasks. This contrasts sharply with human few-488

shot learning, where true rule abstraction enables489

stable generalization (Lake et al., 2015). Achieving490

human-level robust reasoning and few-shot induc-491

tion requires disentangling knowledge recitation492

from inductive rule formation.493

6 Related Work494

Inductive Reasoning The study of inductive rea-495

soning has been a long-standing focus across multi-496

ple disciplines. Early work (Heit, 2000) established497

foundational properties of inductive reasoning. In498

cognitive science, induction is considered a process499

of probabilistic belief updating within the Bayesian500

paradigm (Tenenbaum et al., 2011). Human cog-501

nition and learning are explained through the inte-502

gration of prior knowledge with observed data to503

compute posterior distributions. Comparative stud-504

ies (Lake et al., 2015, 2017) have highlighted the505

contrast between human learners and machine in-506

telligence. With the advent of pre-trained language507

models (Brown et al., 2020), research on inductive508

reasoning has shifted from domain-specific and509

neural formulation (Tian et al., 2020; Odena et al.,510

2021; Sablé-Meyer et al., 2022) to natural language.511

Initial approaches (Alet et al., 2021; Gendron et al.,512

2024; Mirchandani et al., 2023; Yang et al., 2024)513

predominantly relied on input-output (IO) prompt-514

ing, which evaluates model performance on un-515

seen examples without explicit rule articulation.516

However, this paradigm overlooks the internal rule-517

inference process, as it conflates rule induction with 518

rule execution capabilities. Recent efforts (Wang 519

et al., 2024) align more closely with our work by 520

explicitly generating intermediate rules. Qiu et al. 521

(2024) proposed a thorough evaluation containing 522

noisy conditions, whose findings partially overlap 523

with ours, but their analysis is confined to a single 524

dataset and prioritized accuracy metrics over con- 525

sistency. We further explore the challenges posed 526

by counterfactual tasks and uncover the limitations 527

of LLMs in inductive reasoning. 528

Robustness of Reasoning in LLMs In this work, 529

robustness refers to the ability to maintain con- 530

sistent performance under imperfections or coun- 531

terfactual scenarios (Elazar et al., 2021), which 532

is intrinsically linked to the diversity and unpre- 533

dictability of generation process (Zhang et al., 534

2023; Huang et al., 2025b). Prior works into LLM 535

behavioral variability exhibit inconsistent perfor- 536

mance across time (Tu et al., 2024; Chen et al., 537

2023a). Recent works focus on understanding their 538

internal reasoning mechanisms by altering condi- 539

tions, such as changing numerical values in mathe- 540

matical tasks (Mirzadeh et al., 2024; Huang et al., 541

2025a) or examining performance on counterfac- 542

tual tasks (Wu et al., 2024). Zhou et al. (2024) inves- 543

tigates the impact of noisy rationales on model per- 544

formance. These studies primarily measure robust- 545

ness through global accuracy changes, overlooking 546

inconsistencies at the instance level. Our work ad- 547

dresses this gap by introducing a consistency score 548

that quantifies intra-task stability, providing a more 549

granular view of model robustness. 550

7 Conclusion 551

In this paper, we explore the robustness of inductive 552

reasoning in large language models under imper- 553

fect observations. Through introducing the Robust 554

Rule Induction task with metrics of both holistic 555

and individual levels, we systematically evaluate 556

the ability of LLMs to maintain stable and con- 557

sistent rule abstraction. The Sample-steered Rule 558

Refinement outperforms other reasoning paradigms 559

by effectively leveraging diversity-aware hypothe- 560

sis generation and execution-guided feedback. Our 561

findings reveal that while LLMs can demonstrate 562

impressive reasoning capabilities, they are inher- 563

ently sensitive to noise and prone to hypothesis 564

drifting and pattern overfitting. 565

8

Limitations566

We discuss the limitations of our work here: Our567

evaluation focuses on highly formalized and sym-568

bolic tasks. Real-world inductive reasoning often569

involves ambiguous rules like social norms from570

text or visual patterns, which are not captured by571

our formalism. The tasks in Arithmetic and Cryp-572

tography may be relatively simple and lack diver-573

sity. Expanding task diversity could reveal deeper574

limitations in LLMs’ capabilities. A large-scale575

assessment of human performance across all tasks576

under varying levels of noise is beyond the scope of577

this study, which poses certain limitations in com-578

paring human reasoning patterns. The purpose of579

our study is to explore the robustness of LLMs’ in-580

ductive reasoning capabilities, so we do not specif-581

ically tune the hyperparameters and prompt tem-582

plates.583

Ethics Statement584

The datasets we used are all publicly available,585

and our research does not involve any personal586

information. All data is generated by programs.587

Therefore, we anticipate that this paper does not588

raise any ethical concerns. We use ChatGPT to589

paraphrase some sentences.590

References591

Ferran Alet, Javier Lopez-Contreras, James Kop-592
pel, Maxwell Nye, Armando Solar-Lezama, Tomas593
Lozano-Perez, Leslie Kaelbling, and Joshua Tenen-594
baum. 2021. A large-scale benchmark for few-shot595
program induction and synthesis. In Proceedings of596
the 38th International Conference on Machine Learn-597
ing, volume 139 of Proceedings of Machine Learning598
Research, pages 175–186. PMLR.599

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie600
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind601
Neelakantan, Pranav Shyam, Girish Sastry, Amanda602
Askell, Sandhini Agarwal, Ariel Herbert-Voss,603
Gretchen Krueger, Tom Henighan, Rewon Child,604
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,605
Clemens Winter, Christopher Hesse, Mark Chen, Eric606
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,607
Jack Clark, Christopher Berner, Sam McCandlish,608
Alec Radford, Ilya Sutskever, and Dario Amodei.609
2020. Language models are few-shot learners. In610
Proceedings of the 34th International Conference on611
Neural Information Processing Systems, NIPS ’20,612
Red Hook, NY, USA. Curran Associates Inc.613

Lingjiao Chen, Matei Zaharia, and James Zou. 2023a.614
How is chatgpt’s behavior changing over time?615
Preprint, arXiv:2307.09009.616

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and 617
Denny Zhou. 2023b. Teaching large language mod- 618
els to self-debug. Preprint, arXiv:2304.05128. 619

Kewei Cheng, Jingfeng Yang, Haoming Jiang, 620
Zhengyang Wang, Binxuan Huang, Ruirui Li, 621
Shiyang Li, Zheng Li, Yifan Gao, Xian Li, Bing 622
Yin, and Yizhou Sun. 2024. Inductive or deductive? 623
rethinking the fundamental reasoning abilities of llms. 624
Preprint, arXiv:2408.00114. 625

François Chollet. 2019. On the measure of intelligence. 626
Preprint, arXiv:1911.01547. 627

Katherine M. Collins, Ilia Sucholutsky, Umang Bhatt, 628
Kartik Chandra, Lionel Wong, Mina Lee, Cede- 629
gao E. Zhang, Tan Zhi-Xuan, Mark Ho, Vikash Mans- 630
inghka, Adrian Weller, Joshua B. Tenenbaum, and 631
Thomas L. Griffiths. 2024. Building machines that 632
learn and think with people. Nature Human Be- 633
haviour, 8(10):1851–1863. Publisher: Nature Pub- 634
lishing Group. 635

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, 636
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, 637
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, 638
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong 639
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, 640
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, 641
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, 642
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, 643
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, 644
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, 645
Han Bao, Hanwei Xu, Haocheng Wang, Honghui 646
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, 647
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang 648
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. 649
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai 650
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai 651
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong 652
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan 653
Zhang, Minghua Zhang, Minghui Tang, Meng Li, 654
Miaojun Wang, Mingming Li, Ning Tian, Panpan 655
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, 656
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, 657
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, 658
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, 659
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng 660
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing 661
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, 662
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, 663
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao 664
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan 665
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin 666
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, 667
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, 668
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi- 669
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, 670
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang 671
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng 672
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, 673
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, 674
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, 675
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu- 676
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, 677

9

https://proceedings.mlr.press/v139/alet21a.html
https://proceedings.mlr.press/v139/alet21a.html
https://proceedings.mlr.press/v139/alet21a.html
https://arxiv.org/abs/2307.09009
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2408.00114
https://arxiv.org/abs/2408.00114
https://arxiv.org/abs/2408.00114
https://arxiv.org/abs/1911.01547
https://doi.org/10.1038/s41562-024-01991-9
https://doi.org/10.1038/s41562-024-01991-9
https://doi.org/10.1038/s41562-024-01991-9

Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,678
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,679
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,680
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean681
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,682
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-683
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,684
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu685
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen-686
tivizing reasoning capability in llms via reinforce-687
ment learning. Preprint, arXiv:2501.12948.688

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-689
uan Wang, Bochao Wu, Chengda Lu, Chenggang690
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,691
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,692
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,693
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei694
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng695
Wang, Haowei Zhang, Honghui Ding, Huajian Xin,696
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang,697
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,698
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie699
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu,700
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean701
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao,702
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,703
Mingchuan Zhang, Minghua Zhang, Minghui Tang,704
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,705
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu706
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge,707
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin708
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao709
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,710
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu711
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou,712
Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun,713
W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An,714
Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,715
Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,716
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen,717
Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen,718
Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin719
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu,720
Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,721
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li,722
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yan-723
hong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao724
Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu,725
Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong,726
Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yix-727
uan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,728
Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue729
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan730
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxi-731
ang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z.732
Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu,733
Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan734
Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhi-735
gang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,736
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu,737
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi738
Gao, and Zizheng Pan. 2024. Deepseek-v3 technical739
report. Preprint, arXiv:2412.19437.740

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi- 741
lasha Ravichander, Eduard Hovy, Hinrich Schütze, 742
and Yoav Goldberg. 2021. Measuring and improving 743
consistency in pretrained language models. Transac- 744
tions of the Association for Computational Linguis- 745
tics, 9:1012–1031. 746

Jacob Feldman. 1997. The structure of perceptual cat- 747
egories. Journal of mathematical psychology, 41 748
2:145–70. 749

Gaël Gendron, Qiming Bao, Michael Witbrock, and 750
Gillian Dobbie. 2024. Large language models are 751
not strong abstract reasoners. In Proceedings of the 752
Thirty-Third International Joint Conference on Artifi- 753
cial Intelligence, IJCAI-24, pages 6270–6278. Inter- 754
national Joint Conferences on Artificial Intelligence 755
Organization. Main Track. 756

Evan Heit. 2000. Properties of inductive reasoning. 757
Psychonomic Bulletin & Review, 7(4):569–592. 758

Kaixuan Huang, Jiacheng Guo, Zihao Li, Xiang Ji, 759
Jiawei Ge, Wenzhe Li, Yingqing Guo, Tianle Cai, 760
Hui Yuan, Runzhe Wang, Yue Wu, Ming Yin, 761
Shange Tang, Yangsibo Huang, Chi Jin, Xinyun 762
Chen, Chiyuan Zhang, and Mengdi Wang. 2025a. 763
Math-perturb: Benchmarking llms’ math reason- 764
ing abilities against hard perturbations. Preprint, 765
arXiv:2502.06453. 766

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, 767
Zhangyin Feng, Haotian Wang, Qianglong Chen, 768
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting 769
Liu. 2025b. A survey on hallucination in large lan- 770
guage models: Principles, taxonomy, challenges, and 771
open questions. ACM Trans. Inf. Syst., 43(2). 772

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu- 773
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 774
guage models are zero-shot reasoners. In Advances in 775
Neural Information Processing Systems, volume 35, 776
pages 22199–22213. Curran Associates, Inc. 777

Brenden Lake and Marco Baroni. 2018. Generalization 778
without systematicity: On the compositional skills 779
of sequence-to-sequence recurrent networks. In Pro- 780
ceedings of the 35th International Conference on 781
Machine Learning, volume 80 of Proceedings of Ma- 782
chine Learning Research, pages 2873–2882. PMLR. 783

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. 784
Tenenbaum. 2015. Human-level concept learning 785
through probabilistic program induction. Science, 786
350(6266):1332–1338. 787

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenen- 788
baum, and Samuel J. Gershman. 2017. Building ma- 789
chines that learn and think like people. Behavioral 790
and Brain Sciences, 40:e253. 791

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, 792
and Pontus Stenetorp. 2022. Fantastically ordered 793
prompts and where to find them: Overcoming few- 794
shot prompt order sensitivity. In Proceedings of the 795

10

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.1162/tacl_a_00410
https://api.semanticscholar.org/CorpusID:15319518
https://api.semanticscholar.org/CorpusID:15319518
https://api.semanticscholar.org/CorpusID:15319518
https://doi.org/10.24963/ijcai.2024/693
https://doi.org/10.24963/ijcai.2024/693
https://doi.org/10.24963/ijcai.2024/693
https://doi.org/10.3758/BF03212996
https://arxiv.org/abs/2502.06453
https://arxiv.org/abs/2502.06453
https://arxiv.org/abs/2502.06453
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556

60th Annual Meeting of the Association for Compu-796
tational Linguistics (Volume 1: Long Papers), pages797
8086–8098, Dublin, Ireland. Association for Compu-798
tational Linguistics.799

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler800
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,801
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,802
Shashank Gupta, Bodhisattwa Prasad Majumder,803
Katherine Hermann, Sean Welleck, Amir Yazdan-804
bakhsh, and Peter Clark. 2023. Self-refine: Itera-805
tive refinement with self-feedback. In Thirty-seventh806
Conference on Neural Information Processing Sys-807
tems.808

Suvir Mirchandani, Fei Xia, Pete Florence, brian ichter,809
Danny Driess, Montserrat Gonzalez Arenas, Kan-810
ishka Rao, Dorsa Sadigh, and Andy Zeng. 2023.811
Large language models as general pattern machines.812
In 7th Annual Conference on Robot Learning.813

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,814
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.815
2024. Gsm-symbolic: Understanding the limitations816
of mathematical reasoning in large language models.817
Preprint, arXiv:2410.05229.818

Augustus Odena, Kensen Shi, David Bieber, Rishabh819
Singh, Charles Sutton, and Hanjun Dai. 2021. Bus-820
tle: Bottom-up program synthesis through learning-821
guided exploration. Preprint, arXiv:2007.14381.822

OpenAI. 2024a. Gpt-4o mini: advancing cost-efficient823
intelligence.824

OpenAI. 2024b. Hello gpt-4o.825

Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar,826
Valentina Pyatkin, Chandra Bhagavatula, Bailin827
Wang, Yoon Kim, Yejin Choi, Nouha Dziri, and Xi-828
ang Ren. 2024. Phenomenal yet puzzling: Testing829
inductive reasoning capabilities of language models830
with hypothesis refinement. In The Twelfth Interna-831
tional Conference on Learning Representations.832

Joshua S Rule. 2020. The child as hacker: Building833
more human-like models of learning. Ph.D. thesis,834
MIT.835

Mathias Sablé-Meyer, Kevin Ellis, Josh Tenenbaum,836
and Stanislas Dehaene. 2022. A language of thought837
for the mental representation of geometric shapes.838
Cognitive Psychology, 139:101527.839

Joshua B. Tenenbaum, Charles Kemp, Thomas L. Grif-840
fiths, and Noah D. Goodman. 2011. How to grow a841
mind: Statistics, structure, and abstraction. Science,842
331(6022):1279–1285.843

Lucas Tian, Kevin Ellis, Marta Kryven, and Josh Tenen-844
baum. 2020. Learning abstract structure for drawing845
by efficient motor program induction. In Advances in846
Neural Information Processing Systems, volume 33,847
pages 2686–2697. Curran Associates, Inc.848

Shangqing Tu, Chunyang Li, Jifan Yu, Xiaozhi Wang, 849
Lei Hou, and Juanzi Li. 2024. Chatlog: Care- 850
fully evaluating the evolution of chatgpt across time. 851
Preprint, arXiv:2304.14106. 852

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen 853
Pu, Nick Haber, and Noah Goodman. 2024. Hypothe- 854
sis search: Inductive reasoning with language models. 855
In The Twelfth International Conference on Learning 856
Representations. 857

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, 858
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, 859
and Denny Zhou. 2023. Self-consistency improves 860
chain of thought reasoning in language models. In 861
The Eleventh International Conference on Learning 862
Representations. 863

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 864
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le, 865
and Denny Zhou. 2022. Chain of thought prompt- 866
ing elicits reasoning in large language models. In 867
Advances in Neural Information Processing Systems. 868

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, 869
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob An- 870
dreas, and Yoon Kim. 2024. Reasoning or reciting? 871
exploring the capabilities and limitations of language 872
models through counterfactual tasks. In Proceed- 873
ings of the 2024 Conference of the North American 874
Chapter of the Association for Computational Lin- 875
guistics: Human Language Technologies (Volume 876
1: Long Papers), pages 1819–1862, Mexico City, 877
Mexico. Association for Computational Linguistics. 878

Zonglin Yang, Li Dong, Xinya Du, Hao Cheng, Erik 879
Cambria, Xiaodong Liu, Jianfeng Gao, and Furu Wei. 880
2024. Language models as inductive reasoners. In 881
Proceedings of the 18th Conference of the European 882
Chapter of the Association for Computational Lin- 883
guistics (Volume 1: Long Papers), pages 209–225, 884
St. Julian’s, Malta. Association for Computational 885
Linguistics. 886

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, 887
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang, 888
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei 889
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song 890
in the ai ocean: A survey on hallucination in large 891
language models. Preprint, arXiv:2309.01219. 892

Zhanke Zhou, Rong Tao, Jianing Zhu, Yiwen Luo, Zeng- 893
mao Wang, and Bo Han. 2024. Can language models 894
perform robust reasoning in chain-of-thought prompt- 895
ing with noisy rationales? In The Thirty-eighth An- 896
nual Conference on Neural Information Processing 897
Systems. 898

11

https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=RcZMI8MSyE
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2007.14381
https://arxiv.org/abs/2007.14381
https://arxiv.org/abs/2007.14381
https://arxiv.org/abs/2007.14381
https://arxiv.org/abs/2007.14381
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/hello-gpt-4o/
https://openreview.net/forum?id=bNt7oajl2a
https://openreview.net/forum?id=bNt7oajl2a
https://openreview.net/forum?id=bNt7oajl2a
https://openreview.net/forum?id=bNt7oajl2a
https://openreview.net/forum?id=bNt7oajl2a
https://doi.org/10.1016/j.cogpsych.2022.101527
https://doi.org/10.1016/j.cogpsych.2022.101527
https://doi.org/10.1016/j.cogpsych.2022.101527
https://doi.org/10.1126/science.1192788
https://doi.org/10.1126/science.1192788
https://doi.org/10.1126/science.1192788
https://proceedings.neurips.cc/paper_files/paper/2020/file/1c104b9c0accfca52ef21728eaf01453-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1c104b9c0accfca52ef21728eaf01453-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1c104b9c0accfca52ef21728eaf01453-Paper.pdf
https://arxiv.org/abs/2304.14106
https://arxiv.org/abs/2304.14106
https://arxiv.org/abs/2304.14106
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.18653/v1/2024.naacl-long.102
https://doi.org/10.18653/v1/2024.naacl-long.102
https://doi.org/10.18653/v1/2024.naacl-long.102
https://doi.org/10.18653/v1/2024.naacl-long.102
https://doi.org/10.18653/v1/2024.naacl-long.102
https://aclanthology.org/2024.eacl-long.13/
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://openreview.net/forum?id=FbuODM02ra
https://openreview.net/forum?id=FbuODM02ra
https://openreview.net/forum?id=FbuODM02ra
https://openreview.net/forum?id=FbuODM02ra
https://openreview.net/forum?id=FbuODM02ra

Appendices899

A Details on Evaluation Pipeline900

In this section, we provide detailed information on901

the evaluation pipeline, including the data construc-902

tion and the performance assessment. For Arith-903

metic, we generate the base-7, base-8, and base-9904

tasks by randomly sampling two two-digit num-905

bers in the corresponding base, and then we check906

whether there is a carry-over in the addition process.907

If there is no carry-over, we regenerate the numbers.908

The noisy examples are generated in base-10. For909

Cryptography, we randomly select words of appro-910

priate lengths from the NLTK Word Lists corpus1,911

and then we encrypt the words using the Caesar,912

Atbash, and Keyboard ciphers. The noisy examples913

are generated by randomly replacing the letters in914

the output with other letters. For List Functions, we915

first write the corresponding rule functions for each916

task, and then we automatically generate the input917

data with appropriate lengths and ranges. The in-918

puts are generated by randomly sampling numbers919

from a specific range with some constraints. . Dur-920

ing the data synthesis process, we attach manual921

supervision to ensure that the generated data can922

correctly induce the rules. During the evaluation923

process, we use the inputs in the test set as the input924

for rule execution. We evaluate the model’s perfor-925

mance using exact match. If the model’s output is926

correct on all the test set examples, we consider the927

model to have successfully induced the rule. If the928

model fails to output a valid programmatic rule or929

the program contains an infinite loop or errors, we930

consider it a failure.931

B Experimental Details932

B.1 Experimental Settings933

For robustness under different noise levels, we run934

each experiment three times and report the mean935

and standard deviation of the results to avoid ran-936

domness. Except for the self-consistency (SC) and937

sample-steered rule refinement (SRR) that require938

diverse generations, we set the temperature to 0.0939

for all models to ensure reproducibility. For SC940

and SRR, the temperature is set to 0.7, consistent941

with the original work of SC (Wang et al., 2023).942

The positions of noise in seen examples are ran-943

dom to avoid positional bias (Lu et al., 2022). In944

the implementation, we choose 2 subsets for SRR945

by splitting the seen examples into two parts. The946

1https://www.nltk.org/nltk_data/

number of iterations is set to 3 for both SR and 947

SRR. 948

All experiments are conducted through the offi- 949

cial OpenAI2 and DeepSeek3 API platform. For 950

the GPT-4o-mini and GPT-4o models, we spend 951

about 200 USD in total, and for the DeepSeek-V3 952

and DeepSeek-R1 models, we spend about 50 USD 953

in total. 954

B.2 Prompts and Failure Cases 955

For the Direct Output setting, we restrict the model 956

to output the rule directly without any additional 957

output, as shown in Table 7. For the chain-of- 958

thought and self-consistency setting, we use the 959

instruction in Kojima et al. (2022). For the self- 960

refine and sample-steered rule refinement setting, 961

we use the chain-of-thought prompt as the initial 962

prompt; the iterative prompts are shown in Table 9 963

and Table 10, respectively. 964

We provide some representative failure cases in 965

the evaluation. For the Arithmetic task, the model 966

fails to solve the base-7 and base-9 tasks and mis- 967

interprets the rule as the base-8 addition or the 968

decimal sum with a constant. For the Cryptography 969

task, the model fails to solve the Atbash and tries 970

to explain it as shifts. The responses of the models 971

are shown in Table 11. 972

2https://openai.com/api/
3https://platform.deepseek.com/usage

12

https://www.nltk.org/nltk_data/
https://openai.com/api/
https://platform.deepseek.com/usage

Prompt for Direct Output

Please generate a rule that maps the following inputs to their corresponding outputs using a Python function. The
input is a list of integers. The output is also a list of integers. Note that some examples may be wrong, and you
should take this into account when proposing the rule.
{examples}
Please format your Python function as follows:
“‘python
def fn(x):

Your code here
“‘
Your response should only include the function definition, not the function call or any other information.

Table 7: The prompt for the Direct Output setting, exemplified by the List Functions task. The {examples} in the
prompt is replaced by input-output pairs when conducting the experiments.

Prompt for Chain-of-Thought

Please generate a rule that maps the following inputs to their corresponding outputs using a Python function. The
input is a list of integers. The output is also a list of integers. Note that some examples may be wrong, and you
should take this into account when proposing the rule.
{examples}
Please format your Python function as follows:
“‘python
def fn(x):

Your code here
“‘
Think step-by-step and explain your reasoning. Your response should include your thought process and the function
definition without the function call.

Table 8: The prompt for the Chain-of-Thought setting, exemplified by the List Functions task.

Prompt for Feedback Generation in Self-Refine

You have generated a rule that maps the following inputs to their corresponding outputs using a Python function.
The input is a list of integers. The output is also a list of integers.
{examples}
In the last step, your rule is:
“‘python
{rule}
“‘
Give some feedback on the rule you have generated, like how can it be improved, what is wrong with it, etc.
Your response should only include the feedback. If you think the rule is good enough, your response should be“NO
FEEDBACK” without other information. Note that some examples may be wrong, and you should take this into
account when proposing the feedback.

Iteration

You have generated a rule that maps the following inputs to their corresponding outputs using a Python function.
The input is a list of integers. The output is also a list of integers. Note that some examples may be wrong, and you
should take this into account when proposing the rule.
{examples}
In the last step, your rule is:
“‘python
{rule}
“‘
The feedback you have given is:
{feedback}
Generate a new rule that maps the given inputs to their corresponding outputs using a Python function. Please
format your rule as follows:
“‘python
def fn(x):

Your code here
“‘
Think step-by-step and explain your reasoning. Your response should include your thought process and the function
definition without the function call.

Table 9: The prompt for the Self-refine setting, exemplified by the List Functions task. The {examples}, {rule} and
{feedback} in the prompt are replaced by input-output pairs, rule, and feedback when conducting the experiments.

13

Prompt for Iteration in SRR

You have generated a rule that maps the following inputs to their corresponding outputs using a Python function.
The input is a list of integers. The output is also a list of integers. Note that some examples may be noisy, and you
should take this into account when proposing the rule. In the last step, your rule is
“‘python
{rule}
“‘
But this rule is not correct. It works for the following examples:
{right_examples}
However, it does not work for the following examples:
{wrong_examples} Generate a new rule that maps the given inputs to their corresponding outputs using a Python
function. Please format your rule as follows:
“‘python
def fn(x):

Your code here
“‘
Think step-by-step and explain your reasoning. Your response should include your thought process and the function
definition without the function call. You can either modify the existing rule or propose a new one.

Table 10: The prompt for the Sample-steered Rule Refinement setting, exemplified by the List Functions task. The
{rule}, {right_examples}, and {wrong_examples} in the prompt are replaced by the rule, right examples, and wrong
examples when conducting the experiments.

14

Failure Cases for Arithmetic

Octonary Confusion Error (in base-7):

To solve this problem, we need to identify a pattern or rule that maps the given input expressions to their corre-
sponding outputs. Let’s analyze the examples provided: First, let’s verify if the outputs are simply the sum of the
inputs in base 10:- For ‘34 + 62‘, the sum is ‘96‘, but the output is ‘126‘.- For ‘56 + 30‘, the sum is ‘86‘, but the
output is ‘116‘.- For ‘22 + 25‘, the sum is ‘47‘, but the output is ‘50‘... Clearly, the outputs are not the direct sums
of the inputs in base 10. Let’s consider the possibility that the numbers are in base 8 (octal):- Convert the inputs to
base 10, perform the addition, and then convert the result back to base 8. Let’s verify this hypothesis: 1. 34 + 62 in
base 8: - ‘34‘ in base 8 is ‘3*8 + 4 = 28‘ in base 10. - ‘62‘ in base 8 is ‘6*8 + 2 = 50‘ in base 10. - Sum in base 10:
‘28 + 50 = 78‘. - Convert ‘78‘ to base 8: ‘78 // 8 = 9‘ remainder ‘6‘, so ‘78‘ in base 8 is ‘116‘.2. 56 + 30 in base 8: -
‘56‘ in base 8 is ‘5*8 + 6 = 46‘ in base 10. - ‘30‘ in base 8 is ‘3*8 + 0 = 24‘ in base 10. - Sum in base 10: ‘46 + 24 =
70‘. - Convert ‘70‘ to base 8: ‘70 // 8 = 8‘ remainder ‘6‘, so ‘70‘ in base 8 is ‘106‘. 3. 22 + 25 in base 8: - ‘22‘ in
base 8 is ‘2*8 + 2 = 18‘ in base 10. - ‘25‘ in base 8 is ‘2*8 + 5 = 21‘ in base 10. - Sum in base 10: ‘18 + 21 = 39‘. -
Convert ‘39‘ to base 8: ‘39 // 8 = 4‘ remainder ‘7‘, so ‘39‘ in base 8 is ‘47‘. Following this pattern, we can see that
the outputs are indeed the sums of the inputs when interpreted as base 8 numbers and then converted back to base 8.
Let’s implement this in a Python function...

Decimal Confusion Error (in base-9):

To solve this problem, we need to identify a consistent rule or pattern that maps the given input expressions to their
corresponding outputs. Let’s analyze the provided examples: 1. 68 + 68 = 147: The correct sum is 136, but the
output is 147. 2. 80 + 42 = 132: The correct sum is 122, but the output is 132. 3. 76 + 17 = 104: The correct
sum is 93, but the output is 104. 4. 38 + 14 = 53: The correct sum is 52, but the output is 53. 5. 43 + 84 = 137:
The correct sum is 127, but the output is 137. 6. 48 + 55 = 114: The correct sum is 103, but the output is 114. 7.
72 + 56 = 138: The correct sum is 128, but the output is 138. 8. 34 + 46 = 81: The correct sum is 80, but the
output is 81. 9. 88 + 15 = 114: The correct sum is 103, but the output is 114. 10. 67 + 40 = 117: The correct
sum is 107, but the output is 117. From these examples, it appears that the output is consistently 10 more than the
correct sum of the two numbers. This suggests that the rule is to calculate the sum of the two numbers and then add
10 to the result. Let’s define a Python function to implement this rule...

Failure Case for Cryptography

Shifts Error:

To solve this problem, we need to identify a consistent rule or transformation that maps each input string to its
corresponding output string. Let’s analyze the given examples to find a pattern: 1. cuissard -> xfrhhziw 2. tripsis
-> girkhrh 3. Maccabaeus -> Nzxxzyzvfh 4. jocundness -> qlxfmwmvhh 5. chiro -> xsril 6. coapt -> xlzkg 7.
Phecda -> Ksvxwz 8. unifilar -> fmrurozi 9. Cordaites -> Xliwzrgvh 10. Wendell -> Dvmwvoo ### Observations: 1.
Character Shifts : The transformation seems to involve shifting characters. For example, ’c’ in "cuissard" becomes
’x’ in "xfrhhziw". This suggests a possible Caesar cipher or similar character shift. 2. Case Sensitivity : The case of
the letters is preserved. For instance, ’M’ in "Maccabaeus" becomes ’N’ in "Nzxxzyzvfh", and ’P’ in "Phecda"
becomes ’K’ in "Ksvxwz". 3. Consistent Shifts : By examining the shifts: - ’c’ to ’x’ is a shift of 23 positions
backward in the alphabet. - ’t’ to ’g’ is a shift of 13 positions backward. - ’M’ to ’N’ is a shift of 1 position forward.
- ’j’ to ’q’ is a shift of 7 positions forward. - ’P’ to ’K’ is a shift of 21 positions backward. - ’u’ to ’f’ is a shift of 11
positions backward. - ’C’ to ’X’ is a shift of 21 positions backward. - ’W’ to ’D’ is a shift of 21 positions backward.
4. Pattern Recognition : The shifts are not consistent across all examples, suggesting that some examples might be
incorrect or that multiple rules are being applied. However, a common shift that appears frequently is 21 positions
backward (e.g., ’c’ to ’x’, ’P’ to ’K’, ’C’ to ’X’, ’W’ to ’D’). ### Hypothesis: Given the frequent appearance of a
21-position backward shift, let’s hypothesize that the rule involves shifting each character 21 positions backward in
the alphabet. This would mean: - For lowercase letters, ’a’ becomes ’v’, ’b’ becomes ’w’, ..., ’z’ becomes ’u’. - For
uppercase letters, ’A’ becomes ’V’, ’B’ becomes ’W’, ..., ’Z’ becomes ’U’. ### Implementation: Let’s implement
this hypothesis in a Python function...

Table 11: The failure cases of the models on the Arithmetic and Cryptography tasks.

15

	Introduction
	Preliminary
	Problem Definitions
	Evaluation Pipeline

	Sample-steered Rule Refinement
	Experiments
	Experimental Setup
	Datasets
	Robustness Under Different Noise Levels
	Method-wise Effectiveness Comparison
	Extended Explorations

	Discussion
	Related Work
	Conclusion
	Details on Evaluation Pipeline
	Experimental Details
	Experimental Settings
	Prompts and Failure Cases

