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Abstract

There is no limit to how much a robot might explore and learn, but all of that1

knowledge needs to be searchable and actionable. Within language research, re-2

trieval augmented generation (RAG) has become the workhouse of large-scale non-3

parametric knowledge, however existing techniques do not directly transfer to the4

embodied domain, which is multimodal, data is highly correlated, and perception5

requires abstraction. To address these challenges, we introduce Embodied-RAG,6

a framework that enhances the foundational model of an embodied agent with a7

non-parametric memory system capable of autonomously constructing hierarchical8

knowledge for both navigation and language generation. Embodied-RAG handles9

a full range of spatial and semantic resolutions across diverse environments and10

query types, whether for a specific object or a holistic description of ambiance.11

At its core, Embodied-RAG’s memory is structured as a semantic forest, storing12

language descriptions at varying levels of detail. This hierarchical organization13

allows the system to efficiently generate context-sensitive outputs across different14

robotic platforms. We demonstrate that Embodied-RAG effectively bridges RAG15

to the robotics domain, successfully handling over 200 explanation and naviga-16

tion queries across 19 environments, highlighting its promise for general-purpose17

non-parametric system for embodied agents.18

1 Introduction19

Humans excel as generalist embodied agents in part due to our ability to build, abstract, and reason20

over rich memories. In contrast, current embodied agents[Chaplot et al., 2020, Khanna et al., 2024,21

Krantz et al., 2022, Zhou et al., 2023] lack such versatile memory capabilities, limiting their ability22

to operate effectively in unbounded and complex real-world environments. While existing methods23

such as semantic mapping[Chaplot et al., 2020, Khanna et al., 2024] and scene graphs[Li et al., 2022,24

Rana et al., 2023] attempt to capture spatial and contextual relationships, they largely fall short of the25

dynamic and flexible memory, retrieval, and generative abilities exhibited by humans.26

In the language domain, foundation models combined with non-parametric memory mechanisms27

have achieved near human-level performance across various tasks. Retrieval-Augmented Generation28

(RAG) [Asai et al., 2023, Chen et al., 2023, Lewis et al., 2021] has been widely adopted in the field29

of Natural Language Processing (NLP) as a non-parametric memory mechanism over large document30

corpora, enhancing the accuracy and relevance of responses generated by Large Language Models31

(LLMs). Similarly, the continuous stream of experiences gathered by embodied agents forms vast32

databases that exceed the context window limitations of LLMs.33

However, applying RAG to embodied scenarios presents unique challenges due to key differences34

between textual data and embodied experiences. First, while RAG relies on existing documents,35

building memory from embodied experiences is itself a core research challenge. Current methods,36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



such as dense point clouds or scene graphs, fail to capture the full range of experiences beyond37

object-level attributes, without relying on human-engineered schemas or exceeding memory budgets.38

Second, unlike documents, embodied experiences have inherent correlated structure — semantically39

similar objects are often spatially correlated and hierarchically organized so embodied experiences40

should not be treated as independent samples. Finally, embodied observations vary in granularity41

and structure: outdoor scenes might be sparse, while indoor environments are cluttered, and repeated42

objects across frames can confuse LLMs, complicating retrieval.43

We present Embodied-RAG, a system with two key components: Memory Construction and Retrieval44

and Generation. In Memory Construction, Embodied-RAG autonomously builds a topological map45

and a hierarchical semantic forest that organizes observations based on spatial correlations. This forest46

allows retrieval at different abstraction levels (explicit, implicit, global) by matching the query with47

corresponding memory resolution (local, intermediate, global). To mitigate perceptual hallucinations,48

the Retrieval and Generation process incorporates parallel tree traversals scored by a language model,49

using retrieved results for explanations or navigational actions via an LLM.50

We evaluated Embodied-RAG, with a novel benchmark with over 200 tasks requiring multimodal51

outputs and reasoning. Compared to Semantic Match and vanilla RAG, Embodied-RAG demonstrated52

superior performance: (1) more robust against object detection errors on explicit queries, leveraging53

spatial relevancy; (2) improved reasoning on implicit queries, with a 220% improvement over54

Semantic Match and 30% over RAG; (3) better global summarization and trend analysis, where55

Semantic Match and RAG showed poor results.56

The key contributions and implications of this paper include:57

• Method We introduce the system of Embodied-RAG. This method addresses problems of naively58

apply non-parametric memories like RAG to embodied setting.59

• Task We introduce the general task of Embodied-RAG benchmark, formulating semantic naviga-60

tion and question answering under a single paradigm (Figure 2).61

• Implications Our results and discussion provide a basis for rethinking approaches to generalist62

robot agents based on non-parameteric memories.63

2 Task64

We introduce the Embodied-RAG benchmark, which contains queries from the cross-product of65

{explicit, implicit, global} questions with potential {navigational action, language} generation outputs.66

A task consists of:67

• Query: The content can be explicit (e.g. a particular object instance), implicit (e.g. looking for68

adequacy, instruction with more pragmatic understanding required), or global. The request might69

pertain to a location or general vibe.70

• Experience: The experience is a sequence of egocentric visual perception and odometry, occurring71

in indoor, outdoor, or mixed environments.72

• Output: The expected output can be both navigation actions with language descriptions (Fig 273

top, Fig. 1 c-1), or language explanations (Fig 2 bottom, Fig. 1 c-2).74

Example tasks are shown in Fig. 2, with instances of explicit, implicit, and global queries in Fig. 1.75

3 Method76

3.1 Memory Construction77

The memory construction process of Embodied-RAG consists of two parts: a topological map and a78

semantic forest.7980

Topological map We employ a topological graph composed of nodes with the following attributes:81

• Position Information: Allocentric coordinates (x, y, z) and the yaw angle θ.82

• Image Path: Each node contains a path to an associated ego-centric image.83

• Captions: Generated by a vision-language model, these captions provide object-level natural84

language textual descriptions of the image.85
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Figure 1: Embodied-RAG method overview. (a) Memory is constructed by hierarchically organizing
the nodes of the topological map into a semantic forest. (b) The memory in (a) can be retrieved
for a query, with parallelized tree traversals. (c) Navigation actions with text outputs, or global
explanations can be generated for the query, with using the retrieval results as LLM contexts.

The nodes form a topological map (blue nodes in Fig. 1), eliminating the need for specific control86

parameters like velocity and yaw, which often vary across different drive systems. This abstraction87

enables compatibility with any local planner, regardless of the robot’s embodiment. Furthermore,88

the topological structure is far more memory-efficient than traditional metric maps [Chaplot et al.,89

2020, Min et al., 2021, Shafiullah et al., 2022], allowing for efficient scaling in both large outdoor90

and complex indoor environments. Our experiments show that this approach successfully navigates91

kilometer-scale simulated environments.92

Semantic Forest We use a separate tree structure, referred to as a semantic forest, to capture meaning93

at various spatial resolutions. The nodes of this forest are those of the topological map, with the94

non-leaf nodes capturing larger spaces at a thinner density of semantic specificity. First, we create95

the forest through hierarchical clustering. Since spatially approximate leaf nodes exhibit semantic96

correlations, we employ an agglomerative clustering mechanism [Sneath and Sokal, 1973] to group97

nodes based on their physical positions assigning the mean position of the leaves.98

This iterative process continues until a root node is formed, stopping when no further relevance is99

found based on a threshold set by the algorithm. Once we have a complete forest with one or more100

root nodes, each non-leaf node receives a language description. We achieve this by prompting a large101

language model (LLM, e.g., GPT-4) to generate a abstraction that encompasses the descriptions of its102

direct child nodes (see website for the prompting). This process is conducted bottom-up, starting103

from the leaf nodes and moving up to the parent nodes. We parallelized this process across all nodes104

at the same hierarchy.105

3.2 Retrieval106

We run the following process, which takes a single tree as input and outputs a single leaf node.107

Starting by visiting the root node, we run BFS with LLM selection; we ask LLM_Selector to choose108

the best child node of the currently visited node based on compatibility with the given query. For109

example, if the query is “find me a place that is bright and quiet but has some presence of people,”110

we prompt the LLM to select the best description among the children of the currently visited node.111

We then visit the selected best child node and iterate this process until we reach a leaf node. Once112

we obtain k leaf nodes ( k
N nodes from each tree) by running this process k

N times for each of the N113

trees, we obtain the “chain” from the selected node to the root node. The k
N processes are parallelized114

across the N trees. The set of these best k chains is the retrieval output, containing semantics at115

all scales for any specific location that corresponds to the leaf scale. Embodied-RAG unifies the116

retrieval process to handle explicit, implicit, and global queries, producing both explanations and117

navigational actions as outputs. Note, these hierarchies and corresponding trees allow for querying118

automatically created semantic regions, something particularly useful for outdoor navigation where119

walls and structures cannot be used to determine function.120
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3.3 Generation121

We pass the retrieved k best chains as part of a context, for the LLM to generate navigation and text122

description (Fig. 2 top) or global explanations (Fig. 2 bottom). Given the query and the k chains,123

we prompt the LLM to “select” a waypoint with a reasoning, or to “explain” (prompt in our project124

website).125

Navigation We select a waypoint (a leaf node of the semantic forest) and use a planner to generate126

navigational actions—sequences of (torque, velocity) pairs— to reach the waypoint. To select this127

waypoint, we ask the LLM to choose the best single leaf node, togehter with textual reasoning, using128

the query and the chain as input. Again, including the entire chain as input ensures that a waypoint129

can be generated for implicit navigation tasks as well.130

Text Answers As depicted in Figure 1 (c), we concatenate the k chains as part of the prompt to the131

LLM. We ask it to generate an answer to the query based on the k retrieved chains. The spatial scale132

of attention in each node of the chain facilitate the LLM to generate responses at any semantic scale133

(explicit, implicit, general) based on the retrieved result.134

4 Results135

Table 1: Comparison of Methods on different Embodied-RAG Benchmarks.

Env.
Explicit Implicit Global

Embodied-RAG RAG Sem. Embodied-RAG RAG Sem. Embodied-RAG RAG Sem.

Small 0.955 0.955 0.955 1.000 0.818 0.364 4.88 3.67 -
Large 0.977 0.947 0.895 0.914 0.695 0.426 4.86 2.43 -

Total 0.969 0.949 0.877 0.926 0.706 0.410 4.87 2.68 -

We present quantitative results in Table 1, demonstrating the effectiveness of Embodied-RAG across136

explicit, implicit, and global retrieval tasks. We also classify environments as small or large based137

on the number of mapped nodes. Embodied-RAG consistently outperforms RAG and Semantic138

Match across all tasks and environments. While all methods perform well on explicit queries,139

Embodied-RAG provides a slight advantage due to its hierarchical structure. For implicit queries,140

RAG and Semantic Match performance drops significantly, especially in large environments, while141

Embodied-RAG remains robust. On global questions, Embodied-RAG excels, while Semantic Match,142

lacking summarization and reasoning, cannot be applied.143

We conducted a qualitative comparison between Embodied-RAG and baseline models.144

Implicit Query: Where can I buy drinks? Embodied-RAG correctly identifies a food service area,145

while the baselines return irrelevant answers like a refrigerator or water fountain. These results reflect146

a mismatch between the user’s intent (to buy) and the retrieved objects. Embodied-RAG performs147

multi-step reasoning and retrieves more suitable locations, such as counters or vending machines,148

matching the user’s intent.149

Global Query: As illustrated in Figure 2, Embodied-RAG accurately describes the environment as150

a suburban neighborhood with a park, using its hierarchical structure to provide a cohesive view.151

In contrast, RAG retrieves isolated nodes, resulting in a fragmented and redundant interpretation.152

Embodied-RAG integrates elements like trees and shrubs into the broader park context, offering a153

more human-like understanding.154

5 Conclusion155

We present Embodied-RAG, a system that captures spatial memory at any resolution and generates156

responses for both navigation and explanation requests. We also introduce the Embodied-RAG157

benchmark, unifying semantic navigation and question answering. Our results show that Embodied-158

RAG handles implicit and global queries, as well as ambiguous human requests, demonstrating its159

potential for integrating large non-parametric memories into robotics models. We look forward to160

future extensions involving manipulation and dynamic environments, enabling robotics tasks beyond161

current memory-constrained methods.162
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Figure 2: Example reasoning of Embodied-RAG and RAG for generation tasks are highlighted in
blue and pink boxes, respectively.

A Computational Efficiency189

Both memory construction and retrieval have a computational complexity of O(logN), where N190

represents the number of nodes in the environment. This choice allows us to efficiently scale to191

larger environments, as the time complexity only increases logarithmically with the number of nodes.192

Additionally, when performing the k retrievals, we execute them in parallel to minimize the overall193

time cost. In our real-life experiments, the time costs are demonstrated in the supplementary video,194

which is 8x fast-forwarded. On average, a single retrieval takes around 20 seconds in most of our195

environments, and the travel time depends on the speed of the specific embodiment in use.196

B Ablation197

We investigate the impact of k ∈ {1,GPT4 Token Limit} on Embodied-RAG and RAG in Figure198

3. A total of 15 experiments were conducted for each k in each environment. We observe that with199

larger k, both RAG and Embodied-RAG show improved performance, but this improvement plateaus200

at higher values. RAG still fails to capture the larger holistic resolution with just more object-level201

nodes and cannot adequately solve the implicit/general queries, further justifying our hierarchy and202

tree selection approach.203
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Figure 3: Effect of total number of K searches or K retrievals

C Limitations and Future work204

We primarily focused on semantic forests rather than a topological map. Therefore, we may not be205

robust in obstacle avoidance involving dynamic objects and people. Furthermore, Embodied-RAG206

currently struggles with requests that require precise counting of objects at a small scale (e.g., “How207

many chairs are there around the red table?”). This limitation arises because the agglomerative208

clustering of the semantic forest does not consider multi-view consistency. Future work could209

incorporate multi-view consistency in the hierarchies of the semantic forest with a learned or pre-210

trained mechanism to cluster with positional information (e.g. utilizing a LLM).211
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