IR-OptSet: An Optimization-Sensitive Dataset for
Advancing LLM-Based IR Optimizer

Zi Yang?} Lei Qiu'?; Fang Lyu'] Ming Zhong', Zhilei Chai’
Haojie Zhou?, Huimin Cui'] Xiaobing Feng!~

L' SKLP, ICT, CAS, China 2 Jiangnan University, China 3 UCAS, China

{flv, cuihm} @ict.ac.cn

Abstract

Compiler optimization is essential for improving program performance, yet modern
compilers still depend on manually crafted transformation rules over intermediate
representations (IRs). As compilers grow in complexity, maintaining these rule-
based optimizations becomes increasingly labor-intensive and difficult to scale.
Recent advances in large language models (LLMs) offer a promising alternative,
but their effectiveness in compiler optimization remains limited — primarily due
to the lack of IR-oriented datasets that expose models to diverse transformation
samples in real-world scenarios (optimization-sensitive samples), hindering LLMs
from learning rich and generalizable optimization strategies.

In this paper, we introduce IR-OptSet, the first public optimization-sensitive dataset
for advancing LLM-based IR optimizers. It comprises 170K LLVM IR samples
from open-source repositories across 8 representative optimization domains. IR-
OptSet defines two core tasks: Code Analysis and Optimized Code Generation,
and provides tools for correctness verification, performance evaluation, and dataset
expansion. In our experiments, fine-tuning three representative LLMs on IR-
OptSet leads to significant accuracy improvements across both tasks. Moreover,
the LLM fine-tuned with IR-OptSet outperforms traditional compiler with the -03
option in 64 test cases in terms of performance. Further analysis reveals that IR-
OptSet provides greater transformation diversity and representativeness than three
widely used IR-oriented datasets, highlighting its potential to drive model-based
IR optimization. IR-OptSet is publicly available at https://huggingface.co/
datasets/YangziResearch/IR-0OptSet.

1 Introduction

The rapid advancement of large language models (LLMs) is reshaping software engineering tools [47,
48,149, 154]], driving progress in tasks ranging from code completion [76} 41} 22| 68] to automated
program repair [67, 69, 27]. In the domain of compilers, which is one of the most fundamental
components in modern computing systems, LLMs have demonstrated promise in enhancing compiler
development [[74 [73]] and testing efficiency [20, |65]. However, one of the compiler’s most critical
tasks — optimizing code for runtime performance — remains largely reliant on manually crafted, rule-
based transformations over intermediate representations (IRs) such as LLVM IR [36]. As compilers
grow in complexity, these hand-written rules increasingly struggle with adaptability and scalability,
highlighting the need for more flexible, learning-based approaches.

*Equal Contribution.
fCorresponding Authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

https://huggingface.co/datasets/YangziResearch/IR-OptSet
https://huggingface.co/datasets/YangziResearch/IR-OptSet

Source Code 6 . Loop VectorizegPass
(C/C++, Fortran ...) / Analysis Pass 0 SLPVCCtoriZSCBI;ay/ 6651
Input / (Number: 60) 34 :
[FrontEnd PR —— = g
) / i LLVMIR i 2 | Average 0.86
[MiddleEnd | | [S--mmomee o i b G T |
¥ \ - _ _ 167 Total
[BackEnd I\ Transform Pass (b) Lines of code in transform passes.
Output (Number: 167)
‘(ﬁachune Cod{ﬁ‘ TEixipIicit Dependency 800 SLPVectorizerPﬁg LoopVectori’z\ePass
— Update analysis result: 130 F 2001 716
29 . Pprovide analysis result: 496 5400
CPU pMICIO5, GPU -Implicit Dependency 2 L Averagettt ULl 'L'T‘H"F"ﬁ
-- Influence another module o Lo Ninl, el o [l T8 Lilaw,
(a) LLVM compiler architecture. Analysis and transform 167 Total

passes operate on LLVM IR to perform optimization. (c) Number of conditions in transform passes.
Figure 1: Heavy manual efforts in adapting optimization modules in LLVM 19.1.0, the latest released
version by the time this work was conducted.

[Fig. T[a) - (c) illustrates the challenges posed by rule-based compiler optimization. Modern compilers
such as LLVM [36] apply a long sequence of optimization steps to improve the performance of IR
code. At each step, the compiler applies two types of passes (a modular unit for optimization) [38]],
i.e., the analysis passes and transformation passes to optimize the IR performance. The analysis
passes extract optimization-related information from the IR to guide the subsequent transformation
pass. For instance, LLVM comprises over 60 analysis passes and 167 transformation passes, many
of which exhibit intricate explicit and implicit dependencies (Fig. If(a)). Each pass encapsulates
highly specialized optimization logic; for example, SLPVectorizerPass, a key loop optimization
transform, spans more than 15,000 lines of code @b)) and contains over 2,000 conditional
branches (Fig. T|c)). This level of complexity underscores the significant manual effort required to
design and maintain these optimization rules.

Recent studies have investigated LLM-based IR optimizers by formulating the task as a generation
problem — from unoptimized IR to optimized IR [14} [13]. Correspondingly, several IR-oriented
datasets [52| [19] [10l |56 [14]] have been proposed to support this emerging direction. While they
show early promise in utilizing LLMs to automate IR-level optimizations, they remain fundamentally
limited by a lack of samples that reflect how compilers apply optimizations across diverse program
structures — that is, these datasets lack optimization-sensitive samples whose IR trigger representative
and varied transformations in real-world optimization scenarios. As a result, LLMs trained on these
datasets struggle to generalize to varying programs and fail to capture the intricate optimization logic
that human experts encode into compilers. Our experiments in [Sec. 4.2] and [Sec. 4.4] empirically
validate this limitation and highlight the ample room for improvement.

To bridge this gap, we introduce IR-OptSet, the first public dataset comprising a large number of
optimization-sensitive samples, designed to enhance LLM-based IR optimizer in comprehending
and performing IR-level optimizations. We focus on LLVM IR due to its widespread use [2} 126} 28],
as well as its well-defined, human-readable syntax and semantics [36]], which make it suitable for
language modeling. IR-OptSet comprises 170,564 LLVM IR, sourced from 1,704 open-source
GitHub repositories across 8 key compiler optimization target domains. Each domain contains
programs tailored to trigger different types of optimization effects, with each program exhibiting an
average of 22.89 effective optimization steps. The dataset defines two core tasks aligned with the
compiler optimization pipeline: (1) Code Analysis and (2) Optimized Code Generation. To support
robust evaluation and future extensibility, IR-OptSet provides three tools: a verification module for
validating the correctness of LLM-generated IR without execution, a static performance evaluation
tool, and a modular toolchain for scalable dataset expansion.

In the experiment, we selected one representative LLM-based IR optimizer [[14] and two general-
purpose code LLMs [41} 25] and fine-tuned them using IR-OptSet. Results indicate that IR-OptSet
effectively improves the accuracy of all three models across two tasks. Further evaluation using the
top-performing model (LLM Compiler) shows that IR-OptSet offers greater transformation diversity
and representativeness compared to three widely used IR-oriented datasets [52, (19} 9]]. Notably, in 64
cases, the model fine-tuned on IR-OptSet generates optimizations that outperform those produced by
LLVM -03, advancing the potential for model-driven IR optimization approaches.

— Source code

;— IR-level Optimization Process - ————————————

int A[4], B[4]; - ——)
int foo(){ Compiler || SROA | EarlyCSE LICM SLPVectorizer,| | Optimization I o 2_ | Compiler) o
for(int 1=0; icd; i++) «r x J e - LS S 15| Binary
A[i] += Ble]; Frontend | Step #1 Step #2 Step #36 Step #88 Step#N || 22 Backend 2
_________________________ 2
" |R before LICM __ Loop Invariant Code Motion (LICM)
define i32 @foo(){
Ba;r label %B1 Am@snls — 0 — Trumff) —
B1: provide optimization-relevant knowledge apply rewriting rules
o LS 4 L ez] Loop Detection define 132 @foo(){ o
br i1 %0, label %82, label %83 g ¥ Loop (depth=1) containing: Be;ub - load ptr getelementptr (ptr @8, i64 ©) =1
82;b Load § e @ , = B0+ B1-+ B2 B3 Loop Header/Exiting: %B1 br label %81 g
%b = load ptr getelementptr (ptr @B, i64 @ . g N
b e m t 5 -0 Bl:
%1 = zext nneg i32 %i to i64 ||’ Loop Lat.ch B2 %i = phi i32 [@, %88 1, [%i.next, %B2] Il’
2a-pt; :dgetel;mentptr ptr @A, 164 %1 Memory Analysis %0 = icmp ult i32 %i, 4
a = load ptr %a.ptr ;
a o Collect all operands of %b br i1 %@, label %B2, label %B3
%res = add nsw i32 %a, %b p . | q ant B2: ,Hosl lhcmva’rlamcodc%b outside the loop
;Fore 132 %;:s, ptr %azggr% . getelementptr (ptr @B, i64 @) -> loop Invarian ;%b = load ptr getelementptr (ptr @B, i64 @)
i.next = add nuw nsw i32 %i, i . o _ S
br 1obel %81 o The loop doesn't contain any code modifying B[0] %1 = zs:zhg:“ggd;ﬂ *1 to i64
B3: Conclusion: %b is loop invariant code }
ret i32 -1
}

Figure 2: IR-level optimization process in LLVM 19.1.0.

2 Background: IR-level Optimization Process

IR-level optimization is a fundamental phase in modern compilers, aimed at improving program
performance while preserving semantic correctness. As discussed in[Sec. T} compilers like LLVM
implement this process as a sequence of optimization steps, each consisting of two essential passes:
the analysis pass and the transform pass [38].

Analysis Pass. This pass provides compiler-specific optimization knowledge, capturing how the
compiler comprehends the program based on its IR. For instance, in the Loop Invariant Code Motion
(LICM) optimization step, as illustrated in[Fig. 2] the compiler first performs loop detection to identify
loop structures in the IR. It then conducts memory analysis to determine which computations, such as
%b, remain invariant across loop iterations. The information obtained during analysis directly informs
the transform pass by identifying which IR rewrite rules are applicable.

Transform Pass. In the transform pass, the compiler performs the rewrite rules guided by the
preceding analysis to modify the IR. In the case of LICM of %b is hoisted outside the loop, as
determined by the analysis. If no valid rewrite pattern is identified, the IR remains unchanged.

In this paper, we define Effective Optimization Step as an optimization step that transforms the IR,
such as LICM. The number of effective optimization steps quantifies how much and in what way
the IR is transformed through optimization. Such transformations are inherently input-dependent,
varying significantly with the characteristics of the input program [63]]. This variability poses a major
challenge for traditional rule-based compiler design. Even minor IR modifications, such as inserting
a benign function call into a loop body in can hinder handcrafted rules from identifying
optimization opportunities, such as recognizing %b as loop-invariant. These missed transformations
can further affect downstream steps; for example, they may influence SLPVectorizer in detecting
vectorizable patterns as a result. As depicted in[Fig. T| adapting to such subtle variations is highly
labor-intensive: the SLPVectorizerPass alone contains over 15,000 lines of code and more than
2,000 conditional branches to handle diverse cases.

Recent work has explored leveraging LLMs for IR-level optimization inspired by their potential
in adapting to IR variations that often challenge rule-based systems [[14} 52, 55]. However, these
approaches are still constrained by the lack of programs whose IR undergoes diverse transformations
during optimization. To address this challenge, we propose IR-OptSet, an optimization-sensitive
dataset designed to expose models to diverse and representative transformations. IR-OptSet supports
fine-tuning LLMs for IR-level optimization, reducing reliance on handcrafted rules and enabling
more adaptive, data-driven optimization strategies.

3 IR-OptSet: A Dataset for IR-Level Compiler Optimization

3.1 Overview of IR-OptSet

To our best knowledge, IR-OptSet is the first public dataset specifically designed for optimization-
sensitive IR-level optimization. Notably, it comprises three key features as outlined below:

Table 1: Composition of source programs and optimization behavior diversity in IR-OptSet.

Domain Types of Opt. #Repos #LLVMIR Avg. Eff. Opt. Steps

High-Performance Vectorization, parallelism, and
Computing (HPC) memory locality optimizations. 275 17,145 23.28

Vectorization, parallelism, and

Machine Learning specialized instruction set uti- 95 9,366 26.64
lization (e.g., SIMD).

Multimedia dectorization and foop optimiza- 17, 15,019 22.55
Code size reduction, power ef-

Embedded Systems ficiency, and performance opti- 108 5,942 21.79
mization.
Control flow efficiency, compu-

System Software tation, and memory access opti- 93 6,581 20.77
mization.
Careful register use and avoid-

Security ance of side-channel vulnerabil- 94 9,252 19.92
ities during optimization.

Reusable Libraries LM1ining and target-specific opti- ¢ 7,664 20.51
mization.

Algorithms Computation and memory opfi- 59 99,595 27.66
mizations.

Total - 1,704 170,564 Avg. 22.89

(1) Optimization-Sensitive. IR-OptSet captures rich and diverse transformations by focusing on

(@)

3)

real-world programs that are sensitive to various types of compiler optimizations, ensuring
broad coverage and representativeness. It is sourced from 1,704 GitHub repositories spanning
8 domains, as summarized in These domains — encompassing representative compiler
optimization target programs such as high-performance computing, machine learning, and
multimedia — exhibit diverse program-level characteristics that result in rich transformations. In
total, IR-OptSet includes 170,564 LLVM IR files, with each program exhibiting an average of
22.89 effective optimization steps. This transformation diversity enables models to learn when
and where specific optimizations are applied, advancing research in LLM-based IR optimizer.

Task-Oriented. IR-OptSet aligns with the analysis and transform passes of the traditional IR-level
optimization process through two tasks: 1) Code Analysis; 2) Optimized Code Generation, aiming
to improve LLMSs’ capabilities in both comprehending and performing IR-level optimizations. To
ensure reliability and enable performance assessment, IR-OptSet includes two tools: a verification
tool for validating the correctness of model-generated IR, and a static analysis tool for estimating
target-specific performance. Together, these tools make IR-OptSet a practical foundation for
building and evaluating model-based IR optimization approaches.

Extensible. IR-OptSet provides a tool that facilitates dataset expansion and enables exploration
of optimization strategies beyond traditional compilers. Users can generate new IR variants by
incorporating additional compilers (e.g., AOCC [2]], ICX [26]), targeting diverse machines, or
applying custom optimization sequences from autotuning and search-based methods [46) 12} 45|
51,132, 18]]. This extensibility enables LLMs to learn more advanced transformations, with the
potential to surpass the performance of conventional compiler heuristics.

3.2 Data Collection and Pre-processing

The collection and pre-processing of data in IR-OptSet adhere to the following steps:

1.

Code Collection. We crawled GitHub using the keywords detailed in to collect
repositories across 8 representative compiler optimization target domains. Repositories that were
incomplete or non-compilable were filtered out. The remaining 1,704 repositories were aggregated
to create the raw code data.

LLVM IR Extraction. We extracted LLVM IR immediately after the raw code being processed
by the LLVM 19.1.0 frontend, before any optimization passes are applied. By preserving the
unoptimized IR, we retain its full potential for analysis and optimization. Following the approach

Input Task Ground Truth

[1] %B0
Dominator Tree | [2] %B1

BO: Code Analysis Construction I[g) | %B%y BO
store 132 0, ptr %0 L(())(());)S.at gepth T containing:
gli f/OB ! Loop Detection %B 1<header><latch><exiting>
%1 =load i32, ptr %0
%2 = add i32 %1, 1 ; MemoryUse(3)
store 132 %2, ptr %0 M A %1 =load i32, ptr %0
%3 = iemp st 32 %2, 10 Analysis | %2=add 32 %1, 1
br il %3, %B1, %B2 ; 2 = MemoryDef{(3)
B2: store 132 %2, ptr %0
ret void

BO:

Optimized Code Generation store i32 10, ptr %0
ret void

Figure 3: Examples of two tasks in IR-OptSet.

used in LLM Compiler [14, [13], we used 11lvm-extract [34] to split the original IR into
new LLVM IR files where each contains a single function. To reduce redundancy, we applied
StructuralHash [35], a structural hashing technique that computes hashes based solely on the
IR’s control and data flow structures. This ensures robustness to superficial variations, such as
local variable renaming, while preserving semantically relevant features.

3. IR Normalization. To further eliminate irrelevant variation and emphasize the semantically
meaningful components of LLVM IR, all IR files in IR-OptSet are normalized. This process
standardized the naming of basic blocks, local variables, and struct identifiers, and removed
comments, empty lines, and extraneous whitespace via an automated script. The normalized
IR preserves the original semantics and remains compatible with LLVM 19.1.0, enabling future
dataset extension.

4. Optimization Annotation. Each IR file in IR-OptSet is annotated with its corresponding effective
optimization steps. These annotations capture the IR’s sensitivity to different optimization steps.
Specifically, we apply the widely adopted -03 optimization sequence [39] as a proxy for real-world
compiler strategies, and use LLVM’s -print-changed flag to identify and record the transform
passes that modify the IR. To ensure relevance, we filter out IR files where fewer than 8% of the
executed passes result in transformations, treating them as optimization-insensitive. This filtering
criterion distinguishes IR-OptSet from prior IR datasets and ensures a focus on transformation-rich
samples. The final dataset contains 170,564 LLVM IR files.

3.3 Tasks in IR-OptSet

Following the IR-level optimization workflow in compilers, we define two tasks: Code Analysis and
Optimized Code Generation, as illustrated in Code Analysis enables models to comprehend
IR from an optimization perspective, aiming to extract optimization-relevant knowledge from unopti-
mized IR to guide transformation decisions. Optimized Code Generation, on the other hand, requires
models to directly generate optimized IR from a given unoptimized IR. Data processing steps for
each task are detailed in subsequent subsections.

IR-OptSet is designed to enhance language models’ ability to interpret and apply IR-level optimiza-
tions through fine-tuning, enabling them to perform semantically correct transformations — that is, to
generate optimized IR that preserves the functional equivalence (i.e., correctness) of the original IR
across all valid inputs. We emphasize functional equivalence because it serves as the cornerstone of
reliable LLM-based IR optimizer. Building on this principle, IR-OptSet provides foundational infras-
tructure to support future advances in LLM-driven compilation. It enables a shift from handcrafted
rewriting rules to more adaptive, data-driven optimization strategies, paving the way for language
models to eventually surpass traditional compilers in optimization performance.

3.3.1 Code Analysis

To capture both control-flow and data-flow aspects [44] of optimization-relevant analysis, we select
three representative sub-tasks under Code Analysis: Dominator Tree Construction, Loop Detection,

and Memory Access Analysis. These sub-tasks align with widely adopted analysis passes in LLVM
19.1.0 — DominatorTreeAnalysis, LoopAnalysis, and MemorySSAAnalysis [35]. Each pass
generates its analysis results through LLVM'’s official API in a human-readable textual format, making
them well-suited for training and evaluating language models.

Dominator Tree Construction. As a fundamental control-flow analysis, dominator tree construction
identifies dominance relationships among basic blocks (i.e., straight-line code sequences with a single
entry and exit) within a function. Specifically, a block B; is said to dominate B; if every execution
path from the function’s entry to B; passes through B;[44]. Given the normalized LLVM IR of a
function, the model predicts the dominator tree by assigning a hierarchy level to each basic block, as
illustrated in[Fig. 3] The ground truth is obtained from LLVM’s 11vm: : DominatorTree: :print
API, which implicitly encodes dominance relationships—for example, %BO dominates both %B1 and
%B2, and %B1 dominates %B2.

Loop Detection. As another key control-flow analysis, loop detection identifies loop structures
based on the dominator tree information [44]. Given the normalized LLVM IR of a function, the
model predicts the role of each basic block within the loop structure, as shown in The ground
truth, obtained via the 11vm: :LoopInfo: :print API, specifies that the input function contains a
single-level loop composed of %B1, which serves as the loop header, latch, and exiting block.

Memory Access Analysis. This subtask requires the model to predict memory access relationships
using the MemorySSA form provided by 11vm: :MemorySSA: :print API, as shown in
Although this subtask belongs to data-flow analysis, it fundamentally relies on control-flow analysis
to determine where memory definitions and uses occur and how they propagate across different
execution paths [44]. This joint reasoning over control- and data-flow makes the subtask considerably
more challenging than tasks based purely on control-flow analysis.

3.3.2 Optimized Code Generation

Optimized Code Generation enhances the model’s ability to perform IR-level optimizations by tasking
it with generating optimized IR from the unoptimized IR, as shown in Ground truth labels
are generated using LLVM’s -03 optimization option, which reflects a wide range of representative
compiler optimization strategies. To ensure consistency and reduce variability across the training
data, the resulting optimized IR is further normalized using the procedure outlined in

3.4 Toolchain

To support correctness verification, performance evaluation, and dataset extensibility in IR-OptSet,
we integrate three complementary tools into IR-OptSet.

Correctness Verification. To ensure the correctness of model-generated IR without requiring
execution, we adopt a two-stage verification process. First, the LLVM function-level verifier [33] is
invoked to ensure that the generated IR conforms to LLVM’s structural and syntactic rules. Then, to
verify functional equivalence, the IR is passed through Alive2 [40], a widely used formal verification
tool that verifies functional equivalence between the original and optimized IR. Since Alive2 applies
strict formal verification and may timeout on complex IR, we consider a model-generated IR correct
if it exactly matches the ground-truth optimized IR or successfully passes both verification stages.

Performance Evaluation. To assess the effectiveness of correctness-verified IR, we perform perfor-
mance analysis on the target machine. Specifically, we first use the 11c tool in LLVM to compile
the IR into machine-specific assembly code. We then employ 11vm-mca [34], LLVM’s static perfor-
mance analysis tool, to estimate the execution performance of the generated assembly on the target
machines. Optimization effectiveness is quantified by comparing the predicted performance of the
optimized IR to the unoptimized version, where greater value indicates more effective optimization.

Extension. While IR-OptSet focuses on enhancing models to comprehend and perform correct
IR-level optimizations, its extensible toolchain also facilitates exploration of advanced optimization
strategies that surpass those of traditional compilers. Users can apply external autotuning methods [34]]
to discover high-performance sequences and easily integrate new IR variants for continuous dataset
expansion and iterative improvement of LLM-based optimizers. Additionally, the toolchain supports
generating IR variants across different compilers and target machines, enabling further enhancement
of LLM-based optimizers through cross-compiler and cross-machine generalization.

Table 2: Comparison of accuracy across two tasks of three LLMs fine-tuned by IR-OptSet. "Code
Anal." refers to Code Analysis, while "Opt. Code Gen." refers to Optimized Code Generation.

Code Anal. Opt. Code Gen. Code Anal. Opt. Code Gen.
EM(%) BLEU EM(%) BLEU Corr.(%) | EM(%) BLEU EM(%) BLEU Corr.(%)
Without Fine-Tuning Fine-Tuned

LLM Compiler 0.00 0.07 0.00 0.38 6.00 3852 096 52.00 0.95 84.40
StarCoder2 0.00 0.03 0.00 0.08 3.80 4810 0.85 480 070 57.40
Qwen2.5-Coder 0.00 0.01 000 022 1220 | 1198 091 220 0.79 43.60

$Q 5.0 g :

o Worse i Equal ; Better

B2 25 |=——"(51) 9 (307) ® (64) —

2~ : :

© = 0.0 : ;

IR Samples (422)

Figure 4: Optimization effectiveness comparison: LLM Compiler FTD IR-OptSet vs. LLVM -O3.
4 Experiment

This section addresses the following research questions (RQs):

* RQ.1: Can IR-OptSet help LLMs better comprehend and perform IR-level optimizations, even
when trained on a small-scale subset of IR-OptSet?

* RQ.2: Can IR-OptSet enable LLMs to generate optimizations that have the potential to surpass
traditional compiler-generated results in terms of performance in real-world scenarios?

* RQ.3: Can IR-OptSet provide a more diverse and representative set of transformations compared
to existing datasets? (Sec. 4.4)

4.1 Experimental Setup

Fundamental Models. We selected three LLMs for evaluation: 1) LLM Compiler FTD 7B [14],
2) StarCoder2-3B [41]], and 3) Qwen2.5-Coder-1.5B [25]. LLM Compiler FTD 7B is specifically
designed for IR-level optimization and serves as a dedicated LLM-based IR optimizer. In contrast,
StarCoder2-3B and Qwen2.5-Coder-1.5B are general-purpose code LLMs not explicitly trained for
IR optimization. We include them to demonstrate that IR-OptSet supports generalization across
different LLM scales and architectures. By fine-tuning these LLMs with IR-OptSet, we show that
both dedicated and general-purpose code LLMs can acquire enhanced capabilities to understand and
perform IR-level optimizations. All fine-tuned models and code are available at https://github.
com/yilingqinghan/IR-0OptSet,

Evaluation Metrics. To evaluate the inference capability of models fine-tuned with IR-OptSet, we
adopt standard alignment metrics for Code Analysis, including Exact Match Accuracy (EM) and
BLEU [50]. For Optimized Code Generation, we use EM and BLEU to assess textual similarity,
and additionally introduce two complementary metrics: Correctness (Corr.) and Optimization
Effectiveness (Opt. Eff.). These metrics capture both the accuracy and performance of the generated
IR. Higher values across all metrics indicate better results. Detailed definitions of evaluation metrics

are provided in

Training Settings. All models are fine-tuned and evaluated on a server equipped with a 40-core Intel
Xeon Gold 6248 CPU and 2 NVIDIA A100 GPUs (80GB memory each). The fine-tuning objective
is sequence-to-sequence prediction, covering both Code Analysis and Optimized Code Generation in
IR-OptSet. All models leverage Low-Rank Adaptation (LoRA) [24]] for fine-tuning. We configure the
LoRA modules with lora_r=32, lora_alpha=16, and lora_dropout=0.05. Target layers are set
to {q_proj, k_proj, v_proj, o_proj} for LLM Compiler and StarCoder2, and {qkv_proj,
o_proj} for Qwen2.5-Coder. All models use a batch size of 2 and a learning rate of 1 x 10~%.

4.2 Accuracy Improvement across Various LLMs

To assess the impact of IR-OptSet, we randomly selected a 6,000-sample subset from IR-OptSet,
split into 5,000 for training, 500 for validation, and 500 for testing. Detailed statistics are provided in

https://github.com/yilingqinghan/IR-OptSet
https://github.com/yilingqinghan/IR-OptSet

§ IR-OptSet B 40k
s SLTrans ||

< ProGraML

= ComPile (]

Top 30 Optimization Steps
Figure 5: Heatmap analysis of the top 30 most commonly used optimization steps in LLVM 19.1.0
across four datasets. Color intensity represents the frequency of effectiveness.

Table 3: Accuracy of LLM Compiler fine-tuned by IR-OptSet, SLTrans, ProGraML and Compiler for
Code Analysis and Optimized Code Generation tasks.

Code Anal. Ont. Code Gen
LLM Compiler Dom. Tree Const. Loop Dete. Mem. Anal. pt.)
EM(%) BLEU EM(%) BLEU EM(%) BLEU |EM(%) BLEU Corr.(%)
FTD IR-OptSet 90.60 0.99 81.60 094 5400 092 | 4540 086 81.00
FTD SLTrans 78.00 0.95 73.00 092 2260 038 | 4060 086 7540
FTD ProGraML ~ 78.2 0.98 63.80 098 3380 0.89 | 27.00 0.66 70.60
FTD ComPile 73.6 0.94 62.00 089 3840 0.87 | 4340 085 76.60

Appendix F| [Table 2| reports accuracy improvements across the two tasks for three LLMs fine-tuned
on this subset. Despite the small training size, all models exhibited notable performance gains. The
LLM Compiler, although designed for IR optimization, initially performed poorly on Optimized
Code Generation due to limited exposure to diverse and representative transformations. After fine-
tuning with IR-OptSet, it showed substantial improvements in both Code Analysis (EM: +38.52%,
BLEU: +0.89) and Optimized Code Generation (EM: +52.00%, BLEU: +0.57, Corr: +78.40%).
Even not tailored for IR tasks, StarCoder2 and Qwen2.5-Coder also benefited significantly. Notably,
StarCoder2 achieved the highest EM score on Code Analysis, demonstrating the effectiveness of
IR-OptSet in equipping general-purpose code models with IR-level optimization capabilities.

Answer to RQ.1: IR-OptSet can help LLMs better comprehend and perform IR-level optimiza-
tions, even when trained on a small-scale subset of IR-OptSet.

4.3 Improvement over Traditional Compiler

We selected the LLM Compiler fine-tuned with IR-OptSet (LLM Compiler FTD IR-OptSet) from
Sec. 4.2and evaluated its optimization effectiveness on 422 correctness-verified IR samples generated
in the Optimized Code Generation task. As a baseline, we compared its output to LLVM 19.0.1
with the -03 flag (LLVM -0O3), representing a widely used real-world optimization configuration.
Results are summarized in LLM Compiler FTD IR-OptSet achieved performance comparable
to LLVM -03 in 307 cases, and notably outperformed it in 64 instances. These results highlight the
potential of IR-OptSet to empower LLM-based optimizers to surpass traditional compiler pipelines.

A representative case study is shown in[Appendix G|

Answer to RQ.2: IR-OptSet can enable LLM to generate optimizations that have the potential to
surpass traditional compiler-generated results in terms of performance in real-world scenarios.

4.4 Diversity and Generalization in Transformations

We selected the LLM Compiler — due to its highest average accuracy on both tasks (Sec. 4.2) — to
evaluate IR-OptSet against three representative IR-oriented datasets: SLTrans [52]], ProGraML [9]],
and ComPile [19]]. To ensure fairness, the LLVM IR from all datasets was normalized using the

procedure outlined in

Diversity. We randomly sampled 10,000 IR examples from each dataset and conducted a static
analysis to assess the diversity of transformations. Specifically, we measured the effectiveness
frequency of the top 30 most commonly applied optimization steps in LLVM 19.1.0 across all
four datasets, as shown in Since a single optimization step may be applied multiple times
within the -03 sequence [29], the highest observed frequency reaches 40,552. [Fig. 5|reveals that IR-
OptSet consistently triggers the highest effectiveness frequency across nearly all top-30 optimization
steps, highlighting its broad transformation coverage and superior ability to capture diverse and
representative optimization behaviors.

Table 4: Comparison of IR-OptSet with existing IR datasets for compiler optimization. A dash (“-)
is used where data is not publicly available.

L . Avg. Eff.
Dataset Samples Source Repos Dataset Objective Toolchain Opt. Steps
Code Analysis, Opti- Correctness Verification, Perfor-
IR-OptSet 170K 1,704 mized Code Generation mance Evaluation, Extension 2550
SLTrans 69M - preural Code Transla-_ 21.92
ProGraML 469K - Code Analysis - 13.33
ComPile 1.9T - Code Analysis, Opti- pyiongion 10.60

mized Code Generation

Generalization. To evaluate the generalization across the four datasets, we fine-tuned the LLM
Compiler on 5,000 randomly sampled examples from each dataset. For testing, we randomly selected
125 samples from each dataset, forming a 500-sample test set (with no overlap between the training
and test sets). We then assessed the four fine-tuned models’ accuracy on Code Analysis and Optimized
Code Generation tasks. Detailed data and token statistics are provided in

shows that the LLM Compiler fine-tuned with IR-

OptSet outperforms other models across nearly all tasks. TR-OptSet
To further assess generalization, we measured correctness 86.40% %
on test samples from all four datasets, as illustrated in o°g;%
It shows that each fine-tuned model performs best . o, 2 R 21.20%
. .. ComPile Do SLTrans
on samples from its own training dataset (e.g., LLM Com- 3o 208 g
piler fine-tuned on ComPile achieves the highest accuracy h 67209
on ComPile samples). However, the LLM Compiler fine-
tuned on IR-OptSet consistently outperforms all other fine-
tuned models on datasets outside their own (e.g., LLM ProGraML
Compiler fine-tuned on IR-OptSet achieves the second- FTD ComPile FTD ProGraML
highest accuracy on ComPile samples), demonstrating that FTD SLTrans FTD IR-OptSet

IR-OptSet more effectively exposes the model to repre-
sentative and diverse transformations, leading to broader
generalization.

Figure 6: Generalization of 4 datasets.

Answer to RQ.3: IR-OptSet can provide a more diverse and representative set of transforma-
tions compared to existing datasets.

5 Related Work

Datasets for Compiler Optimization. The rise of machine learning in compiler research has
underscored the importance of high-quality datasets. IR-oriented datasets [52, 19/ 10} 56} [14], earlier
high-level language datasets [53| 41} 1423|116, and automatic dataset generation tools [33} 166, (6, [11]]
have advanced data-driven approaches to compiler optimization. compares IR-OptSet with
representative IR datasets across key dimensions, covering the number of samples, source repositories,
dataset objectives, provided toolchains, and the average effective optimization steps. Although IR-
OptSet contains fewer samples, it achieves a substantially higher average effective optimization
steps, indicating richer optimization behavior per sample and underscoring IR-OptSet’s value as an
optimization-sensitive dataset that fundamentally differs from existing datasets.

Large Language Models for Compilers. LLMs have made significant progress in code under-
standing and generation, especially in code-related research [31} 21} 162,30, 161} [1} 164} [70]. Several
multilingual models have included LLVM IR in their training data [41} [17, [76l [52]]. Approaches
like LLM Compiler [13} [14] have demonstrated the potential of IR-to-IR optimization. Prior
work [[74, [73} [75| [72], such as BePilot and VEGA, further enhances compiler backend develop-
ment efficiency to streamline the overall compiler design process.

Al for Compilation Optimization. Automatic tuning has been a key research direction in compiler
community [46, 1245151, [32} 8], aiming to automate the selection and sequencing of optimization
passes. Building on this foundation, recent deep learning frameworks [60} [15} 5] (7] 58| 4] have been
proposed to enhance compiler workflows. Machine learning has also advanced parallel workload

optimization, improving task scheduling, vectorization, and code generation [57, 71}, 43| 23]. Ad-
ditionally, the growing interest in learning representations of compiler IR [18} |59, [10] has driven
improvements in optimization prediction, code similarity, and performance modeling.

6 Discussion

Limitation. One limitation of IR-OptSet lies in the fact that IR code can exceed the token context
window of current LLMs. To address this, we split each LLVM IR file into shorter snippets, each
corresponding to a single IR function — a widely adopted strategy in existing IR datasets [14]. While
this approach restricts cross-function optimizations, the impact can be mitigated through Link Time
Optimization (LTO)[37]], which enables whole-program analysis at the linking stage.

Broader Impact. While IR-OptSet is primarily designed to help LLMs better comprehend and
perform IR-level optimizations, its influence potentially extends far beyond IR-level optimizations.
Prior work such as IRCoder [52] and TransCoder-IR [S5]] has demonstrated that incorporating IR
into training datasets can strengthen models’ robustness to prompts and improve their multilingual
code completion, code understanding, and instruction-following capabilities. Building upon these
insights, introducing IR-level optimization tasks in model training may not only advance optimization
performance but also foster more generalizable and resilient code understanding across a wide range
of programming scenarios.

Potential Societal Impact. IR-OptSet does not contain any personally identifiable information or
offensive content, thereby mitigating any potential negative societal impact.

Conclusion. In this paper, we present IR-OptSet, the first public optimization-sensitive dataset
for advancing LL.M-based IR optimizers. It contains 170,564 LLVM IR samples from 1,704 open-
source repositories across 8 optimization domains, with each program exhibiting an average of 22.89
effective optimization steps. IR-OptSet defines two core tasks — Code Analysis and Optimized Code
Generation— to enhance LLMs’ understanding and generation of IR-level optimizations. Experiments
show that IR-OptSet consistently boosts model accuracy and exposes more diverse, representative
transformations than existing datasets, enabling LLM-generated IR to outperform traditional compiler
outputs and supporting future progress in model-driven optimization.

Acknowledgement

We would like to thank all anonymous reviewers for their insightful feedback. This work was
supported by National Key R&D Program of China, Grant No.2024YFB4505701. This work was also
supported by the National Natural Science Foundation of China, Grant No.U23B2020, No. 62090024,
No. 62302479, No.62232015.

References

[1] Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Car-
los Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, et al.
Santacoder: don’t reach for the stars! arXiv preprint arXiv:2301.03988, 2023.

[2] AMD. Amd optimizing c¢/c++ and fortran compilers (aocc), 2024.

[3] Jordi Armengol-Estapé, Jackson Woodruff, Alexander Brauckmann, José Wesley de Souza
Magalhaes, and Michael FP O’Boyle. Exebench: an ml-scale dataset of executable c functions.
In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming,
pages 50-59, 2022.

[4] Amir H Ashouri, Mostafa Elhoushi, Yuzhe Hua, Xiang Wang, Muhammad Asif Manzoor, Bryan
Chan, and Yaoqing Gao. Mlgoperf: An ml guided inliner to optimize performance. arXiv
preprint arXiv:2207.08389, 2022.

[5] Amir H Ashouri, Muhammad Asif Manzoor, Duc Minh Vu, Raymond Zhang, Ziwen Wang,
Angel Zhang, Bryan Chan, Tomasz S Czajkowski, and Yaoqing Gao. Acpo: Ai-enabled
compiler-driven program optimization. arXiv preprint arXiv:2312.09982, 2023.

10

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Gergo Barany. Liveness-driven random program generation. In International Symposium on
Logic-Based Program Synthesis and Transformation, pages 112—127. Springer, 2017.

Alexander Brauckmann, Andrés Goens, and Jeronimo Castrillon. Polygym: Polyhedral opti-
mizations as an environment for reinforcement learning. In 2021 30th International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages 17-29. IEEE, 2021.

Alessio Colucci, David Juhasz, Martin Mosbeck, Alberto Marchisio, Semeen Rehman, Manfred
Kreutzer, Giinther Nadbath, Axel Jantsch, and Muhammad Shafique. Mlcomp: A methodology
for machine learning-based performance estimation and adaptive selection of pareto-optimal
compiler optimization sequences. In 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 108-113. IEEE, 2021.

Chris Cummins, Zacharias Fisches, Tal Ben-Nun, Torsten Hoefler, Michael O’Boyle, and
Hugh Leather. ProGraML: A Graph-based Program Representation for Data Flow Analysis
and Compiler Optimizations. In Thirty-eighth International Conference on Machine Learning
(ICML), 2021.

Chris Cummins, Zacharias V Fisches, Tal Ben-Nun, Torsten Hoefler, Michael FP O’Boyle, and
Hugh Leather. Programl: A graph-based program representation for data flow analysis and

compiler optimizations. In International Conference on Machine Learning, pages 2244-2253.
PMLR, 2021.

Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. Compiler fuzzing
through deep learning. In Proceedings of the 27th ACM SIGSOFT international symposium on
software testing and analysis, pages 95-105, 2018.

Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. End-to-end deep learning
of optimization heuristics. In 2017 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 219-232. IEEE, 2017.

Chris Cummins, Volker Seeker, Dejan Grubisic, Mostafa Elhoushi, Youwei Liang, Baptiste
Roziere, Jonas Gehring, Fabian Gloeckle, Kim Hazelwood, Gabriel Synnaeve, et al. Large
language models for compiler optimization. arXiv preprint arXiv:2309.07062, 2023.

Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziere, Jonas Gehring, Gabriel
Synnaeve, and Hugh Leather. Llm compiler: Foundation language models for compiler
optimization. In Proceedings of the 34th ACM SIGPLAN International Conference on Compiler
Construction, pages 141-153, 2025.

Chris Cummins, Bram Wasti, Jiadong Guo, Brandon Cui, Jason Ansel, Sahir Gomez, Somya
Jain, Jia Liu, Olivier Teytaud, Benoit Steiner, et al. Compilergym: Robust, performant compiler
optimization environments for ai research. In 2022 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), pages 92—-105. IEEE, 2022.

Anderson Faustino Da Silva, Bruno Conde Kind, José Wesley de Souza Magalhaes, Jeron-
imo Nunes Rocha, Breno Campos Ferreira Guimaraes, and Fernando Magno Quindo Pereira.
Anghabench: A suite with one million compilable ¢ benchmarks for code-size reduction. In
2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), pages
378-390. IEEE, 2021.

Guo Daya, Zhu Qihao, Yang Dejian, Xie Zhenda, Dong Kai, Zhang Wentao, Chen Guanting,
Bi Xiao, Y. Wu, Y.K. Li, Fuli Luo, Xiong Yingfei, and Liang Wenfeng. Deepseek-coder: When
the large language model meets programming — the rise of code intelligence, 2024.

Akash Dutta and Ali Jannesari. Mirencoder: Multi-modal ir-based pretrained embeddings for
performance optimizations. In Proceedings of the 2024 International Conference on Parallel
Architectures and Compilation Techniques, pages 156—-167, 2024.

Aiden Grossman, Ludger Paehler, Konstantinos Parasyris, Tal Ben-Nun, Jacob Hegna, William S
Moses, Jose M Monsalve Diaz, Mircea Trofin, and Johannes Doerfert. Compile: A large ir
dataset from production sources. Journal of Data-centric Machine Learning Research, 2024.

11

[20] Qiuhan Gu. Llm-based code generation method for golang compiler testing. In Proceedings
of the 31st ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2023, page 2201-2203, New York, NY, USA,
2023. Association for Computing Machinery.

[21] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified
cross-modal pre-training for code representation. In Proceedings of the 60th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), pages 7212-7225,
2022.

[22] Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. Longcoder: A long-range
pre-trained language model for code completion. In International Conference on Machine
Learning, pages 12098-12107. PMLR, 2023.

[23] Ameer Haj-Ali, Nesreen K Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and
Ion Stoica. Neurovectorizer: End-to-end vectorization with deep reinforcement learning.
In Proceedings of the 18th ACM/IEEE International Symposium on Code Generation and
Optimization, pages 242-255, 2020.

[24] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

[25] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, Xingzhang Ren, Xuancheng Ren,
Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024.

[26] Intel. Get to know intel’s llvm-based oneapi compilers, 2024.

[27] Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey
Svyatkovskiy. Inferfix: End-to-end program repair with llms. In Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 1646—1656, 2023.

[28] Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Mufioz
Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau,

Leandro von Werra, and Harm de Vries. The stack: 3 tb of permissively licensed source code,
2022.

[29] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis
& transformation. In International symposium on code generation and optimization, 2004. CGO
2004., pages 75-86. IEEE, 2004.

[30] Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi.
Coderl: Mastering code generation through pretrained models and deep reinforcement learning.
Advances in Neural Information Processing Systems, 35:21314-21328, 2022.

[31] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code
generation with alphacode. Science, 378(6624):1092-1097, 2022.

[32] Hongzhi Liu, Jie Luo, Ying Li, and Zhonghai Wu. Iterative compilation optimization based
on metric learning and collaborative filtering. ACM Transactions on Architecture and Code
Optimization (TACO), 19(1):1-25, 2021.

[33] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. Random testing for ¢ and c++ compilers
with yarpgen. Proceedings of the ACM on Programming Languages, 4(OOPSLA):1-25, 2020.

[34] LLVM. LLVM Command Guide, 2025.

[35] LLVM. LLVM Doxygen API Documentation (v20.0.0git), 2025.

[36] LLVM. LLVM Language Reference Manual, 2025.

[37] LLVM. LLVM Link Time Optimization: Design and Implementation, 2025.

12

[38] LLVM. LLVM’s analysis and transform passes, 2025.
[39] LLVM. Optimization Level, 2025.

[40] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. Alive2:
bounded translation validation for llvm. In Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation, PLDI 2021, page
65-79, New York, NY, USA, 2021. Association for Computing Machinery.

[41] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack
v2: The next generation. arXiv preprint arXiv:2402.19173, 2024.

[42] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning
benchmark dataset for code understanding and generation. arXiv preprint arXiv:2102.04664,
2021.

[43] Charith Mendis, Cambridge Yang, Yewen Pu, Dr Saman Amarasinghe, and Michael Carbin.
Compiler auto-vectorization with imitation learning. Advances in Neural Information Processing
Systems, 32, 2019.

[44] Steven S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1998.

[45] Youcong Ni, Xin Du, Yuan Yuan, Ruliang Xiao, and Gaolin Chen. Tsoa: a two-stage optimiza-
tion approach for gcc compilation options to minimize execution time. Automated Software
Engineering, 31(2):39, 2024.

[46] William F Ogilvie, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. Minimizing the cost
of iterative compilation with active learning. In 2017 IEEE/ACM international symposium on
code generation and optimization (CGO), pages 245-256. IEEE, 2017.

[47] OpenAl. Chatgpt: Optimizing language models for dialogue, 2022.

[48] OpenAl. Chatgpt: Optimizing language models for dialogue. https://openai.com/blog/
chatgpt/, 2022.

[49] OpenAl. Openai codex, 2023.

[50] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pages 311-318, 2002.

[51] Sunghyun Park, Salar Latifi, Yongjun Park, Armand Behroozi, Byungsoo Jeon, and Scott
Mahlke. Srtuner: Effective compiler optimization customization by exposing synergistic
relations. In 2022 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), pages 118-130. IEEE, 2022.

[52] Indraneil Paul, Goran Glavas, and Iryna Gurevych. Ircoder: Intermediate representations make
language models robust multilingual code generators. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
15023-15041, 2024.

[53] Ruchir Puri, David Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov,
Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al. Codenet: A large-scale ai
for code dataset for learning a diversity of coding tasks. In Annual Conference on Neural
Information Processing Systems, 2021.

[54] Dominik Sobania, Martin Briesch, and Franz Rothlauf. Choose Your Programming Copi-
lot: A Comparison of the Program Synthesis Performance of GitHub Copilot and Genetic
Programming, 2021.

[55] Marc Szafraniec, Baptiste Roziere, Hugh Leather Francois Charton, Patrick Labatut, and Gabriel
Synnaeve. Code translation with compiler representations. /CLR, 2023.

13

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Marc Szafraniec, Baptiste Roziere, Hugh James Leather, Patrick Labatut, Francois Charton, and
Gabriel Synnaeve. Code translation with compiler representations. In The Eleventh International
Conference on Learning Representations.

Jubi Taneja, Avery Laird, Cong Yan, Madan Musuvathi, and Shuvendu K Lahiri. Llm-vectorizer:
Llm-based verified loop vectorizer. In Proceedings of the 23rd ACM/IEEE International
Symposium on Code Generation and Optimization, pages 137-149, 2025.

Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski, and David
Li. Mlgo: a machine learning guided compiler optimizations framework. arXiv preprint
arXiv:2101.04808, 2021.

S VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar Desarkar, Ramakrishna
Upadrasta, and YN Srikant. Ir2vec: Llvm ir based scalable program embeddings. ACM
Transactions on Architecture and Code Optimization (TACO), 17(4):1-27, 2020.

Huanting Wang, Zhanyong Tang, Cheng Zhang, Jiaqi Zhao, Chris Cummins, Hugh Leather, and
Zheng Wang. Automating reinforcement learning architecture design for code optimization. In
Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction,
pages 129-143, 2022.

Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Junnan Li, and Steven Hoi. Codet5+: Open
code large language models for code understanding and generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pages 1069-1088, 2023.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. In EMNLP, pages
8696-8708. Association for Computational Linguistics, 2021.

Zheng Wang and Michael O’Boyle. Machine learning in compiler optimization. Proceedings of
the IEEE, 106(11):1879-1901, 2018.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empow-
ering code generation with OSS-instruct. In Proceedings of the 41st International Conference

on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pages
52632-52657. PMLR, 21-27 Jul 2024.

Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Reyhaneh Jabbarvand, and
Lingming Zhang. Whitefox: White-box compiler fuzzing empowered by large language models.
Proc. ACM Program. Lang., 8(OOPSLA2), October 2024.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs in ¢
compilers. In Proceedings of the 32nd ACM SIGPLAN conference on Programming language
design and implementation, pages 283-294, 2011.

Xin Yin, Chao Ni, Shaohua Wang, Zhenhao Li, Limin Zeng, and Xiaohu Yang. Thinkrepair: Self-
directed automated program repair. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 1274-1286, 2024.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. In 2023 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2023), pages 2471-2484. Association for Computational Linguistics, 2023.

Jivang Zhao, Donghao Yang, Li Zhang, Xiaoli Lian, Zitian Yang, and Fang Liu. Enhancing auto-
mated program repair with solution design. In Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering, pages 1706—-1718, 2024.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan
Wang, Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation
with multilingual benchmarking on humaneval-x. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 5673-5684, 2023.

14

[71]

[72]

[73]

[74]

[75]

[76]

Zhongchun Zheng, Yuan Wu, and Xianwei Zhang. mloop: Optimize loop unrolling in compila-
tion with a ml-based approach. In 2024 International Conference on Networking, Architecture
and Storage (NAS), pages 1-8. IEEE, 2024.

Ming Zhong, Fang Lv, Lulin Wang, Lei Qiu, Hongna Geng, Huimin Cui, and Xiaobing Feng.
Boosting large language models for system software retargeting: A preliminary study. In 2025
IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 321-326, 2025.

Ming Zhong, Fang Lv, Lulin Wang, Lei Qiu, Yingying Wang, Ying Liu, Huimin Cui, Xiaobing
Feng, and Jingling Xue. VEGA: Automatically Generating Compiler Backends using a Pre-
trained Transformer Model. In Proceedings of the 23rd ACM/IEEE International Symposium
on Code Generation and Optimization, CGO ’25, page 90-106, New York, NY, USA, 2025.
Association for Computing Machinery.

Ming Zhong, Fang Lyu, Lulin Wang, Hongna Geng, Lei Qiu, Huimin Cui, and Xiaobing
Feng. Comback: A versatile dataset for enhancing compiler backend development efficiency.
Advances in Neural Information Processing Systems, 37:112310-112328, 2024.

Ming Zhong, Xin Sun, Fang Lv, Lulin Wang, Hongna Geng, Lei Qiu, Huimin Cui, and Xiaobing
Feng. BePilot: An Al Programming Assistant for Compiler Backend Development. ACM Trans.
Softw. Eng. Methodol., 2025. Just Accepted.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun
Li, Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source
models in code intelligence. CoRR, 2024.

15

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction clearly state our contributions.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations in Section [6|and Appendix[J| including Alive2’s partial
support and the use of static simulation (1lvm-mca).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

16

Justification: This paper does not present theoretical results or formal proofs.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation details, model settings, and evaluation protocols are described
in Sectionfd] Our GitHub repository includes training scripts, preprocessing tools, and usage
examples to fully reproduce the results.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

17

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code, data, and reproduction instructions are available in our GitHub
repository.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide training and evaluation details, including dataset splits and hyper-
parameters, in Appendix [D]and Appendix [E]

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: The paper does not include error bars or statistical significance tests.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe compute details such as GPU, CPU, and memory in Appendix
and Section]

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our work adheres to the NeurIPS Code of Ethics. It does not involve human
subjects, sensitive data, or ethically sensitive applications.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impacts in Section [6]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

19

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The released models and datasets are intended for compiler research only. We
include license terms and usage disclaimers in the GitHub repository to mitigate misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All reused assets, including compiler tools (LLVM, Alive2) and language

models (e.g., StarCoder2, Qwen2), are used under their respective licenses. We cite the
official sources, provide version details, and include license information in Appendix [N}

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

20

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release a new dataset called IR-OptSet, with accompanying documentation
and licensing information. The dataset is publicly available on HuggingFace at https:
//huggingface.co/datasets/YangziResearch/IR-0OptSet!.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our study does not involve any crowdsourcing or human subject experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve any human subjects or crowdsourcing activities
and therefore does not require IRB approval.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

21

paperswithcode.com/datasets
https://huggingface.co/datasets/YangziResearch/IR-OptSet
https://huggingface.co/datasets/YangziResearch/IR-OptSet

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The LLLM was only used for formatting purposes, not as part of the core
research methodology.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

A Keywords for GitHub Repository Crawling

presents the keywords used for GitHub repository crawling. After applying appropriate
filtering, 1,704 repositories are reserved as the source of high-level language code for IR-OptSet.

Table 5: Keywords used for GitHub repository crawling.

Domain Keywords
High-Performance Finite Element Solver, Geometry Simulation, Geometry Solver, Graphics
Computing (HPC) Simulation, Graphics Solver, Molecular Dynamics, Multiphysics Simulation,

Network Simulation, Optimization Simulation, Optimization Solver, Parallel
Computing, Physics Simulation, Physics Solver, Plasma Physics, Quantum
Chemistry, Robotics Solver, Security Solver, Simulation, Computational Fluid,
Computational Fluid Dynamics, Numerical Linear Algebra

Machine Learning Machine Learning

Multimedia Computer Graphics, Graphics Algorithm, Graphics Engine, Image Processing,
Audio Engine

Embedded Systems Control Systems, Device Driver, Embedded, Robotics, Robotics Engine

System Software Filesystem, Garbage Collection, JIT Runtime, Operating System, Virtualization,
Compiler

Security Cryptography, Security Algorithm, Security Engine

Reusable Libraries Database Engine, Geometry Engine, Optimization Engine, Physics Engine

Algorithms Concurrency, Data Structures, Geometry Algorithm, LeetCode, Network

Algorithm, Networking Stack, Numerical Linear, Numerical Methods,
Optimization, Optimization Algorithm, Physics Algorithm, Real-time System,
Signal Processing, Sorting, ACM ICPC, Algorithm, AtCoder, Benchmark,
Codeforces, Competitive, Compression, Competitive Programming

B Task Description

This appendix gives an end-to-end example, allowing readers to see how each ground-truth in[Fig. 3]
is derived from the unoptimized IR.

B.1 Example Input

We use the same normalized LLVM IR shown in the left column of The function contains
three basic blocks labeled BO, B1, and B2, where each block is a straight-line sequence of instructions
ending with a branch or return. The entry block is BO, and the complete input IR is as follows:

BO:
store i32 0, ptr %0
br %B1
B1:
%1 = load i32, ptr %0
%2 = add i32 %1, 1
store i32 %2, ptr %0
%3 = icmp slt i32 %2, 10
br i1 %3, %B1, %B2
B2:
ret void

This forms a simple loop: BO initializes %0 to zero, B1 repeatedly increments the value stored in

%0, and B2 returns once the value reaches 10. The control-flow graph (CFG) contains three edges:
B0O—B1, B1—B1 (the loop back-edge), and B1—B2.

B.2 Dominator Tree Analysis

Starting from the entry block BO, any execution path must pass through BO; therefore, it dominates
all other blocks. The only way to reach B1 is through the edge BO—B1, making BO the immediate

23

dominator of B1. Similarly, B2 is reachable only via B1—B2, so B1 is its immediate dominator. The
resulting dominator tree is a simple chain: BO—B1—B2. Consequently, LLVM’s dominator tree
analysis reports “[1] %BO, [2] %B1, [3] %B2 with root %B0”.

B.3 Loop Detection Analysis

The CFG contains a back-edge B1—B1, which defines a natural loop. The loop header is B1, as it
dominates the loop body; B1 is also the latch block because it contains the back-edge. Additionally,
B1 serves as the exiting block because it can branch to B2. Consequently, LLVM’s loop analysis
reports “Loop at depth 1 containing %B1 <header><latch><exiting>".

B.4 Memory Access Analysis

The first instruction, “store i32 0, ptr %0” in BO, creates the initial memory definition for %0.
At the entry of B1, MemorySSA inserts a MemoryPhi for %0 to merge the incoming definitions
from BO and the back-edge B1—B1. The load in Bl is a MemoryUse of that phi node. The next
instruction, “%2 = add i32 %1, 17, performs an arithmetic operation and does not access memory.
The subsequent instruction, “store 132 %2, ptr %0, creates a new MemoryDef; along the back-
edge, this definition becomes one of the inputs to the phi node in the next iteration. In[Fig. 3] these
appear as MemoryPhi (%0) at the top of B1, MemoryUse (phi) next to the 1oad, and MemoryDef (%0)
next to the store.

B.5 Optimized Code Generation
Given that BO initializes %0 to zero and B1 increments its value until it reaches 10, LLVM’s optimiza-
tion directly stores 10 to %0, eliminating the loop. Therefore, the optimized IR becomes:

BO:
store i32 10, ptr %0
ret void

C DMetrics

Correctness (Corr.). Correctness refers to the number of model-generated IRs that pass the veri-
fication tool in IR-OptSet, relative to the total number of generated IRs. Specifically, it involves a
two-stage check outlined in[Sec. 3.4] Formally, Correctness is calculated as:

Corr = Ncor'r/Ntotal

Optimization Effectiveness (Opt. Eff.). Optimization Effectiveness refers to the average perfor-
mance of the optimized IR against the unoptimized version. Specifically, we use 11c on an AMD
Ryzen 9 7950X 16-Core Processor to generate assembly, then evaluate its execution cycles with
1lcm-mca. For each ¢;, p; is calculated as:

pi = (1/t:)
where t;; is the predicted execution cycles of c;.

Optimization Effectiveness is calculated as:
Ntotal
OptEff = > (0" /i) /Niotar
i=1

D Hyperparameters and Input/OQutput Sequence Length Settings

In we provide all hyperparameter settings. In this work, we set the context window to 4K,
meaning the total input and output must not exceed 4K due to resource limitations.

24

Table 6: Hyperparameter settings.

LoRA LoRA LoRA Batch Learning

Model rank (r) « dropout size rate Target modules
LLM Compiler 32 16 005 2 1xi10* la-proj, kproj,
v_proj, o_proj}
StarCoder2 32 16 0.05 2 1x10°* ta-Proj, k-proj,
v_proj, o_proj}
Qwen2.5-Coder 32 16 0.05 2 1x10™* {gkv_proj, o_proj}

E Token Statistic

To accommodate the 4K context window, we perform random sampling across all tasks in the datasets,
retaining only those samples that fit within the context window. shows the data statistics
about the number and token of Optimized Code Generation and 3 subtasks of Code Analysis for
IR-OptSet, SLTrans, ProGraML, and ComPile.

Table 7: Data statistics about the number and token of Optimized Code Generation and 3 subtasks of
Code Analysis for IR-OptSet, SLTrans, ProGraML, and ComPile.

Task Metric IR-OptSet SLTrans ProGraML ComPile

Train Val. Test Train Val. Test Train Val. Test Train Val. Test

Total Token 11.36M 1.10M 1.13M 957M 095M 095M 9.00M 0.90M 0.90M 8.87M 09IM 0.88M
Average Token 2,253.9 22032 2261.1 19141 19140 19043 1,800.3 1803.8 1801.0 1,773.9 18255 1,755.0

Opg:‘i:eﬁ.g‘)de Median Token 2,292 22435 2204 1964 1942 1910 17300 1.733.5 1770.5 1692 1.800.5 1.676.5
neralion - Min Token 997 1157 1,162 776 806 868 678 810 785 649 838 776
Max Token 3401 3146 3288 3,153 3,173 3005 3450 3230 3580 3426 3423 3362

Total Token 647M 0.66M 0.65M 533M 0.54M 0.53M 546M 0.55M 0.53M 3.69M 0.38M 0.35M
Average Token 1,293.1 1,320.7 1,291.7 1,066.4 1,076.3 1,071.4 1,091.4 11192 10689 7375 7647 7063
Median Token 1,257 1,306.5 1,268 986.5 1,007.5 1,004 959 1,023.5 894 575 628 5325
Min Token 175 356 224 95 112 96 79 93 84 36 36 98

Max Token 2,714 2,576 2,560 2986 2916 2,728 3,371 3,074 299 2980 2352 2,685

Dominator Tree
Construction

Total Token 425M 043M 042M 535M 052M 0.52M 551IM 0.60M 0.53M 3.92M 0.39M 0.36M
Average Token 851.5 864.8 8498 1,069.9 10562 10441 1,101.3 1,193.3 1,063.1 7835 7745 721.2
Loop Detection ~ Median Token 854 876 838 971.5 8975 1,010.5 998 1,061.5 953.5 717 687 596.5
Min Token 174 272 263 71 115 110 67 100 96 36 87 36
Max Token 1,575 1,511 1,563 3,046 27766 2,762 3,327 3,151 3,124 2997 2920 2,501

Total Token 8.52M 0.84M 0.84M 6.50M 0.63M 0.64M 6.19M 0.64M 0.63M 5.0IM 0.53M 0.49M
Average Token 1,704.8 1,686.4 1,678.7 1,3002 1,271.6 12859 12373 1293.1 12658 1,002.7 1,059.7 983.2
Median Token 1,704.5 1,681.5 1,633.0 1,280 1222 1,2735 1,143 1,245 1,224 819 870 769
Min Token 259 348 194 74 150 99 69 110 82 37 37 89
Max Token 3,178 2986 3,007 3,030 2914 3,010 3275 3,185 3,152 3,002 2,804 2998

Memory Access
Analysis

F Analysis of Error and Performance Improvement Patterns

F.1 Error Patterns

We conducted an in-depth analysis of the 78 failed cases made by the LLM Compiler in the Optimized
Code Generation task as shown in[Table 2] and identified three common error patterns. These errors
mainly stem from the model’s inaccurate reasoning about data flow — that is, how values are defined,
propagated, and used across different branches of the program.

* Define-use error (21 cases). The model fails to ensure all variables are defined before use.
In the example below, %7 is used but never defined.

%6 = add 132 %4, %5
%8 = mul i32 %6, %7

¢ Structural violations in PHI nodes (18 cases). The model incorrectly constructs PHI node
structures. In the example below, %B3 is not a predecessor of %B2.

25

; B2 has two predecessors: Bl and B4
B2:
%5 = phl i32 [0; %Bl], [%10, %BB]

* Data type error (7 cases). The model produces type mismatches between variable defini-
tions and uses. In the example below, %10 is defined as 132, but used as double.

%10 = add i32 %0, 1
%11 = fcmp ult double %8, %10

F.2 Performance Improvement Pattern

We further analyzed the 64 cases in[Fig. 4| where the LLM outperforms the traditional compiler and
categorized them into three common patterns. Note that some cases fall into multiple categories,
collectively contributing to their performance gains over LLVM; as a result, the total number of cases
in the table below exceeds 64. These patterns highlight scenarios in which the LLM exhibits stronger
optimization capabilities.

* Rewriting complex conditions into simple ones (32 cases). The example below shows
how the LLM simplifies a switch statement into a simple conditional branch.

LLVM:

switch i32 %0, label %B1 [
i32 0, label %B1
i32 1, label %B2

]

LLM Compiler FTD IR-OptSet:

%1 = icmp eq i32 %0, 1
br i1 %1, label B2, label %B1

* Removing unnecessary computations (24 cases). The example below demonstrates
constant folding across multiple operations.

LLVM:

%84 = add nsw i64 %i, 1
%85 = add nsw i64 %84, 2

LLM Compiler FTD IR-OptSet:
%85 = add nsw i64 %i, 3

* Replacing verbose code with built-in functions. For example, a loop that zeros out an
array can be replaced with a built-in memset function.
LLVM (a loop that writes zero values to an array):
loop:
%i = phi i64 [O, Yentry], [%next, %loop]
%ptr = getelementptr <2 x float>, ptr %p, i64 %i
store <2 x float> 0.0, ptr %p
Ynext = add i64 %i, 2
%cond = icmp ult i64 Ynext, %size
br il Y%cond, label Jloop, label %exit

LLM Compiler FTD IR-OptSet:
call void @llvm.memset.p0.i64(ptr %p, i8 0, i64 Ysize)

26

G Case Study

We provide a representative case study that compares the LLM Compiler FTD IR-OptSet with the
IR produced by traditional compilation (LLVM -O3). In this IR sample, the LLM-generated IR is
structurally simpler and results in better execution performance relative to the LLVM -O3 baseline.
This case illustrates the practical potential of model-driven compilation to complement or even
outperform traditional optimization pipelines.

G.1 IR Comparison

The following shows the unoptimized IR, the code optimized by LLVM -03, and the code optimized
by LLM Compiler FTD IR-OptSet. Both optimization results can be verified for correctness. The
differences between these two optimization results are highlighted in blue.

define dso_local void @case(i32 noundef %0, i32 noundef %1, i32 noundef %2, i32 noundef %3){
BO:

%4 = alloca i32, align 4

%5 = alloca i32, align 4

%6 = alloca i32, align 4

%7 = alloca 132, align 4
store i32 %0, ptr %4, align
store i32 %1, ptr %5, align
store i32 %2, ptr %6, align
store i32 %3, ptr %7, align
%8 = load i32, ptr %6, align 4

%9 = sitofp i32 %8 to float

store float %9, ptr @rs, align 4

%10 = load i32, ptr %7, align 4

%11 = sitofp 132 %10 to float

store float %11, ptr getelementptr inbounds (%STRUCTO, ptr @rs, i32 0, i32 1), align 4
%12 = load 132, ptr %4, align 4

%13 = icmp eq i32 %12, 0

br i1 %13, label %B1, label %B7

Bi:

%14 = load i32, ptr %5, align 4

%15 = icmp eq i32 %14, 0

br il %15, label %B2, label %B3

B2:

store i8 1, ptr getelementptr inbounds (%STRUCTO, ptr @rs, i32 0, i32 4), align 4

br label %B6

B3:

%16 = load i32, ptr %5, align 4

%17 = icmp eq i32 %16, 1

br il %17, label %B4, label %B5

B4:

store i8 0, ptr getelementptr inbounds (%STRUCTO, ptr @rs, i32 0, i32 4), align 4

br label %B5

B5:

br label %B6

B6:

br label ¥%B7

B7:

ret void

}

INIFININS

27

Optimized IR (LLVM -O3)

define dso_local void Q@case(i32 noundef %0, i32 noundef %1, i32 noundef %2, i32 noundef %3){
BO:

%4 = insertelement <2 x i32> poison, i32 %2, i64 0
%5 = insertelement <2 x 132> %4, i32 %3, i64 1

%6 = sitofp <2 x 132> 5 to <2 x float>

store <2 x float> %6, ptr @rs, align 4

%7 = icmp eq 132 %0, O

br il %7, label %B1, label %B4

B1:

switch i32 %1, label %B4 [

i32 0, label %B3

i32 1, label %B2

]

B2:

br label B3

B3:

%8 =phi i8 [0, %B2 1, [1, %B11]

store i8 %8, ptr getelementptr inbounds (i8, ptr @rs, i64 16), align 4
br label %B4

B4:

ret void

}

Optimized IR (LLM Compiler FTD IR-OptSet)

define dso_local void @case(i32 noundef %0, i32 noundef %1, i32 noundef %2, i32 noundef %3){
BO:

%4 = insertelement <2 x 132> poison, 132 %2, i64 0

%5 = insertelement <2 x i32> %4, i32 %3, i64 1

%6 = sitofp <2 x 132> 5 to <2 x float>

store <2 x float> %6, ptr @rs, align 4

%7 = icmp eq i32 %0, O

br il %7, label %B1, label %B3

Bi:

%8 = icmp eq i32 %1, O

br il %8, label %B2, label %B3

B2:

store i8 1, ptr getelementptr inbounds (i8, ptr @rs, i64 16), align 4
br label 7B3

B3:

ret void

}

28

G.2 Assembly Comparison.

The corresponding x86 assembly code generated by 11c on AMD Ryzen 9 7950X 16-Core Processor

for both the LLM-predicted IR and the -03 IR is shown as below.

%bb.0: # %bb.0:

movd %ecx, %xmmO
movd %edx, %xmml
punpckldq %xmmO, %xmml
cvtdg2ps %xmml, %xmmO
movlps %xmmO, rs(%rip)
testl %edi, %edi

movd %ecx, %xmmO
movd %edx, %xmml
punpckldq %xmmO, %xmmil
cvtdq2ps %xmml, %xmmO
movlps %xmm0, rs(jrip)
testl Y%edi, %edi

je .LBBO_1 je .LBBO_1
.LBBO_6: .LBBO_3:
retq retq
.LBBO_1: .LBBO_1:
testl Yesi, Y%esi testl Jesi, %esi
je .LBBO_2 jne .LBBO_3
%bb.3: # %bb.2:
cmpl $1, Y%esi movb $1, rs+16(Y%rip)
jne .LBBO_6 retq
Jbb.4:

xorl %eax, %eax
movb %al, rs+16(%rip)
retq

.LBBO_2:
movb $1, %al
movb %al, rs+16(%rip)
retq

G.3 Performance Evaluation through the Performance Evaluation Tool

To quantify the performance implications of the observed structural differences, we utilize the
performance evaluation tool in IR-OptSet to simulate the generated x86 assembly. This tool estimates
performance metrics, including instruction throughput and total execution cycles, based on processor
micro-architectural models. The performance of the two versions of assembly code is calculated with
a default repetition count of 100 iterations.

The table below summarizes three dimensions of the program’s compilation and performance:

Table 8: Performance summary.

Metric Unopt -0O3 LLM-Predicted IR
Total Cycles 703 309 257
IR Instruction Count 30 12 11
X86 Assembly Instruction Count 20 18 12

29

G.4 Analysis

* IR-level Comparison. The LLLVM -O3 optimized IR uses switch and phi instruction as shown
below to handle the second conditional:
B1:
switch i32 %1, label %B4 [
i32 0, label %B3
i32 1, label %B2
]
B3:
%8 = phi i8 [1, %B1l, [0, %B2]
br label %B4

The LLM Compiler FTD IR-OptSet instead use the icmp and br instruction:

B1:
%8 = icmp eq i32 %1, O
br i1 %8, label %B2, label %B3

This removes one basic block and the phi instruction, yielding a flatter control-flow graph.

* Downstream Assembly Comparison. Because the phi instruction is gone, the compiler no
longer needs to synthesize zero via xorl or merge two values, and the switch-based jump table
disappears. Consequently, the x86 output drops from 18 instructions (including two jumps and
a zero-merge) to 12 instructions (one jump and one store), directly reducing branch-prediction
pressure and data-move overhead.

* Performance Improvement. The performance evaluation tool (100 iterations) predicts 257 cycles
for the model’s code versus 309 cycles for the -03 baseline — a 17 % reduction that correlates
precisely with the removed IR and assembly instructions.

30

H Effectiveness Frequency

Table O] lists the effectiveness frequency of the top 30 most commonly used optimization steps.

Table 9: Effectiveness frequency of the top 30 most commonly used optimization steps across IR-
OptSet, SLTrans, ProGraML, and ComPile.

Optimization Step Name IR-OptSet SLTrans ProGraML ComPile
SimpliftyCFG 40552 38601 21079 15381
InstCombine 32406 30077 19948 13892
LoopSimplify 21243 22975 16049 6109
LCSSA 16106 20055 16691 3773
LoopRotate 16887 16270 167 4919
GlobalOpt 10889 10248 5345 9663
EarlyCSE 11496 7208 4887 6542
SROA 10311 9558 256 9491
InferFunctionAttrs 9465 7742 6127 6074
IndVarSimplify 12420 8388 4521 3246
LICM 12864 4615 2044 4332
JumpThreading 7527 7420 4629 2680
TailCallElim 7747 5867 411 7401
PostOrderFunctionAttrs 6453 3871 5118 4724
LoopUnroll 6178 6851 4197 1777
GVN 5409 5057 3747 1478
IPSCCP 5028 2511 3450 2396
InstSimplify 3411 4211 3342 759
Reassociate 3651 3462 1780 865
Correlated ValuePropagation 3853 1948 1500 1563
LoopSimplifyCFG 2958 960 1850 667
LooplInstSimplify 1773 902 1005 563
InferAlignment 1260 759 876 365
SCCP 794 471 509 170
BDCE 606 543 324 126
DSE 690 251 149 355
LoopLoadElimination 553 345 408 112
LoopVectorize 551 329 410 111
SLPVectorizer 726 55 351 232

I Prompt Template

We adopt a unified prompt format to support various LLVM IR-related tasks. Each prompt begins
with a task instruction, followed by the corresponding IR input enclosed in tags. Figure[/|shows
examples for both optimization and analysis tasks.

[INST]Optimize the following LLVM IR with 03:
<code>(Unopt LLVM IR)</code>

[\INST]

Opt IR:

<code>(0pt LLVM IR)</code>

[INST] Analyze Dominator Tree / Loops / MemorySSA Walker of the following LLVM IR:
<code>(Unopt LLVM IR)</code>

[\INST]

<code>(Correspondence Analysis)</code>

Figure 7: Instruction-based prompt formats used for model fine-tuning. The first example focuses on
IR optimization, while the second illustrates structural analysis tasks.

31

J Main ToolChain

J.1 Environment Setup

Our toolchain is built from source to ensure compatibility with LLVM IR formats and Alive2’s TV
solver. First, build a clean LLVM 19.1.0 release:

cmake -G Ninja ../1lvm \
-DCMAKE_BUILD_TYPE=Release \
-DLLVM_ENABLE_PROJECTS="clang;11d" \
-DLLVM_ENABLE_RTTI=0N \
-DLLVM_ENABLE_EH=0N \
-DLLVM_TARGETS_TO_BUILD="host"

Next, build Alive2 with the TV mode enabled so we can formally verify IR equivalence:

cmake -G Ninja
-DCMAKE_PREFIX_PATH=<1lvm-installed-path> \
-DBUILD_TV=1 \
-DCMAKE_BUILD_TYPE=Release \
../1llvm-project/alive2

J.2 Tool Usage

Here we describe the functionality of several key toolchain scripts, which utilize the LLVM and Alive2
environments configured above. All example invocation commands are listed below. For the most up-
to-date usage instructions, please visit our GitHub page: https://github.com/yilingqinghan/
IR-OptSet!

J.2.1 Correctness Verification

Firstly use the opt_verify.py script performs batch function-level verification of LLVM IR files
(.11/.bc) in a directory. Its primary goal is to detect syntax and semantic errors before any
downstream compilation or analysis.

Purpose: Verifying the well-formedness of IR is a necessary precondition for compilation and
ensures that only syntactically valid files proceed to later stages in the toolchain.

python opt_verify.py \
--folder ./ir_files \
--opt-path /path/to/opt \
--log-errors \
--log-dir ./opt_error_logs \
--num-workers 4 \
--clean

Then use the alive2.py script accepts paired LLVM IR files — typically the model prediction and
the corresponding compiler-generated output — and determines whether the two are semantically
equivalent using Alive2’s translation validation (TV) engine. Specifically, it automatically extracts
two function bodies from each file, combines them into a single valid Alive2-compatible IR module,
and runs the equivalence check. It then reports the final success/failure statistics.

Note: Alive2 may encounter issues such as SMT solver timeouts, incompatibility with newer

LLVM versions (e.g., errors like ERROR: Unsupported instruction), lack of interprocedural
optimization (IPO) support, and incomplete modeling of certain instructions or memory behaviors.

32

https://github.com/yilingqinghan/IR-OptSet
https://github.com/yilingqinghan/IR-OptSet

python alive2.py \
--input-dir ./ir/before \
--output-dir ./ir/verified \
--suffix ".model.predict.11l" \
--pure

J.2.2 Performance Evaluation

The mca_cycles.py script processes all LLVM IR files in a given directory by lowering them to
assembly code using 11c, then feeds the output into 11vm-mca to estimate static performance metrics
such as total cycle count or block throughput. The backend CPU microarchitecture (e.g., znver3)
and dispatch width are configurable. Results are saved as a structured CSV report for analysis.

python mca_cycles.py \
--csv results.csv \
--suffix .11 \
--from-predict \
--workers 8 \
--11lc /path/to/llc \
--1lvm-mca /path/to/llvm-mca \
--mcpu znver3 \
--dispatch-width 6

J.2.3 Dataset Expansion

The textttcli-frontend.py script serves as a convenient wrapper to apply a sequence of LLVM passes
to either source code (e.g., C/C++) or existing IR files. It handles the full pipeline of invoking clang
for frontend compilation, running opt for optimization, managing I/O, and recording pass logs.

Features: The script supports automatic sampling, configurable preprocessing strategies, and optional
IR cleanup routines. It is designed to streamline batch IR generation and logging, while remaining
extensible for custom workflows.

python cli-frontend.py pipeline \
--ir-dir "dataset" \
--compile-out "UNOPT" \
--extract-dir "EX" \
--opt-out "OPT" \
--opt-flags "-passes=’print<loops>’ -S" \
--sample-size 100 \
--seed 100 \
--rules strip_all loops_analysis \
—-where all \
--log-out "LOG" \
--pre-out "PRE_EX" \
--post-out "PRE_OPT"

The analyze_changed.py script analyzes the textual logs produced by LLVM opt
-print-changed to determine which passes actually caused changes to the IR. By parsing markers

in the logs, it distinguishes between effective optimization steps and those which donnot modify the
IR.

Functionality: It can process all available logs or a user-defined random sample, and summarizes
the activity of each pass into a CSV file. This is useful for understanding which transformations are
active in practice and for generating statistics or visualizations of optimization effectiveness.

33

python analyze_changed.py \
-i ./logs \
--csv pass_summary \
--sample-size 100 \
--seed 42

This cli-backend.py script finally processes the optimized IR files and corresponding logs to
construct the final datasets used in model training and evaluation.

Capabilities: It supports configurable filters to exclude unsuitable examples (e.g., duplicated samples,
sequences exceeding token limits), and formats the data according to predefined templates. This
ensures that the resulting dataset is clean, consistent, and ready for downstream fine-tuning or
benchmarking.

python cli-backend.py \
--pre-dir "PRE_EX" \
--post-dir "PRE_OPT" \
--log-dir "LOG" \
--filters "token_limit_v1" \
--vfilters dedupe_content \
--out-dir "FINAL" \
--make-dataset \
--train-size 5000 \
--test-size 500 \
--valid-size 500 \
--seed 50 \
--prompt-template "[INST]Analyze Dominator Tree of the following LLVM IR:
\n<code>{pre_ir}</code>[/INST]\n<code>\n{log}\n</code>" \
--dataset-output "domtree" \
--token-limit 4000

K Cross-Dataset Generalization

Table 10: Correctness of models respectively fine-tuned (FTD) on IR-OptSet, ComPile, ProGraML
and SLTrans on the test samples from all four datasets.

FTD Dataset IR-OptSet ComPile ProGraML SLTrans

FTD IR-OptSet 0.864 0.792 0.672 0912
FTD ComPile 0.712 0.928 0.592 0.832
FTD ProGraML 0.624 0.544 0.864 0.792
FTD SLTrans 0.712 0.728 0.616 0.960

L Confidence Intervals

We conducted three independent runs to assess the result consistency of the Optimized Code Genera-
tion task, and calculate the confidence interval. The results, summarized in[Table 11} demonstrate
stable performance across runs. Reported values represent the mean + 95% confidence interval.

Table 11: Consistency analysis for the Optimized Code Generation task.

Model EM(%) BLEU Corr(%)
LLM Compiler FTD IR-OptSet 53.80 £4.07 0.96+0.04 85.33+224
StarCoder2 FTD IR-OptSet 4.60+1.31 0.68+0.05 56.20+4.74

Qwen2.5-Coder FTD IR-OptSet 3.00+1.79 0.79+0.02 44.00 +2.17

34

M Reproducibility and Compute Requirements

All experiments can be reproduced using the released scripts and settings. On a machine equipped
with two NVIDIA A100 GPUs, fine-tuning for the Code Analysis typically takes 2—3 hours, and
its evaluation takes 0.5-2 hours. For the Optimized Code Generation task, fine-tuning generally
requires 3—6 hours, while evaluation takes approximately 2—4 hours.

N Licenses for existing assets

Table 12: Licenses and Sources for Assets Used in This Work

Asset Version License URL / Source

LLVM 19.1.0 Apache 2.0 https://github.com/11lvm/
llvm-project

Alive2 19.0 MIT https://github.com/

LLM Compiler FTD 7B

StarCoder2 3B
Qwen2.5-Coder 1.5
IR-OptSet v1.0
SLTrans —
ProGraML v0.3.2
ComPile v1.0

Meta LLM Compiler License

BigCode OpenRAIL-M vl

Apache 2.0

CCBY 4.0

CCBY SA 4.0
Apache 2.0

CCBY 4.0

AliveToolkit/alive2
https://huggingface.co/
facebook/11lm-compiler-7b-ftd
https://huggingface.co/bigcode/
starcoder2-3b
https://huggingface.co/Qwen/
Qwen2.5-Coder-1.5B
https://huggingface.co/
datasets/YangziResearch/
IR-OptSet
https://huggingface.co/
datasets/UKPLab/SLTrans
https://github.com/
ChrisCummins/ProGraML
https://huggingface.co/
datasets/1lvm-ml/ComPile

35

https://github.com/llvm/llvm-project
https://github.com/llvm/llvm-project
https://github.com/AliveToolkit/alive2
https://github.com/AliveToolkit/alive2
https://huggingface.co/facebook/llm-compiler-7b-ftd
https://huggingface.co/facebook/llm-compiler-7b-ftd
https://huggingface.co/bigcode/starcoder2-3b
https://huggingface.co/bigcode/starcoder2-3b
https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B
https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B
https://huggingface.co/datasets/YangziResearch/IR-OptSet
https://huggingface.co/datasets/YangziResearch/IR-OptSet
https://huggingface.co/datasets/YangziResearch/IR-OptSet
https://huggingface.co/datasets/UKPLab/SLTrans
https://huggingface.co/datasets/UKPLab/SLTrans
https://github.com/ChrisCummins/ProGraML
https://github.com/ChrisCummins/ProGraML
https://huggingface.co/datasets/llvm-ml/ComPile
https://huggingface.co/datasets/llvm-ml/ComPile

	Introduction
	Background: IR-level Optimization Process
	IR-OptSet: A Dataset for IR-Level Compiler Optimization
	Overview of IR-OptSet
	Data Collection and Pre-processing
	Tasks in IR-OptSet
	Code Analysis
	Optimized Code Generation

	Toolchain

	Experiment
	Experimental Setup
	Accuracy Improvement across Various LLMs
	Improvement over Traditional Compiler
	Diversity and Generalization in Transformations

	Related Work
	Discussion
	Keywords for GitHub Repository Crawling
	Task Description
	Example Input
	Dominator Tree Analysis
	Loop Detection Analysis
	Memory Access Analysis
	Optimized Code Generation

	Metrics
	Hyperparameters and Input/Output Sequence Length Settings
	Token Statistic
	Analysis of Error and Performance Improvement Patterns
	Error Patterns
	Performance Improvement Pattern

	Case Study
	IR Comparison
	Assembly Comparison.
	Performance Evaluation through the Performance Evaluation Tool
	Analysis

	Effectiveness Frequency
	Prompt Template
	Main ToolChain
	Environment Setup
	Tool Usage
	Correctness Verification
	Performance Evaluation
	Dataset Expansion

	Cross-Dataset Generalization
	Confidence Intervals
	Reproducibility and Compute Requirements
	Licenses for existing assets

