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Abstract

The phenomenon of adversarial examples illustrates one of the most basic vulnerabilities
of deep neural networks. Among the variety of techniques introduced to surmount this
inherent weakness, adversarial training has emerged as the most effective strategy for learning
robust models. Typically, this is achieved by balancing robust and natural objectives. In
this work, we aim to further optimize the trade-off between robust and standard accuracy
by enforcing a domain-invariant feature representation. We present a new adversarial
training method, Domain Invariant Adversarial Learning (DIAL), which learns a feature
representation that is both robust and domain invariant. DIAL uses a variant of Domain
Adversarial Neural Network (DANN) on the natural domain and its corresponding adversarial
domain. In the case where the source domain consists of natural examples and the target
domain is the adversarially perturbed examples, our method learns a feature representation
constrained not to discriminate between the natural and adversarial examples, and can
therefore achieve a more robust representation. DIAL is a generic and modular technique that
can be easily incorporated into any adversarial training method. Our experiments indicate
that incorporating DIAL in the adversarial training process improves both robustness and
standard accuracy.

1 Introduction

Deep learning models have achieved impressive success on a wide range of challenging tasks. However, their
performance was shown to be brittle in the face of adversarial examples: small, imperceptible perturbations
in the input that drastically alter the classification (Carlini & Wagner, 2017a;b; Goodfellow et al., 2014;
Kurakin et al., 2016b; Moosavi-Dezfooli et al., 2016; Szegedy et al., 2013; Tramèr et al., 2017; Dong et al.,
2018; Tabacof & Valle, 2016; Xie et al., 2019b; Rony et al., 2019). The problem of designing reliable robust
models has gained significant attention in the arms race against adversarial examples. Adversarial training
(Szegedy et al., 2013; Goodfellow et al., 2014; Madry et al., 2017; Zhang et al., 2019b) has been proposed as
one of the most effective approaches to defend against such examples, and can be described as solving the
following min-max optimization problem:

minθ E(x,y)∼D
[
maxx′:∥x′−x∥p≤ϵ L (x′, y; θ)

]
,

Our source code is available at https://github.com/matanle51/DIAL
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where x′ is the ϵ-bounded perturbation in the ℓp norm and L is the loss function. Different unrestricted
attacks methods were also suggested, such as adversarial deformation, rotations, translation and more (Brown
et al., 2018; Engstrom et al., 2018; Xiao et al., 2018; Alaifari et al., 2018; Gilmer et al., 2018).

The resulting min-max optimization problem can be hard to solve in general. Nevertheless, in the context
of ϵ-bounded perturbations, the problem is often tractable in practice. The inner maximization is usually
approximated by generating adversarial examples using projected gradient descent (PGD) (Kurakin et al.,
2016a; Madry et al., 2017). A PGD adversary starts with randomly initialized perturbation and iteratively
adjust the perturbation while projecting it back into the ϵ-ball:

xt+1 = ΠBϵ(x0) (xt + α · sign(∇xt
L(G(xt), y))) ,

where x0 is the natural example (with or without random noise), and ΠBϵ(x) is the projection operator onto
the ϵ-ball, G is the network, and α is the perturbation step size. As was shown by Athalye et al. (2018),
PGD-based adversarial training was one of the few defenses that were not broken under strong attacks.

That said, the gap between robust and natural accuracy remains large for many tasks such as CIFAR-10
(Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009). Generally speaking, Tsipras et al. (2018) suggested
that robustness may be at odds with natural accuracy, and usually the trade-off is inherent. Nevertheless, a
growing body of work aimed to improve the standard PGD-based adversarial training introduced by Madry
et al. (2017) in various ways such as improved adversarial loss functions and regularization techniques (Kannan
et al., 2018; Wang et al., 2019b; Zhang et al., 2019b), semi-supervised approaches(Carmon et al., 2019; Uesato
et al., 2019; Zhai et al., 2019), adversarial perturbations on model weights (Wu et al., 2020), utilizing out of
distribution data (Lee et al., 2021) and many others. We refer to related work for a more extensive literature
review.

Our contribution. In this work, we propose a novel approach to regulating the tradeoff between robustness
and natural accuracy. In contrast to the aforementioned works, our method enhances adversarial training
by enforcing a feature representation that is invariant across the natural and adversarial domains. We
incorporate the idea of Domain-Adversarial Neural Networks (DANN) (Ganin & Lempitsky, 2015; Ganin
et al., 2016) directly into the adversarial training process. DANN is a representation learning approach for
domain adaptation, designed to ensure that predictions are made based on invariant feature representation
that cannot discriminate between source and target domains. This technique is modular and can be easily
incorporated into any standard adversarial training algorithm. Intuitively, the tasks of adversarial training
and of domain-invariant representation have a similar goal: given a source (natural) domain X and a target
(adversarial) domain X ′, we hope to achieve g(X) ≈ g(X ′), where g is a feature representation function
(i.e., neural network). As we present in section 3.3, our work is also theoretically motivated by the domain
adaptation generalization bounds.

In a comprehensive battery of experiments on MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011),
CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-100 (Krizhevsky et al., 2009) datasets, we demonstrate that
by enforcing domain-invariant representation learning using DANN simultaneously with adversarial training,
we gain a significant and consistent improvement in both robustness and natural accuracy compared to other
state-of-the-art adversarial training methods, under Auto-Attack (Croce & Hein, 2020) and various strong
PGD (Madry et al., 2017), and CW (Carlini & Wagner, 2017b) adversaries in white-box and black-box settings.
Additionally, we evaluate our method using unforeseen “natural” corruptions (Hendrycks & Dietterich, 2018),
unforeseen adversaries (e.g., ℓ1, ℓ2), transfer learning, and perform ablation studies. Finally, we offer a novel
score function for quantifying the robust-natural accuracy trade-off.
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Figure 1: Illustration of the proposed architecture to enforce domain invariant representation. The feature
extractor and label classifier form the a regular DNN architecture that can be used for the main natural task.
The domain classifier is incorporated alongside the label classifier. The reversal gradient layer multiplies the
gradient by a negative number during the back-propagation.

2 Related work

2.1 Defense methods

A variety of theoretically principled (Raghunathan et al., 2018a; Sinha et al., 2017; Raghunathan et al.,
2018b; Wong et al., 2018; Wong & Kolter, 2018; Gowal et al., 2018) and empirical defense approaches (Bai
et al., 2021) were proposed to enhance robustness since the discovery of adversarial examples. Theoretically
principled methods focus on certifying robustness to adversarial perturbations under a given norm, using
variety of techniques such as randomized smoothing (Cohen et al., 2019). However, empirical defence methods
in general, and in particular adversarial training, still yield preferable results.

Among the empirical defence techniques, we can find: adversarial regularization—adding various regularization
terms to the loss functions to enhance robustness (e.g., encouraging logits for clean and adversarial examples
to be similar) (Kurakin et al., 2016a; Madry et al., 2017; Zhang et al., 2019b; Wang et al., 2019b; Kannan et al.,
2018; Jin et al., 2022), curriculum-based adversarial training—taking incremental approach when learning
PGD adversaries in the goal of improving generalization on clean data while still preserving robustness (e.g.,
gradually increasing the number of PGD iterations to avoid overfitting the adversarial examples) (Cai et al.,
2018; Zhang et al., 2020; Wang et al., 2019a), ensemble adversarial training—where clean data is augmented
with adversarial examples generated from different target models instead of a single model (Tramèr et al.,
2017; Pang et al., 2019; Yang et al., 2020), adversarial training with adaptive attack budget—where we change
the perturbation budget to prevent over-confident predictions and achieve better exploration of the manifold
(Ding et al., 2018; Cheng et al., 2020), semi-supervised and unsupervised adversarial training—several methods
theoretically and empirically demonstrated how unlabeled data can reduce the sample complexity gap between
standard training and adversarial training (Carmon et al., 2019; Uesato et al., 2019; Zhai et al., 2019),
robust self and pre-training—other works integrate self-supervised pretraining tasks such as Selfie, Rotation
and Jigsaw together with adversarial examples (Jiang et al., 2020; Chen et al., 2020), efficient adversarial
training—due to the high cost of adversarial training, efficient methods aim to keep the favorable performance
of adversarial training while reducing the computational and time costs (Shafahi et al., 2019; Wong et al., 2020;
Andriushchenko & Flammarion, 2020; Zhang et al., 2019a), and many other techniques such as adversarial
training based on feature scatter (Zhang & Wang, 2019), adversarially robust distillation (Goldblum et al.,
2020), hypersphere embedding (Pang et al., 2020b), and augmenting adversarial examples by interpolation
(Lee et al., 2020). In an additional research direction, researchers suggested to add new dedicated building
blocks to the network architecture for improved robustness (Xie & Yuille, 2019; Xie et al., 2019a; Liu et al.,
2020). Liu et al. (2020) hypothesised that different adversaries belong to different domains, and suggested
gated batch normalization which is trained with multiple perturbation types. Guo et al. (2020) focused on
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searching robust architectures against adversarial examples. Others works presented improved robustness by
combining data augmentation techniques and generated data (Rebuffi et al., 2021a;b), where the latest is also
the current state-of-the-art in robustness.

Our work belongs to the the family of adversarial regularization techniques, for which we elaborate on
common and best performing methods, and highlight the differences compared to our method.

Madry et al. (2017) proposed a technique, commonly referred to as Adversarial Training (AT), to minimize
the cross entropy loss on adversarial examples generated by PGD (without using the natural examples).
Zhang et al. (2019b) suggested to decompose the prediction error for adversarial examples as the sum of the
natural error and boundary error, and provided differentiable upper bounds on both terms. Motivated by this
decomposition, they suggested a technique called TRADES that uses the Kullback-Leibler (KL) divergence
as a regularization term that will push the decision boundary away from the data. They do so by applying
the KL-divergence on the logits of clean examples and their adversarial counterparts. Wang et al. (2019b)
suggested that misclassified examples have a significant impact on final robustness, and proposed a technique
called MART that differentiate between correctly classified and miss-classified examples during training by
weighting the KL-divergence between the clean and adversarial logits using the probability of the classifier on
the correct label.

Another area of research aims at revealing the connection between the loss weight landscape and adversarial
training (Prabhu et al., 2019; Yu et al., 2018; Wu et al., 2020). Specifically, Wu et al. (2020) identified a
correlation between the flatness of weight loss landscape and robust generalization gap. They proposed
the Adversarial Weight Perturbation (AWP) mechanism that is integrated into existing adversarial training
methods and generates adversarial perturbations on both the inputs and the network weights. More recently,
this approach was formalized from a theoretical standpoint by Tsai et al. (2021). However, this method
forms a double-perturbation mechanism that perturbs both inputs and weights, which may incur a significant
increase in calculation overhead. We demonstrate how DIAL improves results also when combined with AWP,
named DIALAWP. In Section 3.4 we elaborate about the loss functions of the different compared methods.

A related approach to ours, called ATDA, was presented by Song et al. (2018). They proposed to add several
constrains to the loss function in order to enforce domain adaptation: correlation alignment and maximum
mean discrepancy (Borgwardt et al., 2006; Sun & Saenko, 2016). While the objective is similar, using
ideas from domain adaptation for learning better representation, we address it in two different ways. Our
method fundamentally differs from Song et al. (2018) since we do not enforce domain adaptation by adding
specific constrains to the loss function. Instead, we let the network learn the domain invariant representation
directly during the optimization process, as suggested by Ganin & Lempitsky (2015); Ganin et al. (2016).
Moreover, Song et al. (2018) focused mainly of Fast Gradient Sign Method (FGSM) attack, which is a one
step variant of PGD attack. We empirically demonstrate the superiority of our method in Section 4. In a
concurrent work, Qian et al. (2021) utilized the idea of exploiting local and global data information, and
suggested to generate the adversarial examples by attacking an additional domain classifier.

2.2 Theoretical analysis of robust generalization

Several works investigated the sample complexity requires the ensure adversarial generalization compared to
the non-adversarial counterpart. Schmidt et al. (2018) has shown that there exists a distribution (mixture of
Gaussians) where ensuring robust generalization necessarily requires more data than standard learning. This
has been furthered investigated in a distribution-free models via the Rademacher complexity, VC dimension,
and fat-shattering dimension (Yin et al., 2019; Attias et al., 2019; Khim & Loh, 2018; Awasthi et al., 2020;
Cullina et al., 2018; Montasser et al., 2019; Tsai et al., 2021; Attias et al., 2022; Attias & Hanneke, 2022) and
additional settings (Diochnos et al., 2018; Carmon et al., 2019).

3 Domain Invariant Adversarial Learning approach

In this section, we introduce our Domain Invariant Adversarial Learning (DIAL) approach for adversarial
training. The source domain is the natural dataset, and the target domain is generated using adversarial
attack on the natural domain. We aim to learn a model that has low error on the source (natural) task (e.g.,
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classification) while ensuring that the internal representation cannot discriminate between the natural and
adversarial domains. In this way, we enforce additional regularization on the feature representation, which
enhances robustness.

3.1 The benefits of invariant representation to adversarial examples

The motivation behind the proposed method is to enforce an invariant feature representation to adversarial
perturbations. Given a natural example x and its adversarial counterpart x′, if the domain classifier manages
to distinguish between them, this means that the perturbation has induced a significant difference in the
feature representation. We impose an additional loss on the natural and adversarial domains in order to
discourage this behavior.

We demonstrate that the feature representation layer does not discriminate between natural and adversarial
examples, namely Gf (x; θf ) ≈ Gf (x′; θf ). Figure 2 presents the scaled mean and standard deviation (std)
of the absolute differences between the natural examples from test and their corresponding adversarial
examples on different features from the feature representation layer. Smaller differences in the mean and
std imply a higher domain invariance — and indeed, DIAL achieves near-zero differences almost across the
board. Moreover, DIAL’s feature-level invariance almost consistently outperforms the naturally trained model
(model trained without adversarial training), and the model trained using standard adversarial training
techniques (Madry et al., 2017). We provide additional features visualizations in Appendix H.

Recently, other communities also discovered the benefits of adopting analogous architectures to DANN, such
as the contrastive learning community which used similar architecture to improve representation learning
(Dangovski et al., 2021; Wang et al., 2021)

(a) Mean difference comparison (b) Standard deviation difference comparison

Figure 2: We visualize the (a) Mean and (b) standard deviation (std) differences comparison between three
models: (1) Naturally trained model (without adversarial training), named Clean. (2) Model trained using
standard adversarial training, named standard AT, and (3) Model trained using our method, DIAL. We
visualize five random features from the features layer. Each bar represent the difference between the means/std
of the natural examples and the mean/std of their corresponding adversarial examples on this same feature.

3.2 Model architecture and regularized loss function

Let us define the notation for our domain invariant robust architecture and loss. Let Gf (·; θf ) be the
feature extractor neural network with parameters θf . Let Gy(·; θy) be the label classifier with parameters
θy, and let Gd(·; θd) be the domain classifier with parameters θd. That is, Gy(Gf (·; θf ); θy) is essentially the
standard model (e.g., wide residual network (Zagoruyko & Komodakis, 2016)), while in addition, we have a
domain classification layer to enforce a domain invariant on the feature representation. An illustration of the
architecture is presented in Figure 1.

Given a training set {(xi, yi)}n
i=1, the natural loss is defined as:

Ly
nat = 1

n

∑n
i=1 CE(Gy(Gf (xi; θf ); θy), yi).

We consider two basic forms of the robust loss. One is the standard cross-entropy (CE) loss between
the predicted probabilities and the actual label, which we refer to later as DIALCE. The second is the
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Kullback-Leibler (KL) divergence between the adversarial and natural model outputs (logits), i.e., the class
probabilities between the natural examples and their adversarial counterparts, which we refer to as DIALKL.

LCE
rob = 1

n

∑n
i=1 CE(Gy(Gf (x′

i; θf ); θy), yi),

LKL
rob = 1

n

∑n
i=1 KL(Gy(Gf (x′

i; θf ); θy) ∥ Gy(Gf (xi; θf ); θy)).

where {(x′
i, yi)}n

i=1 are the generated corresponding adversarial examples. Next, we define source domain
label di as 0 (for natural examples) and target domain label d

′

i as 1 (for adversarial examples). Then, the
natural and adversarial domain losses are defined as:

Ld
nat = 1

n

∑n
i=1 CE(Gd(Gf (xi; θf ); θd), di),

Ld
adv = 1

n

∑n
i=1 CE(Gd(Gf (x′

i; θf ); θd), d′
i).

We can now define the full domain invariant robust loss:

DIALCE = Ly
nat + λLCE

rob − r(Ld
nat + Ld

adv),

DIALKL = Ly
nat + λLKL

rob − r(Ld
nat + Ld

adv).

The goal is to minimize the loss on the natural and adversarial classification while maximizing the loss
for the domains. The reversal-ratio hyper-parameter r is inserted into the network layers as a gradient
reversal layer (Ganin & Lempitsky, 2015; Ganin et al., 2016) that leaves the input unchanged during forward
propagation and reverses the gradient by multiplying it with a negative scalar during the back-propagation.
The reversal-ratio parameter is initialized to a small value and is gradually increased to r, as the main
objective converges. This enforces a domain-invariant representation as the training progress: a larger value
enforces a higher fidelity to the domain. A comprehensive algorithm description can be found in Appendix
A.

3.3 Theoretical Analysis through the Lens of Generalization Bounds

Our method refers to the natural and adversarial examples as two distinct domains, where the source domain
consists of natural examples and the target domain is the adversarially perturbed examples. Given this
assumption, we can adapt the generalization bounds from Mansour et al. (2009) to theoretically justify our
approach.

Preliminaries. Let H be a set of functions mapping X to Y and let L : Y × Y → R+ be a loss function
over Y . The LQ(f, g) loss functional is defined as the expected loss for any two functions f, g : X → Y in H,
and any distribution Q over X:

LQ(f, g) = Ex∼Q[L(f(x), g(x))].

We also denote fQ : X → Y as the target function on examples drawn from Q. That is, the error of a function
h ∈ H is defined as LQ(h, fQ) = Ex∼Q[L(h(x), fQ(x))].

We define the discrepancy distance discL between two distributions Q1 and Q2 over X by:

discL(Q1, Q2) = maxh,h′∈H |LQ1(h, h′)− LQ2(h, h′)|.

Reduction to domain adaptation. Given source (natural) distribution D, we define the target (adver-
sarial) distribution Dadv, such that every pair (x, y) in the support of D is mapped to (z, y), where z ∈ Bϵ(x)
and Dadv(z, y) = D(x, y).

Let h⋆
D = arg minh∈H LD(h, fD) be the optimal natural function, and let h⋆

Dadv
= arg minh∈H LDadv(h, fDadv)

be the optimal robust function. Additionally, we assume that the labeling function fDadv is the same as fD.

Under these assumptions, we reduce our problem to a domain adaptation one, which consists of selecting a
hypothesis h ∈ H with a small expected loss according to the target distribution.
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We can now adapt Theorem 8 in (Mansour et al., 2009) to our case and bound the adversarial loss by:

LDadv(h, fDadv) ≤
adv︷ ︸︸ ︷

LDadv(h⋆
Dadv

, fDadv) +
natural︷ ︸︸ ︷
LD(h, h⋆

D)
+ LD(h⋆

D, h⋆
Dadv

)︸ ︷︷ ︸
trade-off

+ discL(Dadv, D)︸ ︷︷ ︸
discrepancy

.
(1)

The bound on the adversarial loss consists of four terms: first term - approximation error of H for adversarial
distribution. second term - estimation error on natural examples for the output function on the true
distribution (compared to the optimal h ∈ H). third term - trade-off error (depends on H, D, Dadv, and
not the algorithm output) that represents the fraction of points for which the optimal h ∈ H on adversarial
examples are wrong, compared to the optimal h ∈ H on clean examples. forth term - the discrepancy distance
between D and Dadv.

Therefore, the adversarial loss bounded in equation 1 depends, in addition to the natural and adversarial
losses, on the discrepancy distance, discL, between the two distributions. The discrepancy distance will
decrease as the two distributions D and Dadv will be similar to one another.

Our adversarial training method, DIAL, minimizes the adversarial and natural losses, and simultaneously
learns an invariant feature representation between the adversarial and natural domains. This representation
ensures that adversarial examples and their natural counterparts will be invariant to the domain they were
taken from, and therefore makes the two distributions D and Dadv similar to each other. Altogether, DIAL
also minimizes the discrepancy distance, which in turn leads to minimizing the upper bound on the adversarial
error.

3.4 Related work loss function comparison

In Table 1 we further illustrate the loss functions of the different methods. For TRADESAWP, the process
involves running TRADES loss function, and then running weight perturbation as defined in equation (10) in
(Wu et al., 2020). These loss functions can be compared to our proposed loss functions DIALCE and DIALKL
which are detailed in section 3.2, where the main difference lies in the new natural and adversarial domain
losses. We colored in red the unique terms of our method.

4 Experiments

In this section we conduct comprehensive experiments to emphasise the effectiveness of DIAL, including
evaluations under white-box and black-box settings, robustness to unforeseen adversaries, robustness to
unforeseen corruptions, transfer learning, and ablation studies. Finally, we present a new measurement to
test the balance between robustness and natural accuracy, which we named F1-robust score.

4.1 A case study on SVHN and CIFAR-100

In the first part of our analysis, we conduct a case study experiment on two benchmark datasets: SVHN
(Netzer et al., 2011) and CIFAR-100 Krizhevsky et al. (2009). We follow common experiment settings as in
Rice et al. (2020); Wu et al. (2020). We used the PreAct ResNet-18 (He et al., 2016) architecture on which
we integrate a domain classification layer. The adversarial training is done using 10-step PGD adversary with
perturbation size of 0.031 and a step size of 0.003 for SVHN and 0.007 for CIFAR-100. The batch size is
128, weight decay is 7e−4 and the model is trained for 100 epochs. For SVHN, the initial learinnig rate is
set to 0.01 and decays by a factor of 10 after 55, 75 and 90 iteration. For CIFAR-100, the initial learning
rate is set to 0.1 and decays by a factor of 10 after 75 and 90 iterations. Results are averaged over 3 restarts
while omitting one standard deviation (which is smaller than 0.2% in all experiments). As can be seen by
the results in Tables 2 and 3, DIAL presents consistent improvement in robustness (e.g., 5.75% improved
robustness on SVHN against AA) compared to the standard AT while also improving the natural accuracy.
More results are presented in Appendix B.
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Table 1: Loss function comparison. Let (x,y) be the natural example and its corresponding label. Let x’
be the adversarial example generated from x. CE refers to the cross-entropy loss function, KL refers to
the KL-divergence loss function, and BCE is the boosted cross-entropy loss function. LCORAL and LMMD

correspond to the correlation alignment and maximum mean discrepancy (Borgwardt et al., 2006; Sun
& Saenko, 2016), respectively. Lmargin minimize the intra-class variations and maximize the inter-class
variations (Song et al., 2018). λ is a hyper parameters to control the ratio between different losses, and r is
the reversal ratio hyper parameter. Let Gf (·; θf ) be the feature extractor neural network with parameters
θf . Let Gy(·; θy) be the label classifier with parameters θy, and let Gd(·; θd) be the domain classifier with
parameters θd. That is, G(·; θ) = Gy(Gf (·; θf ); θy) is essentially the standard model definition (e.g., wide
residual network).We define source domain label d as 0 (for natural examples) and target domain label d

′ as
1 (for adversarial examples). For convenience, we present the loss function on a single example.

Method Loss function

AT CE(G(x′; θ), y)

TRADES CE(G(x; θ), y) + λ · KL(G(x′; θ) ∥ G(x; θ))

MART BCE(G(x′; θ), y) + λ · KL(G(x′; θ) ∥ G(x; θ)) · (1 − G(x; θ)y)

ATDA CE(G(x′; θ), y) + CE(G(x; θ), y) + LCORAL + LMMD + Lmargin

DIALCE CE(G(x; θ), y) + λ · CE(G(x′; θ), y)−r(CE(Gd(Gf (x; θf ); θd), d) + CE(Gd(Gf (x′; θf ); θd), d′))

DIALKL CE(G(x; θ), y) + λ · KL(G(x′; θ) ∥ G(x; θ))−r(CE(Gd(Gf (x; θf ); θd), d) + CE(Gd(Gf (x′; θf ); θd), d′))

Table 2: Robustness against white-box, black-box attacks and Auto-Attack (AA) on SVHN. Black-box
attacks are generated using naturally trained surrogate model. Natural represents the naturally trained
(non-adversarial) model.

White-box Black-Box

Defense Model Natural PGD20 PGD100 PGD1000 CW∞ PGD20 PGD100 PGD1000 CW∞ AA

NATURAL 96.85 0 0 0 0 0 0 0 0 0

AT 89.90 53.23 49.45 49.23 48.25 86.44 86.28 86.18 86.42 45.25
DIALKL (Ours) 90.66 58.91 55.30 55.11 53.67 87.62 87.52 87.41 87.63 51.00
DIALCE (Ours) 92.88 55.26 50.82 50.54 49.66 89.12 89.01 88.74 89.10 46.52

Table 3: Robustness against white-box, black-box attacks and Auto-Attack (AA) on CIFAR100. Black-box
attacks are generated using naturally trained surrogate model. Natural represents the naturally trained
(non-adversarial) model.

White-box Black-Box

Defense Model Natural PGD20 PGD100 PGD1000 CW∞ PGD20 PGD100 PGD1000 CW∞ AA

NATURAL 79.30 0 0 0 0 0 0 0 0 0

AT 56.73 29.57 28.45 28.39 26.6 55.52 55.29 55.26 55.40 24.12
DIALKL (Ours) 58.47 31.19 30.50 30.42 26.91 57.16 56.81 56.80 57.00 25.87
DIALCE (Ours) 60.77 27.87 26.66 26.61 25.98 59.48 59.06 58.96 59.20 23.51

4.2 Performance comparison on CIFAR-10

In this part, we evaluate the performance of DIAL compared to other well-known methods on CIFAR-10. We
follow the same experiment setups as in Madry et al. (2017); Wang et al. (2019b); Zhang et al. (2019b). When
experiment settings are not identical between tested methods, we choose the most commonly used settings,
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and apply it to all experiments. This way, we keep the comparison as fair as possible and avoid reporting
changes in results which are caused by inconsistent experiment settings (Pang et al., 2020a). To show that our
results are not caused because of what is referred to as obfuscated gradients (Athalye et al., 2018), we evaluate
our method with same setup as in our defense model, under strong attacks (e.g., PGD1000) in both white-box,
black-box settings, Auto-Attack (Croce & Hein, 2020), unforeseen "natural" corruptions (Hendrycks &
Dietterich, 2018), and unforeseen adversaries. To make sure that the reported improvements are not caused
by adversarial overfitting (Rice et al., 2020), we report best robust results for each method on average of 3
restarts, while omitting one standard deviation (which is smaller than 0.2% in all experiments). Additional
results for CIFAR-10 as well as comprehensive evaluation on MNIST can be found in Appendix D and E.

Table 4: Robustness against white-box, black-box attacks and Auto-Attack (AA) on CIFAR-10. Black-box
attacks are generated using naturally trained surrogate model. Natural represents the naturally trained
(non-adversarial) model.

White-box Black-Box

Defense Model Natural PGD20 PGD100 CW∞ PGD20 PGD100 CW∞ AA

NATURAL 95.43 0 0 0 0 0 0 0

TRADES 84.92 56.60 55.56 54.20 84.08 83.89 83.91 53.08
MART 83.62 58.12 56.48 53.09 82.82 82.52 82.80 51.10

AT 85.10 56.28 54.46 53.99 84.22 84.14 83.92 51.52
ATDA 76.91 43.27 41.13 41.01 75.59 75.37 75.35 40.08

DIALKL (Ours) 85.25 58.43 56.80 55.00 84.30 84.18 84.05 53.75
DIALCE (Ours) 89.59 54.31 51.67 52.04 88.60 88.39 88.44 49.85

DIALAWP (Ours) 85.91 61.10 59.86 57.67 85.13 84.93 85.03 56.78
TRADESAWP 85.36 59.27 59.12 57.07 84.58 84.58 84.59 56.17

CIFAR-10 setup. We use the wide residual network (WRN-34-10) (Zagoruyko & Komodakis, 2016)
architecture. Sidelong this architecture, we integrate a domain classification layer. To generate the adversarial
domain dataset, we use a perturbation size of ϵ = 0.031. We apply 10 of inner maximization iterations with
perturbation step size of 0.007. Batch size is set to 128, weight decay is set to 7e−4, and the model is trained
for 100 epochs. Similar to the other methods, the initial learning rate was set to 0.1, and decays by a factor
of 10 at iterations 75 and 90. See Appendix C for additional details.

Table 5: Black-box attack using the adversarially trained surrogate models on CIFAR-10.

Surrogate (source) model Target model robustness %

TRADES DIALCE 67.77
DIALCE TRADES 65.75

MART DIALCE 70.30
DIALCE MART 64.91

AT DIALCE 65.32
DIALCE AT 63.54

ATDA DIALCE 66.77
DIALCE ATDA 52.56

White-box/Black-box robustness. As reported in Table 4 and Appendix E, our method achieves better
robustness compared to the other methods. Specifically, in the white-box settings, our method improves
robustness over Madry et al. (2017) and TRADES by 2% while keeping higher natural accuracy. We also
observe better natural accuracy of 1.65% over MART while also achieving better robustness over all attacks.
Moreover, our method presents significant improvement of up to 15% compared to the the domain invariant
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method suggested by Song et al. (2018) (ATDA). When incorporating AWP, our method improves the
results of TRADESAWP by almost 2%. When tested on black-box settings, DIALCE presents a significant
improvement of more than 4.4% over the second-best performing method, and up to 13%. In Table 5, we also
present the black-box results when the source model is taken from one of the adversarially trained models. In
addition to the improvement in black-box robustness, DIALCE also manages to achieve better clean accuracy
of more than 4.5% over the second-best performing method.

4.2.1 Robustness to Unforeseen Attacks and Corruptions

Unforeseen Adversaries. To further demonstrate the effectiveness of our approach, we test our method
against various adversaries that were not used during the training process. We attack the model under the
white-box settings with ℓ2-PGD, ℓ1-PGD, ℓ∞-DeepFool and ℓ2-DeepFool (Moosavi-Dezfooli et al., 2016)
adversaries using Foolbox (Rauber et al., 2017). We applied commonly used attack budget with 20 and
50 iterations for PGD and DeepFool, respectively. Results are presented in Table 6. As can be seen, our
approach gains an improvement of up to 4.73% over the second best method under the various attack types
and an average improvement of 3.7% over all threat models.

Table 6: Robustness on CIFAR-10 against unseen adversaries under white-box settings.

Threat Model Attack Constraints DIALKL DIALCE AT TRADES MART ATDA

ℓ2-PGD ϵ = 0.5 76.05 80.51 76.82 76.57 75.07 66.25
ϵ = 0.25 80.98 85.38 81.41 81.10 80.04 71.87

ℓ1-PGD ϵ = 12 74.84 80.00 76.17 75.52 75.95 65.76
ϵ = 7.84 78.69 83.62 79.86 79.16 78.55 69.97

ℓ2-DeepFool overshoot=0.02 84.53 88.88 84.15 84.23 82.96 76.08
ℓ∞-DeepFool overshoot=0.02 68.43 69.50 67.29 67.60 66.40 57.35

Unforeseen Corruptions. We further demonstrate that our method consistently holds against unforeseen
“natural” corruptions, consists of 18 unforeseen diverse corruption types proposed by Hendrycks & Dietterich
(2018) on CIFAR-10, which we refer to as CIFAR10-C. The CIFAR10-C benchmark covers noise, blur,
weather, and digital categories. As can be shown in Figure 3, our method gains a significant and consistent
improvement over all the other methods. Our method leads to an average improvement of 4.7% with minimum
improvement of 3.5% and maximum improvement of 5.9% compared to the second best method over all
unforeseen attacks. See Appendix F for the full experiment results.

Figure 3: Accuracy comparison over all unforeseen corruptions.
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4.2.2 Transfer Learning

Recent works (Salman et al., 2020; Utrera et al., 2020) suggested that robust models transfer better on
standard downstream classification tasks. In Table 7 we demonstrate the advantage of our method when
applied for transfer learning across CIFAR10 and CIFAR100 using the common linear evaluation protocol.
see Appendix G for detailed settings.

Table 7: Transfer learning results comparison.

Target

Source Defence Model CIFAR10 CIFAR100

CIFAR10
DIAL

-
28.57

AT 26.95
TRADES 25.40

CIFAR100
DIAL 73.68

-AT 71.41
TRADES 71.42

4.2.3 Modularity and Ablation Studies

We note that the domain classifier is a modular component that can be integrated into existing models for
further improvements. Removing the domain head and related loss components from the different DIAL
formulations results in some common adversarial training techniques. For DIALKL, removing the domain
and related loss components results in the formulation of TRADES. For DIALCE, removing the domain
and related loss components results in the original formulation of the standard adversarial training, and
for DIALAWP the removal results in TRADESAWP. Therefore, the ablation studies will demonstrate the
effectiveness of combining DIAL on top of different adversarial training methods.

We investigate the contribution of the additional domain head component introduced in our method.
Experiment configuration are as in 4.2, and robust accuracy is based on white-box PGD20 on CIFAR-10
dataset. We remove the domain head from both DIALKL, DIALAWP, and DIALCE (equivalent to r = 0) and
report the natural and robust accuracy. We perform 3 random restarts and omit one standard deviation
from the results. Results are presented in Figure 4. All DIAL variants exhibits stable improvements on both
natural accuracy and robust accuracy. DIALCE, DIALKL, and DIALAWP present an improvement of 1.82%,
0.33%, and 0.55% on natural accuracy and an improvement of 2.5%, 1.87%, and 0.83% on robust accuracy,
respectively. This evaluation empirically demonstrates the benefits of incorporating DIAL on top of different
adversarial training techniques.

Figure 4: Ablation studies for DIALKL, DIALCE, and DIALAWP on CIFAR-10. Circle represent the robust-
natural accuracy without using DIAL, and square represent the robust-natural accuracy when incorporating
DIAL.
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4.2.4 Visualizing DIAL

To further illustrate the superiority of our method, we visualize the model outputs from the different methods
on both natural and adversarial test data. Figure 5 shows the embedding received after applying t-SNE
(Van der Maaten & Hinton, 2008) with two components on the model output for our method and for TRADES.
DIAL seems to preserve strong separation between classes on both natural test data and adversarial test
data. Additional illustrations for the other methods are attached in Appendix H.

(a) DIAL on natural logits (b) DIAL on adversarial
logits

(c) TRADES on natural
logits

(d) TRADES on adversar-
ial logits

Figure 5: t-SNE embedding of model output (logits) into two-dimensional space for DIAL and TRADES
using the CIFAR-10 natural test data and the corresponding PGD20 generated adversarial examples.

4.3 Balanced measurement for robust-natural accuracy

One of the goals of our method is to better balance between robust and natural accuracy under a given model.
For a balanced metric, we adopt the idea of F1-score, which is the harmonic mean between the precision and
recall. However, rather than using precision and recall, we measure the F1-score between robustness and
natural accuracy, using a measure we call the F1-robust score.

F1-robust = true_robust
true_robust + 1

2 (false_robust + false_natural)
, (2)

where true_robust are the adversarial examples that were correctly classified, false_robust are the adversarial
examples that were miss-classified, and false_natural are the natural examples that were miss-classified.
Results are presented in Table 8 and demonstrate that our method achieves the best F1-robust score in both
settings, which supports our findings from previous sections.

Table 8: F1-robust measurement using PGD20 attack in white and black box settings on CIFAR-10.

TRADES MART AT ATDA DIALCE DIALKL DIALAWP TRADESAWP

White-box 0.659 0.666 0.657 0.518 0.660 0.675 0.698 0.682
Black-box 0.844 0.831 0.845 0.761 0.890 0.847 0.854 0.849

5 Conclusion and Future Work

In this paper, we investigated the hypothesis that domain invariant representation can be beneficial for robust
learning. With this idea in mind, we proposed a new adversarial learning method, called Domain Invariant
Adversarial Learning (DIAL) that incorporates domain adversarial neural network into the adversarial training
process. The proposed method, DIAL, is theoretically motivated by the domain adaptation generalization
bounds. DIAL is generic and can be combined with any network architecture and any adversarial training
technique in a wide range of tasks. Additionally, since the domain classifier does not require the class labels,
we argue that additional unlabeled data can be leveraged in future work. Our evaluation process included
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strong adversaries, unforeseen adversaries, unforeseen corruptions, transfer learning tasks, and ablation
studies. Using the extensive empirical analysis, we demonstrate the significant and consistent improvement
obtained by DIAL in both robustness and natural accuracy.

6 Broader Impact Statement

Adversarial examples illustrate a fundamental vulnerability of deep neural networks, and manage to break
state-of-the art DNNs in various fields. As these DNNs are deployed in critical systems, such as autonomous
vehicles and facial recognition systems, it becomes crucial to build models which are robust against such
attacks. These kind of system cannot tolerate attacks that can cost in human lives. For this reason, we
proposed DIAL to improve models’ robustness against adversarial attacks. We hope that it will help in
building more secure models for real-world applications. DIAL is comparable to the state-of-the-art methods
we tested in terms of training times and other resources. That said, this work is not without limitations:
adversarial training is still a computationally expensive procedure that requires extra computations compared
to standard training, with the concomitant environmental costs. Even though incorporating our method
introduced improved standard accuracy, adversarial training still degrades the standard accuracy. Moreover,
models are trained to be robust using well known threat models such as the bounded ℓp norms. However,
once a model is deployed, we cannot control the type of attacks it faces from sophisticated adversaries. Thus,
the general problem is still very far from being fully solved.
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Algorithm 1 Domain Invariant Adversarial Learning
Input: Source data S = {(xi, yi)}n

i=1 and network architecture Gf , Gy, Gd

Parameters: Batch size m, perturbation size ϵ, pgd attack step size τ , adversarial trade-off λ, initial
reversal ratio r, and step size α
Init: Y0 and Y1 source and target domain vectors filled with 0 and 1 respectively
Output: Robust network G = (Gf , Gy, Gd) parameterized by θ̂ = (θf , θy, θd) respectively
repeat

Fetch mini-batch Xs = {xj}m
j=1, Ys = {yj}m

j=1
# Generate adversarial target domain batch Xt

for j = 1, . . . , m (in parallel) do
x′

j ← PGD(xj , yj , ϵ, τ)
Xt ← Xt + x′

j

end for
ℓy

s , ℓy
t ← CE(Gy(Gf (Xs)), Ys), CE(Gy(Gf (Xt)), Ys)

ℓd
s , ℓd

t ← CE(Gd(Gf (Xs)), Y0), CE(Gd(Gf (Xt)), Y1)
ℓ← ℓy

s + λℓy
t − r(ℓd

s + ℓd
t )

θ̂ ← θ̂ − α∇θ̂(ℓ)
until stopping criterion is not met

A Domain Invariant Adversarial Learning Algorithm

Algorithm 1 describes a pseudo-code of our proposed DIALCE variant. As can be seen, a target domain
batch is not given in advance as with standard domain-adaptation task. Instead, for each natural batch we
generate a target batch using adversarial training. The loss function is composed of natural and adversarial
losses with respect to the main task (e.g., classification), and from natural and adversarial domain losses.
By maximizing the losses on the domain we aim to learn a feature representation which is invariant to the
natural and adversarial domain, and therefore more robust.

B additional results on CIFAR-100 and SVHN

Table 9: Robustness against white-box, black-box attacks and Auto-Attack (AA) on SVHN. Black-box attacks
are generated using naturally trained surrogate model and applied to the best performing robust models.

White-box Black-Box

Defense Model Natural PGD20 PGD100 PGD1000 CW∞ PGD20 PGD100 PGD1000 CW∞ AA

TRADES 90.35 57.10 54.13 54.08 52.19 86.89 86.73 86.57 86.70 49.5
DIALKL (Ours) 90.66 58.91 55.30 55.11 53.67 87.62 87.52 87.41 87.63 51.00
DIALCE (Ours) 92.88 55.26 50.82 50.54 49.66 89.12 89.01 88.74 89.10 46.52

Table 10: Robustness against white-box, black-box attacks and Auto-Attack (AA) on CIFAR100. Black-box
attacks are generated using naturally trained surrogate model and applied to the best performing robust
models.

White-box Black-Box

Defense Model Natural PGD20 PGD100 PGD1000 CW∞ PGD20 PGD100 PGD1000 CW∞ AA

TRADES 58.24 30.1 29.66 29.64 25.97 57.05 56.71 56.67 56.77 24.92
DIALKL (Ours) 58.47 31.19 30.50 30.42 26.91 57.16 56.81 56.80 57.00 25.87
DIALCE (Ours) 60.77 27.87 26.66 26.61 25.98 59.48 59.06 58.96 59.20 23.51
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C CIFAR-10 Additional Experimental Setup details

Additional defence setup. For being consistent with other methods, the natural images are padded with
4-pixel padding with 32-random crop and random horizontal flip. Furthermore, all methods are trained using
SGD with momentum 0.9. For DIALKL, we balance the robust loss with λ = 6 and the domains loss with
r = 4. For DIALCE, we balance the robust loss with λ = 1 and the domains loss with r = 2. For DIAL-AWP,
we used the same learning rate schedule used in Wu et al. (2020), where the initial 0.1 learning rate decays
by a factor of 10 after 100 and 150 iterations. For black-box attacks, we used two types of surrogate models
(1) naturally trained surrogate model, with natural accuracy of 95.61% and (2) surrogate model trained using
one of the adversarial training methods.

D Benchmarking the State-of-the-art on MNIST

Defence setup. We use the same CNN architecture as used in Zhang et al. (2019b) which consists of
four convolutional layers and three fully-connected layers. Sidelong this architecture, we integrate a domain
classification layer. To generate the adversarial domain dataset, we use a perturbation size of ϵ = 0.3. We
apply 40 iterations of inner maximization with perturbation step size of 0.01. Batch size is set to 128 and
the model is trained for 100 epochs. Similar to the other methods, the initial learning rate was set to 0.01,
and decays by a factor of 10 after 55 iterations, 75 and 90 iterations. All the models in the experiment are
trained using SGD with momentum 0.9. For our method, we balance the robust loss with λ = 6 and the
domains loss with r = 0.1.

White-box/Black-box robustness. We evaluate all defense models using PGD40, PGD100, PGD1000

and CW∞ (ℓ∞ version of Carlini & Wagner (2017b) attack optimized by PGD-100) with step size 0.01. We
constrain all attacks by the same perturbation ϵ = 0.3. For our black-box setting, we use a naturally trained
surrogate model with natural accuracy of 99.51%. As reported in Table 11, our method achieves improved
robustness over the other methods under the different attack types, while preserving the same level of natural
accuracy, and even surpassing the naturally trained model. We should note that in general, the improvement
margin on MNIST is more moderate compared to CIFAR-10, since MNIST is an easier task than CIFAR-10
and the robustness range is already high to begin with. Additional results are available in Appendix E.

Table 11: Robustness against white-box, black-box attacks and Auto-Attack (AA) on MNIST. Black-box
attacks are generated using naturally trained surrogate model and applied to the best performing robust
models.

White-box Black-Box
Defense Model Natural PGD40 PGD100 CW∞ PGD40 PGD100 CW∞ AA
TRADES 99.48 96.07 95.52 95.69 98.12 97.86 98.21 92.79
MART 99.38 96.99 96.11 95.98 98.16 97.96 98.28 93.30
AT 99.41 96.01 95.49 95.78 98.05 97.73 98.20 88.50
ATDA 98.72 96.82 96.26 96.31 97.74 97.28 97.76 93.31
DIALKL (Ours) 99.46 97.05 96.06 96.17 98.14 97.83 98.14 93.68
DIALCE (Ours) 99.52 97.61 96.91 97.00 98.41 98.12 98.48 93.43

E Additional Results on MNIST and CIFAR-10

In Table 12 we present additional results using the PGD1000 threat model. We use step size of 0.003 and
constrain the attacks by the same perturbation ϵ = 0.031. Table 13 presents a comparison of our method
combined with AWP to other the variants of AWP that were presented in Wu et al. (2020). In addition, in
Table 14 we add the F1-robust scores for different variants of AWP.
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Table 12: PGD1000 attack on MNIST and CIFAR-10 on white-box and black-box settings.

MNIST CIFAR-10
Defense Model White-box Black-box White-box Black-box
TRADES 95.22 97.81 56.43 83.80
MART 95.74 97.89 56.55 82.47
AT 95.36 97.78 54.40 83.96
ATDA 96.20 97.34 41.02 75.11
DIALCE (Ours) 96.78 98.10 51.57 88.22
DIALKL (Ours) 95.99 97.89 56.73 84.00

Table 13: Robustness comparison of DIAL-AWP and other variants of AWP that do not require additional
data under the ℓ∞ threat model.

Defense Model Natural PGD20 PGD100 CW∞ AA
DIAL-AWP (Ours) 85.91 61.10 59.86 57.67 56.78
TRADES-AWP (Wu et al., 2020) 85.36 59.27 59.12 57.07 56.17
MART-AWP (Wu et al., 2020) 84.43 60.68 59.32 56.37 54.23
AT-AWP (Wu et al., 2020) 85.57 58.14 57.94 55.96 54.04

Table 14: F1-robust measurement on AWP variants based on white-box attack.

Defense Model F1-robust
DIAL-AWP (Ours) 0.69753
TRADES-AWP (Wu et al., 2020) 0.68162
MART-AWP (Wu et al., 2020) 0.68857
AT-AWP (Wu et al., 2020) 0.67381

F Extened results on Unforeseen Corruptions

We present full accuracy results against unforeseen corruptions in Tables 15 and 16.

Table 15: Accuracy (%) against unforeseen corruptions.

Defense Model brightness defocus blur fog glass blur jpeg compression motion blur saturate snow speckle noise

TRADES 82.63 80.04 60.19 78.00 82.81 76.49 81.53 80.68 80.14
MART 80.76 78.62 56.78 76.60 81.26 74.58 80.74 78.22 79.42
AT 83.30 80.42 60.22 77.90 82.73 76.64 82.31 80.37 80.74
ATDA 72.67 69.36 45.52 64.88 73.22 63.47 72.07 68.76 72.27
DIAL (Ours) 87.14 84.84 66.08 81.82 87.07 81.20 86.45 84.18 84.94

Table 16: Accuracy (%) against unforeseen corruptions.

Defense Model contrast elastic transform frost gaussian noise impulse noise pixelate shot noise spatter zoom blur

TRADES 43.11 79.11 76.45 79.21 73.72 82.73 80.42 80.72 78.97
MART 41.22 77.77 73.07 78.30 74.97 81.31 79.53 79.28 77.8
AT 43.30 79.58 77.53 79.47 73.76 82.78 80.86 80.49 79.58
ATDA 36.06 67.06 62.56 70.33 64.63 73.46 72.28 70.50 67.31
DIAL (Ours) 48.84 84.13 81.76 83.76 78.26 87.24 85.13 84.84 83.93
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G Transfer Learning Settings

The models used are the same models from previous experiments. We follow the common procedure of
“fixed-feature” setting, where only a linear layer on top of the pre-trained network is trained. We train a
linear classifier on CIFAR-100 on top of the pre-trained network which was trained on CIFAR-10. We also
train a linear classifier on CIFAR-10 on top of the pre-trained nwork which was trained on CIFAR-100. We
train the linear classifier for 100 epochs, and an initial learning rate of 0.1 which is decayed by a factor of 10
at epochs 50 and 75. We used SGD optimizer with momentum 0.9.

H Extended visualizations

In Figure 7, we provide additional visualizations of the different adversarial training methods presented above.
We visualize the models outputs (logits) using t-SNE with two components on the natural test data and
the corresponding adversarial test data generated using PGD20 white-box attack with step size 0.003 and
ϵ = 0.031 on CIFAR-10.

In Figure 6 we visualize statistical differences between natural and adversarial examples in the feature
representation layer. Specifically, we show the differences in mean and std on thirty random feature values
from the feature representation layer as we pass through a network the natural test examples and their
corresponding adversarial examples. We present the results on same network architecture (WRN-34-10),
trained using three different training procedures: naturally trained network, network trained using standard
adversarial training (AT) Madry et al. (2017), and DIAL on the CIFAR-10 dataset. When the statistical
characteristics of each feature differ from each other, it implies that the features layer is less domain invariant.
That is, smaller differences in mean/std yields a better invariance to adversarial examples. One can observe
that for DIAL, there is almost no differences between the mean/std of natural examples and their corresponding
adversarial examples. Moreover, for the vast majority of the features, DIAL present smaller differences
compared to the naturally trained model and the model trained with standard adversarial training. Best
viewed in colors.

(a) Mean difference comparison

(b) Standard deviation difference comparison

Figure 6: Mean and std differences comparison between DIAL, naturally trained model and model trained
using standard adversarial training on thirty random features from the features layer on the CIFAR-10 dataset
with WRN-34-10 architecture. Each bar represents the absolute difference between the means/std of the
natural examples and the mean/std of their corresponding adversarial examples on this same feature.
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(a) MART embedded model output (logits)
on natural test data

(b) MART embedded model output (logits)
on adversarial test data

(c) AT embedded model output (logits) on
natural test data

(d) AT embedded model output (logits) on
adversarial test data

(e) ATDA embedded model output (logits)
on natural test data

(f) ATDA embedded model output (logits)
on adversarial test data

Figure 7: t-SNE embedding of model output, logits, in two-dimensional space for MART, AT, and ATDA
under natural and adversarial test data from CIFAR-10.
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I In-depth Analysis

Additionally, we present two additional results and visualizations that can show our performance difference is
solid. First, in Figure 8 we present a 2d T-SNE plot on the features layer (unlike the logits layer , which is
more related to the quantitative results), to further demonstrate that our method indeed learns a domain
invariant feature representation better than the other methods, and compared it to TRADES. Second, we wish
to demonstrate that our performance gain is not a due to specific aspects of the domain (e.g., improvement
only on specific classes). To do so, we visualize in figures 9, 10 the classification improvement obtained by
our method on each class in CIFAR-10. As can be seen, on the natural examples, our method improved the
accuracy on all classes, and on the adversarial examples, our method improves robustness on 9 out of 10
classes. This further demonstrates the generalization of our approach.

(a) DIAL embedded features on natural
test data

(b) DIAL embedded features on adversarial
test data

(c) TRADES embedded features on natu-
ral test data

(d) TRADES embedded features on adver-
sarial test data

Figure 8: Visualizing the two-dimensional T-SNE feature space embedding of DIAL and TRADES for (1)
natural test data, and (2) adversarial test data from CIFAR-10.
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Figure 9: DIALKL and TRADES Robustness (%) for each class on CIFAR-10. Adversarial examples are
generated using PGD-20. Our method manages to improve robustness over TRADES on 9 out of 10 classes.
Green annotation presented the difference percentage improvement.

Figure 10: DIALCE and TRADES natural accuracy (%) for each class on CIFAR-10. Our method manages to
improve natural accuracy on all 10 classes. Green annotation presented the difference percentage improvement.
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