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ABSTRACT

Pruning methods have recently grown in popularity as an effective way to reduce
the size and computational complexity of deep neural networks. Large numbers
of parameters can be removed from trained models with little discernible loss in
accuracy after a small number of continued training epochs. However, pruning
too many parameters at once often causes an initial steep drop in accuracy which
can undermine convergence quality. Iterative pruning approaches mitigate this by
gradually removing a small number of parameters over multiple epochs. However,
this can still lead to subnetworks that overfit local regions of the loss landscape.
We introduce a novel and effective approach to tuning subnetworks through a
regularization technique we call Stochastic Subnetwork Annealing. Instead of re-
moving parameters in a discrete manner, we instead represent subnetworks with
stochastic masks where each parameter has a probabilistic chance of being in-
cluded or excluded on any given forward pass. We anneal these probabilities over
time such that subnetwork structure slowly evolves as mask values become more
deterministic, allowing for a smoother and more robust optimization of subnet-
works at high levels of sparsity.

1 INTRODUCTION

Deep neural networks have seen a steady increase in size as large amounts of compute and high qual-
ity data have become more accessible. Models with billions of parameters are becoming common-
place and demonstrating incredible performance across a wide range of difficult machine learning
tasks. However, these models also bring important challenges related to computational needs, stor-
age cost, and training efficiency. The resource-intensive nature of these large networks have spurred
a growing interest in techniques that can reduce the size and computational complexity associated
with training and deploying these models.

One of the most popular methods used to compress large networks is weight pruning. It’s long been
known that you can remove a significant number of parameters from these trained models, and after
a small number of epochs of continued training, they can maintain or even exceed the performance
of the full size network (Blalock et al., 2020; Frankle & Carbin, 2019). While saliency metrics are
often used to prune the most unnecessary weights, even random sampling has been show to produce
accurate models at moderate levels of sparsity (Liu et al., 2022b).

Several researchers have investigated ways tune these subnetworks more efficiently and with better
accuracy. One of the most effective techniques used in state of the art pruning methods involves
iterative pruning/tuning cycles (Blalock et al., 2020). The key insight being that pruning too many
parameters at once can lead to drastic performance collapse as subnetworks get stuck in lower per-
forming regions of the optimization landscape. Pruning a small number of parameters over several
epochs allows the model to better adapt to the changing network structure. However, these iterative
methods can still result in subnetworks that are prone to overfitting local optimization regions.

We introduce a novel regularization approach for fine tuning these subnetworks by leveraging
stochasticity for the network structure. Rather than using fixed subnetworks and discrete pruning
operations, we instead represent subnetworks with probability matrices that determine how likely it
is that a parameter is retained on any given forward pass. The probability matrices are then adjusted
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during the tuning phase through the use of dynamic annealing schedules which allows for a sub-
network to be slowly revealed over several epochs. The probabilistic inclusion of extra parameters
early in the tuning process allows for gradient information to bleed through into the target subnet-
work, encouraging robust adaptation and avoiding the drastic performance collapse observed with
one-shot pruning methods.

We conduct a large scale ablation study to explore the efficacy and dynamics of several hyperparam-
eters and their effects on convergence, including initial stochasticity, number of annealing epochs,
amount of sparsity, constant/phasic learning rate schedules, and random/saliency based parameter
selection strategies. Our experiments demonstrate significant improvements over both one-shot and
iterative pruning methods across several tuning configurations with especially large improvements
in highly sparse subnetworks (95-98%).

We additionally explore how Stochastic Subnetwork Annealing can be leveraged in a benchmark
low-cost ensemble learning method that generates diverse child networks through random pruning
of a trained parent network. Implementing our technique to tune the child networks results in better
ensemble generalization on benchmark image classification tasks, illustrating a new Pareto Frontier
for the computational efficiency/accuracy boundary.

2 BACKGROUND

Subnetworks are represented with binary bit mask matrices with the same dimensions of the weight
matrices for each layer in the parent network. Consider a weight matrix W ∈ Rm×n representing
the weights of a particular layer in a neural network. We introduce a matrix M ∈ {0, 1}m×n with the
same dimensions as W. The elements of M are binary values, where Mij = 1 if the corresponding
weight Wij is retained, and Mij = 0 if the weight is masked. The mask is generated with an
arbitrary discrete stochastic process ϕ. The subnetwork weights Ŵ can then be computed as the
element-wise (Hadamard) product of W and M.

M ∼ ϕm×n (1)

Ŵ = W ◦M (2)

The topology of the subnetwork can be further described by the granularity in which parameters are
masked. This granularity refers to the unstructured or structured distribution of masked weights,
where unstructured methods refer to weight-level or connection-level masking and structured meth-
ods refer to neuron-level, channel-level, or layer-level masking. Removing entire rows, columns, or
blocks from a layer’s weight matrix can be effective at reducing computational complexity as the
reduced size of the weight matrix can be leveraged for hardware optimizations. This is more diffi-
cult to achieve with the sparse matrices resulting from unstructured masking. However, unstructured
masking tends to result in networks with better generalization as the number of masked parameters
increases (Blalock et al., 2020).

Ŵuns =

w11 w12 0 w14

0 w22 0 0
w31 0 0 w34

0 0 w43 w44

 (3)

Ŵstr =

w11 w12 w13 w14

0 0 0 0
w31 w32 w33 w34

0 0 0 0

 (4)

It’s important to also consider the distribution of masked weights throughout non-homogenous net-
works. It’s common for layer configurations in deep neural networks to vary significantly in size
and shape. Severe pruning of small layers may result in bottlenecks that restrict gradient flow. The
distribution of masked weights can be controlled with global and local masking methods. Global
methods are applied uniformly across the entire network while local methods are applied indepen-
dently within each layer or sub-region. Global methods tend to result in higher compression rates as
more parameters from the larger layers are removed whereas local methods offer more fine-grained
control and reduced variance (Blalock et al., 2020).
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Continued training of the subnetwork is crucial in order to recover the lost accuracy from pruning.
Only a small number of epochs are generally needed as subnetworks inherited from trained networks
converge quickly. The standard practice for fine-tuning subnetworks involves training with a small
learning rate consistent with the final phase of the parent network’s training (Li et al., 2017; Liu
et al., 2019; Han et al., 2015).

Iterative pruning has been shown to be highly effective at improving accuracy of subnetworks com-
pared to one-shot pruning (Li et al., 2017; Frankle & Carbin, 2019; Han et al., 2015; Gale et al.,
2019). Instead of pruning all of the weights at once, instead an iterative cycle is implemented where
a small number of weights are pruned, the network is tuned, and this repeats until a target sparsity
level is reached. Iterative pruning results in a less destructive effect on network performance which
can allow for greater levels of sparsity at improved accuracy.

The Lottery Ticket Hypothesis introduced the concept of weight rewinding, where both the network
weights and the learning rate is rewound to a previous state t epochs ago. Training continues from
this previous state but with the new subnetwork structure fixed (Frankle & Carbin, 2019). However,
rewinding the weights have been shown to be less effective than rewinding only the learning rate
(Renda et al., 2020). The efficacy of learning rate rewinding has been tangentially shown in many
optimization papers where a decaying learning rate schedule has been shown to improve training
efficiency and convergence quality in deep networks (You et al., 2019).

Cyclic learning rate schedules have been used to good effect in several low-cost ensemble methods,
where large learning rates can help to encourage more diversity by moving further distances in
parameter space before using small learning rates to converge to local optima (Huang et al., 2017;
Garipov et al., 2018; Whitaker & Whitley, 2022). We experiment with a learning rate schedule
called the one-cycle policy, which consists of a warm-up phase that anneals from a small learning
rate to a large learning rate for the first 10% of training, followed by a cosine annealed cool-down to
0. This schedule has been shown to lead to a phenomenon called super-convergence, where network
training is greatly accelerated on some datasets (Smith & Topin, 2018).

The value for the learning rate η at iteration t, where ηinit is the initial learning rate value, ηmax

is the maximum value, ηmin is the minimum value and T is the total number of iterations can be
described as:

ηwarm(t) = ηinit +
1

2
(ηmax − ηinit)

(
1− cos

(
πt

T

))
(5)

ηcool(t) = ηmin +
1

2
(ηmax − ηmin)

(
1 + cos

(
πt

T

))
(6)

3 STOCHASTIC SUBNETWORK ANNEALING

In pruning literature, sparse network structures are generally static and represented with binary bit
masks. We propose a model of representing neural subnetworks with probabilistic masks, where
each parameter is assigned a score that determines how likely it is that the parameter will be retained
on any given forward pass. This introduces stochasticity into the subnetwork sampling process,
which can act as a form of implicit regularization analagous to a reverse dropout, where parameters
that would have been pruned have a chance to activate. This technique encourages exploration of a
larger space of subnetworks during the fine-tuning phase, preventing it from becoming overly reliant
on a single fixed topological configuration, resulting in more robust and generalized subnetworks.

Consider a weight matrix W ∈ Rm×n representing the weights of a particular layer in a neural
network. We introduce a probability matrix P ∈ Rm×n containing scores that represent the proba-
bility that a parameter Wij will be will be masked on any given forward pass. The subnetwork mask
M ∈ {0, 1}m×n is determined with a Bernoulli realization of the probability matrix P .

We then anneal these probability values over some number of epochs such that subnetworks are
slowly ”revealed” throughout fine-tuning. This is done by introducing an annealing schedule, where
the probability values for each parameter slowly move towards 0 or 1 depending on the target sub-
network sparsity. At the beginning of the training process, a high level of stochasticity is desirable as
it encourages exploration of the weight space which may help to prevent overfitting and search for
more effective subnetwork configurations. As training progresses, the stochasticity should gradu-
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ally decrease to allow for stable convergence. The annealing function is arbitrary, with some popular
examples being the linear, cosine, and exponential decay.

3.1 RANDOM ANNEALING

The probability matrix can be generated in a variety of ways. For example, a uniform distribution
P ∼ U([0, 1])m×n can be used to randomly assign probabilities to each parameter. All parame-
ters with a value less than the sparsity target will then anneal towards 0 while parameters with a
probability value greater than the sparsity target will anneal towards 1.

0 S 1

With this implementation, the mean activation of parameters at the beginning of tuning will be 50%
regardless of the target subnetwork sparsity. Other distributions can offer more fine grained control
over network structure. For example, assume that a binary matrix X ∈ {0, 1}m×n is randomly
generated and used to index into a probability matrix P ∈ Rm×n. Using this index matrix X , we
can sample from Gaussian distributions with different means and variances.

P =

{
Pij ∼ N (µ1, σ

2
1), if Xij = 0

Pij ∼ N (µ2, σ
2
2), if Xij = 1

0 1
x

y

This approach to constructing multi-modal distributions can allow for many interesting formulations
of stochastic subnetworks. Future work may find natural applications to multi-task learning, where
certain groups of parameters can be strongly correlated with each other while allowing for overlap
with other task specific subnetworks. This stochastic overlap may encourage shared portions of the
network to learn generalized features, avoiding the problem in typical network-splitting approaches
where task specific subnetworks become increasingly narrow and lead to degraded performance.

3.2 TEMPERATURE ANNEALING

Temperature scaling may be applied to binary matrices in order to allow for an even application of
stochasticity, reducing some variance relative to random annealing. Assume that some binary matrix
X ∈ {0, 1}m×n is generated to represent a target subnetwork. A temperature scaling constant τ is
introduced such that the values in X with a 1 are decayed by τ and the values with 0 are increased
by τ . The mask is then determined on every forward pass with an altered probability according to τ .
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Altering the initial value of τ allows for a much more controlled approach to noise injection during
the early phases of tuning, which can be highly desirable when the number of total tuning epochs is
limited.

A variation of temperature scaling, where tau is only applied to parameters that are not a part of the
target subnetwork, will be shown to be a highly effective form of regularization analagous to a re-
verse dropout. That is, the subnetwork is always active, but parameters that would have been pruned
away now have a chance to pop back in during tuning. This formulation is less destructive than
full temperature scaling as the target subnetwork will be optimized on every training step. Allowing
other parameters to become active allows for gradient information to contribute to optimization of
the target subnetwork which can help to encourage avoidance of local minima.

P =

 1 1 0 + τ 1
0 + τ 1 0 + τ 0 + τ
1 0 + τ 0 + τ 1

0 + τ 0 + τ 1 1



4 STOCHASTIC SUBNETWORK ENSEMBLES

Ensemble learning is a powerful technique for improving the generalization of machine learning
systems (Hansen & Salamon, 1990; Krogh & Vedelsby, 1994). These algorithms train multiple
models which are then evaluated independently on test data. The combination of several predictions
allows for bias and variance reduction that results in reliable performance improvement. However,
as datasets and neural networks have grown larger, traditional ensemble methods have become pro-
hibitively expensive to implement. Recent research has shown that low-cost ensemble methods can
achieve performance that rivals full size ensembles at a significantly reduced cost. Several of the
most powerful low-cost methods do this by leveraging sparse subnetworks within large parent net-
works. (Whitaker & Whitley, 2022; von Oswald et al., 2022; Liu et al., 2022a; Havasi et al., 2021).

Prune and Tune Ensembling (PAT) is one such technique that demonstrates incredible efficiency for
the training compute/accuracy tradeoff. These work by first training a single parent network for
the majority of the training budget. Child networks are then spawned by cloning and dramatically
pruning the parent using random or anti-random sampling strategies. Each of the child networks are
then fine tuned with a cyclic learning rate schedule for a small number of epochs.

As child networks are all derived from an identical parent network, anti-random pruning and one-
cycle tuning are used to encourage diversity and reduce correlation among ensemble members by
ensuring that topological structures are distant and that parameters move far apart in optimization
space before converging (Malaiya, 1995; Wu et al., 2008; Smith & Topin, 2018; Whitaker & Whit-
ley, 2022).

Anti-random pruning creates mirrored pairs of child networks, such that whenever we randomly
prune the parent to create a child, a sibling is created that inherits the opposite set of parameters.
Consider a binary bit string M = {x0, ..., xn : x ∈ {0, 1}}, that is randomly generated with 50%
sparsity where 1 represents parameters that are kept and 0 represents parameters that are pruned.
The anti-random network then is created by reversing the polarity of all the bits in the mask M , such
that:

θ̂1 = θ ◦M and θ̂2 = θ ◦ (1−M) (7)

where θ̂i are the parameters of the child network, θ are the parameters of the parent network and ◦
denotes the Hadamard product.

Stochastic Subnetwork Annealing can be easily implemented to tune child networks within the con-
text of this low-cost ensemble algorithm. Our implementation of random annealing can naturally
extend to the ideas of anti-random pruning through anti-probability matrices. When a probability
matrix is generated, a mirrored probability matrix can be generated such that the subnetworks anneal
to opposite topological structures where P ′ = 1− P .
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Random/Constant 50% 70% 90% 95% 98%

One-Shot Baseline 64.0± 0.07 63.4± 0.13 54.9± 0.12 48.4± 0.24 41.1± 0.47
Iterative Pruning 65.1± 0.10 63.4± 0.05 57.8± 0.06 49.8± 0.22 42.8± 0.26
Random Annealing 65.3± 0.17 63.6± 0.15 58.9± 0.17 54.5± 0.16 45.7± 0.22
Temperature Annealing 65.6± 0.09 64.3± 0.12 59.5± 0.02 55.4± 0.19 46.5± 0.15

Random/One-Cycle 50% 70% 90% 95% 98%

One-Shot Baseline 70.1± 0.07 68.9± 0.19 61.8± 0.07 56.8± 0.21 49.3± 0.27
Iterative Pruning 70.1± 0.03 69.2± 0.11 63.9± 0.05 57.4± 0.12 49.8± 0.51
Random Annealing 70.2± 0.09 69.2± 0.12 64.5± 0.07 59.7± 0.16 52.7± 0.30
Temperature Annealing 70.6± 0.06 69.6± 0.09 64.9± 0.08 60.2± 0.08 53.3± 0.29

Magnitude/Constant 50% 70% 90% 95% 98%

One-Shot Baseline 67.1± 0.16 67.3± 0.37 65.7± 0.24 63.3± 0.14 54.4± 0.24
Iterative Pruning 68.2± 0.09 67.9± 0.04 65.9± 0.07 63.3± 0.02 56.2± 0.11
Temperature Annealing 68.5± 0.03 68.3± 0.03 66.3± 0.02 63.4± 0.11 56.6± 0.19

Magnitude/One-Cycle 50% 70% 90% 95% 98%

One-Shot Baseline 70.9± 0.12 70.1± 0.26 69.7± 0.06 67.5± 0.16 60.2± 0.10
Iterative Pruning 71.1± 0.04 71.1± 0.06 69.9± 0.16 67.6± 0.08 60.8± 0.19
Temperature Annealing 71.5± 0.06 71.4± 0.02 70.3± 0.10 67.8± 0.02 61.5± 0.02

Table 1: Comparison between various baseline approaches when used with random/magnitude prun-
ing on CIFAR-100. We report the best accuracy for each method at various levels of target sparsity
when tuned with both a constant learning rate and a one-cycle learning rate schedule. The par-
ent network has a baseline accuracy of 71.5%. Our annealing strategies consistently outperform
established one-shot and iterative pruning methods.

5 EXPERIMENTS

5.1 ABLATIONS

We begin with an exploration of several stochastic subnetwork annealing configurations with the
goal of investigating how different hyperparameters impact the efficiency and quality of subnetwork
convergence, compared to established one-shot and iterative pruning techniques.

We use the benchmark CIFAR-10/CIFAR-100 datasets to conduct our explorations (Krizhevsky,
2012). CIFAR consists of 60,000 small natural colored images that are 32x32 pixels in size. Each
dataset is split into a training set containing 50,000 images and a test set containing 10,000 images.
CIFAR-10 samples images from 10 different classes, or target labels, while CIFAR-100 samples
from 100 different classes. Thus, CIFAR-10 contains 5,000 images for each class while CIFAR-100
is comparatively more difficult containing only 500 images for each class.

All ablations use the same ResNet-18 trained for 100 epochs using a standardized optimization
configuration (He et al., 2016). We use PyTorch’s Stochastic Gradient Descent optimizer with an
initial learning rate of 0.1 and Nesterov momentum of 0.9 (Sutskever et al., 2013). After 50 epochs,
the learning rate is decayed to 0.01 and again to 0.001 for the final 10 epochs. We use standard data
augmentations including random crop, random horizontal flip, and mean standard normalization.

Pruning is done in a layerwise unstructured fashion, after which each subnetwork is tuned for an
additional 20 epochs. We experiment with both a constant learning rate of 0.01 and a one-cycle
policy with a max learning rate of 0.1. We explore the results for each configuration with different
levels of final subnetwork sparsity ρ ∈ [0.5, 0.7, 0.9, 0.95, 0.98]. We additionally include results for
subnetworks created through L1 unstructured pruning. In this case, parameters with the smallest
magnitudes at each layer are pruned.
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Figure 1: Ablations exploring how the initial temperature and the number of annealing epochs affect
convergence behavior. The rightmost graph displays the best performing annealing configuration for
each sparsity and plots it against the one-shot pruning baseline. Stochastic annealing outperformed
the other methods for each sparsity, with more drastic improvements appearing in extremely sparse
networks.

The one-shot baseline prunes the parent network to the target sparsity before we start tuning. Iter-
ative pruning calculates the number of parameters to remove at the beginning of each epoch over
some number of pruning epochs φ ∈ [5, 10, 15, 20] such that the final target sparsity is hit. Random
Annealing uses a probability matrix that is generated according to a random uniform distribution,
where each parameter is assigned a value between 0 and 1. Parameters with a value less than the
target sparsity value are linearly annealed to 0 and values greater than the target sparsity are linearly
annealed to 1, over some number of annealing epochs φ ∈ [5, 10, 15, 20]. Temperature Annealing
uses a randomly generated binary bitmask according to the target sparsity. All parameters with a
value of 0 are modified to an initial temperature value of τ ∈ [0.2, 0.4, 0.6, 0.8, 1.0]. Those values
are then cosine annealed to 0 over some number of annealing epochs φ ∈ [5, 10, 15, 20].

Table 1 includes the mean accuracies for the best configurations of each method on CIFAR-100. We
see consistent improvement with both of our stochastic annealing methods over the baseline one-shot
and iterative pruning techniques across all sparsities and with both a constant learning rate and a one-
cycle policy. As networks become more sparse, the benefits from our annealing approaches become
more significant, with a 6% and 4% improvement at 98% sparsity over the one-shot baseline with
a constant and one-cycle rate schedule respectively. We also observed improved performance with
magnitude pruning, however the differences were smaller at 2% and 1% improvement respectively.

Figure 1 includes an exploration of the initial temperature, the number of annealing epochs and the
test trajectories for the best models tuned with a constant learning rate schedule. The hyperparameter
with the most significant impact on all pruning methodologies was the number of epochs that were
pruned or annealed over. We saw best results for all subnetwork sparsities with e = 5 or e = 10
annealing epochs. It’s important for the final subnetwork topology to be established for a sufficient
number of epochs to allow for optimal convergence behavior. This pattern holds for both constant
and one-cycle learning rate schedules. The initial temperature has a smaller impact on performance
than the number of annealing epochs. A small value of τ means that the target subnetwork is always
active and other parameters have a small chance to turn on, while a high value of τ means that the
target subnetwork is always active and other parameters have a high chance to turn on. We saw best
results when τ was in the 0.4 to 0.6 range. This corresponds to a higher state of entropy regarding
network structure which results in a stronger regularization effect for those initial training examples.

Figure 2 includes an exploration of random annealing vs temperature annealing, iterative pruning
vs temperature annealing, and the test trajectories for the best models with a one-cycle learning
rate schedule. Despite the additional variance associated with random annealing, we found that
the performance was very good and nearly approached that of temperature annealing. Temperature
annealing consistently outperformed iterative pruning. The graph displays results for annealing
epochs e ∈ [5, 10] and a target subnetwork sparsity of 0.9. While the early accuracy of temperature
annealing appears worse, it quickly surpasses iterative pruning as the annealing phase ends. The
One-Cycle schedule does reduce the accuracy gap between our method and the baselines due to the
much improved generalization compared to the constant learning rate models. However, temperature
annealing still consistently outperformed the baseline across all sparsities.
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Figure 2: Ablations over the number of annealing epochs for random annealing vs temperature
annealing and temperature annealing vs iterative pruning. The rightmost graph displays the best
performing annealing configuration for each sparsity and plots it against the baseline. Stochastic
annealing outperformed the other methods for each sparsity when used with a one-cycle policy.

5.2 STOCHASTIC SUBNETWORK ENSEMBLES

We aim to evaluate the efficacy of Stochastic Subnetwork Annealing in the context of the low-cost
ensemble algorithm, Prune and Tune Ensembles. We include results for these ensembles on CIFAR-
10, CIFAR-100, and corrupted versions of both in order to test robustness on out-of-distribution
images. These corrupted datasets are generated by adding 20 different kinds of image corruptions
(gaussian noise, snow, blur, pixelation, etc.) at five different levels of severity to the original test sets
Hendrycks & Dietterich (2019); Nado et al. (2021). The total number of images in each of these
additional sets is 1,000,000.

We take the training configuration, ensemble size and parameter settings directly from studies of
three state-of-the-art benchmark low-cost ensemble methods: MotherNets (Wasay et al., 2018),
Snapshot Ensembles (Huang et al., 2017), and Fast Geometric Ensembles (Garipov et al., 2018).
We also compare our results with published results of several recent low-cost ensemble methods
including: TreeNets (Lee et al., 2015), BatchEnsemble (Wen et al., 2020), FreeTickets (Liu et al.,
2022a), and MIMO (Havasi et al., 2021).

All methods compared use WideResNet-28-10 and Stochastic Gradient Descent with Nesterov mo-
mentum and weight decay. The Sparse Subnetwork Ensemble size and training schedule is as used
in previous comparisons (Wasay et al., 2018; Garipov et al., 2018). We use a batch size of 128
for training and use random crop, random horizontal flip, and mean standard normalization data
augmentations for all approaches (Garipov et al., 2018; Havasi et al., 2021; Liu et al., 2021; Huang
et al., 2017). The parent learning rate uses a step-wise decay schedule. An initial learning rate of
η1 = 0.1 is used for 50% of the training budget which decays linearly to η2 = 0.001 at 90% of the
training budget. The learning rate is kept constant at η2 = 0.001 for the final 10% of training.

We train a single parent network for 140 epochs. Six children are then created by randomly pruning
50% of the connections in the parent network. Neural partitioning is implemented where pairs of
children are generated with opposite sets of inherited parameters. Each child is tuned with a one-
cycle learning rate for 10 epochs. The tuning schedule starts at η1 = 0.001, increases to η2 = 0.1 at
1 epoch and then decays to η3 = 1e− 7 using cosine annealing for the final 9 epochs.

We implement Stochastic Annealing when tuning the child networks by using the procedure illus-
trated above for Temperature Annealing. We initialize the binary subnetwork masks with a target
sparsity of 0.5. We then modify the masks such that the 0 parameters are initialized with a tempera-
ture of τ = 0.5. That value is decayed to τ = 0 over 3 annealing epochs using a cosine decay.

We compare the results of our approach to a wide variety of competitive benchmarks. These bench-
marks include both low-cost and full-size ensemble approaches. The details for these implementa-
tions are taken from baseline results reported in Whitaker & Whitley (2022); Havasi et al. (2021);
Liu et al. (2022a), and is informed by each original implementation in Huang et al. (2017); Garipov
et al. (2018); Lee et al. (2015); Wen et al. (2020); Havasi et al. (2021).

Table 2 reports the mean accuracy (Acc), negative log likelihood (NLL), and expected calibration
error (ECE) over 3 runs on both CIFAR-10 and CIFAR-100 along with their corrupted variants.
We report the total number of floating point operations (FLOPs) and epochs used for training each
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Methods (CIFAR-10/WRN-28-10) Acc ↑ NLL ↓ ECE ↓ cAcc ↑ cNLL ↓ cECE ↓ FLOPs ↓ Epochs ↓

Independent Model∗ 96.0 0.159 0.023 76.1 1.050 0.153 3.6e17 200
Monte Carlo Dropout∗ 95.9 0.160 0.024 68.8 1.270 0.166 1.00x 200
Snapshot (M=5) 96.3 0.131 0.015 76.0 1.060 0.121 1.00x 200
Fast Geometric (M=12) 96.3 0.126 0.015 75.4 1.157 0.122 1.00x 200
Prune and Tune (M=6) 96.5 0.113 0.005 76.2 0.972 0.081 0.85x 200
Stochastic Annealing (M=6) 96.7 0.110 0.005 76.3 0.968 0.079 0.85x 200

TreeNet (M=3)∗ 95.9 0.258 0.018 75.5 0.969 0.137 1.52x 250
BatchEnsemble (M=4)∗ 96.2 0.143 0.021 77.5 1.020 0.129 4.40x 250
Multi-Input Multi-Output (M=3)∗ 96.4 0.123 0.010 76.6 0.927 0.112 4.00x 250
FreeTickets (EDST) (M=7)∗ 96.4 0.127 0.012 76.7 0.880 0.100 0.57x 850
FreeTickets (DST) (M=3)∗ 96.4 0.124 0.011 77.6 0.840 0.090 1.01x 750
Dense Ensemble (M=4)∗ 96.6 0.114 0.010 77.9 0.810 0.087 1.00x 800

Methods (CIFAR-100/WRN-28-10) Acc ↑ NLL ↓ ECE ↓ cAcc ↑ cNLL ↓ cECE ↓ FLOPs ↓ Epochs ↓

Independent Model∗ 79.8 0.875 0.086 51.4 2.700 0.239 3.6e17 200
Monte Carlo Dropout∗ 79.6 0.830 0.050 42.6 2.900 0.202 1.00x 200
Snapshot (M=5) 82.1 0.661 0.040 52.2 2.595 0.145 1.00x 200
Fast Geometric (M=12) 82.3 0.653 0.038 51.7 2.638 0.137 1.00x 200
Prune and Tune (M=6) 82.7 0.634 0.013 52.7 2.487 0.131 0.85x 200
Stochastic Annealing (M=6) 83.1 0.633 0.010 52.8 2.440 0.131 0.85x 200

TreeNet (M=3)∗ 80.8 0.777 0.047 53.5 2.295 0.176 1.52x 250
BatchEnsemble (M=4)∗ 81.5 0.740 0.056 54.1 2.490 0.191 4.40x 250
Multi-Input Multi-Output (M=3)∗ 82.0 0.690 0.022 53.7 2.284 0.129 4.00x 250
FreeTickets (EDST) (M=7)∗ 82.6 0.653 0.036 52.7 2.410 0.170 0.57x 850
FreeTickets (DST) (M=3)∗ 82.8 0.633 0.026 54.3 2.280 0.140 1.01x 750
Dense Ensemble (M=4)∗ 82.7 0.666 0.021 54.1 2.270 0.138 1.00x 800

Table 2: Results for ensembles of WideResNet-28-10 models on both CIFAR-10 and CIFAR-100.
Methods with ∗ denote results obtained from Havasi et al. (2021); Liu et al. (2022a). Best low-cost
ensemble results are bold. cAcc, cNLL, and cECE correspond to corrupted test sets. We report the
mean values over 10 runs for stochastic annealing.

method. Tables are organized into two groups based on training cost. The first group consists of
low-cost training methods that take approximately as long as a single network would take to train.
The second group of methods use either significantly more epochs or compute per epoch to achieve
comparable performance.

6 CONCLUSIONS

Stochastic Subnetwork Annealing offers a novel approach to tuning pruned models by represent-
ing subnetworks with probabilistic masks. Rather than discretely removing parameters, we instead
create probability matrices that alter the chance for parameters to be retained on any given forward
pass. We then anneal those probability values towards a deterministic binary mask over several
epochs such that the subnetwork is slowly revealed. We introduce several variations for imple-
menting this idea of subnetwork annealing. Random annealing uses random probabilities for every
parameter while temperature annealing applies an even amount of stochasticity to all parameters not
in the target subnetwork.

The efficacy of Stochastic Subnetwork Annealing is built upon the same principles behind itera-
tive pruning. Recent insights revealed in optimization research relating to the impact of warmup
have revealed that early epochs are critical during optimization as they set the foundational trajec-
tory for the rest of the training process. Gilmer et al. (2021); Ma & Yarats (2021); Gotmare et al.
(2018). Stochastic Subnetwork Annealing provides effective regularization during the early epochs
of subnetwork tuning to promote training stability and encourage robust adaptation.

Our experiments display marked improvement over the established one-shot and iterative pruning
benchmarks for subnetworks at various levels of sparsity. This technique is especially effective for
very sparse models up to 98%. We conduct an extensive ablation study to explore the dynamics of
this technique with regard to different hyperparameters, pruning methodologies, and learning rate
schedules. We additionally implement this technique in the context of Prune and Tune Ensembles
where we report significantly better performance against benchmark methods.
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