
RecCrysFormer: Refined Protein Structural Prediction
from 3D Patterson Maps via Recycling Training Runs
Tom Pan1, Evan Dramko1, Mitchell D. Miller2, George N. Phillips, Jr.2,3, Anastasios Kyrillidis1,4

1Department of Computer Science 2Department of BioSciences 3Department of Chemistry
4Ken Kennedy Institute

Rice University

Determining protein structures at an atomic level remains a significant challenge
in structural biology. We introduce RecCrysFormer, a hybrid model that ex-
ploits the strengths of transformers with the aim of integrating experimental and
ML approaches to protein structure determination from crystallographic data.
RecCrysFormer leverages Patterson maps and incorporates known standardized
partial structures of amino acid residues to directly predict electron density maps,
which are essential for constructing detailed atomicmodels through crystallographic
refinement processes. RecCrysFormer benefits from a “recycling” training regimen
that iteratively incorporates results from crystallographic refinements and previous
training runs as additional inputs in the form of template maps. Using a preliminary
dataset of synthetic peptide fragments based on Protein Data Bank, RecCrysFormer
achieves good accuracy in structural predictions and shows robustness against
variations in crystal parameters, such as unit cell dimensions and angles.

1. Introduction
Background. Proteins are fundamental components of biological processes, acting as molecular
machines within our cells [1]. They are polymers composed of small organic molecules called amino
acids, linked by peptide bonds. There are 20 standard proteinogenic amino acids, and a single
amino acid is referred to as a residue. Amino acid polymers fold to form intricate 3D structures, and
understanding these is pivotal as the 3D conformation of a protein largely determines its functionality.
Traditional experimental methods for protein structure determination include X-ray crystallography,
NMR, and cryo-electron microscopy; see [2]. These methods face a classic inverse problem in science:
reconstructing a complete structure from incomplete experimental information.
The role ofmachine learning (ML).Recent years have seen the emergence ofML as another powerful
tool in protein structure prediction. Research projects like AlphaFold2 [3] have demonstrated the
potential of deep learning in achieving highly accurate predictions by leveraging protein structural
data alongside co-evolutionary information (e.g. multiple sequence alignments).
X-ray crystallography remains widely used for its ability to provide accurate atomic coordinates,
including interactions with small molecules and metal ions. With this work, we aim to help bridging the
gap between experimental crystallographic methods and ML techniques by developing a prototype to directly
translate X-ray diffraction patterns of protein crystals into solved structures.

Motivation and contributions. We introduce RecCrysFormer that combines convolutional layers
with a 3D vision transformer. This model integrates domain-specific knowledge with established
ML architectures to address a fundamental problem in structural biology. Key features include:
• The use of Patterson maps, directly obtainable from experimental data, and “partial structure”

densities corresponding to the most common conformation of individual residues.
• The integration with established crystallographic refinement procedures, such as SHELXE [4, 5],

which are applied to our predicted electron density maps to obtain protein structure coordinates.
• A “recycling”meta-algorithm that enhances training by reusing the outputs from previous training

(potentially post-refinement) as template features in subsequent iterations.
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• The development of a dataset comprised of synthetic peptide fragments based on PDB entries
with varied unit cell sizes and angles. Our prototypical model shows robustness against structural
variations and delivers good post-training predictions.

While this work focuses on small synthetic protein fragments that also have higher solvent content,
it represents a step toward applying ML to complex, real-world crystallographic problems.

2. Problem background and related works
X-ray crystallography and the phase problem. X-ray crystallography, a century-old technique,
prominently serves in determining protein structures through mapping the electron density within
crystals [6]. This method involves irradiating protein crystals with X-rays, which diffract based on a
crystal’s internal structure. Each repeating unit (unit cell) in the crystal typically contains identical
molecular arrangements; this causes the X-rays to scatter constructively or destructively and form
output beams only in certain directions. These diffracted beams then produce a pattern of spots,
called reflections, on a detector. A reflection is characterized by its Miller indices (h, k, l), which
indicate the orientation of planes within the unit cell contributing to producing the reflection [7].
The mathematical representation of a reflection, known as the structure factor F (h, k, l), encapsulates
the sum of atomic contributions within the unit cell:

F (h, k, l) =
∑n

j=1
fj · e2πi(hxj+kyj+lzj), (1)

where fj denotes the scattering factor and (xj , yj , zj) the coordinates of the j-th atom. A structure
factor comprises an amplitude and a phase ϕ(h, k, l), both needed for reconstructing the electron
density ρ(x, y, z) at all locations within the crystal’s unit cell via a Fourier transform:

ρ(x, y, z) = 1
V

∑
h,k,l

|F (h, k, l)| · e−2πi(hx+ky+lz−ϕ(h,k,l)), (2)

Figure 1: A representation of the process
for determining crystal structures. Complete
structure factors are obtained from diffraction
patterns through various methods. By ap-
plying a Fourier transform to these, the elec-
tron density within the unit cell is calculated.
The initial model is then iteratively refined
through comparison with experimental mea-
surements.

where V is the volume of the unit cell. Although the
amplitude |F (h, k, l)| of a structure factor is directly
measurable, from the intensity of the corresponding
diffraction spot, the phase ϕ(h, k, l) is not. This is the
crystallographic phase problem, a fundamental chal-
lenge for directly using X-ray crystallography data
for accurate electron density mapping [6]. See also
Figure 1.
Patterson maps. Critical to diffraction interpretation
is the Fourier transform from full structure factors
to electron density. A key intermediary in several
methods for obtaining these is the Patterson function,
which modifies the previous Fourier transform by
squaring amplitudes and nullifying phase informa-
tion, creating a Patterson map [8]:

p(u, v, w) = 1
V

∑
h,k,l

|F (h, k, l)|2 · e−2πi(hu+kv+lw). (3)

Here, (u, v, w) represents coordinates within the Patterson map’s unit cell, mirroring the exact
dimensions of the crystal’s unit cell. The Patterson function’s design inherently omits phase data,
allowing computation directly from raw diffraction measurements. Yet, a Patterson map does not
directly illustrate atomic locations with a unit cell, but rather indicates vectorial relationships between
atoms. Each peak in a Patterson map corresponds to an interatomic vector between atoms within
the crystal’s unit cell, and so the number of peaks scales quadratically with the original amount of
atoms. Additionally, the presence of heavy atoms can dominate the map, as the height of peaks is
proportional to the product of atomic numbers in the corresponding pair. Thus, they are not directly
used to estimate electron densities.
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Related works. The most widely used approaches to obtain structure factors include isomorphous
replacement, anomalous scattering, and molecular replacement. Each presents unique challenges
and requirements [6, 9]. While isomorphous replacement and anomalous scattering necessitate
multiple experimental conditions and the incorporation of heavy atoms into the desired structure,
molecular replacement relies on the availability of closely related homologous structures or accurately
predicted models, which are not always available. The so-called direct methods have provided viable
solutions for the limited space of small molecules that diffract to near-atomic resolution [10]. Such
methods could work for our protein fragments—although they have higher resolution limits than preferred
for such methods. Our primary goal in this study is to establish a proof-of-concept for our novel
approach combining deep learning with Patterson maps.
Within a broader scope, methods based solely on intensitymeasurements have been explored [11–13].
However, the discrete nature of crystallographic diffraction patterns poses significant challenges,
limiting the applicability of algorithms such as the Gerchberg–Saxton and Fienup iterative methods,
which are more suited to settings with continuous sampling conditions [14, 15].
Initial explorations into ML applications within crystallography include work by [16], who directly
solve the phase problem for small organic molecules using a convolutional network to predict phases
of a set of structure factors, given the corresponding amplitudes and template phases; they also use
a “recycling” training procedure for iteratively improving their template inputs. Furthermore, Taniai
et al. demonstrate the potential of transformer-based models to predict properties of crystalline
structures by treating atoms as individual tokens [17]. This approach enables efficient attention
mechanisms across (effectively infinitely) repeating unit cells, optimizing the prediction of various
properties. Cao et al. utilize a transformer-based generativemodel for creating novel crystal structures
within specified space groups, showcasing the versatility of ML in generating valid structural
predictions [18]. Overall, due to the different problem setups and inputs between our work and the
above, a comparison is not directly possible; we leave such a study open for future work.

3. RecCrysFormer setup and architecture
Input/problem setup. We posit that Patterson maps, when processed through a deep learning
model, can effectively disclose the intrinsic atomic structure within a unit cell. We represent all
electron density maps and Patterson maps using three-dimensional grids, enabling us to create
tensor constructs that facilitate computational analysis.
To elucidate the underlying mathematics, consider the electron density map represented as a 3D
array e ∈ RN1×N2×N3 . The corresponding Patterson map, p, shares the same dimensions as e. In
addition to the properties above, it can be shown to be derived through the following relationship:

p = ℜ
(
F−1 (F(e)⊙F(ê))

)
≈ ℜ

(
F−1

(
|F(e)|2

))
, (4)

where ⊙ symbolizes element-wise multiplication of matrices. The operator F denotes the Fourier
transform, and F−1 represents its inverse. Here, |F(e)|2 captures only the magnitude of the complex-
valued Fourier transform of e. Additionally, ê refers to an inversed-shift version of e, where each
entry is defined as êi,j,k = eN1−i,N2−j,N3−k, and ℜ emphasizes that the result is a real number.
Training loss definition. Representing our model by g(θ, ·), our objective is to convert a Patterson
map p into an estimate of the corresponding electron density map e, framing our problem as a
regression task. Considering a datasetDwith pairs {pi, ei}ni=1, our training process seeks to optimize
the parameters θ by minimizing the loss function:

θ⋆ = argmin
θ

{
L(θ) := 1

n

n∑
i=1

∥g(θ,pi)− ei∥22
}
. (5)

This mean squared error (MSE) is employed as the primary loss function L(θ). Alternative metrics,
tailored specifically to the nuances of crystallography and structural biology, can also be used in our
training framework to promote specific properties; see below.
Partial protein structures. A fundamental step in protein structure determination involves leveraging
the known primary sequence of amino acids. Furthermore, each proteinogenic amino acid’s possible
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3D electron density is well established, which facilitates the use of what we term as standardized partial
structures. These partial structures represent the single most commonly occurring conformations of
amino acids. Larger amino acids, due to their complex nature, exhibit a broader spectrum of possible
conformations known as rotamers. Despite this variability, the predominant conformation for each
amino acid has been experimentally determined and can be utilized to enhance prediction accuracy.1

For our machine learning model, denoted by g(θ, ·), we incorporate these electron density maps of
standardized partial structures into the training process. Specifically, let uj

i ∈ RM1×M2×M3 represent
the electron density map of the j-th amino acid in the i-th protein example. The map is centered by
the center of mass within the unit cell. Our objective is now to optimize the model parameters θ by
minimizing the following loss function:

θ⋆ = argmin
θ

{
L(θ) := 1

n

n∑
i=1

∥g(θ,pi,u
j
i )− ei∥22

}
. (6)

Each protein segment example’s number of partial structures corresponds directly to the number of
amino acid residues present; this is maintained throughout both training and inference phases.

Patterson maps processing

X0 = 3DCNNWc(p) ∈ Rc×N1×N2×N3

X0 = Partition(X0) ∈ R
N1N2N3
d1d2d3

×c×d1×d2×d3

X0 = Flatten(X0) ∈ R
N1N2N3
d1d2d3

×(cd1d2d3)

X0 = MLPWc(X
0) ∈ R

N1N2N3
d1d2d3

×dt

X0+ = PosEmbedding(N1N2N3
d1d2d3

)

Partial structures processing

Uj = 3DCNNWu(u
j) ∈ Rc′×M1×M2×M3

Uj = Partition(Uj) ∈ R
M1M2M3
d1d2d3

×c′×d1×d2×d3

Uj = Flatten(Uj) ∈ R
M1M2M3
d1d2d3

×(c′d1d2d3)

Uj = MLPWu(U
j) ∈ R

M1M2M3
d1d2d3

×dt

Uj+ = PosEmbedding(M1M2M3
d1d2d3

)

Figure 2: Math representation of the preprocessing steps for Patterson maps and partial structures.

Model architecture. Inspired by the synergistic potential of Fourier transforms and self-attention
within Transformer models [20], we introduce RecCrysFormer, an architecture combining 3D convo-
lutional NNs (CNNs) and vision transformers. The approach leverages global contextual information
from Patterson maps to predict electron density maps, employing a self-attention mechanism that
integrates available partial protein structure data. RecCrysFormer incorporates 3D CNNs at both
the initial and final stages, enveloping a Transformer core. Distinct convolutional paths process the
Patterson map inputs and the additional partial structure electron density inputs, which originate
from different domains (Patterson vs. direct).
–Input Processing and Embedding. A Patterson map input pi ∈ R1×N1×N2×N3 is processed through
a 3D CNN that applies "same" padding in order to maintain the spatial dimensions, and expands
the number of feature channels. The output is then segmented into patches of size c× d1 × d2 × d3,
where c represents the number of channels, and d1, d2, d3 are the spatial dimensions of each patch.
These patches are subsequently flattened into one-dimensional “word tokens” of dimension dt via
a Multi-Layer Perceptron (MLP), combined with learned positional embeddings, and fed into a
custom multi-layer vision transformer.
For the partial structures uj

i ∈ R1×M1×M2×M3 , a similar process is followed using separate convo-
lutional and patch-to-token embedding layers, producing additional tokens. The patch and token
embedding operations for these inputs mirror those used for the Patterson map inputs, ensuring
consistent data treatment across different input types; see Figure 2.
–The core transformer. ResCrysFormer integrates a novel attention mechanism tailored for enhanc-
ing the prediction of protein structures from 3D Patterson maps and partial structures. The core
innovation lies in the interaction between the tokens derived from Patterson inputs or the previous
transformer layer and the tokens derived from partial structures, which are concatenated before

1We obtain the atomic coordinates and derive the corresponding electron density maps for these conforma-
tions using the "Get Monomer" feature of the Coot program [19].
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generating the “Q,K, V ” matrices. Note that in our notation, these are created via the corresponding
Wh

q ,Wh
k ,Wh

v trainable query, key, and value projection matrices of the h-th attention head for tokens
from the Patterson map; Wh

k′ , Wh
v′ are the corresponding matrices for partial structure tokens. Thus

our “Q” matrix is effectively truncated compared to “K” and “V ”, so that only tokens derived from
Patterson maps can attend tokens from the partial structures. This one-way attention reduces the
computational costs of our model.

Figure 3: Overview of
our transformer layer

We do not generate new partial structure token embeddings in each
transformer layer, but instead maintain a constant initial embedding for
these tokens across all layers. Thus, each layer utilizes the electron density
information present in our partial structures as a stable reference point
for attention calculations. Formally, our attention mechanism can be
described as follows; see also Figure 3:

U = ConcatJj=1(U
j) ∈ R(S′J)×dt ,

Ah = Softmax
(
(Wh

qX
ℓ)(Conc.(Wh

kX
ℓ,Wh

k′U))⊤
)

V̂h = Ah
(
Concat(Wh

vX
ℓ,Wh

v′U)
)
∈ RS×dh ,

O = WoConcat
(
V̂0, . . . , V̂H−1

)
∈ RS×dt ,

Xℓ+1 = Wff2(ReLU(Wff1O)).

where the token sequence lengths for the Patterson and partial structure
inputs are S = N1N2N3

d1d2d3
and S′ = M1M2M3

d1d2d3
, respectively. dh denotes the

token embedding dimension after splitting into attention heads andH the
number of attention heads. Wff1 andWff2 are the trainable parameters
of the fully connected layers in a standard MLP feed-forward block.2

–3DReconstruction Layers. After processing through the transformer layers,
the token representations are rearranged and then transformed back into
a 3D electron density map using another series of 3D convolutional layers:

g(θ,p) = tanh(3DCNNWo(Rearrange(MLP(X
L)))).

where L is the number of transformer layers. These final transformations are critical for translating
the learned abstract features back into a spatially coherent structural format.
Enhanced loss definition. We use a combination of the MSE loss and a few instances of the negative
Pearson correlation coefficient. The Pearson correlation is an oft-used metric in crystallography
that can be easily calculated between two densities. If we denote a model prediction as e′, and
define ē = 1

N1N2N3

∑
i,j,k ei,j,k and ē′ = 1

N1N2N3

∑
i,j,k e

′
i,j,k, then the Pearson correlation coefficient

between e and e′ is as below:

PC(e, e′) =

N1,N2,N3∑
i,j,k=1

(e′
i,j,k − ē′)(ei,j,k − ē)√

N1,N2,N3∑
i,j,k=1

(e′
i,j,k − ē′)2 ·

√
N1,N2,N3∑
i,j,k=1

(ei,j,k − ē)2

, (7)

Since a larger Pearson correlation indicates a more accurate prediction, we take negations in order to
use these correlations as additional loss function terms. One Pearson term in our loss function is
obtained by directly taking the negative Pearson correlation between model predictions and ground
truth, and the other by taking the negative Pearson after first applying a Fourier transform to both the
model prediction and ground truth, and then taking the amplitudes of all elements in the resulting
complex tensors. The overall loss function then becomes:

L(θ) := ( cMSE
n

n∑
i=1

∥e′
i − ei∥22)− ( cP

n

n∑
i=1

PC(e, e′))− ( cP
n

n∑
i=1

PC(|(FFT(e)|, |FFT(e′)|)). (8)

where cMSE and cP denote the relative weights of the MSE and negative Pearson components.
2We omit skip connections, layer normalization, and attention scaling factor to simplify notation; these are

included in practice.
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4. Recycling meta-algorithm

Figure 4: RecCrysFormer meta-
algorithm. Arrows show the in-
formation flow among the various
components.

RecCrysFormer incorporates a custom recycling training pro-
cess, which leverages existing predictions of electron densities
as input into a crystallographic refinement program that pro-
duces atomic structure estimates. These refined estimates are
then re-utilized to generate improved electron density maps,
creating a cyclic enhancement in model accuracy. This con-
cept is inspired by the iterative refinement approaches used in
notable studies such as AlphaFold2 [3, 21]; see Figure 4.
Implementation details. Initially, our model employs a stan-
dard training run to generate electron density maps from given
Patterson maps and partial structures. In subsequent recycling
training iterations, each of which performs a complete end-to-
end training, the architecture remains unchanged except for an
augmentation in the first convolutional layer to accept an ad-
ditional input channel. This channel introduces a template electron
density map, which serves as a guide that directs the model toward
more accurate structural reconstructions. Such a procedure resem-
bles ideas from data augmentation techniques in traditional
and adversarial ML training [22, 23]
The templates for recycling are primarily derived from the out-
puts of the initial training phase or the most recent recycling

iteration. For enhanced accuracy, some templates are replaced with refined maps obtained via a
process based on the SHELXE program [24, 25], significantly enriching the training data diversity.
This is a separate procedure that is not part of the ML model, being performed in between training
runs. After the initial training run, about 92% of the training set and 79% of the test examples were
able to be refined with SHELXE.
Challenges and adaptations. Originally, each model prediction template had a 70% chance of
being substituted with a refined template if available during training. While this yielded substantial
improvements, it often led to overfitting on these refined templates. This created better accuracy for
well-predicted initial structures, but poorer outcomes for less accurately predicted initial structures.
To address this, we adapted our recycling approach in the following ways: i) we greatly reduced the
frequency of refined template usage during training to 1/6, reducing overfitting while still benefiting
from their accuracy; ii) we introduced Gaussian noise to the template input channel during training
to promote robustness against minor input variations and further develop our data augmentation
and adversarial training aspects—this does not apply to the Patterson map channel to maintain
structural integrity; iii) we employed transfer learning techniques by initializing the model weights
from the most recently trained model (after applying slight Gaussian noise). We transferred only
half of the weights in the first convolutional layer for the first recycling iteration to balance between
learned weights on the Patterson map inputs and necessary randomization for weights acting on the
previously unseen template map inputs.

5. Experimental Methods and Results
Model implementation details. Due to resource constraints, we made use of a slightly modified
version of the Nyström approximate attention procedure [26] instead of classical self-attention for
our training. This means that in theory, our entire model scales linearly with the number of elements
in our input tensors. Our partitioning and flattening operations can be performed simultaneously in
one layer, and we use a single linear layer followed by partitioning to generate our query, key, and
value matrices, followed by a truncation of the query matrix across the sequence length dimension.
The first 3DCNN component is a single layer with kernel size 7. In contrast, the second 3DCNN post-
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Metric Initial Recycling Recycling (modified)

Mean PC(e, e′) 0.817 0.929↑(13.7%) 0.918↑(12.3%)

Mean PC(e, e′) (not refined) 0.658 0.670↑(1.8%) 0.738↑(12.1%)

Mean Phase Error 64.3◦ 20.2◦ 33.8◦
Mean Phase Error (not refined) 79.6◦ 76.4◦ 64.5◦

Percent Refined 79 87 93
Epochs 110 80 80

Table 1: Comparison of training runs. Certain rows (2, 4) report results only for the ∼ 21% of test set
examples for which the prediction after the initial run could not be refined with SHELXE.

transformer component is a sequence of two residual blocks with layers of kernel size 5, taken from
the BigGAN [27] architecture, followed by a final convolution with kernel size 3. As stated, we apply
"same" padding in all convolutional layers as our input Patterson and output electron density map
have the exact same shape for each example. We use the circular padding scheme in our initial 3DCNN
component due to the inherent periodicity of our Patterson maps and partial structures.
Optimizer and training details. Training was performed using the AdamW optimizer [28], with
the OneCycle learning rate schedule [29]. Due to a considerable difference in magnitude between
values of the negative Pearson and MSE during training, and to promote the well-established MSE
being the main driving force of our training, we weighed the MSE by 0.9999 and the two negative
Pearson correlation terms by 5× 10−5.
A table reporting the model hyperparameters we used for our training runs on our 15-residue
variable unit cell and angle dataset can be found in the appendices, where dff refers to the hidden
dimensionality within our feed-forward MLP blocks. All such training runs were performed on a
single RTX 6000 Ada GPU with 48 GiB memory, with torch.set_float32_matmul_precision set
to ’high’. On average, one training epoch required about 314 minutes for our initial training run
and about 318 minutes for our recycling runs. Due to time limitations, we have only performed one
instance of our initial, recycling, and “modified” recycling training runs.
Metrics. For model evaluation, we continue to use the Pearson correlation coefficient between our
ground truth targets e and model predictions e′. Additionally, we conduct phase error analysis
on structure factors derived from our models’ final predictions following our training runs; phase
error is generally considered a more informative metric than Pearson correlation This is done via
the cphasematch tool from the CCP4 software suite [30], which reports the mean phase errors of our
predictions’ structure factors in degrees across various ranges of reflection resolution, with lower
phase errors indicating more accurate phases.
Evaluation Results The bulk of the results presented below were obtained on a dataset of examples
generated with a constant grid sampling rate and a constant resolution limit of 1.5 Å; see the
appendices for a detailed description of our data generation process. This dataset consisted of
348, 880 training and 38, 291 test examples for a roughly 90%− 10% split. We consider the following
training regimes for comparison:

• Initial: Our very first training run, with no template map inputs provided.
• Recycling: Recycling run using our original recycling formulation, where a model prediction
(produced from the final state of the Initial run) template map has a 70% chance of being
substituted with the corresponding SHELXE-refined map, if available, during training.

• Recycling (modified): Recycling run with the same inputs as above, but using our modified
algorithm with a lower chance of substitution with refined map, addition of Gaussian noise, and
transfer learning from the final model state of the Initial run.

Evaluation results on our test set after each of the three defined training runs are shown in Table 1;
phase error is reported as an average across all ranges of resolution. During evaluation after our
recycling runs, we do not set a chance for a model prediction template to be replaced by the corre-
sponding SHELXE post-refinement map; instead, we replace all templates for examples successfully
refined after the initial training run (∼ 79% of the test set).
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All metrics were greatly improved after our recycling runs compared to after our initial training run,
as expected. See the first row of Table 1, where both Recycling and Recycling (modified) achieve
> 10% improvement over the vanilla implementation of our methodology. When comparing our
results from our modified recycling training regimen to our original recycling formulation, we also
find that our modified process further improves predictions for the failure case examples that had
been unable to be refined in SHELXE after the initial training run (and thus always has the model
prediction from the end of the initial training as the template map); see rows 2 and 4.

(a) Initial (b) Recycling (c) Recycling (modified)

Figure 5: A test set example (4AZ3_1.pd_11) representing the failure case where SHELXE could
not produce a refined map. The underlying ground truth model is shown in red. Our first recycling
formulation only slightly improves most aspects, but the prediction after our modified run shows
clear improvement in several details. See the highlighted box for a region that demonstrates this.

(a) Initial (b) Recycling (c) Recycling (modified)

Figure 6: A test set example (3W4R_1.pd_21) that can be refined after the initial training run. The
initial prediction is already reasonable, but the prediction after both recycling runs almost exactly
matches the underlying atomic coordinates in all aspects.

Figure 7: Fraction of test set predictionswith phase
error < 60◦ at different ranges of reflection resolu-
tion. By convention, lower resolution ranges are
towards the left.

On the other hand, predictions for the examples
that were able to be successfully refined after the
initial training run tended to be slightly worse
than before. For this dataset, the large majority
of test examples were successfully refined after
the initial run, sowe found that results across the
entire test set were slightly worse than with our
original recycling formulation (but still highly
successful overall). We consider this tradeoff
worthwhile, especially for more complex future
datasets where we expect to obtain worse pre-
dictions after an initial training run.
We visualize somemodel predictions on our test
set in Figures 5, 6. Predicted densities are shown
in blue, while the ground truth atomic model is
shown in stick representation.
Phase error analysis. We report the fraction of
predictions with less than 60◦ mean phase error at various ranges of reflection resolution in Figure
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7. We chose this value as, in general, if the phase error for the reflections at a particular resolution
range is less than ∼ 60◦, the corresponding phases are considered solved. Reflections at lower
resolution generally indicate the overall shape of an underlying atomic structure, while those at
higher resolution indicate finer structure details [31].
Our results show that the predictions after the initial training run match the low-level shape of the
desired underlying structures well but can be inaccurate in the exact details. Meanwhile, predictions
after both recycling training runs are much more accurate in reproducing details, as shown by the
visualizations in Figures 5, 6. And even if most of the test predictions had slightly higher mean
phase errors across all resolution ranges after our modified recycling regimen, they still were always
below our 60◦ cutoff for successful phases. Combined with the improvements in predictions for the
minority of examples for which refined maps were not obtained after the initial training run, this led
to an improvement in phase error results at almost all resolution ranges.
Variable resolution datasetAlthough we consider a promising step towards a solution for real-world
structures, unrealistic aspects such as their high solvent content, small size, and unusually high
resolution limit mean that existing direct methods can also be applied. E.g., running the SHELXD
dual-space direct method [32] at 1.5 Å on our test set examples resulted in a 97% success rate. Thus,
we also provide results after initial and (modified) recycling training runs on a slightly larger dataset
of 384, 814 training and 41, 774 test examples, with the same number of residues but a variable grid
sampling rate and variable resolution limit in the range of 1.6 Å to 2.25 Å (average of 2.0 Å), in Table
2. This is a harder problem, and running SHELXD on the test set examples of this dataset at 2.0
Å resulted in a success rate of only 73%. In contrast, after one recycling training run, our method
is able to outperform SHELXD. We will further modify our recycling training procedure to obtain
better results as future work.

Metric Initial Recycling (modified)

Mean PC(e, e′) 0.76 0.854
Mean PC(e, e′) (not refined) 0.644 0.676

Mean Phase Error 65.2◦ 35.3◦
Mean Phase Error (not refined) 76.7◦ 68.2◦

Percent Refined 64 83
Epochs 110 80

Table 2: Results on variable resolution and grid sampling dataset. Certain rows report results only
for the ∼ 36% of test set examples for which the prediction after the initial run could not be refined.

6. Conclusions, Limitations and Future Work
This work represents a step in developing a general direct translation from experimental crystallo-
graphic data to electron density estimates, and thus 3D atomic structures of proteins, which due
to the crystallographic phase problem existing literature has not yet been able to solve. We have
effectively established the fundamental capability of our model to learn the relationship between Pat-
terson maps and electron densities on small synthetic structures, and identified various architectural
components, training strategies, and integration of crystallographic techniques that enable this.
Limitations. Our examples are still smaller than actual proteins and have a high solvent content (i.e.,
amount of space) in the unit cell, and so we will need to systematically increase the segment lengths
of our examples in order to assess scalability towards full-length proteins. Other potential difficulties
include experimental noise and a substantial amount of peak overlaps in the Patterson map.
Future Work. We have not yet considered internal symmetry within unit cells. Thus, all of our
examples are of the P1 space group, but there are 64 other possible space groups for proteins, each
with some form of internal symmetry. In future work, wewill train ourmodel on datasets of examples
belonging to one of several possible space groups; this will make our examples contain more than
one molecule per unit cell. We will also consider multiple different choices of unit cells and space
groups for the same crystal structure. Addressing our current limitations will require synthesizing
datasets with a larger number of total examples, and adjusting hyperparameters to increase model
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complexity. Due to the expected increase in time and space training loads, we will look into methods
that improve the efficiency of our model, such as downsampling within the transformer.
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A. Appendix

B. Data Generation Process
We have devised a standardized methodology to generate datasets composed of synthetic short
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specified length from these structures. Specifically, the dataset introduced in this study has segments
of 15 residues. The generated Patterson and electron density maps have the same dimensionality for
each example. Furthermore, the examples are placed in unit cells of variable axis lengths and angles.
We also use a smaller and simpler dataset of 2-residue segments for our hyperparameter studies.
Structure Curation from the Protein Data Bank. We start with a curated set of approximately 24,000
structures from the PDB that satisfy the following criteria: proteins solved by X-ray crystallography
after 1995 with sequence length ≥ 40, refinement resolution ≤ 2.75, and R-Free ≤ 0.28, and with
clustering at 30% sequence identity and available in legacy PDB format. From these, we extract
segments of adjacent amino acid residues of a specified length. For our dataset with 15-residue
segments, we allow potential overlaps of up to 5 residues between consecutive segments in order to
increase the starting amount of possible examples. To prevent overfitting effects that could result
from this overlap of subsegments, all examples derived from the same original PDB structure are
placed together in either the training or test set.
Preprocessing and Validation. Using the pdbfixer Python API [34], we filter out all segments that
contain non-standard residues, missing residues, or missing atoms. We apply the following stan-
dardized modifications to the remaining viable examples to enhance the consistency and reliability
of our dataset: set all temperature factors to 20, rebuild all selenomethionine residues as methionine,
and remove all hydrogen atoms.
Unit Cell Configuration. Each protein fragment now undergoes an iterative process to define its
unit cell:

—We begin by determining the raw max−min ranges of Cartesian coordinates along each axis.

—We iteratively increase the current unit cell dimensions, intending to ensure a minimum intermolec-
ular atomic contact distance of greater than 3.45 Å. 3

—The three angles of the unit cell are randomly set to 90◦, 100◦, 110◦, or 120◦, with respective selection
probabilities of 1/3, 1/3, 2/9, and 1/9.

—Fragments still with intermolecular atomic clashes below 3.45 Å are discarded.

—A reindexing operation ensures the longest and shortest axes are consistently oriented.
To address the issue of translation invariance in Patterson maps, which could lead to ambiguities in
training [35], we adjust all atomic coordinates so the center of mass is at the unit cell’s center. This
strategic placement aids in maintaining the predictability and consistency of the electron densities
within their respective unit cells, as model predictions and desired densities will always be located
towards the center of the unit cell. Furthermore, this is theoretically justifiable as unit cell boundaries
relative to the contents thereof are essentially arbitrary.
Centrosymmetry-induced Patterson map ambiguity It is known that an atomic structure and its
centrosymmetry-related structure will always exhibit the same Patterson map, leading to another
potential ambiguity in Patterson map interpretation. Previous work [35] proposed to solve this
issue by always combining a set of atoms with their centrosymmetry-related counterparts into
one example, which necessitates a post-processing algorithm to differentiate between the original
and centrosymmetric densities for each model prediction. To avoid this, we leverage the inherent
characteristics of real protein structures. Specifically, proteinogenic amino acids naturally occur only
in a single mirror-image symmetry (enantiomer) configuration [36]. While mirror-image symmetry
fundamentally differs from centrosymmetry, we have found that so far, this consistency in our
example structures enables us to train on unmodified Patterson and electron density maps.
Map Generation and Normalization. Structure factors are computed for each protein fragment
using the gemmi sfcalc program [37], up to amaximum resolution of either a constant 1.5 Å (for our
constant resolution and grid spacing dataset), or a variable resolution in the range of 1.6 Å to 2.25 Å

3An Angstrom (Å) is a metric unit of length equal to 10−10 meters.
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(for our variable resolution and grid spacing dataset). From these structure factors, electron density
and Patterson maps are derived using the fft program from the CCP4 suite [38, 39]. These maps
are sampled at either a rate of 3.0, resulting in a grid spacing of 0.5 Å, calculated as 1.5Å/3.0 = 0.5Å
(constant dataset), or a rate in the range of 2.305 to 2.745 (variable dataset). All maps are then
converted into PyTorch tensors. The tensor values are normalized to the range [−1, 1] to accommodate
the use of a tanh final activation layer in our models. To ensure uniform shape across the examples
in our training batches as required by PyTorch, examples that belong to tensor-size bins smaller than
our minimum batch size are excluded from the training set.

C. Nomenclature of our Example IDs
Each of our training and test set examples has an associated identifier consisting of three distinct
sections delimited by underscore characters. The initial section is the PDBid of the protein structure
from which the example was derived. The second denotes the specific entity of the aforementioned
PDB structure from which the example was derived. The third section indicates the relative position
of the first amino acid residue present in the example if all absent or unmodelled residues in the
aforementioned PDB entity were excluded.

D. Links to dataset and code base
We provide intermediate files from our process for generating our constant resolution and
grid spacing dataset, and a subset of our data generation and training codebase sufficient
to create our tensor inputs and outputs, and reproduce our results on this dataset. Due to
space constraints, we divide this into separate Zenodo datasets. The working directory can
be extracted from: https://doi.org/10.5281/zenodo.11244967. See the README.md file in the
directory for instructions on running our scripts. Additional files are found at the following
links: https://doi.org/10.5281/zenodo.11239133, https://doi.org/10.5281/zenodo.11239205,
https://doi.org/10.5281/zenodo.11239285, https://doi.org/10.5281/zenodo.11239432,
https://doi.org/10.5281/zenodo.11239765. We alternatively provide the codebase at
https://github.com/sciadopitys/RecCrysFormer, into which the additional files can be extracted
after download.

E. Phase refinement with SHELXE

We used the standard crystallographic phasing program SHELXE[4, 25] both for the evaluation of
the predicted electron density maps and to prepare refined maps for use in our training recycling.
This method uses density modification to improve the phases during fitting and results in poly-
alanine backbone models. For each test case, four global tracing cycles were run with each global
cycle having ten rounds of density modification. Density modification involved applying physical
constraints in real space and iterative projection back to reciprocal space. The constraints applied
included negative density truncation in the protein region and density flipping in the solvent with a
weighted combination for voxels with intermediate scores for protein versus solvent identified using
the sphere-of-influence method [4].
To evaluate the maps, the SHLEXE program iteratively interprets the maps by building poly-alanine
molecular fragments into the electron density map [24, 25]. It assesses the quality of the poly-alanine
model by calculating the structure factor amplitudes from the model. When the Pearson correlation
coefficient of the model amplitudes with the true underlying structure factor amplitudes exceeds 0.2,
then the model is highly likely to be successfully refined.
When using the maps produced from the SHELXE procedure in recycling training, we found it best to
further flatten the solvent region. We did this by making two masks, one with all positive values
from the SHELXEmap and the other after blurring the SHELXEmap with a crystallographic B factor
of 25 and selecting all voxels with a density greater than 1.25 R.M.S.D above the map mean. These
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Figure 8: A generated 15-residue protein fragment within a unit cell of variable axis lengths and
angles (left) and a view of the corresponding electron density (right).

masks were applied by adding 1.23 to the SHELXEmap, multiplying the result by the two masks, and
subtracting 1.23 from the result. This new map was then combined with the original SHELXEmap
using a weighting of (0.95*modified + 0,05* raw). The resulting map was then scaled to the range -1
to 1 and stored in a PyTorch tensor.

F. Additional visualizations of model predictions

(a) Initial (b) Recycling (c) Recycling (modified)

2PBC_1.pd_21

(d) Initial (e) Recycling (f) Recycling (modified)

6XYZ_1.pd_31
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G. Hyperparameters for Training and Evaluation runs

Hyperparameter Value
c = c′ 10

d1 = d2 = d3 4
dt 512
dh 64
H 8
L 10
dff 2048

AdamWweight decay 3e− 2
starting lr 5e− 4 (initial), 2.5e− 4 (recycling)
max lr 1.4e− 3 (initial), 8e− 4 (recycling)

average batch size 40

H. Approximate Hyperparameter Tuning with Dipeptide Dataset
The RecCrysFormer has shown success in predicting complicated 15-residues examples. However,
the size of the RecCrysFormer is large enough that it is prohibitively time-consuming to conduct
ablation studies to tune hyperparameter values. Instead, we ran a scaled down version of the
RecCrysFormermodel on a smaller and easier dipeptide dataset for a shortened number of epochs.
Drawing intuition from these results, we were able to identify more promising ranges for the
RecCrysFormer hyperparameters. The dipeptide model had default parameters set to 3; which
produced an average Pearson correlation of 0.723. At each trial, we varied a parameter. Selected
results of these experiments are included in H.

Embedding Dimensions 512
Crysformer MLP Dimensions 512

Attention Head Count 8
Patch Size 4

Attention Block Depth 6
Table 3: Default hyperparameter values for tuning on dipeptide dataset.

Parameter Value Pearson Parameter Value Pearson
Changed Correlation Changed Correlation

Head Count (H) 2 0.684 Depth (L) 4 0.700
4 0.696 4 0.702
4 0.731 4 0.723
4 0.707 8 0.746
16 0.751 16 0.771
32 0.765 16 0.792
32 0.757 MLP Dim (dff) 32 0.706
32 0.767 64 0.696
64 0.742 64 0.715

Embedding Dim (dt) 32 0.641 128 0.713
64 0.684 256 0.725
256 0.706 256 0.731
256 0.703 Residual Block Size 0 0.713

Patch Size (d1 = d2 = d3) 8 0.696 0 0.717
Table 4: Selected results of hyperparameter tuning trials on the dipeptide dataset.
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