
Under review as a conference paper at ICLR 2023

MAGA: MODELING A GROUP ACTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Combinatorial generalization, an ability to collect various attributes from diverse
data and assemble them to generate novel unexperienced data, is considered an
essential traversal point to achieve human-level intelligence. Previous unsupervised
approaches mainly focused on learning the disentangled representation, such as the
variational autoencoder. However, recent studies discovered that the disentangled
representation is insufficient for combinatorial generalization and is not even
correlated. In this regard, we proposed a novel framework of data generation
that can robustly generalize under these distribution shift situations. The model,
simulating the group action, carries out combinatorial generalization by discovering
the fundamental transformation between the data. We conducted experiments on
the two settings: Recombination-to-Element and Recombination-to-Range. The
experiments demonstrated that our method has quantitatively and qualitatively
superior generalizability and generates better images over traditional models.

1 INTRODUCTION

Whether a deep learning model can generalize to the distribution different from the training data is
a topic that is being researched widely (Shen et al., 2021). Based on the overly ideal assumption
that training and test data are i.i.d. sampled from the same distribution, traditional deep learning
methods tend to overfit training data and fail severely in the test dataset (Montero et al., 2020; Schott
et al., 2021), even if it accomplishes superior performance in the naive setting. In other words, they
have low generalizability under the distribution shift situation. Generative models and unsupervised
representation learning (Schott et al., 2021; Montero et al., 2020) also suffer from the same problem.
Especially combinatorial generalization (Vankov & Bowers, 2020) is one of the crucial problems that
has drawn attention recently in the unsupervised representation field. It refers to the to the model’s
capacity to combinatorially combine the properties of two different data and create novel data that
the model was not encountered through the learning process. For example, if a model that has not
experienced an image of a bearded woman while training can generate the image by combining the
attributes from an image of a bearded man and an image of a woman, we can say that the model
has the combinatorial generalization capability. Because humans are innately capable of these sort
of tasks (Processing, 1986), the ability of deep learning models to freely extract and combine more
abstract concepts is essential to achieve human-level capacities.

A generative model pursuing disentangled representation has long been regarded as one of the
breakthroughs in solving the problem. A representation is called disentangled if the underlying
generative factors of the data and the axis of latent representation calculated by the model have a
correspondence (Eastwood & Williams, 2018). That is, a data variation occurred by a change of one
generative factor should affect only one axis of latent representation and vice versa. Since a perfectly
disentangled representation enables one to change each property independently by definition, it
has been considered that a well-disentangled representation would accompany good combinatorial
generalization capabilities. Unfortunately, as Montero et al. (2020) argued, it turns out that there is
little correlation between the disentanglement score and the combinatorial generalization capacity.
The model tended to have a high disentanglement score and low reconstruction error only on the
training data.

On the other hand, various attempts have been made to (Yang et al., 2021; Quessard et al., 2020)
disentangle models using the concept of group action. Higgins et al. (2018) aims to clarify the
definition of disentangled representations using the homomorphic relationship of group structures
between data and representations. However, most models assume the specific structure in which data
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Figure 1: Overview of VAE and Our Models. The encoder of the standard VAE encodes the data
itself, and the encoder of our model encodes the difference between the two data. Likewise, the
decoder of the standard VAE decodes the data from the latent variable, and the decoder of our model
decodes the transformation from the input data to the output data represented by the latent variable.

are created by defining one fixed data point, called pivot, and applying group actions to the data. This
model structure, encoding individual data to a latent variable, makes the model vulnerable to the
distribution shift.

In this regard, we propose a novel generative framework MAGA to handle the problem. Following
the gist of group-based disentanglement (Higgins et al., 2018), we concentrate on the correspondence
between the transformations and the symmetry groups. Unlike other papers focusing on a more general
group structure (Yang et al., 2021; Quessard et al., 2020), we focus on modeling the transformation
itself between data. To model the transformation, we jointly train the encoder and the decoder like
ordinary autoencoders and VAEs. The difference is that our encoder takes a pair of data as input and
encodes a grouptified latent variable. Encoded values are regularized to follow the group axioms. The
decoder simulates the group action acting on the data space. It takes data and an element of a latent
group and transfers the input data to the target data following the group action learned through training.
We lay out the entire structure so that the decoder can approximate the true transformation induced
by the group action and be more flexible to the distribution shift of the dataset. Quantitative and
qualitative experiments show that our proposed method performs better combinatorial generalization.
Our contributions are as followings:

• We proposed a approaches simulating the group structure and the group action. It is the
novel generative framework that models a transformation between data.

• We quantitatively and qualitatively proved that the methods showed a substantially better
combinatorial generalization capacity than the VAE-based models in the experiments.

• We also demonstrated that our model is robust in the selection of the pivot data, which
proves the strong generalizability of the model.

2 RELATED WORKS

Disentangled Representation Recently, various attempts have been made to obtain a disentangled
representation. Typical examples are variational autoencoders (VAE) (Kingma & Welling, 2013) and
their variants. These methods, using a specific prior and KL-divergence term for the encoded latent
variable, were considered one of the most effective ways to obtain a disentangled representation
for several years. β-VAE (Higgins et al., 2016) adds a coefficient to the KL divergence term to
enhance the disentanglement effect. FactorVAE (Kim & Mnih, 2018) attempted to obtain better
disentanglement by giving direct independence between latent codes using total correlation. In
addition, several methods for evaluating disentanglement have been proposed. Eastwood & Williams
(2018) proposed a DCI metric that measures disentanglement based on the degree to which latent
variables explain generative factors. Chen et al. (2018) presented a disentanglement metric MIG
that measures the gap in the value of mutual information between the latent variable with the largest
mutual information and other latent variables.

However, VAE-based methods have limitations in that it is based on the statistical independence of
latent codes. Locatello et al. (2020a) provided the theoretical results that any prior calculated as the
Cartesian product of the function of each coordinate is not identifiable with respect to the rotation, so
it is impossible to get disentangled representation without some inductive bias. Accepting this result,
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several studies investigated under what weakly supervised setting the model can get the disentangled
representation. Shu et al. (2019) showed that restricted labeling, match pairing, and rank pairing are
sufficient condition for disentangled representation. Locatello et al. (2020b) also demonstrates that
the training with paired data whose latent factors differ only by a few generative factors ensures the
identifiability of the model.

Group Based Disentanglement Higgins et al. (2018) re-established the definition of disentan-
glement as a homomorphic relationship and correspondence between subgroups of a group and
generative factors of the data. Accordingly, several follow-up papers were presented. Yang et al.
(2021) presented a general method to grouptify VAE models using a dihedral group. Quessard et al.
(2020) parametrized the SO(n) group and utilized it as a structure of the latent space to model more
expansive data space.

Combinatorial Generalization Vankov & Bowers (2020) first provided a concept of combina-
torial generalization and disentangled representation is considered a critical factor in achieving it.
However, Montero et al. (2020) experimentally displayed that disentanglement and combinatorial
generalization have low correlation, and the model with even perfect disentanglement could have poor
generalizability. Similarly, Schott et al. (2021) conducted more extensive experiments and showed
that any model could not understand the underlying mechanism.

The concept of counterfactual synthesis exists as a very similar task or a task with different name to
combinatorial generalization. It is a task that generates realistic data that may not exist in the real
world. The Structural Causal Model (SCM) (Kocaoglu et al., 2017; Thiagarajan et al., 2021; Sauer
& Geiger, 2021) is one proposed way to achieve the goal using a causal mechanism. However, the
methods suffer from the inflexibility of the prior SCM and the absurdly expensive cost of identifying
all the causalities in the data. To overcome the limitation, Feng et al. (2022) devised the method using
the pre-trained generative model and the distribution of the target attributes. However, the model
still has limitations in that it requires a pre-trained model and attribute classifier. To overcome this,
we presented a model that efficiently performs combinatorial generalization in a fully unsupervised
setting.

3 BACKGROUNDS

We will briefly introduce the preliminaries in this section. From now on, we denote the data space,
such as the set of images as X and its latent representation space as Z . In this paper, we treat the
image space X = RC×W×H and the Euclidean space Z = Rd.

Variational Autoencoder VAE (Kingma & Welling, 2013) is a representation learning method
based on likelihood maximization. VAE mainly consists of two parts, an encoder and a decoder. The
encoder takes an input x from the data space X and maps it to a distribution q(z|x) on the latent
space Z . The decoder takes input from z ∈ Z and matches it to an original data x. The entire process
is trained using the loss called Evidence Lower Bound(ELBO).

Group and Group Action Group is one of the most fundamental and ubiquitous structures in all
areas. Mathematically, group (G, ·) is a set G equipped with a binary operation · following three
axioms (Lang, 2012).

• (Identity) ∃e ∈ G such that ∀g ∈ G, g · e = e · g = g

• (Inverse) ∀g ∈ G,∃g−1 ∈ G such that g · g−1 = g−1 · g = e

• (Associativity) ∀g1, g2, g3 ∈ G, (g1 · g2) · g3 = g1 · (g2 · g3)

A group can act on a space X with the function α : G×X → X . An action of an element g of the
group G on the set X is the transformation, g · : X → X , defined as g · x := α(g, x). Group action
must satisfy the homomorphic relation between the group and the group of transformations, that is
∀g, h ∈ G, ∀x ∈ X , g · (h · x) = (g · h) · x. Group action, resembling the transformation properties
of the world, is considered that has significant importance in learning disentangled representation
(Higgins et al., 2018). In terms of group and group action, the latent space Z of the standard VAE can
be interpreted as a group and the data x is generated by the group action g · x0, for some g ∈ Z and
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the fixed pivot data point x0 ∈ X . The encoder and the decoder also can be interpreted as a function
that map data x to the corresponding group element g and vice versa.

4 METHODS

Previous unsupervised representation learning methods tend to consider that the latent space has
a one-to-one correspondence to the data space. For example, autoencoder and VAE encode the
data to a latent variable and decode it to the same data again. In the case that the latent space
has a certain group structure, it is the same to think that the data x is generated as x = g · x0,
for some x0 common for all data. However, this approach is structurally vulnerable to the out-of-
distribution data because the model directly matches the data x to the element g in the underlying
group structure. If the model could not access the data, the model has no chance to learn the
corresponding group element; hence the decoder also could not generate the correct reconstruction.
To overcome the problem and achieve combinatorial generalization, we provided the method which
learns the transformation of the data, not the data itself. Unlike the existing model, we map a pair
of data x, x′ to an element of a latent group g, which satisfies the group action relation x′ = g · x.
And we also let the model learn how g to act in the data space. For example, consider a dataset
with two generative factors A and B, which can have two values, 0 and 1, respectively. If the
model has access to the training data (Factor A = 0,Factor B = 0), (Factor A = 0,Factor B = 1),
(Factor A = 1,Factor B = 0), it can acquire the group action to make the first component larger by
pairing (Factor A = 0,Factor B = 0) and (Factor A = 1,Factor B = 0). And by applying the group
action to (Factor A = 0,Factor B = 1), we can get (Factor A = 1,Factor B = 1) that the model has
not seen before.

Figure 2: Concept of the Recombination-
to-Element(Red) and the Recombination-to-
Range(Blue) in dSprites. The test dataset of the
recombination-to-Range setting contains all square
images on the right side of the image, regardless of
other generative factors(Position Y of the sprites
in the figure). On the other hand, the test dataset
of the recombination-to-Element contains images
with a square located in the lower right corner
because it contains only one combination of all
generative factors.

The frame is embodied by combining an encoder
and decoder with a special structure. For data
space X and latent space Z , the encoder E :
X×X → Z takes a pair of data x1, x2 ∈ X×X
and outputs a latent variable z ∈ Z . Output
latent variable z is considered an element of
group structure and is supposed to represent the
transformation that changes x1 to x2. Suppose
data space X is generated by group action α :
G×X → X transitively and freely; in that case,
for an arbitrary pair of a data point x1, x2, there
exists a unique g ∈ G such that g · x1 = x2

and the encoder is supposed to finds such an
element. The decoder D : Z×X → X imitates
the group action α : Z × X → X , so it takes a
latent variable z ∈ Z and data x ∈ X as input.

Encoder The encoder takes a pair of data as
input. For convenience, we concatenate im-
ages along the channel and treat them as double
channel-sized images. For example, a batch
of images with size RN×C×W×H is paired to
RN×2C×W×H and used as input to the encoder.
Then, the encoder outputs a latent variable with
size RN×d. We used the same architecture in
Burgess et al. (2018), but any other model can
be used. Detailed architectures are in Appendix
A.

Decoder The decoder takes data and a latent
variable as input. We spread a latent variable
of size RN×d to RN×d×W×H and concatenate
it to an image of size RN×C×W×H along the
channel. So the decoder becomes the function
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from RN×(C+d)×W×H to RN×C×W×H . Now
we can utilize the models used in the field of
image transfer and choose the generator model used in Zhu et al. (2017). Detailed architecture can be
found in Appendix A.

4.1 LOSS

Now we introduce several losses that constrain the encoder and the decoder to satisfy the rules of the
group and the group action.

Reconstruction Loss Like an ordinary autoencoder framework, the encoder and the decoder should
be adjusted so that the encoded latent variable should be reconstructed to the data again. To interpret
it as our framework, it means that the encoder E first estimate a group element g as E(x1, x2), and
then the decoder D simulates the group action so as to map (E(x1, x2), x1) to x2 again. Regarding
this, we give the reconstruction constraint Lrecon = lX (D(E(x1, x2), x1), x2), where lX is the loss
in the image space. We use the binary cross entropy loss as lX in this paper.

Latent Reconstruction Loss Unlike the ordinary autoencoder framework, the loss Lrecon =
lX (D(E(x1, x2), x1), x2) is insufficient for autoencoder frameworks. The encoder and the decoder
can bypass the loss by ignoring x1 and treating only x2 the way traditional autoencoders use it. That
is if the encoder E′ : X → Z and the decoder D′ : Z → X satisfy the equation D′(E′(x)) = x,
the encoder E(x1, x2) = E′(x2) and the decoder D(z, x1) = D′(z) also satisfy the equation
D(E(x1, x2), x1) = x2. To prevent this problem and guarantee the injectivity of the simulated group
action, we impose the following natural restriction on the model. For an arbitrary latent variable z
and data x, the pair of the decoded data D(z, x) and the original data x should be encoded to the
original z. In other words, Llatent recon = dZ(E(x,D(z, x)), z) should be close to zero, where dZ
denotes the distance for measuring the difference in the latent space. We use the L1 norm as dZ in
this paper.

Latent Group Loss Unlike the existing method, there is no reason our method’s encoded repre-
sentation should abide by the axioms of the group. To make the latent representation have a group
structure, we impose the latent space on a group structure by regularizing the axioms of the group as
a loss. Because there are three axioms in the group, we also defined three regularization losses, Liden,
Linv, and Lassoc, for identity, inverse and associativity axiom, respectively.

• To assert the identity axiom E(x, x) = e, we regularize using the loss Liden =
dZ(E(x, x), e).

• To assert the inverse axiom, that is, if E(x1, x2) = g, then E(x2, x1) = g−1, we regularize
using the loss Linv = dZ(E(x1, x2) · E(x2, x1), e).

• To assert the associativity axiom, that is, if E(x1, x2) = g and E(x2, x3) = h,
then E(x1, x3) = h · g, we regularize using the loss Lassoc = dZ(E(x2, x3) ·
E(x1, x2), E(x1, x3)).

To evaluate the losses, we need to sample the data pair. For the batch of size N , [x1, x2, · · · , xN ],
we sample the index to form a batch of pairs. For the identity case, the batch becomes Batchiden =
[(x1, x1), (x2, x2), · · · , (xN , xN )], and the loss is

Liden =

N∑
i=1

dZ(E(xi, xi), e). (1)

For the inverse case, the two symmetric batches become Batchinv1 =
[(x1, x2), (x3, x4), · · · , (xN−1, xN )] and Batchinv2 = [(x2, x1), (x4, x3), · · · , (xN , xN−1)].
And the loss becomes

Linv =

N
2∑

i=1

dZ(E(x2i, x2i−1) · E(x2i−1, x2i), e). (2)
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Figure 3: Pivot images of the datasets. The pivot data from the dSprites have the generative factors
[shape=heart, position-x = α , position-y = 0.48, rotation = 180◦ , scale = 0.7], where α is (a)
0.48, (b) 0.16, and (c) 0.02. The pivot data from the 3D shapes have generative factors [floor-hue
= 0.4, wall-hue = 0.4, object-hue = α, object-shape= sphere, object-scale= 1,
object-orientation= 0], where α is (d) 0.4, (e) 0.2, and (f) 0.0.

For the associativity case, we randomly sample the triplet (xr(3i−2), xr(3i−1), xr(3i)) from the batch
and test the associativity using the loss

Lassoc =

N
3∑

i=1

dZ(E(xr(3i−2), xr(3i−1)) · E(xr(3i−1), xr(3i)), E(xr(3i−2), xr(3i))). (3)

In all, the group loss becomes Lgroup = Liden + Linv + Lassoc.

In addition to the group loss, we observed that the model abused the loss to minimize the Latent
Reconstruction Loss and the Latent Group Loss by collapsing all z values near the zero point. To block
this detour, we penalize the concentration of the batch of the latent values by forcing the variance to be
larger than a certain threshold. In the formula, the loss becomes Lvar = max(0, 1−

∑d
i=1 V ar(zi)).

Group Action Loss Latent Group Loss has imposed the encoder to encode the difference between
data as the group element. On the other hand, the decoder has not been regularized to utilize the
proper group structure for modeling the group action. Applying axioms of the group similar to the
latent group loss, we get the following losses.

• To regularize D(e, x1) = x1, we regularize using the identity action loss Laction iden =
lX (D(e, x1), x1).

• To regularize D(E(x1, x2)
−1, x2) = x1, we regularize using the inverse action loss

Laction inv = lX (D(E(x1, x2)
−1, x2), x1).

• To regularize D(E(x2, x3) · E(x1, x2), x1) = x3, we regularize using the associativity
action loss Laction assoc = lX (D(E(x2, x3) · E(x1, x2), x1), x3).

To sum up, we get the group action loss Laction = Laction iden + Laction inv + Laction assoc.

All in all, the final loss becomes L = Lrecon +Laction +βrecon latentLrecon latent +βgroupLgroup +βvarLvar.
Here, β’s are the coefficients deciding the strength of group regularization.

5 EXPERIMENTS

5.1 DATASET

We use two datasets in the experiments, the dSprites dataset (Matthey et al., 2017) and the 3D
Shapes dataset (Burgess & Kim, 2018). The dSprites dataset consist of gray-scale sprite images.
Each image is constructed with five generative factors, shape, scale, orientation, position X, and
position Y. The dataset has every combination of the five attributes, so the entire number of images is
3× 6× 40× 64× 64 = 737, 280. The 3D Shapes dataset is the dataset of the color images depicting
the three-dimensional arrangement of the object. Each image is constructed with six generative
factors, floor-hue, wall-hue, object-hue, object-shape, object-scale, and object-orientation.
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GT Pivot1 Pivot2 Pivot3 VAE beta4 beta12 Factor20 Factor50Factor100

Figure 4: Reconstruction images on the Recombination-to-Range setting in dSprites. Ground
truth images are sampled from the test dataset with generative factors [shape=square, position-
x> 0.5]. VAE-based models tend to generate blob whenever exposed to an unseen data situation. On
the other hand, our method generates an exact square sprites image located on the right side of the
image regardless of the selection of the pivot data.

Table 1: BCE Reconstruction Error(↓) on dSprites. Our method demonstrated a significantly better
performance than other models in the Recombination-to-Range setting.

Method Recomb2Element Recomb2Range

VAE 8.05 200.35
β-VAE 8 24.62 215.95
β-VAE 12 24.91 154.90
Factor-VAE 20 24.62 130.56
Factor-VAE 50 22.58 153.98
Factor-VAE 100 24.88 100.60

MAGA(Ours) 10.54 62.56

5.2 COMBINATORIAL GENERALIZATION

To test the combinatorial generalization property of the model, we evaluate the reconstruction error
while separating the training and test data. Following the evaluation protocol of Montero et al. (2020),
we evaluate the combinatorial generalization under two settings, the Recombination-to-Element and
the Recombination-to-Range. Both settings mutually exclusively split the entire dataset into training
and test dataset to conduct the evaluation of specific generalization tasks. A model is trained with
the training dataset and is evaluated with the test dataset. Because the model did not experience the
data of the test dataset, various generalization abilities can be evaluated depending on how the data is
divided.

The Recombination-to-Element is the setting where all training data is available to the model while
training except the only one combination of all generative factors. For example, in the dSprites
case, all data is in the training dataset except the case [shape=ellipsis, position-x ≥ 0.6 , position-y
≥ 0.6, 120◦ ≤ rotation ≤ 240◦ , scale < 0.6]. Recombination-to-Element is the easiest of the two
settings. Next, the Recombination-to-Range excludes a combination of the two generative factors
regardless of other factors. For example, in dSprites case, training data is all the data except the case,
[shape=square, position-x> 0.5]. The Recombination-to-Range is a much more difficult task than
the Recombination-to-Element in the sense that the model can’t access the specific combination of
the two generative factors at all. Performing well in tbe Recombination-to-Range setting is essential
for combinatorial generalization.

Similar to dSprites, the Recombination-to-Element setting of 3D shapes has a test dataset with
generative factors [floor-hue > 0.5, wall-hue > 0.5, object-hue > 0.5, object-shape=cylinder, ob-
ject-scale= 1, object-orientation= 0], and the Recombination-to-Range setting has a test dataset with
generative factors [object-hue ≥ 0.5 (cyan), object-shape = oblong] .

7



Under review as a conference paper at ICLR 2023

GT Pivot1 Pivot2 Pivot3 VAE beta4 beta12 Factor20 Factor50Factor100

Figure 5: Reconstruction images on the Recombination-to-Range setting in 3D Shapes. Ground
truth images are sampled from the test dataset with generative factors [object-hue ≥ 0.5 (cyan),
object-shape = oblong]. Similar to the dSprites dataset, VAE-based models can not generate the
combination of the oblong shape and the object hue that was not provided in the training dataset. On
the other hand, our method generates exact oblong shape images.

Table 2: BCE Reconstruction Error(↓) on 3D shapes. Our method demonstrated a significantly
better performance than other models in the Recombination-to-Element and the Recombination-to-
Range setting.

Method Recomb2Element Recomb2Range

VAE 3,923 4,294
β-VAE 8 3,927 4,482
β-VAE 12 3,940 5,077
Factor-VAE 20 3,935 4,602
Factor-VAE 50 3,943 5,275
Factor-VAE 100 3,958 5,095

MAGA(Ours) 3,902 3,959

Pivot Data Unlike the previous VAE models, our decoder of the model takes a pair of images as
the input. To fairly evaluate our models to the existing models, we need to make up a pair using the
pivot image and an image from the test dataset. The pivot image is the fixed image from the training
dataset and is paired to all data from the test dataset so that the comparison with the existing method
can be conducted. Because the decoder model always takes the same input from the pivot image as
a template, the results are can be severely influenced by the selection of the pivot data. Therefore,
we made the best possible effort in selecting pivot data. The generative factor that is not directly
connected to the partition of the dataset, such as position Y in the dSprites and wall hue in the 3D
shapes, are selected near the median value of the range of values. For the generative factors that serve
as criteria for dividing data, we conducted the ablation study on the selecting the value for pivot data.

For the dSprites dataset, the pivot image is the image with the generative factors [shape=heart,
position-x = α , position-y = 0.48, rotation = 180◦ , scale = 0.7]. We select the generative factors
except for the shape and the position-X as the value near to median. Position X is chosen from
α ∈ [0.02, 0.16, 0.48], and unless otherwise noted, α is 0.16.

Similarly, the pivot for the 3D Shape is set to [floor-hue = 0.4, wall-hue = 0.4, object-hue = α, object-
shape= sphere, object-scale= 1, object-orientation= 0]. Object hue is chosen from α ∈ [0.0, 0.2, 0.4]
and unless otherwise noted α is 0.2. The pivot data for both datasets can be found in Figure 3.

5.3 EXPERIMENT SETTINGS

We adopted the experiment setting from the one from VAE for both datasets. The optimizer is Adam,
with a learning rate of 0.0005. The dimension of the latent variable is set to 10 and the batch size
is 64. For the regularizing coefficients β, we set the value to βrecon latent = 100, βgroup = 100, and
βvar = 300. We trained 100 epochs for both datasets three times and took the model with the best
binary cross entropy loss model.
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Table 3: Reconstruction Error(↓) on dSprites for different pivot images. We can observe that the
difference derived from selecting the pivot image is insignificant.

Datasets dSprites 3D Shapes
Method Recomb2Element Recomb2Range Recomb2Element Recomb2Range

Pivot1 11.80 60.45 3,902 3,941
Pivot2 10.54 63.24 3,905 3,959
Pivot3 12.91 66.68 3,907 3,971

The results were compared with the six models listed in Montero et al. (2020), VAE, β-VAE with
β = 6, β-VAE with β = 6, Factor-VAE with γ = 20, Factor-VAE with γ = 50, and Factor-VAE
with γ = 100.

5.4 RESULTS

We conducted the reconstruction evaluations on two datasets with each three pivot data and measured
the binary cross entropy loss for the test dataset. Our results and the results of comparison group
experiments from Montero et al. (2020) are summarized in Table 1 and Table 2. We observed that our
methods showed significantly better reconstruction loss in the Recombination-to-Range setting.

The result implies that the models successfully reconstruct the data in the test dataset. For the
qualitative result, we plot the reconstruction of the test dataset of the dSprites dataset in Fig 4 and
the 3D shapes dataset in Fig 5. We observed that VAE-based models tend to generate blob near the
generated image, ignoring rotation, scale, and shape in the dSprites data reconstruction. On the other
hand, our method manages to generate exact square sprites images with almost the same shape as
the ground truth data. For the 3D shapes dataset, the previous models severely failed in generating
the exact shapes of the object, leading to a significant reconstruction loss, as opposed to our model
restoring both hue and shape successfully.

5.5 ABLATION STUDY ON THE PIVOT DATA

For proof of robustness of the model to the variation of the pivot data of our model, we selected three
pivot images for each dataset and conducted the Recombination-to-Element and the Recombination-
to-Range experiments for each pivot. Pivot data are different in position X in the dSprites dataset and
object hue in the 3D shapes dataset, which is both one of the criterion generative factors for splitting
training and test dataset. We remark that it is natural to think that the farther the pivot data is from the
test dataset, the more the reconstruction becomes difficult. For the dSprites case, because the test
dataset has the generative factors [shape=square, position-x> 0.5], the pivot1 with Position X value
0.02 would have more difficulty in the reconstruction than the pivot3 with value 0.48. Nevertheless,
the result in the Table 3 demonstrates that the overall reconstruction loss is all similar for the pivot
data regardless of the value of position X. This result implies the strong generalizability of our model.

6 CONCLUSION

In this paper, we proposed the novel generative framework MAGA capable of the combinatorial
generalization task. It was confirmed that MAGA stably showed significantly better performance
than the existing models qualitatively and quantitatively. Among the two main flows, combinatorial
generalization and disentanglement, we did not explicitly concern about the disentanglement property
of the model in this paper. Because we did not impose any constraint that the model should represent
the disentangled representation, we can not say that our model aims at the disentanglement property
right now. However, we firmly believe that the framework has the potential for solid disentanglement
property because disentanglement is the concept fundamentally related to the transformation, not the
embedding of individual data itself. We will further research the disentanglement property of the
model.
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A ARCHITECTURE

We use the architecture from Burgess et al. (2018) as the encoder. The structure is as followings.

Table 4: The Encoder Architecture.

Ratio

4× 4 convolution with 32 channels
ReLU
4× 4 convolution with 32 channels
ReLU
4× 4 convolution with 32 channels
ReLU
4× 4 convolution with 32 channels
ReLU
Fully connected layer with 256 nodes
ReLU
Fully connected layer with 256 nodes
ReLU
Fully connected layer with d nodes

We use the architecture from the CycleGAN (Zhu et al., 2017) as the decoder. The structure is as
followings.
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Table 5: The Decoder Architecture.

Layers

7× 7 Convolution-InstanceNorm-ReLU with 64 channels
3× 3 Convolution-InstanceNorm-ReLU layer with 128 channels
3× 3 Convolution-InstanceNorm-ReLU layer with 256 channels
Residual Block with 256 channels
Residual Block with 256 channels
Residual Block with 256 channels
Residual Block with 256 channels
Residual Block with 256 channels
Residual Block with 256 channels
3× 3 fractional-strided-Convolution-InstanceNorm-ReLU with 128 channels
3× 3fractional-strided-Convolution-InstanceNorm-ReLU with 64 channels
7× 7 Convolutionn-InstanceNorm-ReLU with C channels
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