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Abstract
We propose a new set of challenging bench-
mark gym environments for testing single- and
multi-agent reinforcement learning environments.
Single-agent environments are based on a simple
consumption-saving decision problem. In each
period, agents face an exogenous positive draw
that represents how much income they will have
in this period. In response, agents may choose
what fraction of that income they would like to
consume immediately for a reward, or save and
get a return going forward on it. In the full ver-
sion of the problem, all agents’ saving decisions
generate a price via market clearing. Agents then
must learn what their value will be conditioned on
the current state. This environment will provide
a challenging, potentially nonstationary environ-
ment where agents’ actions have critical effects on
other agents’ actions, albeit via a common obser-
vation. This environment will be made publicly
available via a Github repository and open-source.

1. Introduction
Understanding how agents arrive at game-theoretic equilib-
ria is a critical part of the current multiagent reinforcement
learning landscape. But often these environments are in
game-style environments to provide a benchmark against
human players. (Bard et al., 2020) (Zhang et al., 2021)
Recently, there has been interest in extending these environ-
ments to economic and financial environments to understand
how the trading behavior of agents in the economy arises,
perhaps most notably the AI Economist series of papers and
work from Deepmind exploring how bartering economies
arise. (Zheng et al., 2020) (Zheng et al., 2021) (Johanson
et al., 2022) However, so far these articles have been sep-
arated from historically relevant models to the economics
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community and from any kind of macroeconomic analysis.

We instead propose a classical set of economic problems
called consumption-savings problems for the single-agent
variant, and Aiyagari-Bewley-Huggett models for the multi-
agent variant (traditionally a continuum of agents are
present, rather than a discrete number as we have) with
varying levels of difficulty to test current multi-agent RL
environments. (Aiyagari, 1994). They are in wide use by
central banks and academic macroeconomists to model the
interaction of income inequality and economic shocks in
the economy, with the recent trend started by Kaplan &
Violante (2014) These environments have been computa-
tionally solved approximately via dynamic programming
for the full-information environment. However, they have
not been solved for the partially observed setting. We con-
sider a variant in which agents face symmetric problems (in
the baseline variant) but can only observe a common price
that depends on their trading behavior, as well as any pri-
vate state and action realizations. Normally, to solve these
models nearly exactly with dynamic programming, one of
the states to be tracked must be the distribution of all agent
states and actions in the economy each period. This is a
heavy burden to ask agents if we are thinking of modeling a
market-style setting.

2. Description of the Single-Agent Problem
2.1. Baseline Environment

The environment of the single-agent problem is composed of
a discrete-time Markov Decision Process which we denote
(R × R+ × R+,R, T , R). The state space for agent i is
composed of three states: the savings of this period, which
we call assets and denote at (and which when negative, we
think of as borrowing), the current interest rate, which we
denote rt, and the current income realization of the agent,
which we denote yt.

The action space for agents consists of a consumption choice
which we denote ct of consumption goods. The transition
operator will be made clear shortly. Finally, the reward
function R can be any smooth function of consumption.
Typically, for benchmarking, a quadratic is chosen so that
we know exactly what the optimal unconstrained decision
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The AI Macroeconomy

of the agent would be.

The agent’s objective is to maximize a discounted sum of
rewards over a horizon T :

max
{ct}T

t=0

E0

∞∑
t=0

γtR(ct) (1)

This is subject to a budget constraint that represents how
much an agent can consume each period. This is:

ct + at+1 ≤ (1 + rt)at + yt ∀t ∈ {1, . . . , T}
yt ∼ F,

(2)

where F is some distribution function. Typically rt is taken
to be constant, and this is what we do in our baseline prob-
lem rt = r.

In our baseline environment, we will always treat R as if it
is a quadratic.

Thus our problem in our baseline environment mathemati-
cally can be written as the dynamic programming problem:

Q(a, y, c) = a0 + a1(c− c̄)
2

+ γmax
c′

Ey′∼F [Q(a′, y′, c′) | a, y, c]

s.t c+ a′ ≤ (1 + r)a+ y
(3)

Our agents will not know the distribution F and hence the
optimal state action value function Q(a, y, c) or its expected
value. This is what they must learn about to solve the prob-
lem. If agents had complete knowledge of the problem, the
optimal solution would always be to consume c′ = c̄.

2.2. Modified Environment

Now we introduce a borrowing constraint, a ∈ R, a non-
linearity into the problem. Agents cannot borrow more than
ā. The new environment is as follows:

Q(a, y, c) = a0 + a1(c− c̄)
2

+ γmax
c′

Ey′∼F [Q(a′, y′, c′) | a, y, c]

s.t c+ a′ ≤ (1 + r)a+ y

a′ ≥ a
(4)

This new nonlinearity means that the optimal policy is no
longer linear c′ = c̄. If agents did this, they could end up
hitting their borrowing limit and, therefore, might have to
consume 0 in the future. Agents must now learn this optimal
policy.

2.3. Modified Environment 2

We can make this non-linearity more severe by moving away
from quadratic rewards. Instead, we consider a reward func-

tion log(c), where if agents ever consume 0 they receive
−∞. This introduces the need for caution during explo-
ration to avoid hitting the borrowing constraint. This model
is:

Q(a, y, c) = log(c) + γmax
c′

Ey′∼F [Q(a′, y′, c′) | a, y, c]

s.t c+ a′ ≤ (1 + r)a+ y

a′ ≥ a
(5)

3. Description of the Multi-Agent Environment
We now describe the multi-agent environment. There are
N agents in the economy labeled 1 to N. The agents’ in-
dividual problems are symmetric, conditional on a current
state-action pair. However, unlike before the interest rate r
is not fixed. Instead, it is endogenously determined. This
requires the addition of an aggregate state that all agents
can observe which will exactly be r itself. Let A denote the
average level of assets in the economy across agents in any
given time period.

A =
1

N

N∑
i=1

ai (6)

Then the interest rate r this period is given by:

r = α(A)α−1 − 1, 0 < α < 1 (7)

The production function on the right-hand side is a special
case of a so-called Cobb-Douglas production function, a
well-known class of models for modeling goods producers
in economics. This says that for a profit maximizing firm,
the rental rate on assets, which is the interest rate, is exactly
equal to the return it gets on its marginal unit of capital.
Note that the interest rate is increasing (albeit potentially
sublinearly) in the aggregate capital stock.

Now, we define three associated relevant information set-
tings that represent different challenges agents can face in
this environment.

3.1. Baseline Environment

First suppose the agent only observes their own action and
the price. That is, agent i’s problem looks like:

Q(ai, yi, r, ci) = R(ci)

+ γmax
c′

Ey′∼F,r′ [Q
′(a′i, y

′
i, r

′, c′i) | ai, yi, r, ci]

s.t ci + a′i ≤ (1 + r)ai + yi

a′i ≥ a
(8)

for all agents i and with associated environment update
Equation (7). How the price is generated is common knowl-
edge to all players, although the actual choices of others are
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The AI Macroeconomy

not observed. Note that the appropriate equilibrium concept
for this partially observed stochastic game will be a Nash
Equilibrium. We define a policy mapping for agent i as a
mixed strategy πi(ai, yi, r, ci) = P (c′i | ai, yi, r, ci), where
the chosen actions must satisfy the constraints Given an N-
tuple of policies πN , and an initial distribution of agents µ0

define the true state-action value under the induced policy
for agent i as

JN
i (πN ) = EπN

[ ∞∑
t=0

γtR(cit)

]
. (9)

Then, we say a N-vector of policies πN∗ constitutes a Nash
equilibrium if:

JN
i (πN∗) = sup

πi

JN
i

(
πN∗
−i , πi

)
(10)

for each agent i ∈ 1, . . . N and where π
(N∗)
−i :=

(
πj∗)

j ̸=i
.

Our transition operator T for this economy is therefore the
induced map given by simulating the economy following
this N -vector of policies. For further details on the equilib-
rium, see Saldi et al. (2019). In practice, we have N separate
environments, where agents all face identical prices, and
choose their action each period. Then across environments,
the choices of agents are aggregated up.

This environment is part of a special class of models as
N → ∞ called mean-field games.

3.2. Modified Environment

Now we consider an expanded environment where agents
may fully observe the environment. Therefore, the actions
of all other players become states. The problem of agent i
then is to solve the game:

Q(ai, yi, r,a
′
−i, a

′
i)

= R(yi + (1 + r)ai − a′i)

+ γmax
a′′
i

Ey′∼F,

[
Q
(
a′i, y

′
i, r

′,a′′−i, a
′′
i

)
| ai, yi, r,a′−i, a

′
i]

a′i ≥ a

A =
1

N
(a′i +

∑
j ̸=i

a′j)

r′ = αAα−1

y′i ∼ F,

where all we did is rewrite the choice from ci to a′i by using
the budget constraint and assuming it held with equality.

Again, defining the Nash equilibrium exactly as before, ex-
cept for our new state space, we will again find a collection
of πN∗ and hence aN∗′ such that given all other players are
playing πN∗

−i and hence aN∗
−i , our state-action value function

is maximized under πN∗
i .

3.3. Modified Environment 2

We can also explore what happens under imperfect informa-
tion. For example, suppose that, in addition to choosing sav-
ings for tomorrow or consumption, agents can also choose
whether or not to reveal their choices to others. What will
happen? What about if they can offer it for a price? These
represent economies with communication and information
markets. Again, the equilibrium will be a Nash equilibrium,
but again more complicated. 1

4. Implementation
We now discuss the actual implementation of our environ-
ment. The entire environment will be implemented as an
OpenAI Gym environment. The single agent environments
are individual classes, while the multiagent environment
will use the single-agent classes as a baseline, aggregate
choices, ensure economy-wide constraints are satisfied, and
then return prices back to each of the single-agent prob-
lems which could be run in a vectorized or parallel manner.
The multiagent environment instantiates N copies of the
single-agent environment within it.

The timing of the update process is as follows. Each period,
a set of actions are fed into the multiagent environment.
The multiagent environment then assigns these actions to
each copy of the single-agent environment. Within each
single agent environment, a unique seed generates a draw
of y from F , and a state is recorded from the previous
period or initialized. First, the action is checked to ensure
that it is valid given the constraint imposed on the problem.
If not, it is adjusted to the nearest feasible point on the
real interval representing the constraint. Then, the reward
is computed. Next, savings are generated that satisfy the
agent’s borrowing constraint if it is present. Finally, the
period comes to a close, and the savings for next period
and hence asset holdings for next period are computed. The
assets are then updated, and a counter is checked to see if
the length of an episode has been exceeded. If it has, then a
done boolean is set to true.

Finally, the asset holdings, income draw, and the done
Boolean are returned. These pass to the containing multia-
gent environment. The multi-agent environment computes
r and then sets a local variable with this value for each of
the single-agent classes for the next period. Finally, idiosyn-
cratic states of income and asset holdings are merged with
the interest rate to produce a N -vector of a triplet of states.
These are then returned from the multi-agent environment
on the conclusion of its step function so that they can be
utilized in the learning process for agents in the economy.

1For an example of information markets in these settings see
Broer et al. (2022)
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5. A Discussion on Timing
Note that the timing in these multiagent models is different
than in the traditional Aiyagari model. Normally, in equilib-
rium, it must be the case that agents account for prices when
they make their consumption choices today. Here, they do
not do that. As a result they are only responding to the fore-
casted price realization tomorrow given the price realization
today. This is computationally easy to implement, but is
somewhat removed from the original economics setting.

As an alternative, we can consider implementing prices
contemporaneously with agents’ choice of consumption.
However, this requires some sort of explicit market clearing
mechanism and repeatedly generating and offering price
schedules for different savings levels to agents.

One possibility is to introduce a bookkeeping mechanism
to ensure market clearing, where agents can submit bids
for different levels of savings, and these bids determine
prices. We leave it to future extensions to puzzle out a
computationally feasible mechanism for contemporaneous
prices.

6. Future Work
While the single agent models work and have been tested,
the multiagent models still need to be verified. When this
work is finished, the code will be made available on GitHub
as part of a repository. Some examples will also be provided
as first-best solutions to problems that arise from complete
knowledge of optimal solutions without the presence of
strategic deviations.

7. Conclusion
We have described a new set of environments that can be
used to benchmark agent performance in single and multia-
gent settings. These models are widely used in economics,
computationally simple, and shed light on interesting mar-
ket economies. They are also easily able to be utilized as a
baseline to extend to more complicated settings. By provid-
ing this set of models on GitHub in the future in the OpenAI
gym environment, we hope to provide a challenging set
of benchmarks and provide a template for how traditional
models can be extended and thought about in multiagent
settings.
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