
Published as a conference paper at ICLR 2023

TOWARDS MINIMAX OPTIMAL REWARD-FREE REIN-
FORCEMENT LEARNING IN LINEAR MDPS

Pihe Hu˚, Yu Chen˚, Longbo Huang:

Institute for Interdisciplinary Institute for Interdisciplinary Information Sciences
Tsinghua University, Beijing, China
{hph19,c-y19}@mails.tsinghua.edu.cn, longbohuang@tsinghua.edu.cn

ABSTRACT

We study reward-free reinforcement learning with linear function approximation
for episodic Markov decision processes (MDPs). In this setting, an agent first
interacts with the environment without accessing the reward function in the explo-
ration phase. In the subsequent planning phase, it is given a reward function and
asked to output an ϵ-optimal policy. We propose a novel algorithm LSVI-RFE un-
der the linear MDP setting, where the transition probability and reward functions
are linear in a feature mapping. We prove an rOpH4d2{ϵ2q sample complexity
upper bound for LSVI-RFE, where H is the episode length and d is the feature
dimension. We also establish a sample complexity lower bound of ΩpH3d2{ϵ2q.
To the best of our knowledge, LSVI-RFE is the first computationally efficient
algorithm that achieves the minimax optimal sample complexity in linear MDP
settings up to an H and logarithmic factors. Our LSVI-RFE algorithm is based
on a novel variance-aware exploration mechanism to avoid overly-conservative
exploration in prior works. Our sharp bound relies on the decoupling of UCB
bonuses during two phases, and a Bernstein-type self-normalized bound, which
remove the extra dependency of sample complexity on H and d, respectively.

1 INTRODUCTION

In reinforcement learning (RL), an agent tries to learn an optimal policy that maximizes the cumula-
tive long-term rewards by interacting with an unknown environment. Designing efficient exploration
mechanisms, being a critical task in RL algorithm design, is of great significance in improving the
sample efficiency of RL, both theoretically Azar et al. (2017); Ménard et al. (2021) and empirically
Schwarzer et al. (2020); Ye et al. (2021). In particular, for scenarios where reward signals are sparse
and require manually-designed reward functions, e.g., Nair et al. (2018); Riedmiller et al. (2018), or
multi-task settings where RL agents are required to accomplish different goals in different stages,
e.g., Hessel et al. (2019); Yang et al. (2020), efficient exploration of the environments is crucial, as it
can avoid the agent from repeated learning under different reward functions, resulting in inefficiency
and even intractability of sample complexity. However, the theoretical understanding is still limited,
especially for MDPs with large (or infinite) states or action spaces.

To understand the exploration mechanism in RL, reward-free exploration (RFE) is firstly proposed
in Jin et al. (2020a) to explore the environment without reward signals. RFE contains two phases:
exploration and planning. In the exploration phase, the agent first interacts with the environment
without accessing the reward function. In the subsequent planning phase, the agent is given a re-
ward function and asked to output an ϵ-optimal policy. RFE has great significance in a host of
reinforcement learning applications, e.g., multi-task RL Hessel et al. (2019); Yang et al. (2020), RL
with sparse rewards Nair et al. (2018); Riedmiller et al. (2018), and systematic generalization of RL
Jiang et al. (2019); Mutti et al. (2022). The minimax optimal sample complexity OpH3S2A{ϵ2q of
RFE is obtained in Ménard et al. (2021) for tabular settings where S and A are sizes of state and
action space, respectively. However, this bound is intractable when state and action space are large.

In this paper, we consider the RFE problem in the linear MDP setting, where the transition proba-
bility and the reward function are linear in a feature mapping ϕp¨, ¨q. The linear MDP model is an
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important formulation that provides a linear function approximation for general MDP problems with
large (or infinite) state and action space, and has received much recent attention in RL studies, e.g.,
Jin et al. (2020b); Zhou et al. (2021). Existing works in Wang et al. (2020a); Zanette et al. (2020c);
Chen et al. (2021) also study RFE in linear MDPs. The best known sample complexity upper bound
in this setting is rOpH4d3{ϵ2q obtained in Chen et al. (2021), and the best known lower bound is
ΩpmaxtH3d, d2u{ϵ2q by combining results obtained in Zhang et al. (2021) and Wagenmaker et al.
(2022). This means that the following fundamental question still remains open:

Does there exist a computation-efficient and minimax optimal algorithm for RFE in linear MDPs?

We make constructive contributions to minimax optimality by proposing a computationally ef-
ficient algorithm LSVI-RFE, achieving the state-of-the-art sample complexity upper bound of
rOpH4d2{ϵ2q, which is minimax optimal up to an H and logarithmic factors. The LSVI-RFE al-
gorithm is based on a novel variance-aware exploration mechanism with weighted linear regression
to avoid overly-conservative exploration in prior works. Accordingly, our sharp bound relies on the
decoupling of UCB bonuses during two phases, and a Bernstein-type self-normalized bound, which
remove the extra dependency of sample complexity on H and d, respectively. We summarize the
main contributions of the paper below.

• We propose the LSVI-RFE algorithm for RFE in linear MDPs based on a novel variance-
aware exploration mechanism with weighted linear regression to avoid overly-conservative
exploration in prior works. It also builds the monotonicity of constructed value functions
between two phases, providing new reward-free linear RL techniques.

• LSVI-RFE achieves a sample complexity of rOpH4d2{ϵ2q, which relies on the decoupling
of UCB bonuses during two phases. In addition, a Bernstein-type self-normalized bound
and the conservatism of elliptical potentials are utilized to reach optimal dependency of
sample complexity on d, which is potentially a general tool for linear reward-free RL.

• We prove a sample complexity lower bound of ΩpH3d2{ϵ2q, showing that LSVI-RFE is the
first computationally efficient algorithm to achieve the minimax optimal sample complexity
in linear MDPs up to an H and logarithmic factors.

Notations Scalars are denoted in lower case letters, and vectors/matrices are denoted in boldface
letters. Denote }x}2Λ “ xJΛx for vector x and positive definite matrix Λ, and } ¨ }F denotes the
Frobenius norm. Denote t1, ..., nu as rns. an “ Opbnq if there exists an absolute constant c ą 0

such that an ď cbn holds for all n ě 1 and an “ Ωpbnq for inverse direction. rOp¨q further suppresses
the polylogarithmic factors in Op¨q. À denotes approximately less than up to constant factors.

2 RELATED WORKS

RL with Linear Function Approximation There are a number of ways to parameterize an MDP
linearly. The first sample efficient algorithm is introduced by Jiang et al. (2017), where low Bellman
rank MDPs are considered. Subsequent works include Dann et al. (2018); Sun et al. (2019). Yang &
Wang (2019) develops the first statistically and computationally efficient algorithm for linear MDPs
with generative models, while Jin et al. (2020b) considers RL settings and proposes the LSVI-UCB
algorithm. Concurrently, Zanette et al. (2020a) provides a Thompson sampling-based algorithm. He
et al. (2021); Wagenmaker et al. (2021) provide a gap-dependent regret bound and a first-order regret
bound for linear MDPs, respectively. Subsequently, the minimax optimal algorithm is proposed in
Hu et al. (2022). More works on RL with linear function approximation include Zanette et al.
(2020b) for low inherent bellman error case, Wang et al. (2020c) for linear Q function case, and
Wang et al. (2020b) for bounded Eluder dimension case. Another popular linearly parameterized
MDP is the linear mixture MDP, studied in Modi et al. (2020); Yang & Wang (2020); Jia et al.
(2020); Ayoub et al. (2020); Cai et al. (2020); Zhou et al. (2021).

Reward-Free Exploration in Tabular MDPs Reward-free exploration is studied in Jin et al.
(2020a); Kaufmann et al. (2021); Ménard et al. (2021); Zhang et al. (2020). Jin et al. (2020a)
achieves an rOpH5S2A{ϵ2q sample complexity in the tabular setting. Subsequently, the RF-UCRL
algorithm in Kaufmann et al. (2021) improves this result by an H factor. Ménard et al. (2021)
modifies the Upper Confidence Bound (UCB)-bonus of UCRL and achieves a sample complexity of
rOpH3S2A{ϵ2q, matching the minimax lower bound provided in Jin et al. (2020a) up to logarithmic
factors. Concurrently, the SSTP algorithm Zhang et al. (2020) also achieves minimax optimality in
the time-homogeneous setting. Besides, Wu et al. (2022) proposes the first gap dependent bound.
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RFE with Linear Function Approximation There are recent works Wang et al. (2020a); Zanette
et al. (2020c); Zhang et al. (2021); Chen et al. (2021); Huang et al. (2022); Wagenmaker et al.
(2022) focusing on RFE in RL with linear function approximation. Chen et al. (2021) gives a sample
complexity bound of rOpH4d3{ϵ2q which is sharpest result on H , while Wagenmaker et al. (2022)
gives a sample complexity bound of rOpH5d2{ϵ2q, which achieves optimal dependency on d. Our
technical framework, i.e., an aggressive variance-aware exploration mechanism, is very different
from that in Wagenmaker et al. (2022), and also achieves an optimal dependency on d and a better
dependency on H . The best known lower bound is ΩpmaxtH3d, d2u{ϵ2q by combining results
obtained in Zhang et al. (2021) and Wagenmaker et al. (2022). Another line of works Zhang et al.
(2021); Chen et al. (2021) focus on RFE in linear mixture MDPs, where the minimax optimal sample
complexity is obtained in Chen et al. (2021) when d ą H but the algorithm is not computationally-
efficient. A detailed comparison of some most related works is shown in Table 1.1 Moreover, low-
rank MDPs, which subsume linear MDPs, are considered in Modi et al. (2021); Chen et al. (2022).
In addition, more related work focuses on block MDPs, where the representation ϕ is unknown, Du
et al. (2019); Misra et al. (2020); Zhang et al. (2022).

Table 1: Comparison of reward-free exploration in episodic RL with linear function approximation.

Setting Algorithm Computation-Efficient Sample Complexity

Linear
Mixture

MDP

UCRL-RFE` Zhang et al. (2021) No rOpH5dpH ` dq{ϵ2q

Chen et al. Chen et al. (2021) No rOpH3dpH ` dq{ϵ2q

Lower bound Chen et al. (2021) ΩpH3d2{ϵ2q

Linear
MDP

Wang et al. Wang et al. (2020a) Yes rOpH6d3{ϵ2q

FRANCIS Zanette et al. (2020c) Yes rOpH5d3{ϵ2q

Chen et al. Chen et al. (2021) Yes rOpH4d3{ϵ2q

RFLIN Wagenmaker et al. (2022) Yes rOpH5d2{ϵ2q

LSVI-RFE (Alg. 1, 2) Yes rOpH4d2{ϵ2q

Lower bound (Th. 6.1) ΩpH3d2{ϵ2q

3 PRELIMINARIES

We consider an episodic finite-horizon MDP M “ tS,A, H, tPhuh, trhuhu, where S is the state
space, A is the action space, H P Z` is the episode length, Ph : S ˆA Ñ ∆pSq and rh : S ˆA Ñ

r0, 1s are time-dependent transition probability and deterministic reward function. We assume that
S is a measurable space with a possibly infinite number of elements and A is a finite set.

For a time-inhomogeneous MDP, the policy is time-dependent, which is denoted as π “

tπ1, ..., πHu, where πhpsq is the action that agent takes at state s at the h-th step. We define the
state-action function (i.e., Q-function) and value function as

Qπ
h ps, a; rq “ E

«

H
ÿ

h1“h

rh1 psh1 , ah1 q | sh “ s, ah “ a, π

ff

, (1)

V π
h ps; rq “ E

«

H
ÿ

h1“h

rh1 psh1 , ah1 q | sh “ s, π

ff

, (2)

respectively for a specific set of the reward function r “ trhuHh“1. For any function V p¨; rq :
S Ñ R, we further denote PhV ps, a; rq “ Es1„Php¨|s,aqV ps1; rq and value function variance
rVhV s ps, a; rq “ PhV

2ps, a; rq ´ rPhV ps, a; rqs
2, where V 2 stands for the function whose value

at s is V 2ps; rq. The Bellman equation associated with a policy π for reward function r is

Qπ
hps, a; rq “ rhps, aq ` PhV

π
h`1ps, a; rq, V π

h ps; rq “ Qπ
h ps, πhpsq; rq , (3)

for any ps, aq P S ˆ A and h P rHs. Since the action space and the episode length are both
finite, there always exists an optimal policy π˚ for the reward function r “ trhuHh“1, such that
the associated optimal state-action function and value function are Q˚

hps, a; rq “ supπ Q
π
hps, a; rq

1For time-inhomogenous case, the bound of UCRL-RFE` Zhang et al. (2021) is degraded by an H factor.
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and V ˚
h ps; rq “ supπ V

π
h ps; rq, respectively. For any ps, aq P S ˆ A and h P rHs, the Bellman

optimality equation for the reward function r “ trhuHh“1 is

Q˚
hps, a; rq “ rhps, aq ` PhV

˚
h`1ps, a; rq, V ˚

h ps; rq “ max
aPA

Q˚
hps, a; rq, (4)

The structural assumption we make in this paper is a linear structure in both transition and reward,
which has been considered in prior works, e.g., Yang & Wang (2019); Jin et al. (2020b) as below:
Definition 3.1 (Linear MDP). A MDP M “ tS,A, H, tPhuh, trhuhu is a linear MDP with a known
feature mapping ϕ : S ˆA Ñ Rd, if for any h P rHs, there exist unknown d-dimensional measures
µh “ pµhpsqsPSq P Rdˆ|S| over and an unknown vector θh P Rd, such that for any ps, aq P S ˆ A,

Phps1 | s, aq “ xϕps, aq,µhps1qy, rhps, aq “ xϕps, aq,θhy.

We make the following norm assumptions: for any h P rHs, (i) sups,a }ϕps, aq}2 ď 1, (ii)
}µhv}2 ď

?
d for any vector v P R|S| such that }v}8 ď 1, (iii) }θh}2 ď W , where W is a

constant. These assumptions are mild and are common in the existing literature Jin et al. (2020b).

Reward-Free Exploration (RFE) We consider the following RFE model, which has been con-
sidered in previous literature Jin et al. (2020a); Kaufmann et al. (2021); Ménard et al. (2021); Zhang
et al. (2020). Specifically, there are two phases in the RFE paradigm. (i) Exploration Phase: The
agent interacts with the environment for exploration up to K episodes without accessing the reward
function. (ii) Planning Phase: The agent is given a reward function r “ trhu

H
h“1 with the goal of

outputting an ϵ-optimal policy π based on learned information from the exploration phase.

We define the sample complexity to be the number of episodes K required in the exploration phase
to output an ϵ-optimal policy π in the planning phase for any possible reward function r, i.e.,

Es„µ rV ˚
1 ps; rqs ´ Es„µ rV π

1 ps; rqs ď ϵ

where µ P ∆pSq denotes the initial state distribution.

4 ALGORITHM AND MAIN RESULTS

This section presents our LSVI-RFE algorithm for reward-free reinforcement learning in linear
MDPs. It builds upon the procedure of optimistic learning as Wang et al. (2020a); Zhang et al.
(2021), but with critical novelty of introducing an aggressive variance-aware exploration mecha-
nism. The mechanism is inspired by Chen et al. (2021); Hu et al. (2022), and LSVI-RFE further
makes critical improvements in variance-aware weights, value function monotonicity, and compu-
tational tractability. In addtion, the mechanism is implemented by an aggressive exploration bonus
bk,h and an aggressive reward function rk,h in the exploration phase: (i) The aggressive explo-
ration bonus guarantees the monotonicity of value functions between two phases and removes the
additional dependency of sample complexity on feature dimension d, due to building a uniform con-
vergence argument by the covering net in prior works, e.g., Jin et al. (2020b); Wang et al. (2020a).
(ii) The reward function is also more aggressive than those in prior works Wang et al. (2020a);
Zanette et al. (2020c) by an H factor to avoid overly-conservative exploration, which removes the
extra dependency of sample complexity on episode length H .

4.1 EXPLORATION PHASE

Overall Exploration Sketch The observed state-action pairs are collected in each episode for
estimating the parameter tµhuhPrHs by weighted linear regression. Then, the optimistic state-action
function pQk,h is constructed (Line 9), and the agent executes the greedy policy πk

h with respect to
the optimistic state-action function (Line 11). Two critical steps in the exploration are the variance-
aware exploration mechanism and the weighted linear regression, which are illustrated below.

Aggressive Variance-Aware Exploration Mechanism LSVI-RFE designs a variance-aware
weight pσk,h, and subsequently builds an exploration bonus bk,h and a reward function rk,h to en-
courage the exploration in Lines 7 and 8 of Algorithm 1, respectively. Our exploration mechanism
is variance-aware and aggressive with the following critical differences to prior works:

(i) Variance-aware weights: pσk,h (Line 24 of Algorithm 1) contains two terms: wk,h and Wk,h.
The motivation to introduce pσk,h remains that we utilize a Bernstein-type self-normalized bound
(Lemma C.2 in Appendix C.1) to build the confidence set, and the Bernstein bound contains a
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variance term (σ2) and elliptical potential term (R). Thus, LSVI-RFE estimates the variance upper
bound of the value function pVk,h by Wk,h in Line 16, and dynamically adjusts wk,h in Lines 19-23
to keep }pσ´1

k,hϕpskh, a
k
hq}

pΛ´1
k,h

{pσk,h small. This fine-grained control of wk,h is critical for removing
the extra dependency on d, which is inspired by Hu et al. (2022) for regret minimization in linear
MDPs, and is detailed in step 2 in Section 5. However, pσk,h in Hu et al. (2022) contains three terms
and the difference is that we abandon the variance upper estimator term concerning the real value
function. Due to the agnosticism of the reward function in the exploration phase, a uniform upper
bound of the value function (concerning the actual reward function) variance is infeasible.

Algorithm 1 Least-Squares Value Iteration - RFE (LSVI-RFE): Exploration Phase

Require: Regularization parameter λ, exploration radius pβE

1: for step h “ H, ..., 1 do
2: pΛ1,h, rΛ1,h Ð λI; pµ1,h Ð 0; pV0,hp¨q Ð H;
3: end for
4: pV1,H`1p¨q Ð 0
5: for episode k “ 1, ...,K do
6: for step h “ H, ..., 1 // Value iteration do
7: bk,hp¨, ¨q “ 2pβE}ϕp¨, ¨q}

pΛ´1
k,h

// Exploration driven bonus

8: rk,hp¨, ¨q “ bk,hp¨, ¨q{2 // Exploration driven reward function
9: pQk,hp¨, ¨q “ rk,hp¨, ¨q ` xpµk,h

pVk,h`1,ϕp¨, ¨qy ` bk,hp¨, ¨q // Optimistic Q function

10: pVk,hp¨q Ð min
!

maxaPA pQk,hp¨, aq, H
)

11: πk
hp¨q Ð argmaxaPA pQk,hp¨, aq

12: end for
13: Receive the initial state sk1
14: for step h “ 1, ...,H do
15: akh Ð πk

hpskhq, and observe skh`1 „ Php¨|skh, a
k
hq

16: Wk,h “ mintH ¨ pxpµk,h
pVk,h`1,ϕpskh, a

k
hqy ` pβE}ϕpskh, a

k
hq}

pΛ´1
k,h

`H
?
λ{2K

?
dq, H2u

17: rσk,h Ð
a

maxtH, pd2{HqWk,hu

18: rΛk`1,h Ð rΛk,h ` rσ´2
k,hϕpskh, a

k
hqϕpskh, a

k
hqJ

19: if }rσ´1
k,hϕpskh, a

k
hq}

rΛ´1
k,h

ą 1{d3 then

20: wk,h Ð
?
Hd3

21: else
22: wk,h Ð

?
H

23: end if
24: pσk,h Ð maxtwk,h, rσk,hu

25: pΛk`1,h Ð pΛk,h ` pσ´2
k,hϕpskh, a

k
hqϕpskh, a

k
hqJ

26: pµk`1,h Ð pΛ´1
k`1,h

řk
i“1 pσ

´2
i,hϕpsih, a

i
hqδpsih`1qJ // Solution to the weighted regression

27: end for
28: end for
29: Return tpΛK`1,h, pµK`1,huhPrHs.

(ii) Aggressive exploration bonus bk,h: It is aggressive by a factor of 2 enlargement to ensure the
monotonicity of the estimated value function between the exploration phase and planning phase, i.e.,
V ˚
h p¨; rq ` pVk,hp¨q ě pVhp¨q (Lemma A.15 in Appendix), which is also necessary for removing the

extra dependency of the sample complexity on d. This monotonicity is similar to “over-optimism”
in Hu et al. (2022), but our monotonicity is built between the exploration phase and the planning
phase, which is different from that in Hu et al. (2022), which builds monotonicity in each episode.
The reason remains that only the planning phase bonus determines the sharpness of the sample
complexity as detailed in Section 5, such that monotonicity is only required between the exploration
phase and the planning phase, instead of each episode in the exploration phase.

(iii) Aggressive reward function rk,h: It is more aggressive by a factor of H enlargement than
existing works for RFE in linear MDPs, e.g., Wang et al. (2020a), which sets the reward function as
mintbk,hp¨, ¨q{H, 1u so that it belongs to r0, 1s. rk,h takes the same order as the exploration bonus,
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i.e., without the 1{H factor. Using a factor of H enlargement to achieve faster learning rates was
firstly proposed in Chen et al. (2021) for linear mixture MDPs, achieving minimax optimal sample
complexity, yet in a computationally-inefficient manner. We prove that the H enlargement also
works for our variance-aware exploration mechanism in a computationally-efficient way, and saves
an H2 factor in the sample complexity.

Weighted Linear Regression To enable aggressive variance-aware exploration, we employ
weighted linear regression to assemble variance-aware weights in linear regression. Note that the
weighted ridge regression estimator has been built for regret minimization algorithms for RL with
linear function approximations, e.g., Zhou et al. (2021); Hu et al. (2022). Denote δpsq P R|S| as a
one-hot vector that is zero everywhere except the entry corresponding to state s is one, and define
ϵkh :“ Php¨ | skh, a

k
hq´δpskh`1q. Considering Erϵkh | skh, a

k
hs “ 0, δpskh`1q is an unbiased estimate of

Php¨ | skh, a
k
hq “ µJ

hϕpskh, a
k
hq. Thus, µh can be learned via regression from ϕpskh, a

k
hq to δpskh`1q,

and the sequence tpσi,huiPrks serves as the weight sequence. The estimated parameter pµk,h in Line
26 of Algorithm 1 is the solution to the following weighted linear regression:

minµPRdˆ|S|

k´1
ÿ

i“1

›

›

›

“

µJ
hϕpskh, a

k
hq ´ δpskh`1q

‰

pσ´1
i,h

›

›

›

2

2
` λ}µ}2F , (5)

with solution in Line 26 and the estimated transition probability pPk,hp¨ | skh, a
k
hq “ pµJ

k,hϕpskh, a
k
hq.

4.2 PLANNING PHASE

Overall Planning Sketch During the planning phase, the ϵ-optimal policy π is the greedy policy
concerning the optimistic value iteration with respect to the estimated transition matrix from the
exploration phase, i.e., parameters tpµK`1,huhPrHs. We introduce a UCB bonus term bhp¨, ¨q, which
still takes a variance-aware mechanism by utilizing the covariance matrix pΛK`1,h, to ensure opti-
mism of pVhp¨q. In particular, Step 4 in Section 5 reveals that the sub-optimality gap is upper bounded
by the summation of UCB bonus term bhp¨, ¨q in the planning phase, which is small on average and
ensures the near optimality of the returned greedy policy π.

Algorithm 2 Least-Squares Value Iteration - RFE (LSVI-RFE): Planning Phase

Require: Planning radius pβP , parameter tpΛK`1,h, pµK`1,huhPrHs, reward function r “ trhuhPrHs

1: pVH`1p¨q Ð 0
2: for step h “ H, ..., 1 // Value iteration do
3: bhp¨, ¨q “ mintpβP }ϕp¨, ¨q}

pΛ´1
K`1,h

, Hu

4: pQhp¨, ¨q “ rhp¨, ¨q ` xpµK`1,h
pVh`1,ϕp¨, ¨qy ` bhp¨, ¨q // Optimistic Q function

5: pVhp¨q Ð min
␣

maxaPA pQhp¨, aq, H
(

6: πhp¨q Ð argmaxaPA pQhp¨, aq

7: end for
8: Return π “ tπhuhPrHs

Remark 4.1. In our analysis, we introduce auxiliary value functions (Definition A.5 in Appendix).
Although it is inspired by Chen et al. (2021), we make critical changes, i.e., building optimism in our
variance-aware exploration mechanism with a computationally-efficient manner. By auxiliary value
functions, we can further decouple UCB bonuses bk,h and bh of exploration and planning phases,
i.e., bk,h and bh can take different orders, as revealed in Eq. (9) and Eq. (10). In particular, Step
4 in Section 5 further shows that only the planning phase bonus bh determines the sharpness of the
sample complexity. This is very different from prior works Wang et al. (2020a); Zhang et al. (2021),
which take the same order of bonuses in two phases. Our heterogenous UCB bonuses in two phases
and accompanying auxiliary value functions together are able to reduce an H2 factor and a d factor
in the sample complexity, compared to prior work in Wang et al. (2020a).

4.3 MAIN RESULTS

The sample complexity of the proposed LSVI-RFE algorithm is given below in Theorem 4.2 with a
proof sketch in Section 5. The detailed proof is given in Appendix A.
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Theorem 4.2 (Upper bound). Set pβE “ rOpd
?
Hq and pβP “ rOp

?
Hdq 2 . After collecting

rO
`

H4d2{ϵ2
˘

trajectories during exploration phase, with probability 1 ´ 7δ, LSVI-RFE outputs an
ϵ-optimal policy for arbitrary reward function satisfying Definition 3.1 during the planning phase.
Remark 4.3. Theorem 4.2 shows that LSVI-RFE achieves the state-of-the-art sample complexity for
RFE in linear MDPs. Compared to the RFE algorithms in Wang et al. (2020a); Zanette et al. (2020c);
Wagenmaker et al. (2022) for linear MDPs, our sample complexity is sharper in H , which comes
from the more aggressive reward function. Moreover, the optimal dependency on d is achieved by
our variance-aware UCB bonus such that the extra overhead due to building the uniform convergence
argument in Wang et al. (2020a); Chen et al. (2021) is removed. Compared to Wagenmaker et al.
(2022), which also achieves optimal dependency on d, our technical framework, i.e., an aggressive
variance-aware exploration mechanism, is very different, and gives better dependency on H .
Remark 4.4 (Computational Tractability). LSVI-RFE is a computationally efficient algorithm, i.e.,
it has polynomial space and computation complexities. Besides, it suffices to only analyze the space
and computation complexity of Algorithm 1 in the exploration phase, since Algorithm 2 in the
planning phase is equivalent to a single-episode run of Algorithm 1. The space and computation
complexities (detailed in Appendix D) of Algorithm 1 are Opd2H `d|A|HKq and Opd2|A|HK2q,
respectively, where K is the number of episodes that Algorithm 1 has run. By Theorem 4.2, K can
take the order of rO

`

H4d2{ϵ2
˘

to output an ϵ-optimal policy with high probability.

5 MECHANISM

In this section, we overview the key techniques and ideas used in the analysis of reward-free ex-
ploration and the proof of Theorem 4.2. As preliminary steps in optimistic learning, we construct
the confidence sets pCE

k,h and pCP
h for the exploration phase and planning phase respectively in Steps

1 and 2. Subsequently, we bound the exploration error, i.e., summation of the exploration bonus,
during the exploration phase based on the confidence set pCE

k,h in Step 3. Finally, we bound the
sub-optimality gap of the recovered policy in the planning phase with confidence set pCP

h and the
monotonicity of the exploration bonus in Step 4. The full proof is in Appendix A.

Step 1: Build Confidence Set pCE
k,h in the Exploration Phase LSVI-RFE estimates the parameter

tµhuhPrHs of the transition probability matrix in the exploration phase. The confidence set pCE
k,h is

built with a Hoeffding-type self-normalized bound, i.e., Lemma C.1 in Appendix C and a standard
covering net argument, e.g., Lemma B.3. in Jin et al. (2020b), such that we have for any k P rKs, h P

rHs, with high probability,
µh P pCE

k,h :“

"

µ :
›

›

›
pµ ´ pµk,hq pVk,h`1

›

›

›

pΛk,h

ď pβE

*

. (6)

This is detailed in Lemma C.3 with pβE “ rOpd
?
Hq. Consequently, we have ppPk,h ´ PhqpVk,h`1 ď

pβE}ϕpskh, a
k
hq}

pΛ´1
k,h

by the Cauchy-Schwarz inequality. Under confidence set pCE
k,h, pVk,hp¨q is a upper

confidence estimator of the optimal value function with exploration-driven reward, i.e., V ˚
h p¨; rkq,

where rk “ trk,huhPrHs, which is detailed in Lemma A.7.

Step 2: Build the Confidence Set pCP
h in the Planning Phase We prove that, with high probability,

for any h P rHs in the planning phase,

µh P pCP
h :“

"

µ :
›

›

›
pµ ´ pµK`1,hq pVh`1

›

›

›

pΛK`1,h

ď pβP

*

, (7)

where the bonus radius pβP “ rOp
?
dHq is sharper than pβE “ rOpd

?
Hq in the exploration phase.

Specifically, we build the confidence set pCP
h by the intersection of two confidence sets pCP p1q

h and
pCP p2q

h , similar to that in Azar et al. (2017) for tabular MDPs, where
pCP p1q

h :“
!

µ :
›

›pµ ´ pµK`1,hqV ˚
h`1

›

›

pΛK`1,h
ď pβP p1q

)

,

pCP p2q

h :“

"

µ :
›

›

›
pµ ´ pµK`1,hq

´

pVh`1 ´ V ˚
h`1

¯
›

›

›

pΛK`1,h

ď pβP p2q

*

,

where V ˚
h`1p¨q refers to V ˚

h`1p¨; rq. A couple of remarks are in place here. (i) In particular, since
V ˚
h`1p¨q is a fixed function, where r is the real reward function given in planning phase, we can

2The exact forms of pβE , pβP p1q, pβP p2q are given in Eq. (20), (30) and (32), respectively in Appendix A
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build confidence set pCP p1q

h with radius pβP p1q “ rOp
?
Hdq by Hoeffding-type self-normalized bound

directly without a uniform convergence argument, as detailed in Lemma A.11. (ii) When building
the confidence set pCP p2q

h , the Bernstein-type self-normalized bound (Lemma C.2 in Appendix C.1)
is applied, where the variance term (σ2) and elliptical potential term (R) need to be controlled. In
fact, we build the monotonicity of the estimated value function between the exploration phase and
planning phase in Lemma A.15, i.e., V ˚

h p¨; rq` pVk,hp¨q ě pVhp¨q such that the variance term (σ2) can
be bounded by the variance of pVk,hp¨q. Moreover, by dynamically adjusting wk,h, we can keep the
elliptical potential term (R) small, which is detailed in Lemma A.9. This gives pβP p2q “ rOp

?
Hdq

as detailed in Lemma A.17. Consequently, the overhead due to building a uniform convergence
argument by covering net is removed and pβP “ pβP p1q ` pβP p2q “ rOp

?
Hdq.

Step 3: Bound the Exploration Error The exploration error refers to the summation of the con-
structed optimistic value function in the exploration phase, i.e., pVk,1, which is upper bounded by
the summation of the bonus term under the confidence sets pCE

k,h for any h P rHs. It is named
as the exploration error since the summation of the bonus term upper bounds the estimation error
ppPk,h ´ PhqpVk,h`1. In particular, the exploration error is upper bounded in Lemma A.20 by

K
ÿ

k“1

pVk,1psk1q ď 4pβE

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

looooooomooooooon

I1

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

min

"

›

›

›
pσ´1
k,hϕps, aq

›

›

›

2

pΛ´1
k,h

, 1

*

loooooooooooooooooooooooomoooooooooooooooooooooooon

I2

ď rOp
?
d3H4Kq (8)

where the second inequality holds since I2 can be bounded as rOp
?
Hdq by the elliptical potential

lemma (Lemma C.6), and I1 “ rOp
?
HT q since the enlargement operation in Line 20 of Algorithm 1

rarely happens due to the conservatism of elliptical potentials according to Lemma C.7, and the
summation of Wk,h is in the order of

?
T by Lemma A.19.

Step 4: Bound the Sub-optimality Gap The sub-optimality gap refers to the expected gap be-
tween the optimal value function V ˚

1 p¨; rq and the value function V π
1 p¨; rq associated with the

recovered policy π in the planning phase. Notice that }ϕp¨, ¨q}
pΛ´1

K`1,h
ď }ϕp¨, ¨q}

pΛ´1
k,h

since
pΛk,h ĺ pΛK`1,h for any k P rKs. We thus have

rk,hp¨, ¨q “ pβE}ϕp¨, ¨q}
pΛ´1

k,h
ě

?
dbhp¨, ¨q “

?
dpβP }ϕp¨, ¨q}

pΛ´1
K`1,h

, (9)

where bhp¨, ¨q is the exploration bonus in the planning phase. Then, we can apply standard analysis
as in Wang et al. (2020a) to bound Es1„µ rV ˚

1 ps1; rq ´ V π
1 ps1; rqs by

Es1„µ rV ˚
1 ps1; rq ´ V π

1 ps1; rqs ď Es1„µ

”

pV1 ps1q ´ V π
1 ps1; rq

ı

(10)

ď Es1„µ

”

rV π
1 ps1; bq

ı

ď Es1„µ

”

rV π
1 ps1; rkq

ı

{
?
d ď Es1„µ

«

K
ÿ

k“1

pVk,1ps1q

ff

{pK
?
dq,

where the first inequality holds due to optimism under the confidence sets pCP
h for any h P rHs

(Lemma A.15), the second inequality is the application of regret composition and rV π
1 is an auxiliary

value function defined in Appendix, the third inequality holds by Eq. (9), and the last inequality
holds due to the optimism under the confidence sets pCE

k,h for any h P rHs (Lemma A.7). Indeed,
Eq. (10) establishes the connection between the exploration phase and planning phase. Thus, if π is
an ϵ-optimal policy, we obtain K ě rOpd2H4{ϵ2q by combining Eq. (8) and Eq. (10).

6 LOWER BOUND AND SUB-OPTIMALITY GAP
We provide a sample complexity lower bound for reward-free RL under the linear MDP setting
in Theorem 6.1. We show that there exists an instance of linear MDP, such that any reward-free
RL algorithm requires Ωpd2H3{ϵ2q episodes of interaction during the exploration phase to find a
near-optimal policy during the planning phase.

Theorem 6.1 (Lower Bound). Suppose H ě 4, d ě 2, 1{32K ă δ ă 1{H . Then, there exists
a linear MDP instance M “ pS,A, H, tPhu, trhuq, such that any algorithm ALG that learns an
ϵ-optimal policy with probability at least 1´δ needs to collect at least K “ Cd2H3{ϵ2 episodes dur-
ing the exploration phase, where C is an absolute constant, and δ has no dependence on ϵ,H, d,K.

8
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Proof Sketch. Notice that if the reward function is given in the exploration phase, the RFE setting
degrades to Probably Approximately Correct (PAC) RL setting Dann et al. (2019). Thus, a lower
bound for PAC RL also serves as a lower bound for RFE since an algorithm for RFE also works
for PAC RL by neglecting the reward function in the exploration phase. The proof of Theorem 6.1
is inspired by the lower bound of RFE in linear mixture MDPs in Chen et al. (2021). First, we
construct a hard-to-learn MDP M such that any algorithm which runs K episodes will obtain the
regret at least ΩpdH

?
HKq as shown in Zhou et al. (2021). Then, for any algorithm ALG1 running

K episodes to learn an ϵ-optimal policy πpKq with probability at least 1 ´ δ, it suffices to prove
that under the instance M, K ě Cd2H3{ϵ2. We prove this by constructing a new algorithm ALG2

which runs ALG1 in the first K episodes and executes the generated policy πpKq in the rest pc´1qK
episodes, where c ą 1 is a positive constant. The regret under M in the last pc ´ 1qK episodes by
executing πpKq satisfies ΩpdH

?
HKq À

řK2

k“K`1 Ex1„ν

“

V ˚
1 px1q ´ V pπ

1 px1q
‰

À Kϵ, where ν is
the initial state distribution, the first inequality holds due to the hardness of the constructed MDP, and
the second inequality holds due to πpKq is an ϵ-optimal policy. Thus, we obtain K ě Ωpd2H3{ϵ2q.
For detailed proof, please refer to Appendix B.
Remark 6.2. Theorem 6.1 presents an improved sample complexity lower bound for RFE in linear
MDPs than the results of ΩpH2d{ϵ2q in Zhang et al. (2021) and Ωpd2{ϵ2q in Wagenmaker et al.
(2022). The lower bound and Theorem 4.2 together show that the sample complexity of LSVI-RFE,
i.e., rOpH4d2{ϵ2q, matches the lower bound ΩpH3d2{ϵ2q except for an H and logarithmic factors.
To our best knowledge, the upper bound in Theorem 4.2 and lower bound in Theorem 6.1 are both
sharper than those in existing works Wang et al. (2020a); Zanette et al. (2020c); Zhang et al. (2021);
Chen et al. (2021).

6.1 TOWARDS MINIMAX OPTIMALITY

The sample complexity of LSVI-RFE is rOpH4d2{ϵ2q, which matches the lower bound up to an
H and logarithmic factors. The factor H between the upper and lower bounds is potentially due
to utilizing a Hoeffding-type bonus instead of a Bernstein-type one for building the confidence set
pCP p1q. Intuitively, a Bernstein-type bonus based on the variance of the value function, combined with
the Law of Total Variance (LTV) Lattimore & Hutter (2012), can effectively reduce a

?
H factor in

the statistical complexity of RL algorithms. This phenomenon has been observed in existing works
Zhou et al. (2021); Hu et al. (2022) for regret minimization in linear MDPs. However, to utilize the
Bernstein-type inequality in building pCP p1q, we estimate the variance of the optimal value function
V ˚
h`1p¨, rq with real reward function. Unfortunately, under the RFE, the agent is unaware of the real

reward during the exploration phase, which brings obstacles to building the variance estimator. In
the Linear mixture setting, Chen et al. (2021); Zhang et al. (2021) successfully utilize the Bernstein-
type self-normalized bound and presents a nearly minimax optimal algorithm. However, their works
still cannot estimate the variance of the optimal value function. Instead, they build an upper-bound
estimator from a candidate set to avoid estimating the variance, which is computationally inefficient.
Degradation to PAC RL Our sample complexity upper and lower bounds in Theorem 4.2 and 6.1
are also applicable to the PAC RL setting, i.e., the agent is aware of the reward function during the
exploration phase, both upper and lower bounds are sharp, yet there is still an H gap. However, a
direct adaption of the Bernstein-type bonus will not improve the sample complexity under PAC RL
due to policy inconsistency. Specifically, when we apply the total variance lemma (Lemma C.5 in Jin
et al. (2018)), the exploration policy πk for episode k is inconsistent with the recovered policy π in
the planning phase, since πk is the greedy with respect to constructed value function by exploration-
driven reward function, instead of the real reward function given in the planning phase. A potential
solution may be bounding the distance between two policies by policy distance measures, e.g., KL
divergence, which helps tabular RFE to reach minimax optimality in Ménard et al. (2021).

7 CONCLUSION
This work studies reward-free reinforcement learning with linear function approximation for
episodic MDPs. We propose a novel computation-efficient algorithm LSVI-RFE with rOpH4d2{ϵ2q

sample complexity upper bound for linear MDPs. We also establish a sample complexity lower
bound of ΩpH3d2{ϵ2q, showing that LSVI-RFE’s complexity is optimal up to an H and logarith-
mic factors. LSVI-RFE introduces a novel variance-aware exploration mechanism with weighted
linear regression to avoid overly-aggressive exploration in prior works. Our sharp bound relies on
the decoupling of UCB bonuses during two phases, a Bernstein-type self-normalized bound and the
conservatism of elliptical potentials We leave removing the H gap as future work.
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REPRODUCIBILITY STATEMENT

The assumption we make to the MDP structure can be found in Definition 3.1. The complete proof
of our main theoretical results, Theorem 4.2 and Theorem 6.1 can be found in Appendix A and
Appendix B, respectively. We also provide auxiliary lemmas required for our complete proof in
Appendix C.
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A PROOF OF UPPER BOUND (THEOREM 4.2)

A.1 NOTATIONS AND PRELIMINARIES

We summarize the key notations used in our analysis in Table 2.

Table 2: Notations

Symbol Explanation

Fk,h σ-algebra generated by random states and actions up to stage h of episode k
pVpL,Bq Function class defined in Definition A.4
pVk,hp¨q Constructed optimistic value function in exploration phase
pVhp¨q Constructed optimistic value function in planning phase
V ˚
h ps; rq Optimal value function in planning phase

V ˚
h psq Abbreviation of V ˚

h ps; rq

rV ˚
h ps; rq Truncated optimal value function in planning phase, defined in Eq. (19)
pβE

rOpd
?
Hq, exploration bonus radius built in Lemma A.6

pβP p1q
rOp

?
Hdq, part one of planning bonus radius built in Lemma A.11

pβP p2q
rOp

?
Hdq, part two of planning bonus radius built in Lemma A.12

pβP
rOp

?
Hdq, planning bonus radius built in Lemma A.13

pCE
k,h Confidence set in exploration phase, defined in Eq. (11)
pCP p1q

h Part one of confidence set in planning phase, defined in Eq. (14)
pCP p2q

h Part two of confidence set in planning phase, defined in Eq. (15)
pCP
h Confidence set in planning phase, defined in Eq. (16)

ΨE
k,h Episodic optimism event in exploration phase, defined in Eq. (12)

ΨE
h Optimism event in exploration phase, defined in Eq. (13)

ΨP
h Optimism event in planning phase, defined in Eq. (17)

ϵkh Defined as Php¨ | skh, a
k
hq ´ δpskh`1q

pPk,hp¨ | s, aq Estimated transition probability, pµJ
k,hϕps, aq

Before the formal proof begins, we first start with some necessary definitions of measurable space
and filtration required during our proofs.

Measurable Space Note that the stochasticity in the transition probability of the MDP is the only
source of randomness. Denote P as the gather of the distributions over state-action pair sequence
pS ˆ AqN, induced by the interconnection of policy obtained from Algorithm 1 and the episodic
linear MDP M. Denote E as the corresponding expectation operator. Hence, all random variables
can be defined over the sample space Ω “ pS ˆ AqN. Thus, we work with the probability space
given by the triplet pΩ,F ,Pq, where F is the product σ-algebra generated by the discrete σ-algebras
underlying S and A.
Definition A.1 (Filtration). For any k P rKs and any h P rHs, let Fk,h be the σ-algebra generated
by the random variables representing the state-action pairs up to and including that appears in stage
h of episode k.

Measurability rσk,h, pσk,h, rΛk`1,h, pΛk`1,h are Fk,h-measurable, pµk`1,h is Fk,h`1-measurable,
pQk,h, pVk,h, π

k
h are Fk´1,H -measurable, yet not Fk´1,h-measurable due to their backwards construc-

tion.

We provide some necessary definitions of high probability events in Definition A.2 and Defini-
tion A.3 for exploration and planning phases, respectively. In particular, high probability events
for the exploration phase are built in Appendix A.2, and those for the planning phase are built in
Appendix A.3.
Definition A.2 (High Probability Events in Exploration Phase).
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• Confidence Set in Exploration Phase

pCE
k,h :“

"

µ :
›

›

›
pµ ´ pµk,hq pVk,h`1

›

›

›

pΛk,h

ď pβE

*

, @pk, hq P rKs ˆ rHs (11)

• Optimistic Events in Exploration Phase

ΨE
k,h :“tµh1 P pCE

k,h1 ,@h ď h1 ď Hu, @pk, hq P rKs ˆ rHs (12)

ΨE
h :“tµh1 P pCE

i,h1 ,@i P rKs,@h ď h1 ď Hu, @h P rHs (13)

Definition A.3 (High Probability Events in Planning Phase).

• Confidence Sets in Planning Phase

pCP p1q

h :“
!

µ :
›

›pµ ´ pµK`1,hqV ˚
h`1

›

›

pΛK`1,h
ď pβP p1q

)

, @h P ˆrHs (14)

pCP p2q

h :“

"

µ :
›

›

›
pµ ´ pµK`1,hq

´

pVh`1 ´ V ˚
h`1

¯
›

›

›

pΛK`1,h

ď pβP p2q

*

, @h P ˆrHs (15)

pCP
h :“

"

µ :
›

›

›
pµ ´ pµK`1,hq pVh`1

›

›

›

pΛK`1,h

ď pβP

*

, @h P ˆrHs (16)

• Optimistic Event in Planning Phase

ΨP
h :“ tµh1 P pCP

h1 ,@h ď h1 ď Hu, @h P rHs (17)

We also define the optimistic value function class below, which is required to build a uniform con-
vergence argument by the covering net.

Definition A.4 (Optimistic Value Function Class). For any L,B ą 0, let pVpL,Bq denote a class of
functions mapping from S to R with the following parametric form

V p¨q “ min

"

max
a

wJϕp¨, aq ` β
b

ϕp¨, aqJΛ´1ϕp¨, aq, H

*

, (18)

where the parameters pw, β,Λq satisfy }w}2 ď L, β P r0, Bs, the minimum eigenvalue satisfies
λminpΛq ě λ, and sups,a }ϕps, aq}2 ď 1.

Moreover, we also utilize the truncated optimal value function in the planning phase, which is de-
fined recursively as below. Compared to the definition of V ˚

h ps; rq, we take minimization over the
value function and H in each step in this definition. We can similarly define rV π

h ps; rq, rQπ
hps, a; rq.

Definition A.5 (Truncated Optimal Value Function). We introduce the value function rV ˚
h ps; rq

which is recursively defined from step H ` 1 to step 1:

rV ˚
H`1ps; rq “ 0, @s P S
rQ˚
hps, a; rq “ rhps, aq ` Ph

rV ˚
h`1ps, a; rq, @ps, aq P S ˆ A

rV ˚
h ps; rq “ min

"

max
aPA

rhps, aq ` Ph
rV ˚
h`1ps, a; rq, H

*

, @s P S, h P rHs.

(19)

Proof Overview We first build the confidence sets pCE
k,h and pCP

h for both exploration and planning
phases, respectively in Appendix A.2 and A.3. Subsequently, we bound the exploration error, i.e.,
summation of the exploration bonus, during the exploration phase based on the built confidence
set pCE

k,h in Appendix A.4. Finally, we can bound the sub-optimality gap of the recovered policy
in the planning phase with confidence set pCP

h and the monotonicity of the exploration bonus in
Appendix A.5, which also ends the proof of Theorem 4.2.

A.2 HIGH PROBABILITY EVENTS IN EXPLORATION PHASE

In this subsection, we build high probability events in exploration phase, including confidence set
pCE
k,h and optimism in Lemma A.6 and Lemma A.7, respectively.
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A.2.1 CONFIDENCE SET IN EXPLORATION PHASE

Lemma A.6. In Algorithm 1, for any δ P p0, 1q and fixed h P rHs, with probability at least 1´δ{H ,
we have that for any k P rKs,

µh P pCE
k,h “

"

µ :
›

›

›
pµ ´ pµk,hq pVk,h`1

›

›

›

pΛk,h

ď pβE

*

,

where

pβE “
?
H

g

f

f

ed log

ˆ

1 `
K

Hdλ

˙

` log

ˆ

H

δ

˙

` d log

˜

1 `
8K2

?
d

Hλ3{2

¸

` d2 log

ˆ

1 `
32K2B2

E

H2λ2
?
d

˙

` H
?
λd ` 1

(20)
with BE satisfying 3pβE ď BE .

Proof. (Lemma A.6) In Line 10 of Algorithm 1, for any pk, hq P ˆrKs ˆ rHs, we have

pVk,hp¨q “ min
!

max
a

xpµk,h
pVk,h`1,ϕp¨, aqy ` 3pβE}ϕp¨, aq}

pΛ´1
k,h

, H
)

.

Moreover,

›

›

›
pµk,h

pVk,h`1

›

›

›

2
“

›

›

›

›

›

pΛ´1
k,h

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqpVk,h`1psih`1q

›

›

›

›

›

2

ď
H

p
?
Hq2

›

›

›

›

›

pΛ´1
k,h

k´1
ÿ

i“1

ϕpsih, a
i
hq

›

›

›

›

›

2

ď
K

λ
,

where the first inequality holds since pVk,h`1p¨q ď H and pσi,h ě
?
H for any i P rks, and the second

inequality holds since λminpΛk,hq ě λ and sups,a }ϕps, aq}2 ď 1.

Thus, we claim that pVk,h P pVpLE , BEq for any pk, hq P rKs ˆ rHs, where function set pVp¨, ¨q is
defined in Definition A.4, LE “ K{λ and BE is a constant satisfying 3pβE ď BE with pβE given in
Eq. (20.

For a fixed function V P pVpLE , BEq, let Gi “ Fi,h, xi “ pσ´1
i,hϕpsih, a

i
hq and

ηi “ pσ´1
i,hϵ

i
h

J
V “ pσ´1

i,hpxµhV ,ϕpsih, a
i
hqy ´ V psih`1qq

for any i P rks. Then, xi is Gi-measurable and ηi is Gi`1-measurable, and we have Erηi|Gis “ 0.
Since pσi,h ě

?
H , we also have }xi}2 ď 1{

?
H and |ηi| ď

?
H .

By Lemma C.1, for any k P rKs and fixed h P rHs, with probability at least 1 ´ δ{H ,
›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
V

›

›

›

›

›

pΛ´1
k,h

ď
?
H
a

d logp1 ` pk ´ 1q{pHdλqq ` logpH{δq

ď
?
H
a

d logp1 ` K{pHdλqq ` logpH{δq

Denote the ε-cover of function class pVpLE , BEq as pNεpLE , BEq. For an arbitrary fp¨q P

pVpLE , BEq, there exists a V p¨q P pNε, such that }f ´ V }8 ď ε. Since }ϵih
J

pf ´ V q }2 ď 2ε

and
›

›

›

řk´1
i“1 pσ´2

i,hϕpsih, a
i
hqϵih

J
›

›

›

pΛ´1
k,h

ď K
?
d{pH

?
λq, we have

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
pf ´ V q

›

›

›

›

›

pΛ´1
k,h

ď
2εK

?
d

H
?
λ

. (21)
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Thus,
›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
f

›

›

›

›

›

pΛ´1
k,h

ď

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
V

›

›

›

›

›

pΛ´1
k,h

`

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
pf ´ V q

›

›

›

›

›

pΛ´1
k,h

ď

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
V

›

›

›

›

›

pΛ´1
k,h

`
2εK

?
d

H
?
λ

ď
?
H

b

d logp1 ` K{pHdλqq ` logpH{δq ` log | pNεpLE , BEq| `
2εK

?
d

H
?
λ

.

(22)

where the first inequality is due to triangle inequality, the second one holds by Eq. (21), and the third
inequality follows from a union bound over all functions in pNεpLE , BEq with

log | pNεpLE , BEq| ď d log p1 ` 4LEεq ` d2 logp1 ` 8d1{2B2
E{pλε2qq, (23)

according to Lemma C.5.

Moreover, we have
›

›

›
ppµk,h ´ µhq pVk,h`1

›

›

›

pΛk,h

“

›

›

›

›

›

pΛ´1
k,h

«

´λµh `

k´1
ÿ

i“1

pσ´2
i,hϕ

`

sih, a
i
h

˘

ϵih
J

ff

pVk,h`1

›

›

›

›

›

pΛk,h

ď

›

›

›
´λµh

pVk,h`1

›

›

›

pΛ´1
k,h

`

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕ

`

sih, a
i
h

˘

ϵih
J
pVk,h`1

›

›

›

›

›

pΛ´1
k,h

ď
1

?
λ

¨ λH
?
d `

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕ

`

sih, a
i
h

˘

ϵih
J
pVk,h`1

›

›

›

›

›

pΛ´1
k,h

,

(24)

where the equality is due to Lemma C.4, the first inequality is due to the triangle inequality, and the
second inequality holds since }µh

pVk,h`1}2 ď H
?
d and the minimum eigenvalue of pΛk,h is no less

than λ.

Thus, since pVk,h`1 P pV , we have that with probability at least 1 ´ δ{H , any k P rKs and fixed
h P rHs:

›

›

›
ppµk,h ´ µhq pVk,h`1

›

›

›

pΛk,h

ď
?
λH

?
d `

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
pVk,h`1

›

›

›

›

›

pΛ´1
k,h

ď
?
H

g

f

f

ed log

ˆ

1 `
K

Hdλ

˙

` log

ˆ

H

δ

˙

` d log

˜

1 `
8KLE

?
d

H
?
λ

q

¸

` d2 log

ˆ

1 `
32K2B2

E

H2λ2
?
d

˙

` H
?
λd ` 1 “ pβE ,

where the last inequality follows by Eq. (22) and setting ε “ H
?
λ{p2K

?
dq.

A.2.2 OPTIMISM IN EXPLORATION PHASE

Lemma A.7 (Optimism in Exploration Phase). In Algorithm 1, for any k P rKs and any h P rHs,
under ΨE

k,h, we have

rV ˚
h ps; rkq ď pVk,hpsq, @s P S.

17
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Proof. (Lemma A.7) We first prove the optimism for some fixed episode k P rKs by induction.

Initially, the statement holds for h “ H ` 1 since pVk,H`1p¨q “ rV ˚
H`1p¨; rkq “ 0 by definition.

Assume the statement holds for h ` 1, which means pVk,h`1p¨q ě rV ˚
h`1p¨; rkq under ΨE

k,h`1. Recall
the definitions of pQk,hp¨, ¨q and rQ˚

hp¨, ¨; rkq, i.e.,

pQk,hp¨, ¨q “ rk,hp¨, ¨q ` xpµk,h
pVk,h`1,ϕp¨, ¨qy ` pβE}ϕp¨, ¨q}

pΛ´1
k,h

, (25)

rQ˚
hp¨, ¨; rkq “ min

!

rk,hp¨, ¨q ` Ph
rV ˚
h`1p¨, ¨; rkq, H

)

. (26)

We have for any ps, aq P S ˆ A that

pQk,hps, aq ´ rQ˚
hps, a; rkq

ě rk,hps, aq ` xpµk,h
pVk,h`1,ϕps, aqy ` pβE}ϕps, aq}

pΛ´1
k,h

´

”

rk,hps, aq ` Ph
rV ˚
h`1ps, a; rkq

ı

“ xpµk,h
pVk,h`1,ϕps, aqy ´ xµh

pVk,h`1,ϕps, aqy ` pβE}ϕps, aq}
pΛ´1

k,h

` Ph
pVk,h`1ps, aq ´ Ph

rV ˚
h`1ps, a; rkq

ě ´

›

›

›
ppµk,h ´ µhq pVk,h`1

›

›

›

pΛk,h

}ϕ ps, aq}
pΛ´1

k,h
` pβE}ϕps, aq}

pΛ´1
k,h

` Ph
pVk,h`1ps, aq ´ Ph

rV ˚
h`1ps, a; rkq

ěPh
pVk,h`1ps, aq ´ Ph

rV ˚
h`1ps, a; rkq

ě 0.

Here the first inequality holds by Eq. (26), the second inequality follows from Cauchy-Schwarz in-
equality, the third inequality holds by the assumption that µh P pCE

k,h under ΨE
k,h, the last inequality

holds by the induction assumption that pVk,h`1p¨q ě rV ˚
h`1p¨; rkq under ΨE

k,h`1 and Ph is a valid dis-
tribution. Therefore, pVk,hp¨q “ mintmaxaPA pQk,hp¨, aq, Hu ě maxaPA rQ˚

hp¨, a; rkq “ rV ˚
h p¨; rkq.

The lemma follows by applying the above argument to any k P rKs.

A.3 HIGH PROBABILITY EVENTS IN PLANNING PHASE

In this subsection, we built high probability events in planning phase, including confidence set pCP
h

and optimism in Lemma A.13 and Lemma A.14, respectively. In particular, confidence set pCP
h in

Lemma A.13 is built based on two confidence set pCP p1q

h and pCP p2q

h in Lemma A.11 and Lemma A.12,
respectively. Apart from the optimism in Lemma A.14, we also build over-optimism between the
exploration phase and planning phase in Lemma A.15. In addition, we denote V ˚

h p¨q :“ V ˚
h p¨; rq

for convenience, where r “ trhuhPrHs is the real reward function given in the planning phase.

A.3.1 CONFIDENCE SET IN PLANNING PHASE

First, we present a lemma regarding the difference between pΛk,h and rΛk,h.
Lemma A.8. In Algorithm 1, for any k P rK ` 1s and any h P rHs, we have

d3 ¨ pΛk,h ľ rΛk,h

Proof. (Lemma A.8) Since pσk,h ď
?
d3rσk,h by definition, we have

d3 ¨ pΛk,h ´ rΛk,h “

k´1
ÿ

i“1

pppσi,h{
?
d3q´2 ´ rσ´2

i,hqϕpsih, a
i
hqϕpsih, a

i
hqJ ľ 0

is a semi-positive definite matrix.

Lemma A.9. In Algorithm 1, for any i P rKs and any h P rHs, we have

pσ´1
i,h min

!

}pσ´1
i,hϕpsih, a

i
hq}

pΛ´1
i,h

, 1
)

ď
1

?
Hd3

.
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Proof. We discuss two cases that are considered in Algorithm 1.

1. If }rσ´1
i,hϕpsih, a

i
hq}

rΛ´1
i,h

ď 1
d3 , then wi,h “

?
H , such that pσi,h “ rσi,h. Thus we have

›

›

›
pσ´1
i,hϕpsih, a

i
hq

›

›

›

pΛ´1
i,h

“

›

›

›
rσ´1
i,hϕpsih, a

i
hq

›

›

›

pΛ´1
i,h

ď
?
d3

›

›

›
rσ´1
i,hϕpsih, a

i
hq

›

›

›

rΛ´1
i,h

ď 1{
?
d3.

This leads to pσ´1
i,h min

!

}pσ´1
i,hϕpsih, a

i
hq}

pΛ´1
i,h

, 1
)

ď 1?
Hd3

by pσi,h ě
?
H .

2. If }rσ´1
i,hϕpsih, a

i
hq}

rΛ´1
i,h

ą 1
d3 , then wk,h “

?
Hd3. Then we have

pσ´1
i,h min

!

}pσ´1
i,hϕpsih, a

i
hq}

pΛ´1
i,h

, 1
)

ď pσ´1
i,h ď w´1

i,h “
1

?
Hd3

.

Lemma A.10. For any i P rKs, h P rH ´ 1s, fixed function V : S Ñ r0, Hs, and ζ “

H
?
λ{p2K

?
dq, we have

rVhpV ´ V ˚
h`1qspsih, a

i
hq ¨ 1

!

V ˚
h`1 ´ ζ ď V ď pVi,h`1 ` V ˚

h`1 ` ζ
)

¨ 1
␣

ΨE
i,h

(

ď Wi,h, (27)

where Wi,h is defined in Algorithm 1,

Wi,h “ min
!

H ¨

´A

pµi,h
pVi,h`1,ϕpsih, a

i
hq

E

` pβE
›

›ϕpsih, a
i
hq
›

›

pΛ´1
i,h

` ζ
¯

, H2
)

(28)

Proof. We define rV :“ V ´ V ˚
h`1 and rE :“

!

´ζ ď rV ď pVi,h`1 ` ζ
)

for brevity. Thus we can
write

rVhpV ´ V ˚
h`1qspsih, a

i
hq ¨ 1

!

V ˚
h`1 ´ ζ ď V ď pVi,h`1 ` V ˚

h`1 ` ζ
)

¨ 1
␣

ΨE
i,h

(

“rVh
rV spsih, a

i
hq ¨ 1

!

rE X ΨE
i,h

)

“

´

PhprV 2qpsih, a
i
hq ´ pPh

rV psih, a
i
hqq2

¯

1
!

rE X ΨE
i,h

)

ďH ¨ pPh
rV psih, a

i
hqq ¨ 1

!

rE X ΨE
i,h

)

,

where the inequality holds by |rV | ď H . Moreover, we can further condition on event rE X ΨE
i,h, or

the left term of Eq. 27 will be zero. This leads to

H ¨ pPh
rV psih, a

i
hqq ¨ 1

!

rE X ΨE
i,h

)

ďH ¨ pPh
pVi,h`1psih, a

i
hq ` ζq ¨ 1

!

rE X ΨE
i,h

)

“H ¨

´A

pµi,h
pVi,h`1,ϕpsih, a

i
hq

E

`

A

pµh ´ pµi,hq pVi,h`1,ϕpsih, a
i
hq

E

` ζ
¯

¨ 1
!

rE X ΨE
i,h

)

ďH ¨

ˆ

A

pµi,h
pVi,h`1,ϕpsih, a

i
hq

E

`

›

›

›
pµh ´ pµi,hq pVi,h`1

›

›

›

pΛi,h

›

›ϕpsih, a
i
hq
›

›

pΛ´1
i,h

` ζ

˙

¨ 1
!

rE X ΨE
i,h

)

ďH ¨

´A

pµi,h
pVi,h`1,ϕpsih, a

i
hq

E

` pβE
›

›ϕpsih, a
i
hq
›

›

pΛ´1
i,h

` ζ
¯

¨ 1
!

rE X ΨE
i,h

)

,

where the first inequality holds since we consider event rE , the second inequality holds by Cauchy-
Schwarz inequality, and the last inequality holds under event ΨE

i,h. Moreover, the left term of Eq. 27
is smaller than H2, since |V ´ V ˚

h`1| ď H . Then we have Eq. 27 holds.

Lemma A.11. In Algorithm 2, for any k P rKs and fixed h P rHs, with probability at least 1´δ{H:

µh P pCP p1q

h “

!

µ :
›

›pµ ´ pµK`1,hqV ˚
h`1

›

›

pΛK`1,h
ď pβP p1q

)

, (29)

where
pβP p1q “

?
H
a

d logp1 ` K{pHdλqq ` logpH{δq ` H
?
λd. (30)
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Proof. (Lemma A.11) For i P rKs, let Gi “ Fi,h, xi “ pσ´1
i,hϕ

`

sih, a
i
h

˘

and

ηi “ pσ´1
i,hϵ

i
h

J
V ˚
h`1 “ pσ´1

i,h

“@

µhV
˚
h`1,ϕpsih, a

i
hq
D

´ V ˚
h`1

`

sih`1

˘‰

.

Since V ˚
h`1p¨q is a fixed function, it is clear that xi are Gi-measurable and ηi is Gi`1-measurable. In

addition, we have E rηi | Gis “ 0. Since pσi,h ě
?
H , we see that |ηi| ď

?
H and }xi}2 ď 1{

?
H .

Then, by Lemma C.1, with probability at least 1 ´ δ{H , for all k P rKs and fixed h P rHs,
›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕ

`

sih, a
i
h

˘

ϵih
J
V ˚
h`1

›

›

›

›

›

pΛ´1
k,h

ď
?
H
a

d logp1 ` pk ´ 1q{pHdλqq ` logp1{δq

ď
?
H
a

d logp1 ` K{pHdλqq ` logp1{δq

Using a similar argument as in Eq. (24), we have

›

›ppµK`1,h ´ µhqV ˚
h`1

›

›

pΛk,h
ď H

?
λd `

›

›

›

›

›

k´1
ÿ

i“1

pσ´2
i,hϕ

`

sih, a
i
h

˘

ϵih
J
V ˚
h`1

›

›

›

›

›

pΛ´1
k,h

.

Therefore, with probability at least 1 ´ δ{H , for any k P rKs and fixed h P rHs:
›

›ppµK`1,h ´ µhqV ˚
h`1

›

›

pΛk,h
ď

?
H
a

d logp1 ` K{pHdλqq ` logpH{δq ` H
?
λd “ pβP p1q.

Lemma A.12. In Algorithm 2, for any k P rKs and fixed h P rHs, under ΨE
h X ΨP

h`1, with
probability at least 1 ´ δ{H:

µh P pCP p2q

h “

"

µ :
›

›

›
pµ ´ pµK`1,hq

´

pVh`1 ´ V ˚
h`1

¯
›

›

›

pΛK`1,h

ď pβP p2q

*

, (31)

where

pβP p2q “8

d

H

d
log

ˆ

1 `
K

Hdλ

˙

¨

g

f

f

elog

ˆ

4K2H

δ

˙

` d log

˜

1 `
8K

?
dLP

H
?
λ

¸

` d2 log

ˆ

1 `
32d3{2K2B2

P

H2λ2

˙

` 4

c

H

d3

«

logp
4K2H

δ
q ` d log

˜

1 `
8K

?
dLP

H
?
λ

¸

` d2 log

ˆ

1 `
32d3{2K2B2

P

H2λ2

˙

ff

` H
?
λd ` 1

(32)

with LP “ W ` K{λ and an arbitrary BP ě pβP .

Proof. (Lemma A.12) In Line 6 of Algorithm 2, for any h P rHs, we have

pVhpsq “ min

"

max
aPA

!

rhps, aq ` xpµK`1,h
pVh`1,ϕps, aqy ` bhps, aq

)

, H

*

“ min

"

max
aPA

!

xθh ` pµK`1,h
pVh`1,ϕps, aqy ` pβP }ϕps, aq}

pΛ´1
K`1,h

)

, H

*

.

Moreover, we have
›

›

›
θh ` pµK`1,h

pVh`1

›

›

›

2
“

›

›

›

›

›

θh ` pΛ´1
K`1,h

K
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqpVh`1psih`1q

›

›

›

›

›

2

ď W `
H

p
?
Hq2

›

›

›

›

›

pΛ´1
K`1,h

K
ÿ

i“1

ϕpsih, a
i
hq

›

›

›

›

›

2

ď W ` K{λ,
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where the first inequality holds by the triangle inequality with }θh}2 ď W , pVh`1p¨q ď H , and
pσi,h ě

?
H for any i P rKs, and the second inequality holds since λminpΛK`1,hq ě λ and

sups,a }ϕps, aq}2 ď 1. This implies that pVh P pVpLP , BP q for any h P rHs with LP “ W ` K{λ

and an arbitrary BP ě pβP , where function set pVp¨, ¨q is defined in Definition A.4.

For fixed h P rHs, fixed V p¨q P pVpLP , BP q and constant ζ “ H
?
λ{p2K

?
dq, let Gi “ Fi,h,

xi “ pσ´1
i,hϕpsih, a

i
hq, and

ηi “pσ´1
i,hϵ

i
h

J `

V ´ V ˚
h`1

˘

¨ 1
!

V ˚
h`1 ´ ζ ď V ď pVi,h`1 ` V ˚

h`1 ` ζ
)

¨ 1
␣

ΨE
i,h

(

,

for any i P rks. Note that V ˚
h`1p¨q is a fixed function, pVi,h`1p¨q and ΨE

i,h are Gi-measurable. Thus,
xi is Gi-measurable and ηi is Gi`1-measurable.

Also, we have Erηi|Gis “ 0. By Lemma A.9, we have pσ´1
i,h min

!

}pσ´1
i,hϕpsih, a

i
hq}

pΛ´1
i,h

, 1
)

ď 1?
Hd3

.

Since |ϵih
J `

V ´ V ˚
h`1

˘

| ď H , we have |ηi mint}xi}Λ´1
i,h

, 1u| ď
?
H{

?
d3.

Furthermore, since pσ2
i,h ě pd2{HqWi,h, it holds that

Erη2i |Gis “pσ´2
i,h ¨ rVhpV ´ V ˚

h`1qspsih, a
i
hq ¨ 1

!

V ˚
h`1 ´ ζ ď V ď pVi,h`1 ` V ˚

h`1 ` ζ
)

¨ 1
␣

ΨE
i,h

(

ďpσ´2
i,h ¨ Wi,h ď H{d2,

where the first inequality holds by Lemma A.10.

By Lemma C.2, for fixed h P rHs, with probability at least 1 ´ δ{H ,
›

›

›

K
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J `

V ´ V ˚
h`1

˘

¨ 1
!

V ˚
h`1 ´ ζ ď V ď pVi,h`1 ` V ˚

h`1 ` ζ
)

¨ 1
␣

ΨE
i,h

(

›

›

›

pΛ´1
K`1,h

ď8

d

H

d
log

ˆ

1 `
K

Hdλ

˙

log

ˆ

4K2H

δ

˙

` 4

c

H

d3
logp

4K2H

δ
q.

Denote the ζ´cover of function class pVpLP , BP q as pNζ , we have

log | pNζ | ď d logp1 ` 4LP {ζq ` d2 logp1 ` 8d1{2B2
P {pλζ2qq,

according to Lemma C.5. Here LP “ W ` K{λ and BP ě pβP . Then for any k P rKs and fixed
h P rHs, with probability at least 1 ´ δ{H , for any V P pNζ , conditioned on ΨE

h (i.e. 1
!

ΨE
i,h

)

“ 1

for any i P rks), we can build our argument under Ψh`1 in the following), we have
›

›

›

›

›

K
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J `

V ´ V ˚
h`1

˘

¨ 1
!

V ˚
h`1 ´ ζ ď V ď pVi,h`1 ` V ˚

h`1 ` ζ
)

›

›

›

›

›

pΛ´1
K`1,h

ď8

d

H

d
log

ˆ

1 `
K

Hdλ

˙ˆ

log

ˆ

4K2H

δ

˙

` log |Nζ |

˙

` 4

c

H

d3

ˆ

logp
4K2H

δ
q ` log |Nζ |

˙

.

(33)

For any fp¨q P pVpLP , BP q, there exists a V p¨q P pNζ , such
that }f ´ V }8 ď ζ. Since }ϵih

J
pf ´ V q }2 ď 2ζ and

›

›

›

řK
i“1 pσ

´2
i,hϕpsih, a

i
hqϵih

J
¨ 1

!

V ˚
h`1 ´ ζ ď V ď pVi,h`1 ` V ˚

h`1 ` ζ
)
›

›

›

pΛ´1
K`1,h

ď K
?
d{pH

?
λq,

we have
›

›

›

›

›

K
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
pf ´ V q ¨ 1

!

V ˚
h`1 ´ ζ ď V ď pVi,h`1 ` V ˚

h`1 ` ζ
)

›

›

›

›

›

pΛ´1
K`1,h

ď
2ζK

?
d

H
?
λ

.

(34)
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Conditioning on ΨE
h , we have

›

›

›

›

›

K
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J `

f ´ V ˚
h`1

˘

¨ 1
!

V ˚
h`1 ´ ζ ď V ď pVi,h`1 ` V ˚

h`1 ` ζ
)

›

›

›

›

›

pΛ´1
K`1,h

ď

›

›

›

›

›

K
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J `

V ´ V ˚
h`1

˘

¨ 1
!

V ˚
h`1 ´ ζ ď V ď pVi,h`1 ` V ˚

h`1 ` ζ
)

›

›

›

›

›

pΛ´1
K`1,h

`

›

›

›

›

›

K
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
pf ´ V q ¨ 1

!

V ˚
h`1 ´ ζ ď V ď pVi,h`1 ` V ˚

h`1 ` ζ
)

›

›

›

›

›

pΛ´1
K`1,h

ď

›

›

›

›

›

K
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J `

V ´ V ˚
h`1

˘

¨ 1
!

V ˚
h`1 ´ ζ ď V ď pVi,h`1 ` V ˚

h`1 ` ζ
)

›

›

›

›

›

pΛ´1
K`1,h

`
2ζK

?
d

H
?
λ

ď8

d

H

d
log

ˆ

1 `
K

Hdλ

˙ˆ

log

ˆ

4K2H

δ

˙

` log |Nζ |

˙

` 4

c

H

d3

ˆ

logp
4K2H

δ
q ` log |Nζ |

˙

`
2ζK

?
d

H
?
λ

.

(35)

Here the first inequality is due to triangle inequality, the second holds by Eq. (34), and the third
holds by Eq. (33).

We further assume ΨP
h`1 holds. In addition, for any pVh`1p¨q, there exists a V 1p¨q P pNζ such that

›

›

›

pVh`1 ´ V 1

›

›

›

8
ď ζ. Since ζ “ H

?
λ{p2K

?
dq, we have

V 1 ď pVh`1 ` ζ ď V ˚
h`1 ` pVi,h`1 ` ζ

for any i P rKs where the second inequality holds by Lemma A.15 under ΨE
h`1 X ΨP

h`1. On the
other hand, V ˚

h`1 ´ ζ ď pVh`1 ´ ζ ď V 1, where the first inequality holds by Lemma A.14 under

ΨP
h`1. Thus, 1

!

V ˚
h`1 ´ ζ ď V ď pVi,h`1 ` V ˚

h`1 ` ζ
)

“ 1 for any i P rKs under ΨE
h`1 XΨP

h`1.

Moreover, we have that, with probability at least 1 ´ δ{H , under ΨE
h X ΨP

h`1, for any k P rKs and
fixed h P rHs:

›

›

›
ppµK`1,h ´ µhq

´

pVh`1 ´ V ˚
h`1

¯
›

›

›

pΛK`1,h

ď
?
λH

?
d `

›

›

›

›

›

K
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqϵih

J
´

pVh`1 ´ V ˚
h`1

¯

›

›

›

›

›

pΛ´1
K`1,h

ď8

d

H

d
log

ˆ

1 `
K

Hdλ

˙

¨

g

f

f

elog

ˆ

4K2H

δ

˙

` d log

˜

1 `
8K

?
dLP

H
?
λ

¸

` d2 log

ˆ

1 `
32d3{2K2B2

P

H2λ2

˙

` 4

c

H

d3

˜

logp
4K2H

δ
q ` d log

˜

1 `
8K

?
dLP

H
?
λ

¸

` d2 log

ˆ

1 `
32d3{2K2B2

P

H2λ2

˙

¸

` H
?
λd ` 1

“pβP p2q.
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Here the first inequality holds similarly as Eq. (24), and the second inequality holds by Eq. (35) and
ζ “ H

?
λ{p2K

?
dq.

Lemma A.13. Set pβP “ pβP p1q ` pβP p2q in Eq equation 16, for any δ P p0, 1q, with probability at
least 1 ´ 3δ, ΨE

1 X ΨP
1 holds, i.e., for any h P rHs in the planning phase,

µh P pCP
h “

"

µ :
›

›

›
pµ ´ pµK`1,hq pVh`1

›

›

›

pΛK`1,h

ď pβP

*

.

Proof. (Lemma A.13) We first prove the following claim:

Under ΨE
1 , for fixed h P rHs and any k P rKs, with probability at least 1 ´ 2pH ´ hqδ{H , ΨP

h
holds.

We prove this claim by induction. Firstly, when h “ H the result is trivial. Assume the claim holds
for h ` 1 ď H . Then, for any k P rKs, under ΨE

1 , with probability 1 ´ 2pH ´ h ` 1qδ{H , ΨP
h`1

holds.

Subsequently, for any k P rKs, by Lemma A.11 and A.12 under ΨE
1 X ΨP

h`1, we have with proba-
bility 1 ´ 2δ{H that

µh P pCP p1q

h X pCP p2q

h

By taking the union bound, for any k P rKs, under ΨE
1 , with probability 1 ´ 2pH ´ hqδ{H , ΨP

h
holds, which means the claim holds for h. Thus, the claim is proved by induction.

Since PtΨE
1 u ě 1 ´ δ by Lemma A.6, the conclusion is obtained by setting h “ 1 and taking a

union bound.

A.3.2 OPTIMISM IN PLANNING PHASE

Lemma A.14 (Optimism in Planning Phase). In Algorithm 2, for any h P rHs, under ΨP
h , we have

V ˚
h ps; rq ď pVhpsq, @s P S.

Proof. We prove the optimism by introduction. Notice that the statement holds trivially when h “

H ` 1 since V ˚
H`1p¨; rq “ pVH`1p¨q “ 0.

Assume the statement holds for h ` 1, which means V ˚
h`1p¨; rq ď pVh`1p¨q under ΨP

h`1.

Since
pQhp¨, ¨q “ rhp¨, ¨q ` xpµK`1,h

pVh`1,ϕp¨, ¨qy ` pβP }ϕp¨, ¨q}
pΛ´1

K`1,h
,

Q˚
hp¨, ¨; rq “ rhp¨, ¨q ` PhV

˚
h`1p¨, ¨; rq,

we have for any ps, aq P S ˆ A that
pQhps, aq ´ Q˚

hps, a; rq

“rhps, aq ` xpµK`1,h
pVh`1,ϕps, aqy ` pβP }ϕps, aq}

pΛ´1
K`1,h

´
“

rhps, aq ` PhV
˚
h`1ps, a; rq

‰

“ xpµK`1,h
pVh`1,ϕps, aqy ´ xµh

pVh`1,ϕps, aqy ` pβP }ϕps, aq}
pΛ´1

K`1,h

` Ph
pVh`1ps, aq ´ PhV

˚
h`1ps, a; rq

ě ´

›

›

›
ppµK`1,h ´ µhq pVh`1

›

›

›

pΛK`1,h

}ϕ ps, aq}
pΛ´1

K`1,h
` pβP }ϕps, aq}

pΛ´1
K`1,h

` Ph
pVh`1ps, aq ´ PhV

˚
h`1ps, a; rq

ěPh
pVh`1ps, aq ´ PhV

˚
h`1ps, a; rq

ě 0,

where the first inequality is due to Cauchy-Schwarz inequality, the second inequality holds by µh P
pCP
h under ΨP

h , the last inequality holds by the induction assumption pVh`1p¨q ě V ˚
h`1p¨; rq under

ΨP
h`1 and Ph is a valid distribution. Therefore, pVhp¨q “ maxaPA pQhp¨, aq ě maxaPA Q˚

hp¨, a; rq “

V ˚
h p¨; rq.
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Lemma A.15 (Over-optimism Between Two Phases). In Algoirhms 1 and 2, for any and any h P

rHs, under ΨE
h X ΨP

h , we have

V ˚
h ps; rq ` pVk,hpsq ě pVhpsq, @s P S.

Proof. (Lemma A.15) We first prove the conclusion by introduction for some k P rKs.

Notice that the statement holds trivially when h “ H`1 since V ˚
H`1p¨; rq`pVk,H`1p¨q “ pVH`1p¨q “

0 by definitions. Assume the statement holds for h ` 1, which means V ˚
h`1p¨; rq ` pVk,h`1p¨q ě

pVh`1p¨q under ΨE
h`1 X ΨP

h`1.

We see that

Q˚
hp¨, ¨; rq “ rhp¨, ¨q ` PhV

˚
h`1p¨, ¨; rq,

pQk,hp¨, ¨q “ rk,hp¨, ¨q ` xpµk,h
pVk,h`1,ϕp¨, ¨qy ` pβE}ϕp¨, ¨q}

pΛ´1
k,h

,

pQhp¨, ¨q “ rhp¨, ¨q ` xpµK`1,h
pVh`1,ϕp¨, ¨qy ` pβP }ϕp¨, ¨q}

pΛ´1
K`1,h

,

Thus, we have for any ps, aq P S ˆ A that,

Q˚
hps, a; rq ` pQk,hps, aq ´ pQhps, aq

“ rhps, aq ` PhV
˚
h`1ps, a; rq ` rk,hps, aq ` pPk,h

pVk,h`1ps, aq ` pβE}ϕps, aq}
pΛ´1

k,h

´

”

rhps, aq ` xpµK`1,h
pVh`1,ϕps, aqy ` pβP }ϕps, aq}

pΛ´1
K`1,h

ı

“

”

PhV
˚
h`1ps, aq ` Ph

pVk,h`1ps, aq ´ Ph
pVh`1ps, aq

ı

` 3pβE}ϕps, aq}
pΛ´1

k,h
´ pβP }ϕps, aq}

pΛ´1
K`1,h

` xpµk,h
pVk,h`1,ϕps, aqy ´ xµh

pVk,h`1,ϕps, aqy

` xµh
pVh`1,ϕps, aqy ´ xpµK`1,h

pVh`1,ϕps, aqy

ě

”

PhV
˚
h`1ps, aq ` Ph

pVk,h`1ps, aq ´ Ph
pVh`1ps, aq

ı

` 3pβE}ϕps, aq}
pΛ´1

k,h
´ pβP }ϕps, aq}

pΛ´1
K`1,h

´

›

›

›
ppµk,h ´ µhq pVk,h`1

›

›

›

pΛk,h

}ϕ ps, aq}
pΛ´1

k,h
´

›

›

›
ppµK`1,h ´ µhq pVh`1

›

›

›

pΛK`1,h

}ϕ ps, aq}
pΛ´1

K`1,h

ě

”

PhV
˚
h`1ps, aq ` Ph

pVk,h`1ps, aq ´ Ph
pVh`1ps, aq

ı

` 3pβE}ϕps, aq}
pΛ´1

k,h
´ pβP }ϕps, aq}

pΛ´1
K`1,h

´ pβE}ϕps, aq}
pΛ´1

k,h
´ pβP }ϕps, aq}

pΛ´1
K`1,h

ě

”

PhV
˚
h`1ps, aq ` Ph

pVk,h`1ps, aq ´ Ph
pVh`1ps, aq

ı

ě 0,

where the first inequality is due to Cauchy-Schwarz inequality, the second inequality holds by µh P

pCE
k,h X pCP

h under ΨE
h X ΨP

h , the third inequality holds since pΛK`1,h ľ pΛk,h and pβE ě pβP ,
and the last inequality holds by the induction assumption V ˚

h`1p¨; rq ` pVk,h`1p¨q ě pVh`1p¨q under
ΨE

h`1 X ΨP
h`1 and Ph is a valid distribution. Therefore,

V ˚
h p¨; rq ` pVk,hp¨q “ max

aPA
Q˚

hp¨, a; rq ` max
aPA

pQk,hp¨, aq ě max
aPA

pQhp¨, aq “ pVhp¨q

Finally, note that the same argument can be extended to any k P rKs.

A.4 UPPER BOUNDING THE EXPLORATION ERROR

In this subsection, we bound the exploration error in Lemma A.20. Before that, we provide a simu-
lation lemma in linear MDPs in Lemma A.17. Besides, we denote the reward function trk,huHh“1 in
Algorithm 1 at episode k as rk, for all k P rKs.
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Definition A.16 (Trajectory Distribution). For a fixed policy π “ tπ1, π2, ..., πHu, define dπhpshq

as the probability measure over trajectory τh “ psh, ah, sh`1, ah`1, ¨ ¨ ¨ , sH , aHq induced by fol-
lowing π starting at sh at stage h:

dπhpshqpτhq :“
H
ź

t“h`1

Pπ
t pst, at | st´1, at´1q ,

where Pπ
t pst, at | st´1, at´1q means the probability that the probability of stat-action pair transition

from pst´1, at´1q to pst, atq in a trajectory τh “ psh, ah, sh`1, ah`1, ¨ ¨ ¨ , sH , aHq started at sh at
stage h by following policy π.

Lemma A.17 (Simulation Lemma). In Algorithm 1, for any k P rKs and any h P rHs, under ΨE
k,h,

we have

0 ď pVk,hpskhq ď E
τk
h„dπk

h pskhq
min

#

H
ÿ

h1“h

4pβE
›

›ϕpskh1 , akh1 q
›

›

pΛ´1

k,h1
, H

+

Proof. (Lemma A.17) First, recall that

pQk,hp¨, ¨q “ rk,hp¨, ¨q ` xpµk,h
pVk,h`1,ϕp¨, ¨qy ` pβE}ϕp¨, ¨q}

pΛ´1
k,h

“ rk,hp¨, ¨q ` pPk,h
pVk,h`1pskh, a

k
hq ` pβE}ϕp¨, ¨q}

pΛ´1
k,h

pVk,hp¨q “ min

"

max
aPA

pQk,hp¨, aq, H

*

Thus, for any k P rKs and any h P rHs in Algorithm 1, we have

pVk,hpskhq ď pQk,h

`

skh, a
k
h

˘

“ rk,hpskh, a
k
hq ` pPk,h

pVk,h`1pskh, a
k
hq ` pβE}ϕpskh, a

k
hq}

pΛ´1
k,h

“ 3pβE}ϕpskh, a
k
hq}

pΛ´1
k,h

`

”

pPk,h
pVk,h`1pskh, a

k
hq ´ Ph

pVk,h`1pskh, a
k
hq

ı

` Ph
pVk,h`1pskh, a

k
hq

¨ ¨ ¨

paq
“ E

τk
h„dπk

h pskhq

«

H
ÿ

h1“h

pPk,h1 pVk,h1`1pskh1 , akh1 q ´ Ph1 pVk,h1`1pskh1 , akh1 q ` 3pβE
›

›ϕpskh1 , akh1 q
›

›

pΛ´1
k,h

ff

“E
τk
h„dπk

h pskhq

«

H
ÿ

h1“h

A

ppµk,h1 ´ µh1 q pVk,h1`1,ϕpskh1 , akh1 q

E

` 3pβE
›

›ϕpskh1 , akh1 q
›

›

pΛ´1

k,h1

ff

ďE
τk
h„dπk

h pskhq

«

H
ÿ

h1“h

4pβE
›

›ϕpskh1 , akh1 q
›

›

pΛ´1

k,h1

ff

,

where the equality paq holds since we can expand pVk,h`1p¨q in a recursive way until
pVk,H`1p¨q and the expectation is taken over trajectory distribution dπ

k

h pskhq over trajectory τkh “

pskh, a
k
h, s

k
h`1, a

k
h`1, . . . , s

k
H , akHq, and the last inequality holds since µh1 P CE

k,h1 for any h ď h1 ď

H under ΨE
k,h. Since pVk,hpskhq ď H and pVk,hpskhq ě V ˚

h pskh; rkq ě 0 by Lemma A.7 under ΨE
k,h,

the conclusion is obtained.

Lemma A.18. Fix δ ą 0. In Algorithm 1, under ΨE
1 , we have with probability 1 ´ 2δ,

K
ÿ

k“1

H
ÿ

h“1

Ph
pVk,h`1pskh, a

k
hq

ď4H pβE

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

mint}ϕpskh, a
k
hq}2

pΛ´1
k,h

, 1u ` pH2 ` Hq
a

2T logpH{δq.

(36)
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Proof. First, we have
K
ÿ

k“1

H
ÿ

h“1

Ph
pVk,h`1pskh, a

k
hq “

K
ÿ

k“1

H
ÿ

h“1

pVk,h`1pskh`1q `

”

Ph
pVk,h`1pskh, a

k
hq ´ pVk,h`1pskh`1q

ı

ď

K
ÿ

k“1

H
ÿ

h“1

pVk,h`1pskh`1q ` H
a

2T logpH{δq,

(37)

holds with probability 1 ´ δ, by common Hoeffding inequality, as stated in Lemma C.3.

Notice that

pVk,hpskhq “min
!

pQk,hpskh, a
k
hq, H

)

“min
!

3pβE}ϕpskh, a
k
hq}

pΛ´1
k,h

` xpµk,h
pVk,h`1,ϕpskh, a

k
hqy, H

)

ďmin
!

4pβE}ϕpskh, a
k
hq}

pΛ´1
k,h

` Ph
pVk,h`1pskh, a

k
hq, H

)

“min
!

4pβE}ϕpskh, a
k
hq}

pΛ´1
k,h

` pVk,h`1pskh`1q ` rPh
pVk,h`1pskh, a

k
hq ´ pVk,h`1pskh`1qs, H

)

(38)

where the inequality holds under pΨE
1 . For fixed h, We can recursively use this method and get

K
ÿ

k“1

pVk,hpskhq ď

K
ÿ

k“1

min
!

H
ÿ

h1“h

4pβE}ϕpskh1 , akh1 q}
pΛ´1

k,h1

` rPh1 pVk,h1`1pskh1 , akh1 q ´ pVk,h1`1pskh1`1qs, H
)

ď

K
ÿ

k“1

H
ÿ

h1“h

4pβE
pσk,h1 mint}ϕpskh1 , akh1 q}

pΛ´1

k,h1
, 1u

`

K
ÿ

k“1

H
ÿ

h1“h

Ph1 pVk,h1`1pskh1 , akh1 q ´ pVk,h1`1pskh1`1q

ď4pβE

g

f

f

e

K
ÿ

k“1

H
ÿ

h1“h

pσ2
k,h1

g

f

f

e

K
ÿ

k“1

H
ÿ

h1“h

mint}ϕpskh1 , akh1 q}2
pΛ´1

k,h1

, 1u ` H
a

2T logpH{δq.

(39)

The inequalities above hold with probability 1 ´ δ by Cauchy-Schwarz inequality and Lemma C.3.
Thus, we have

K
ÿ

k“1

H
ÿ

h“1

Ph
pVk,h`1pskh, a

k
hq

ď

K
ÿ

k“1

H
ÿ

h“1

pVk,h`1pskh`1q ` H
a

2T logpH{δq

ď4H pβE

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

mint}ϕpskh, a
k
hq}2

pΛ´1
k,h

, 1u ` pH2 ` Hq
a

2T logpH{δq

(40)

holds with probability 1 ´ 2δ.

Lemma A.19. In Algorithm 1, under ΨE
1 , we have

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h ď2HT ` 12H3d9 logp1 ` 2d7{pλHqq ` 2d3{2H2

?
λ

` 2d2pH2 ` Hq
a

2T logpH{δq ` 8d5Hp1 ` 2Hq2ppβEq2 logp1 ` K{pHdλq.

holds with probability 1 ´ 2δ.
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Proof. (Lemma A.19) From Algorithm 1, we can write the definition of pσk,h here,

pσk,h :“ max

#

wk,h,

c

d2

H
Wk,h

+

.

Thus we can write
K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h ď

K
ÿ

k“1

H
ÿ

h“1

w2
k,h

loooooomoooooon

i

`
d2

H

K
ÿ

k“1

H
ÿ

h“1

Wk,h

loooooooomoooooooon

ii

.

To bound i, we utilize the conservatism of elliptical potentials, i.e., Lemma C.7. Initially, for fixed
h P rHs, set xk as rσ´1

k,hϕpskh, a
k
hq in Lemma C.7. Then for C “ 1{d3, during K episodes, there are at

most 3d log
`

1 ` d{pλH logp1 ` C2qq
˘

{ logp1`C2q episodes that
›

›

›
rσ´1
k,hϕpskh, a

k
hq

›

›

›

rΛ´1
k,h

ě 1{d3 for

fixed h P rHs. Thus, there are at most 3Hd log
`

1 ` d{pλH logp1 ` C2qq
˘

{ logp1 ` C2q episodes

that there exists h1 P rHs such that
›

›

›
rσ´1
k,hϕpskh1 , akh1 q

›

›

›

rΛ´1

k,h1

ą 1{d3. In particular, w2
k,h “ Hd3

during these episodes.

In summary, we obtain

i “

K
ÿ

k“1

H
ÿ

h“1

w2
k,h ď

K
ÿ

k“1

H
ÿ

h“1

H ` H ¨ Hd3
3Hd

logp1 ` 1{d6q
log

ˆ

1 `
d

λH logp1 ` 1{d6q

˙

ďHT ` 6H3d9 logp1 ` 2d7{pλHqq,

(41)

where the last inequality holds by logp1 ` 1{xq ď 2x for x ą 0.

To bound ii, we can write

ii “
d2

H

K
ÿ

k“1

H
ÿ

h“1

Wk,h “ d2
K
ÿ

k“1

H
ÿ

h“1

min
!A

pµi,h
pVi,h`1,ϕpsih, a

i
hq

E

` pβE
›

›ϕpsih, a
i
hq
›

›

pΛ´1
i,h

` ζ,H
)

ďd2HKζ ` d2
K
ÿ

k“1

H
ÿ

h“1

mintpβE}ϕpskh, a
k
hq}

pΛ´1
k,h

, Hu

` d2
K
ÿ

k“1

H
ÿ

h“1

A

µh
pVk,h`1,ϕpskh, a

k
hq

E

`

A

ppµk,h ´ µhq pVk,h`1,ϕpskh, a
k
hq

E

ďd2HKζ ` 2d2
K
ÿ

k“1

H
ÿ

h“1

mintpβE}ϕpskh, a
k
hq}

pΛ´1
k,h

, Hu ` d2
K
ÿ

k“1

H
ÿ

h“1

Ph
pVk,h`1pskh, a

k
hq,

(42)

where ζ “ H
?
λ{p2K

?
dq and the last inequality holds under ΨE

1 . Moreover, since pβE
pσk,h ě

H
?
d ě H holds for any k P rKs and h P rHs, we can write

2d2
K
ÿ

k“1

H
ÿ

h“1

mintpβE}ϕpskh, a
k
hq}

pΛ´1
k,h

, Hu ď 2d2pβE
K
ÿ

k“1

H
ÿ

h“1

pσk,h mint}ϕpskh, a
k
hq}

pΛ´1
k,h

, 1u

ď2d2pβE

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

mint}ϕpskh, a
k
hq}2

pΛ´1
k,h

, 1u,

(43)

By Lemma A.18, we have

d2
K
ÿ

k“1

H
ÿ

h“1

Ph
pVk,h`1pskh, a

k
hq

ď4d2H pβE

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

mint}ϕpskh, a
k
hq}2

pΛ´1
k,h

, 1u ` d2pH2 ` Hq
a

2T logpH{δq.

(44)
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Thus, combine Eq. 41, 42, 43, 44, and Lemma C.6, we have

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h ďHT ` 6H3d9 logp1 ` 2d7{pλHqq ` d3{2H2

?
λ ` d2pH2 ` Hq

a

2T logpH{δq

` 2d2p1 ` 2HqpβE

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

a

2Hd logp1 ` K{pHdλq,

Since for any x ą 0, a ą 0, b ą 0, x ď a
?
x ` b leads to x ď 2b ` a2, we have

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h ď2HT ` 12H3d9 logp1 ` 2d7{pλHqq ` 2d3{2H2

?
λ

` 2d2pH2 ` Hq
a

2T logpH{δq ` 8d5Hp1 ` 2Hq2ppβEq2 logp1 ` K{pHdλq.

which finishes the proof.

Lemma A.20. In Algorithm 1, under ΨE
1 , we have with probability at least 1 ´ 3δ,

K
ÿ

k“1

pVk,1psk1q ď

K
ÿ

k“1

E
τk
1 „dπk

1 psk1 q
min

#

H
ÿ

h“1

4pβE
›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

, H

+

ď rO
´?

H4d3K
¯

(45)

Proof. (Lemma A.20)

On the one hand, be Lemma A.17, we have

K
ÿ

k“1

pVk,1psk1q ď

K
ÿ

k“1

E
τk
1 „dπk

1 psk1 q
min

#

H
ÿ

h“1

4pβE
›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

, H

+

, (46)

under ΨE
1 .

On the other hand, we have

K
ÿ

k“1

min

#

H
ÿ

h“1

4pβE
›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

, H

+

“

K
ÿ

k“1

min

#

H
ÿ

h“1

4pβE
pσk,h

›

›

›
pσ´1
k,hϕpskh, a

k
hq

›

›

›

pΛ´1
k,h

, H

+

ď4
K
ÿ

k“1

H
ÿ

h“1

pβE
pσk,h min

"

›

›

›
pσ´1
k,hϕpskh, a

k
hq

›

›

›

pΛ´1
k,h

, 1

*

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

I

,

(47)

where the inequality holds since pβE
pσk,h ě

?
Hd ¨

?
H ě H . To further bound I , we have

I ď pβE

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

min

"

›

›

›
pσ´1
k,hϕps, aq

›

›

›

2

pΛ´1
k,h

, 1

*

ď pβE

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

a

2Hd logp1 ` K{pλHdqq,

(48)

where the first inequality holds due to Cauchy-Schwarz inequality and the second inequality holds
due to Lemma C.6 with the fact that

›

›

›
pσ´1
k,hϕ

`

skh, a
k
h

˘

›

›

›

2
ď 1{

?
H .
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By setting λ “ 1{pH
?
dq, we obtain pβE “ rOpd

?
H logpT qq by Lemma A.6, where T “ KH . By

Lemma A.19, we have with probability 1 ´ 2δ

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h ď2HT ` 12H3d9 logp1 ` 2d7{pλHqq ` 2d3{2H2

?
λ

` 2d2pH2 ` Hq
a

2T logpH{δq ` 8d5Hp1 ` 2Hq2ppβEq2 logp1 ` K{pHdλq

“ rOpHT q.
(49)

Substituting Eq. (49) in (48), and combing Eq. (47), we obtain

K
ÿ

k“1

min

#

H
ÿ

h“1

4pβE
›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

, H

+

ď4pβE

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

pσ2
k,h

a

2Hd logp1 ` K{pλHdqq

“ rO
´

d
?
H logpT {δq ¨

a

Hd log T ¨
?
HT

¯

ď rO

ˆ

b

H3d3T log3pT {δq

˙

,

(50)

holds with probability at least 1 ´ 2δ. Finally, by Hoeffding inequality(Lemma C.3), we have with
probability at least 1 ´ 3δ,

K
ÿ

k“1

pVk,1psk1q ď

K
ÿ

k“1

E
τk
1 „dπk

1 psk1 q
min

#

H
ÿ

h“1

4pβ
›

›ϕpskh, a
k
hq
›

›

pΛ´1
k,h

, H

+

ď rO

ˆ

b

H3d3T log3pT {δq

˙

` H
a

2T logpH{δq

“ rO
´?

H4d3K
¯

.

That finishes the proof.

We denote the event that the inequality in Lemma A.20 holds as Φ, which holds with probability at
least 1 ´ 3δ.

A.5 PROOF OF THEOREM 4.2

In this subsection, we bound the sub-optimality gap of the recovered policy in the planning phase
under event ΨE

1 X ΨP
1 X Ξ X Φ, which also ends the proof of Theorem 4.2.

Lemma A.21. For any 0 ă δ ă 1, with probability at least 1 ´ δ, we have
ˇ

ˇ

ˇ

ˇ

ˇ

K
ÿ

k“1

´

Es„µ

”

rV ˚
1 ps; rkq

ı

´ rV ˚
1

`

sk1 ; rk
˘

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď H
a

2KH logp1{δq,

where rk “ trk,huhPrHs.

Proof. (Lemma A.21) Denote ∆k “ Es„µ

”

rV ˚
1 ps; rkq

ı

´ rV ˚
1

`

sk1 ; rk
˘

. Since sk1 is Fk,1-measurable,
∆k is Fk,1-measurable and E r∆k | Fk´1,H s “ 0, i.e., ∆k is a martingale difference sequence.
Since |∆k| ď H by 0 ď rV ˚ps; rkq ď H for all s P S, we can apply Azuma-Hoeffding inequality
(Lemma C.3) to this martingale difference sequence and obtain

ˇ

ˇ

ˇ

ˇ

ˇ

K
ÿ

k“1

∆k

ˇ

ˇ

ˇ

ˇ

ˇ

ď H
a

2KH logp1{δq, (51)

with probability at least 1 ´ δ.
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Now we denote the event that the conclusion of Lemma A.21 holds as Ξ, which is a high probability
event.

Lemma A.22. Under ΨE
1 X Ξ X Φ, we have

Es„µ

”

rV ˚
1 ps; bq

ı

ď rO
´

a

H4d2{K
¯

,

where b “ tbhuhPrHs is the UCB bonus defined in Algorithm 2.

Proof. (Lemma A.22)

Notice that pΛK`1,h ľ pΛk,h, pβE “ rOpd
?
Hq, and pβP “ rOp

?
Hdq, for any k P rKs and any

h P rHs. We have

pβE }ϕp¨, ¨q}
pΛ´1

k,h
ě c

?
dpβP }ϕp¨, ¨q}

pΛ´1
K`1,h

,

where c ą 0 is a constant, which further implies rk,hp¨, ¨q ě c
?
dbhp¨, ¨q for in LSVI-RFE. Subse-

quently, we have

c
?
dEs„µ

”

rV ˚
1 ps; bq

ı

“Es„µ

”

rV ˚
1 ps; c

?
d ¨ bq

ı

ď

K
ÿ

k“1

Es„µ

”

rV ˚
1 ps; rkq

ı

{K

“

#

K
ÿ

k“1

rV ˚
1 psk1 ; rkq `

K
ÿ

k“1

´

Es„µ

”

rV ˚
1 ps; rkq

ı

´ rV ˚
1 psk1 ; rkq

¯

+

{K

ď

˜

K
ÿ

k“1

rV ˚
1 psk1 ; rkq

¸

{K ` H
a

2H logp1{δq{K

ď

˜

K
ÿ

k“1

pVk,1psk1q

¸

{K ` H
a

2H logp1{δq{K

ď rO
´

a

H4d3{K
¯

,

where the second inequality holds by Lemma A.21 under Ξ, and third inequality holds by
Lemma A.7 under ΨE

1 , and the last inequality holds by Lemma A.20 under ΨE
1 X Φ. Thus

Es„µ rV ˚
1 ps; bqs ď rO

´

a

H4d2{K
¯

.

Now we are ready to prove the main theorem.

Proof of Theorem 4.2. It suffices to prove the conclusion under the event ΨE
1 X ΨP

1 X Ξ X Φ which
holds at probability at least 1 ´ 7δ by Lemma A.13 and Lemma A.21 and taking a union bound.

Initially, we have

Es1„µ rV ˚
1 ps1; rq ´ V π

1 ps1; rqs

ďEs1„µ

”

pV1ps1q ´ V π
1 ps1; rq

ı

“Es1„µ

”

min
!

r1ps1, πps1qq ` xpµK`1,1
pV2,ϕps1, πps1qqy ` b1ps1, πps1qq, H

)

´ r1ps1, πps1qq ´ P1V
π
2 ps1, πps1q; rq

ı

“Es1„µ

”

min
!

H, xpµK`1,1
pV2,ϕps1, πps1qqy ` b1ps1, πps1qq ´ P1V

π
2 ps1, πps1q; rq

)ı
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“Es1„µ

”

min
!

H, xpµK`1,1
pV2,ϕps1, πps1qqy ´ xµ1

pV2,ϕps1, πps1qqy ` b1ps1, πps1qq

` P1
pV2ps1, πps1q; rq ´ P1V

π
2 ps1, πps1q; rq

)ı

ďEs1„µ

”

min
!

H,
›

›

›
ppµK`1,1 ´ µ1q pV2

›

›

›

pΛK`1,1

}ϕ ps1, πps1qq}
pΛ´1

K`1,1
` b1ps1, πps1qq

` P1
pV2ps1, πps1q; rq ´ P1V

π
2 ps1, πps1q; rq

)ı

ďEs1„µ

”

min
!

H, 2b1ps1, πps1qq ` P1
pV2ps1, πps1q; rq ´ P1V

π
2 ps1, πps1q; rq

)ı

“Es1„µ,s2„Pp¨|s1,πps1qq

”

min
!

H, 2b1ps1, πps1qq ` pV2ps2q ´ V π
2 ps2; rq

)ı

ďEτ„dπ

«

min

#

H
ÿ

h“1

2bhpsh, πpshqq, H

+ff

ď 2Eτ„dπ

«

min

#

H
ÿ

h“1

bhpsh, πpshqq, H

+ff

ď 2Es1„µ

”

rV π
1 ps1; bq

ı

,

where the first inequality holds by Lemma A.14, the second inequality holds by Cauchy-Schwarz
inequality, the third inequality holds since µh P pCP

1 under ΨP
1 , the fourth inequality holds by

recursively decomposition, and the last inequality holds by definition of rV π
1 p¨; bq. In addition, we

have
Es„µ

”

rV π
1 ps; bq

ı

ď Es„µ

”

rV ˚
1 ps; bq

ı

ď rO
´

a

H4d2{K
¯

,

where the first inequality holds by definition of rV ˚
1 ps; bq, and the second inequality holds by

Lemma A.22 under ΨE
1 X Ξ X Φ.

If we ignore logarithmic terms and take K “ mpH4d2{ϵ2q for a sufficiently large constant m ą 0,
we have

Es1„µ rV ˚
1 ps1; rq ´ V π

1 ps1; rqs ď rO
´

a

H4d2{K
¯

ď ϵ

Thus, we need K “ rOpH4d2{ϵ2q episodes to output an ϵ-optimal policy π, when ϵ is small enough.

B PROOF OF LOWER BOUND (THEOREM 6.1)

In this section, we provide proof for Theorem 6.1 in the manuscript. Notice that if the reward
function is given in the exploration phase, the RFE setting degrades to Probably Approximately
Correct (PAC) RL setting Dann et al. (2019). Thus, it suffices to prove a lower bound for PAC
RL since an algorithm for RFE also works for PAC RL by neglecting the reward function in the
exploration phase.

Our proof is inspired by the proof of Theorem 3 in Appendix C of Chen et al. (2021), which provides
a lower bound for RFE in linear mixture MDPs. In particular, we connect the lower bound of RFE
with regret minimization in linear MDPs.

Firstly, we construct a hard-to-learn MDP M “ tS,A, H, tPhuh, trhuh, νu3 in Lemma B.1 such
that any algorithm which runs K episodes will obtain the regret at least ΩpdH

?
HKq as shows in

Lemma B.1.
Lemma B.1 (Remark 23 in Zhou et al. (2021)). Let d ą 1 and suppose d ě 4, H ě 3 and
K ě max

␣

pd ´ 1q2H{2, pd ´ 1q{p32Hpd ´ 1qq
(

. Then, there exists an episodic linear MDP M “

tS,A, H, tPhuh, trhuh, νu parameterized by tµhuhPrHs, tθhuhPrHs and satisfy Definition 3.1, such
that for any algorithm, the expected regret is lower bounded as follows:

Esk1„νr

K
ÿ

k“1

V ˚psk1q ´ V πk

psk1qs ě ΩpdH
?
T q,

3ν denotes the initial state distribution.
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where T “ KH and the expectation is taken over the probability distribution generated by the
interconnection of the algorithm and the MDP.

Hard MDP Instance M In this MDP, S “ tx1, x2, ¨ ¨ ¨ , xH`2u, A “ t´1, 1ud´1, and the linear
parameterized of M are specified as

ϕps,aq “

#

`

α, βaJ, 0
˘J

, s “ xh, h P rH ` 1s
`

0,0J, 1
˘J

, s “ xH`2

µh

`

s1
˘

“

$

’

&

’

%

`

p1 ´ ιq{α,´µJ
h {β, 0

˘J
, s1 “ xH`1

`

ι{α,µJ
h {β, 1

˘J
, s1 “ xH`2

0, otherwise

θh “
`

0J, 1
˘J

,

where ι “ 1{H , ∆ “
a

ι{K{p4
?
2q, α “

a

1{p1 ` ∆pd ´ 1qq, and β “
a

∆{p1 ` ∆pd ´ 1qq.
Under this parameterization, we have

Phps1|si,aq “

$

&

%

ι ` xµh,ay , s1 “ xH`2

1 ´ pι ` xµh,ayq , s1 “ xi`1

0, Otherwise
,

and only the transition starting at sH`2 generates a reward.

Then, for any algorithm ALG1 running K1 episodes to learn an ϵ-optimal policy πpK1q with prob-
ability at least 1 ´ δ, it suffices to prove that under the instance M, K1 ě Cd2H3{ϵ2.

We prove this by constructing a new algorithm ALG2. ALG2 firstly runs ALG1 for K1 episodes,
then ALG1 outputs a ϵ-optimal policy πpK1q with probability at least 1 ´ δ. Then ALG2 executes
πpK1q in the following pc ´ 1qK1 episodes, which means ALG2 runs K2 “ cK1 episodes.

Note that Lemma B.2 also gives an upper bound for the regret of every single step under M.
Lemma B.2. Suppose 3pd ´ 1q∆ ď ι. Then, for all k P rK2s, we have

Ex„ν

”

V ˚
1 px1q ´ V πk

1 px1q

ı

ď
dH

4
?
2

c

H

K2
.

Proof. (Lemma B.2) We prove this lemma by computing V ˚
1 px1q, following the standard analysis

of this hard-to-learn MDP in Zhou et al. (2021).

By definition of M, we have pd ´ 1q∆ “ maxaPAxµh, ay such that

V π
1 px1q “ E

«

H
ÿ

h“1

rhpsh, ahq | s1 “ x1, ah “ πhpshq

ff

.

Since only rhpxH`2, ¨q “ 1, we have V π
1 px1q “

řH´1
h“1 pH ´ hqPpNhq, where Nh “ tsh`1 “

xH`2, sh “ xhu. We also have

Ppsh`1 “ xH`2 | sh “ xh, s1 “ x1q

“
ÿ

aPA
Ppsh`1 “ xH`2 | sh “ xh, ah “ aqPpah “ a | sh “ xh, s1 “ x1q

“ι ` xµh, a
π
hy,

where aπh “
ř

aPA Ppah “ a | sh “ xh, s1 “ x1qa. Thus

PpNhq “ pι ` xµh, a
π
hyq

h´1
ź

j“1

p1 ´ ι ´ xµj , a
π
j yq.

Subsequently, we get

V π
1 px1q “

H
ÿ

h“1

pH ´ hqpah ` ιq
h´1
ź

j“1

p1 ´ aj ´ ιq. (52)
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By definition of V ˚
1 , we choose the optimal policy at each stage. Since maxaPAxµh, ay “ pd´1q∆,

we get

V ˚
1 px1q “

H
ÿ

h“1

pH ´ hqppd ´ 1q∆ ` ιqp1 ´ pd ´ 1q∆ ´ ιqh´1 ď H ¨ H ¨ pd∆q (53)

where the inequality holds by 0 ă 1 ´ pd ´ 1q∆ ´ ι ă 1 and ∆ ą ι. Since the inequality holds by
all fixed x1, we also have

Ex1„µ

”

V ˚
1 px1q ´ V πk

1 px1q

ı

ď Ex1„µ rV ˚
1 px1qs ď dH2∆ ď

dH

4
?
2

c

H

K2
,

where the last inequality holds by ι “ 1{H .

On the one hand, by Lemma B.1, we have

K2
ÿ

k“1

Ex1„ν

”

V ˚
1 px1q ´ V πk

1 px1q

ı

ě c1dH
a

HK2,

where πk denotes the policy for ALG2 in episode k and c1 is a constant number.

On the other hand, by Lemma B.2, we have

K1
ÿ

k“1

Ex1„ν

”

V ˚
1 px1q ´ V πk

1 px1q

ı

ď K1
dH

4
?
2

c

H

K2
“

dH

4
?
2

c

HK1

c
“

dH

4
?
2c

a

HK2.

By choosing c “ maxt1{p2
?
2c1q, 2u, we know that for ALG2 under M,

K2
ÿ

k“K1`1

Ex1„ν

”

V ˚
1 px1q ´ V πk

1 px1q

ı

ě pc1´
1

4
?
2c

qdH
a

HK2 ě
c1

2
dH

a

HK2 “
c1

2
dH

a

cHK1.

Because πk “ πpK1q in ALG2 for K1 ` 1 ď k ď K2 and K2 ´ pK1 ` 1q ` 1 “ pc ´ 1qK1, we
have

Ex1„ν

”

V ˚
1 px1q ´ V

πpK1q

1 ps1q

ı

ě
c1

?
c

2pc ´ 1q
dH

a

H{K1. (54)

Since ALG1 outputs an ϵ-optimal policy πpK1q with probability at least 1 ´ δ, we also have

Ex1„ν

”

V ˚
1 px1q ´ V

πpK1q

1 ps1q

ı

ď p1 ´ δq ¨ ϵ ` δ ¨
dH

4
?
2

c

H

K2
ď p1 ´ δq ¨ ϵ ` δ ¨

dH

4
?
2

c

H

cK1
,

(55)

where the inequality holds by utilizing Lemma B.2, and the second inequality holds by K2 “ cK1.
Combining Eq. (54) and Eq. (55) gives

p1 ´ δqε ` δ
dH

4
?
2c

c

H

K1
ě

c1
?
c

2pc ´ 1q
dH

a

H{K1.

By setting δ satisfying 0 ă δ ă mint1{H, 2
?
2cc1{pc ´ 1qu, we obtains K1 ě Cd2H3{ε2 for some

positive constant C, which completes our proof.

C AUXILIARY LEMMAS

C.1 CONCENTRATION INEQUALITY

This subsection gives the encountered concentration inequalities in our proof.
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Lemma C.1 (Hoeffding inequality for vector-valued martingales, Theorem 1 in Abbasi-Yadkori
et al. (2011)). Let tGtu

8

t“1 be a filtration, txt, ηtutě1 be a stochastic process so that xt P Rd is
Gt-measurable and ηt P R is Gt`1-measurable.

Denote Zt “ λI `
řt

i“1 xix
J
i for t ě 1 and Z0 “ λI. If }xt}2 ď L, and ηt satisfies

E rηt | Gts “ 0, |ηt| ď R

for all t ě 1. Then, for any 0 ă δ ă 1, with probability at least 1 ´ δ we have:

@t ą 0,

›

›

›

›

›

t
ÿ

i“1

xiηi

›

›

›

›

›

Z´1
t

ď R
a

d log p1 ` tL2{pdλqq ` logp1{δq.

Lemma C.2 (Bernstein inequality for vector-valued martingales, Theorem 7.1 in Hu et al. (2022)).
Let tGtu

8

t“1 be a filtration, txt, ηtutě1 be a stochastic process so that xt P Rd is Gt-measurable
and ηt P R is Gt`1-measurable.

If }xt}2 ď L, and ηt satisfies

E rηt | Gts “ 0, E
“

η2t | Gt

‰

ď σ2,
ˇ

ˇ

ˇ
ηt ¨ min

!

1, }xt}Z´1
t´1

)
ˇ

ˇ

ˇ
ď R

for all t ě 1. Then, for any 0 ă δ ă 1, with probability at least 1 ´ δ we have:

@t ą 0,

›

›

›

›

›

t
ÿ

i“1

xiηi

›

›

›

›

›

Z´1
t

ď 8σ
a

d log p1 ` tL2{pdλqq log p4t2{δq ` 4R log
`

4t2{δ
˘

where Zt “ λI `
řt

i“1 xix
J
i for t ě 1 and Z0 “ λI.

Lemma C.3 (Azuma-Hoeffding Inequality). Let txiu
n
i“1 be a martingale difference sequence with

respect to a filtration tGiu
n`1
i“1 such that |xi| ď M almost surely. That is, xi is Gi`1-measurable and

E rxi | Gis “ 0 a.s. Then for any 0 ă δ ă 1, with probability at least 1 ´ δ,

n
ÿ

i“1

xi ď M
a

2n logp1{δq

C.2 LINEAR MDP PROPERTY

This subsection gives some indirect results about the estimated parameter pµk,h in the exploration
phase.

Lemma C.4. In Algorithm 1, for any k P rK ` 1s and any h P rHs, we have:

pµk,h ´ µh “ pΛ´1
k,h

«

´λµh `

k´1
ÿ

i“1

pσ´2
i,hϕ

`

sih, a
i
h

˘

ϵih
J

ff

(56)

Proof. (Lemma C.4) We start from the closed-form solution of pµk,h :

pµk,h “ pΛ´1
k,h

k´1
ÿ

i“1

pσ´2
i,hϕ

`

sih, a
i
h

˘

δ
`

sih`1

˘J

“ pΛ´1
k,h

k´1
ÿ

i“1

pσ´2
i,hϕ

`

sih, a
i
h

˘

´

Php¨ | sih, a
i
hqJ ` ϵih

J
¯

“ pΛ´1
k,h

k´1
ÿ

i“1

pσ´2
i,hϕ

`

sih, a
i
h

˘

´

ϕpsih, a
i
hqJµh ` ϵih

J
¯

“ pΛ´1
k,h

k´1
ÿ

i“1

pσ´2
i,hϕ

`

sih, a
i
h

˘

ϕpsih, a
i
hqJµh ` pΛ´1

k,h

k´1
ÿ

i“1

pσ´2
i,hϕ

`

sih, a
i
h

˘

ϵih
J
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“ pΛ´1
k,h

´

pΛk,h ´ λI
¯

µh ` pΛ´1
k,h

k´1
ÿ

i“1

pσ´2
i,hϕ

`

sih, a
i
h

˘

ϵih
J

“µh ´ λpΛ´1
k,hµh ` pΛ´1

k,h

k´1
ÿ

i“1

pσ´2
i,hϕ

`

sih, a
i
h

˘

ϵih
J

Rearranging the terms gives Eq. (56).

C.3 COVERING NET

Lemma C.5 (Lemma D.6. in Jin et al. (2020b)). Let pNε be the ε-covering of pVpL,Bq with respect
to the distance dist pV, V 1q “ supx |V pxq ´ V 1pxq|, where pVpL,Bq is defined in Definition A.4.
Then

log | pNε| ď d logp1 ` 4L{εq ` d2 log
”

1 ` 8d1{2B2{
`

λε2
˘

ı

.

C.4 ELLIPTICAL POTENTIALS

In this subsection, we present Lemma C.6 from Abbasi-Yadkori et al. (2011), which is an important
for establishing the Op

?
T q worst case regret for linear bandits or RL with linear function approxi-

mation. Moreover, we also present the conservatism of Elliptical Potentials in Lemma C.7 from Hu
et al. (2022), which states that Elliptical Potentials are usually small.

Lemma C.6 (Lemma 11 in Abbasi-Yadkori et al. (2011)). Given λ ą 0 and sequence txtu
T
t“1 Ă

Rd with }xt}2 ď L for all t P rT s, define Zt “ λI `
řt

i“1 xix
J
i for t ě 1 and Z0 “ λI. We have

T
ÿ

t“1

min
!

1, }xt}
2
Z´1

t´1

)

ď 2d log

ˆ

1 `
TL2

dλ

˙

Lemma C.7 (Conservatism of Elliptical Potentials, Lemma D.8 in Hu et al. (2022)). Given λ ą 0

and sequence txtu
T
t“1 Ă Rd with }xt}2 ď L for all t P rT s, define Zt “ λI`

řt
i“1 xix

J
i for t ě 1

and Z0 “ λI. During rT s, the number of times }xt}Z´1
t´1

ě c is at most

3d

logp1 ` c2q
log

ˆ

1 `
L2

λ logp1 ` c2q

˙

,

where c ą 0 is a constant.

D COMPUTATIONAL TRACTABILITY

In this section, we analyze the space and computational complexity of the LSVI-RFE algorithm. No-
tice that Algorithm 2 in the planning phase only performs a single run of value iteration to compute
the output policy tπhuhPrHs, the computational requirement of Algorithm 2 in the planning phase
is equivalent to a single-episode run of Algorithm 1. Thus, it suffices to only analyze the space and
computation complexity of Algorithm 1 in the exploration phase. Though we consider the linear
MDP setting where the size of states |S| might be infinite, Algorithm 1 is computationally-efficient,
i.e., the space and computational complexities are polynomial in d,H,K and |A|, and do not depend
on |S|, where K is the number of episodes that Algorithm 1 has run.

D.1 SPACE COMPLEXITY OF ALGORITHM 1

Though we give the explicit form of pµk,h P Rdˆ|S| in Algorithm 1, we do not need to store it
directly. In fact, we only need to store pµk,h

pVk,h`1 P Rd since only this term is used in computing
the Q-function pQk,hps, aq for fixed s and a. Moreover, we only explore tskh : h P rHs, k P rKsu

in Algorithm 1. Thus, Algorithm 1 only needs to store pµk,h
pVk,h`1, pΛk,h, pσk,h,ϕpskh, aq for h P

rHs, k P rKs, a P A. The total space complexity is Opd2H ` d|A|HKq, where K is the number of
episodes that Algorithm 1 has run.
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D.2 COMPUTATIONAL COMPLEXITY OF ALGORITHM 1

In Algorithm 1, Lines 6-12 show the methods to calculate the estimated value function pVk,h and
policy πk

hp¨q. Notice that only pµk,h
pVk,h`1 and πk

hpskhq contribute to the observation steps (Line 15)
and calculation of pσk,h, pΛk`1,h and pµk`1,h (Lines 16-26). We consider the computational cost of
the following 3 parts for fixed k P rKs.

1. Calculating policy πk
hpskhq for skh, h P rHs. Assume that we have already ob-

served skh for some h P rHs and calculated pµk,h
pVk,h`1. By definition, πk

hpskhq “

argmaxaPA pQk,hpskh, aq. We can determine πk
hpskhq by calculating pQk,hpskh, aq for all

a P A. Notice that pQk,hpskh, aq “ 3pβE}ϕpskh, aq}
pΛ´1

k,h
` xpµk,h

pVk,h`1,ϕpskh, aqy, which

costs Opd2q operations for every a P A. Thus we can calculate πk
hpskhq in Opd2|A|Hq for

every h P rHs.

2. Calculating pµk`1,h
pVk`1,h`1 for h P rHs. In Section D.1, we show that we only need

to store pµk,h
pVk,h`1 for every k P rKs and h P rHs. Thus, instead of calculating pµk`1,h

(Line 26) and pVk`1,h (Line 10) in the next episode, we can calculate pµk`1,h
pVk`1,h in the

next episode by

pµk`1,h
pVk`1,h`1 “ pΛ´1

k`1,h

k
ÿ

i“1

pσ´2
i,hϕpsih, a

i
hqpVk`1,hpsih`1q.

Hence we need to calculate pVk`1,hpsih`1q for i P rks, which means we have to calculate
pQk`1,hpsih`1, aq for any i P rks and a P A. This will take Opd2|A|Kq operations. With
known pVk`1,hpsih`1q, we need Opd2Kq operations to calculate the left term. Thus, cal-
culating pµk`1,h

pVk`1,h`1 will take Opd2|A|HKq operations for every h P rHs and fixed
k P rKs.

3. Calculating pσk,h, pΛk`1,h. Notice that we can compute rΛk`1,h, pΛk`1,h by the Sherman-
Morrison formula, which takes Opd2q operations. By Lines 16-24, we know that calculat-
ing pσk,h will take another Opd2q operations.

By arguments above, for episode k, we need Opd2|A|HKq operations. Thus, the full algorithm
costs Opd2|A|HK2q, which is a polynomial in d, |A|, H and K, and independent on |S|.
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