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Abstract—Dexterous manipulation is a fundamental capability
for robotic systems, yet progress has been limited by hardware
trade-offs between precision, compactness, strength, and afford-
ability. Existing control methods impose compromises on hand
designs and applications. However, learning-based approaches
present opportunities to rethink these trade-offs, particularly to
address challenges with tendon-driven actuation and low-cost
materials. This work presents RUKA, a tendon-driven humanoid
hand that is compact, affordable, and capable. Made from 3D-
printed parts and off-the-shelf components, RUKA has 5 fingers
with 15 underactuated degrees of freedom enabling diverse
human-like grasps. Its tendon-driven actuation allows powerful
grasping in a compact, human-sized form factor. To address
control challenges, we learn joint-to-actuator and fingertip-to-
actuator models from motion-capture data collected by the
MANUS glove, leveraging the hand’s morphological accuracy.
Extensive evaluations demonstrate RUKA’s superior reachability,
durability, and strength compared to other robotic hands. Tele-
operation tasks further showcase RUKA’s dexterous movements.
The open-source design and assembly instructions of RUKA, code,
and data are available at ruka-hand.github.io.

I. INTRODUCTION

Achieving dexterity similar to human hands is essential
for performing daily tasks [23]. Recent advances in robotics
have enabled autonomous dexterous policies [16, 15, 27, 18],
driven largely by learning-based methods such as sim-to-
real [37, 25] and imitation learning from teleoperated robot
or human hand demonstrations [28, 20, 9, 17, 35]. These
approaches have been applied to dexterous, multimodal, and
long-horizon manipulation tasks [38, 36, 11].

Despite this progress, hardware remains a key bottleneck.
An ideal robotic hand must balance precision, compactness,
strength, and affordability—goals that are difficult to achieve
simultaneously. Designs that prioritize precision often inte-
grate joint-level actuators and encoders, increasing size and
weight [33, 1], while tendon-driven systems with external mo-
tors [8, 3] offer compactness and strength but introduce control
challenges. Position encoders can help, but are costly [8].

Some degree of trade-offs is inevitable given current sensing
and actuation technologies. However, we argue that learning-
based approaches present an opportunity to rethink some of
these trade-offs, particularly to tackle the challenges associated
with tendon-driven actuation using low-cost materials.

We introduce RUKA, a simple, affordable, and capable
tendon-driven humanoid hand. It is assembled from 3D-printed
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Fig. 1: RUKA is a tendon-driven humanoid hand that is simple,
affordable, and capable. Its size and morphology closely match those
of a human hand, enabling it to perform diverse human-like power,
precision and fine-grained grasps.

and off-the-shelf components in 7 hours for under $1300. With
five fingers and human-like proportions, it supports smoother
learning from demonstrations and integration into human
environments. RUKA has 15 degrees of freedom driven by 11
actuators in the forearm and uses tendon actuation to enable
diverse, powerful grasps. To address control challenges, we
learn fingertip-to-actuator and joint-to-actuator models trained
using two key ideas: (1) a MANUS motion-capture glove [6]
retrofitted onto the robot for data collection without joint
encoders, leveraging morphological similarity; and (2) self-
supervised data collection through random actuation sampling
to build a broad dataset.

We extensively evaluate RUKA against popular robotic
hands and demonstrate its superior reachability, durability,
and strength. We further apply RUKA in teleoperation tasks
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and show that it can perform dexterous movements. The key
contributions of this work are:

1) RUKA provides an open-source design for a tendon-
driven robotic hand that can be built for under $1,300.

2) RUKA introduces a data-driven control approach that
leverages MANUS motion-capture gloves for data col-
lection and learned controllers for fingertip positions and
joint angles to support applications like teleoperation.

3) RUKA outperforms popular robotic hands such as
LEAP [33] and Allegro [1] across key metrics testing
reachability, durability, and strength.

II. RELATED WORK

A. Robotic Hands

Direct-driven hands like the LEAP [33] and Allegro [1]
are popular for their low cost and precise joint control,
but the Allegro overheats, is hard to repair, and has only
four fingers despite its $15,000 price. The LEAP improves
durability but remains oversized. Tendon-driven hands with
external actuators solve some issues but are expensive, like
the $100,000 Shadow Hand [8], or lack precision and support,
like the open-source Inmoov [5]. RUKA, in contrast, is a
compact, anthropomorphic, tendon-driven hand with a simple,
accessible design suited for research.

TABLE I: Comparison of RUKA with LEAP, Allegro, Inmoov,
Shadow robotic hands [33, 1, 8] and a human hand baseline.

Robot Hand Cost DOF DOA Actuation Open-Source
Human − 22 − Tendon −
LEAP $2,000 16 16 Direct ✓
Allegro $15,000 16 16 Direct ✗
Inmoov $100 14 5 Tendon ✓
Shadow $100,000 22 20 Tendon ✗
RUKA $1,300 15 11 Tendon ✓

B. Controllers for Hands

Traditional controllers use kinematic models to control
joints or end-effector positions. Hands like LEAP [33], Allegro
[1], and HRI [29] use direct or geometric mappings, while the
Shadow hand [8] uses joint encoders and the Faive Hand [34]
estimates joint angles via tendon displacement.

Prior approaches to data-driven control [14, 31, 32, 33]
use Vicon motion capture or AR tags, which are rigid and
labor-intensive. Human motion data [32, 10] requires pose
retargeting and is limited by user morphology.

Inspired by these methods, RUKA also follows a data-driven
approach for learning controllers. However, unlike prior work,
we enable large-scale autonomous data collection by fitting a
motion-capture glove directly to the robotic hand, simplifying
the process of gathering supervised data

III. HARDWARE DESIGN

A. Design Principles

The RUKA hand is designed for functionality and accessi-
bility while balancing anthropomorphism, cost, and reliability.
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Fig. 2: An illustration of the sizes of different hands that are
commonly used by the robotics community next to a human hand.

1) Morphologically Accurate: The RUKA hand mimics
human morphology to enable tool use and direct application
of human hand data. While hands like LEAP [33] and Allegro
[1] match human degrees of freedom, they often fall short in
form with fewer fingers and oversized designs.

2) Low-Cost: Morphologically accurate hands like the
Shadow Hand [8] are often prohibitively expensive. To make
RUKA accessible, we prioritize low cost by using 3D-printed
parts and off-the-shelf components. The total material cost,
excluding tools, is under $1,300 USD, with $500 and $900
versions available using different Dynamixel motors.

3) Reliability: For RUKA to be a reliable research tool, it
must consistently reach commanded positions, operate for long
durations without degrading, and be easily repairable. RUKA
is designed with this in mind, and the open-source design also
enables quick, in-house repairs with minimal downtime.

4) Open-Source: RUKA is fully open-source, with its 3D
design and software freely available. RUKA is designed in On-
Shape for easy sharing and editing. We provide detailed, step-
by-step instructions and repair guides. To ensure consistency,
we avoid variable methods like drilling and gluing.

B. Kinematics

The RUKA hand features 15 degrees of freedom and
11 actuators. The thumb uses three motors, one per joint,
while the four fingers each use two actuators. Although
underactuated, this approach reduces weight and complexity
while maintaining reliable function, as shown in prior work
[21, 26, 30, 22, 34]. Since human DIP and PIP joints are rarely
actuated independently [21], RUKA uses a single tendon per
finger for both.

While human MCP joints are ball joints, RUKA uses
revolute joints for simplicity and rigidity. Two rotations are
applied to mimic MCP function: one creates finger splay for
natural convergence during grasping, and the other curves
the knuckles to support MCP-dependent grasps (Fig. 3). The
thumb is also simplified but preserves key functions. It has
three joints and degrees of freedom—opposition at the CMC
joint, abduction/adduction at the MCP (oriented 90° to the first
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Fig. 3: (A) Joints enable 15 degrees of freedom of RUKA labeled with their corresponding joint names. (B) The splay of the fingers allows
for natural abduction-adduction movement without an active degree of freedom. (C) The MCP and PIP / DIP coupled tendons (light blue
and dark blue, respectively) are responsible for flexion, while the springs are responsible for extension.

joint), and flexion/extension at the IP (oriented 45° toward the
palm). These orientations reflect the natural thumb position.

Using the average hand length and width from a dataset of
hand measurements [12], we compare RUKA to human hands
and other robot hands in Fig. 2.

C. Materials and Fabrication

The hand’s parts are 3D-printed with PLA in 24 hours using
the Bambu Lab X1C [2]. The compliant pads for the fingers
and palm are printed in FilaFlex Foamy TPU [4]. Printed
parts are assembled with heat-set inserts and other off-the-shelf
hardware like springs and dowels. Tendons are 200 lb braided
fishing line, secured with a slip knot and routed through the
fingers into PTFE tubes in the palm, guiding them to the
motors. The actuators used are Dynamixel XM430-W210-T
motors for the thumb and the lower torque Dynamixel XL330-
M288-T motors [7] for the other fingers.

IV. HARDWARE EVALUATION

To evaluate the hardware we run a variety of tests intended
to access RUKA hand’s robustness. We test the reachability,
strength, payload, and ability to reach a variety of grasps, and
compare its capabilities to those of other available robot hands.

Reachability Tests. RUKA is able to reach 29 out of 33
standard grasps from [13], showing its ability to achieve most
grasps a human hand can. We evaluate the joints’ range of
motion in degrees and the thumb’s opposition capabilities. We
randomly sampled 250,000 joint configurations for the thumb
and each finger, recording instances where the fingertips touch.

Durability Tests. We ran the RUKA hand for 20 hours
without a significant drop in motor precision or overheating
issues, outperforming Allegro [1] and LEAP [33].

Strength Tests We ran three strength tests—pinch, payload,
and finger slip for the DIP/PIP and MCP joints—to evaluate

the performance of each hand. Full test methodology is in the
complete paper, and the results are summarized in Table II.

TABLE II: Results of strength tests across different robot hands.

Robot Hand Pinch (N) Payload (kg) DIP/PIP (N) MCP (N)

Allegro 1.60 3.6 17.8 12.2
LEAP 2.45 4.0 25.17 11.63
Inmoov 2.72 3.2 15.08 -
RUKA 2.74 6.0 33.02 16.15

RUKA outperforms other hands in strength metrics. Like
RUKA, the LEAP Hand [33] uses XL-330 motors [7], but with
three per finger for flexion, suggesting RUKA’s performance
gains come from its tendon-driven design, which removes
actuator weight from the fingers. These results highlight the
advantages of lightweight, tendon-driven designs.

V. CONTROLLER

Tendon-driven designs are compact and durable, but their
uncertain kinematics make control challenging [9, 20].

In RUKA, we address this by using a data-driven approach
for simplified control. Our framework, including data collec-
tion and controller learning, is illustrated in Figure 4. This
section details our methodology for the hand’s controls.

A. Self-Supervised Data Collection

The MANUS gloves [6] track fingertip motion using mag-
netic field sensors paired with small embedded magnets.
As the fingers move, the gloves provide real-time fingertip
positions (Fig. 4), represented as ft ∈ R5×3, along with
keypoint data estimating the full hand pose, kt ∈ R5×K×3,
where K = 5 denotes the number of keypoints per finger.

We collect data autonomously by performing a random walk
over uniformly sampled motor positions within their respective
limits. To ensure coverage of the entire action space, we
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Fig. 4: An illustration of the keypoints received from the MANUS Haptic Gloves (left and right) and the controller architecture used (center)
is shown. Fingertip positions are computed from the keypoints and passed as input to an LSTM, along with the previous 10 fingertip positions.
The final sequential representation from the LSTM is fed into an MLP head to predict the motor positions for each finger.

repeat this process 500 times for the thumb and 300 times
for each of the other four fingers. Throughout data collection,
we record fingertip positions, keypoints, joint angles, and both
commanded and actual motor positions at 15 Hz.

B. Controller Learning

1) Implementation Details: After data collection, we train
a separate controller for each finger, which predicts the cor-
responding motor positions based on the desired fingertip
position for the thumb, and joint angles for the other fingers.
To incorporate temporal information, we use a simple Long
Short-Term Memory (LSTM) [19] network as a sequential
encoder, which processes the past 10 finger states to generate
a sequential representation. The final output from the LSTM is
passed to an MLP head to predict the next motor position. The
loss between the predicted and ground truth motor positions
is computed using mean squared error (MSE) and optimized
with the AdamW [24] optimizer.

2) Experiments: We explore different architectures, in-
put/output types, and learning parameters to optimize perfor-
mance. Our experiments aim to answer the following ques-
tions: (a) How do architecture choices and learning parameters
affect controller performance? (b) How do controllers transfer
to different hands? Evaluations are performed on two datasets:
a Human Validation set, where a user wearing the MANUS
glove moves their hand through various poses, and a Robot
Validation set, where the glove is mounted to the robot and
the fingertips are manually manipulated. In both cases, RUKA
replays recorded keypoints using the trained controllers, and
accuracy is measured by comparing the reproduced fingertip
positions to the originals. We compare the four architectures
in Table III. A full analysis is included in the complete paper.

TABLE III: Comparison of the performance of different architectures.
Error values are computed over three positional axes for the thumb.

Method Error in Robot Val (cm) Error in Human Val (cm)

Search Based [ 0.55 0.59 0.48 ] [ 2.03 2.0 2.01 ]
MLP [ 0.53 0.56 0.43 ] [ 1.8 1.90 2.0 ]
k-NN [ 0.13 0.14 0.15 ] [ 0.95 0.42 0.83 ]
RUKA [ 0.20 0.27 0.22 ] [ 0.83 0.60 0.54 ]

To maintain the usability of RUKA across different builds,
we implement an auto-calibration procedure that estimates
motor ranges based on tendon tension, enabling generalization
across builds. After calibration, the average fingertip position
difference between two builds is only 3mm. We hope that
these experiments will help ensure consistency across different
RUKA hands and make the system more accessible.

VI. APPLICATIONS OF RUKA

Teleoperation. Using the controller (Sec. V), we teleoperate
RUKA with a MANUS glove at 25 Hz to collect demon-
strations for various dexterous tasks. RUKA also supports
OpenTeach [20] teleoperation.

Policy Learning. We use RUKA for policy learning by
deploying HuDOR [17], an imitation learning framework that
uses in-scene human videos, converts them into robot replays,
and learns a residual policy to finetune the open-loop replay
trajectory from the demonstrations. Rewards are computed
by matching the trajectories of object centroids between the
robot episodes and the human demonstrations. We apply this
approach to two tasks: Cube Flipping and Bread Pick and
Drop. On average, each policy is trained for 40 episodes, with
training converging in approximately 45 minutes.

VII. DISCUSSION

Limitations: Training and pose capture currently rely on
the Manus glove, which, while accurate, adds a cost barrier to
replication. RUKA lacks tactile sensing, which may limit per-
formance in complex tasks—integrating touch sensors could
improve precision and adaptability. To keep the design simple,
abduction at the MCP joints is not supported, potentially
limiting dynamic movements.

Hardware failure modes: The two main failure modes are
motor wear and joint damage. The plastic-geared Dynamixel
motors can degrade over time but are easily replaced or
upgraded to metal-geared alternatives. Collisions may damage
the MCP joint and other 3D printed parts, but repairs typically
take under half an hour. RUKA is also highly customizable,
allowing users to upgrade to more durable components as
needed.
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