Under review as a conference paper at ICLR 2026

MAKE YOUR LVLM KV CACHE MORE LIGHTWEIGHT

Anonymous authors
Paper under double-blind review

ABSTRACT

Key-Value (KV) cache has become a de facto component of modern Large Vision-
Language Models (LVLMs) for inference. While it enhances decoding efficiency
in Large Language Models (LLMSs), its direct adoption in LVLMs introduces sub-
stantial GPU memory overhead due to the large number of vision tokens processed
during the prefill stage. To tackle this problem, we propose LightKV, a novel
approach that reduces KV cache size by exploiting the redundancy among vision-
token embeddings. Guided by text prompts, LightKV employs cross-modality
message passing to aggregate informative messages across vision tokens and pro-
gressively compress them during prefill. This prompt-aware guidance distinguishes
our method from prior vision-only compression strategies. We evaluate LightKV
on eight open-source LVLMs across eight public benchmarks, such as MME and
SeedBench. Experimental results demonstrate that with only 50% of the original
vision tokens, LightKV (i) halves KV cache size, (ii) reduces computation by
up to 40%, and (iii) preserves general-purpose performance while significantly

outperforming existing baselines.

1 INTRODUCTION

Benefiting from the rapid advancements in Large
Language Models (LLMs) (Vicuna Team, 2023}
OpenAl, 2024; Meta, [2024), Large Vision-
Language Models (LVLMs) (Alayrac et al., 2022;
Li et al.l 2023b; |Dai et al., 2023; Bai et al.
2023} [Liu et al.| 2023a); 2024 bic; [Lu et al., 2024
Chen et al., 2024djc; Wang et al., 2025} Chen
et al., [2025) have recently garnered extensive at-
tention. For example, LLaVA (Liu et al., [2023a)
and DeepSeek-VL (Lu et al., [2024) have achieved
impressive performance on a multitude of general-
purpose multi-modal benchmarks (Fu et al., [2024;
Yu et al.,2024; |Li et al.| [2023c)). Despite their po-
tential, the efficiency of LVLMs remains a signif-
icant bottleneck for researchers and practitioners
in resource-constrained environments.

Key-Value (KV) cache (Pope et al.,[2023; [Kwon
et al., [2023)) serves as a fundamental technique in
optimizing the inference efficiency of mainstream
LLMs and LVLMs. However, though the infer-

Memory Breakdown during Inference

Model
KV - Vision
120 KV - System + User prompt

=
o
3

®
3
A100-80

Memory (GB)
P
3

40

A100-40

I ,\7:'3:\ PRSI o I A A2
> S S @ R SEE
W WA W S ¢ SCASIPY o
N W T e, B N
i \a o W

W N W

Figure 1: Breakdown of memory consumption
in LLaVA models during the prefill stage shows
the substantial reduction in KV cache usage with
LightKV. Note that LLaVA-NeXT uses 4 the
vision tokens as LLaVA-v1.5, resulting in a sharp
increase in the memory consumption.

ence speed is improved without compromising model performance, the GPU memory consumed
becomes more substantial. This limitation is especially severe with longer sequences generated (Yang
et al.|[2024; Liu et al.l 2024a; [Li et al.| [2024d)). To alleviate this issue, some training-based methods,
such as MQA (Hu et al.| [2025) and GQA (Ainslie et al., [2023)), introduce the sharing of keys and
values across attention heads. The overall KV cache size is accordingly reduced. These approaches,
however, suffer from the requirement of heavy model retraining. In contrast, methods such as
H20 (Zhang et al., [2023b)), MiniCache (Liu et al., 2024a), and ElasticCache (Liu et al., 2024d)
focus on pruning tokens within the KV cache during inference after the prefill stage. These methods
offer greater flexibility and can be seamlessly applied to existing decoder-only models with minimal
degradation in performance. Given this, we primarily focus on token reduction during inference time.

Under review as a conference paper at ICLR 2026

Unlike LLMs, reducing the cost of memory-bound KV cache is challenging in LVLMs due to the
following two factors: (i) Tokens in LVLMs are heterogeneous, representing both image patches
and text. Determining which tokens should be pruned thus becomes more difficult; (ii)) The number
of tokens computed during the prefill stage is significantly larger than that in LLMs. Each image
or video frame in LVLMs is embedded into hundreds to thousands of tokens upfront (e.g. 576 in
LLaVA-1.5 (Liu et al.} [2023a) and 7,290 in LLaVA-OneVision (L1 et al., [20244a))), a considerable
amount compared to the context lengths of LLMs (see Fig. EI) (Metal |2024; Jiang et al.l 2023 |Vicuna
Team| 2023)). As a result, current LVLMs are limited by significantly heavier GPU memory usage
than their LLM counterparts during the prefill stage. A few recent studies have proposed addressing
the first challenge on token heterogeneity (Chen et al.| 2024a; [Li et al., [2024c). However, existing
research on solving the second remains largely sparse.

In this paper, we propose LightKV, a novel method for optimizing KV cache storage in LVLMs during
the prefill stage without retraining. To this end, we leverage cross-modal prompt guidance for the
compression of vision tokens. Our method follows a three-step design. First, we conceptually map
each vision token to a graph node, constructing a bipartite graph with edges representing a feature
divergence (FD) metric between the connected nodes. Nonetheless, computing FD in a pairwise
manner is still expensive, especially with a large number of vision tokens. To alleviate this problem,
second, we split the vision tokens into subwindows based on their original spatial locations. This
allows us to reduce the complexity of computing FD and aggregating information across tokens, thus
improving efficiency. Third, our method does not follow existing studies (Chen et al., [2024b) to
perform vision token reduction independently, as the text prompts offer more informative signals for
vision token importance. Consequently, we propose to leverage on-the-fly attention scores from text
prompts for informed token updates. As found in our experiments, though this approach has been
largely ignored by the existing literature, it delivers superior results than state-of-the-art baselines.

We apply LightKV to eight state-of-the-art LVLM models: LLaVA-v1.5-13B, LLaVA-v1.5-7B (Liu
et al., |2023a), LLaVA-NeXT-13B, LLaVA-NeXT-7B (Liu et al., |2024b), InternVL2-8B (Chen
et al} 2024c), EVE-7B-vl, EVE-7B-v1-HD (Diao et al. [2025)), Qwen2.5-VL (Bai et al.| 2025)
and conduct extensive experiments across eight benchmarks: COCO Caption (Lin et al., [2014),
GQA (Hudson & Manning} 2019), MME (Fu et al., [2024), NoCaps (Agrawal et al.,|2019), POPE (L1
et al.} 2023c), SeedBench (Li et al., 2024Db)), ScienceQA (Lu et al.,[2022), and VizWiz (Gurari et al.,
2018). Our results demonstrate that LightKV can reduce the KV memory of vision tokens by 50%
while maintaining, sometimes even surpassing, the vanilla LVLM performance. Furthermore, when
constrained with the same token length generation budget, the inference overhead (in FLOPs) is
significantly improved by 40%.

In summary, LightKV reduces the KV cache footprint in LVLMs by compressing vision tokens
during the prefill stage under the guidance of text prompts. This prompt-aware design distinguishes it
from existing SOTA vision-only methods, delivering (i) greater efficiency and (2) superior benchmark
performance. Importantly, LightKV is entirely fraining-free and can be seamlessly applied to a wide
range of LVLMs, including both vision encoder—based and encoder-free models.

2 RELATED WORK

Large vision-language models Following the success of large language models (LLMs) in the
language domain (Vicuna Team, 2023}, |OpenAl, |2024; Meta) 2024), large vision-language models
(LVLMs) have showcased pervasive progress on various multimodal tasks (Team, [2024bja; |Driess
et al.} |2023). Current LVLMs primarily fall into the following three directions: (i) Fusion-based
methods directly include vision information into the LLM decoders using cross-attention (Alayrac
et al.,2022; Awadalla et al.,[2023;|L1 et al., |2023a};/Gong et al.}|2023)). (ii) Query-based LVLMs extract
vision information with learnable query tokens, which are then concatenated with text tokens (Li et al.}
2023b; Dai et al.} 2023} Zhu et al.| [2024; |Li et al.,2024c; Zhang et al.,|[2023a)). (iii) Projection-based
methods, instead, directly map the encoded tokens from a vision encoder into the text space (Liu et al.,
2023a;2024bjic ILi et al.l 2024a; Bai et al.| 2023; [Huang et al.| [2023}; Diao et al.| 2025)). However,
despite their simplicity and effectiveness, the projection of vision tokens leads to a substantial increase
in memory footprint.

Under review as a conference paper at ICLR 2026

KYV cache optimization KV cache has been widely used in LLMs and LVLMs to improve their
inference efficiency (Dao et al., 2022 [Pope et al.| 2023 |[Kwon et al., 2023} |Lee et al., 2024)). The
core idea is to store the key and value tokens to reduce future redundant computations. However, in
situations with long contexts, keeping the KV cache imposes an increased burden on GPU memory.
Existing approaches addressing this can be roughly categorized into two groups: (i) KV-sharing-based
and (ii) token-reduction-based. Specifically, methods from the (i) improve the multi-headed attention
mechanism to achieve efficiency. For instance, MQA (Hu et al.,[2025) and GQA (Ainslie et al.}[2023)
propose the sharing of keys and values across attention heads (Vaswani et al., 2017), reducing the
amount of KV needed to be cached. In contrast, methods from the (ii) reduce KV cache size by
pruning or merging tokens based either on minimal importance (Zhang et al.l|2023b; [Li et al., 2024d;
Cai et al.| [2024) or attention consistency across layers (Liu et al.| [2023b}; [2024d; |Yang et al., [2024)).
Beyond LLMs, some initial efforts have been devoted to optimizing the KV cache for LVLMs. In
particular, LLaVolta (Chen et al.,|2024a)), IVTP (Huang et al.,|2024) and FastV (Chen et al.| 2024b)
propose pruning vision tokens at the decoder layers of the LLM backbone. The first two require
model retraining; FastV, though training-free, prunes vision tokens without cross-modality guidance,
yielding inconsistent results across models and benchmarks. In contrast, LightKV leverages guidance
from text tokens to deliver more consistent and superior performance.

Vision token compression Tokens in vision transformers (ViTs) (Dosovitskiy et al.,[2021) often
exhibit high redundancy (Bolya et al} 2023 [Pan et al., |2022} |Chen et al.,[2024b). To address this,
some approaches train modules to identify and discard less important tokens (Rao et al., 2021}
Bonnaerens & Dambrel 2023} [Y1n et al.l [2022; |[Fayyaz et al., 2022; |Wei et al.| [2023]; |(Chen et al.,
2023} |Zhang et al., 2024, Mao et al.;|2025)). Some other typical methods first group tokens based on
similarity or distance (Bolya et al., 2023} [Tran et al., 2024; Kim et al., [2024; |Alvar et al.| 2025)) or
image segmentation (Xu et al., [2022} |Lu et al.;2023) and then prune or merge the tokens with the
maximum similarity. These methods either (i) require the training of additional module(s), or (ii) do
not support the vision-language joint reasoning as in LVLMs.

3 METHOD

3.1 PRELIMINARIES

Recent LLMs often operate in an autoregressive fashion: given a sequence of p text prompt tokens

[%1,...,2p] (including both system prompt and user prompt), and ¢ — p previously generated tokens
[Zp+1,- - ., 2], an LLM with parameters O predicts the next token x;4q with:
$t+1NP@(l‘t+1| x17"'7xpaxp+la"'7xt)' (D
N—— e N——

Prompt tokens Generated tokens

The above process is often implemented in two stages: prefill and generation (Golden et al.|
2024). During prefill, the model tokenizes all p prompt tokens and computes the queries @, =
[d1,492, . . .,qp], similarly for keys K, and values V,, (Vaswani et al., 2017). In contrast, during
generation, when a new token arrives, the model first obtains the query q1, key k;1, and value
v+1 vectors. It then computes the attention matrix by applying q;+1 to the full set of keys K;41:

A = softmax (qt+1 Kt—;l/\/d?)) @

where dj, represents the embedding dimension. In practice, the attention output would be a concate-
nation of matrices A = [A4, ..., Ay] from H independent attention heads.

KYV cache From the above, we observe that the autoregressive nature of LLMs allows for the
previously computed keys K; and values V; to be reused in future time steps during generation. This
operation reduces the computational overhead by preventing the recomputation of key and value
tokens (Xu et al.|[2025). However, an increased consumption of GPU memory is usually induced by
the growing size of the KV cache. This is often manifested as: (i) generating lengthy sequences and
(ii) caching many contexts during prefill. In this work, we primarily focus on improving the second.

Under review as a conference paper at ICLR 2026

OO OO0 O
Graph Message Passing |} ‘ (1) Construct graph (2) Select edges (5) Reorder into sequence
O000QO00O0:; ! 0)
O Vision tokens from A O Vision tokens from B Prompt guidance weight O Updated vision token Eliminated vision token

< Sequence of vision tokens >

Figure 2: Method overview of intra-window token compression. Step 1: Construct a bipartite graph
by splitting the vision tokens into sets A (blue) and B (), weigh each edge by an FD metric,
as defined in Eq.[5| Step 2: Select edges with the smallest | pv/2] FD values and delete the rest.
Unconnected nodes are left unchanged. Step 3: Pass messages from nodes in A to nodes in B
weighted by its attention £, as defined in Eq.[/| Aggregate messages and update nodes in B. Step 4:
Eliminate now-redundant nodes from .A. Step 5: Reorder the remaining nodes into a sequence of
vision tokens, serving as input to the next decoder layer.

LVLMs LVLMs build on LLMs by extending their architecture to process visual information.
A common paradigm in LVLMs is to first map the split image patches into tokens using ViT-
based encoders (Dosovitskiy et al., 2021 Radford et al.l 2021} Bao et al., [2022), which are then
concatenated with the prompt tokens to form the input sequence. In general, LVLMs generate tokens
by conditioning on both text prompt tokens and vision tokens:

Tiq41 ™~ P@(xt+1 | L1y 3 Lpy Tpt1y- -5 Lptvy Tptotly -5 Lt) (3)
——
Prompt tokens Vision tokens Generated tokens

We denote X, as the sequence of v vision tokens in Eq.[3] Similar to LLMs, KV cache is a key com-
ponent in speeding up inference in LVLMs. In this paper, we focus primarily on compressing vision
tokens for two reasons: (i) as shown in Fig.[I] vision tokens greatly outnumber text prompt tokens;
(i) preliminary studies showed that reducing text tokens causes harsh performance degradation.

3.2 LIGHTKV

As illustrated in Fig. 2] the pipeline of LightKV functions as follows: At each specified decoder layer
during the prefill stage, given a sequence of vision tokens, we first reconstruct their grid structure as
in the original image. These tokens are then partitioned into w X w small, non-overlapping windows,
each containing an equal number of tokens. Within each window, we perform graph message passing
to compress vision tokens, simultaneously reducing both KV size and the length of the vision input to
the next decoder layer (as detailed in Sec.[3.2.1)). A similar operation is repeated in later decoder layers
with larger window sizes to achieve inter-window compression (further elaborated in Sec. [3.2.2).

3.2.1 INTRA-WINDOW TOKEN COMPRESSION

To address redundancy in vision tokens, we utilize graph message passing to aggregate information
with low FD (defined below in Eq. EI), and then eliminate redundant nodes in each window w. Note
that the message passing and update procedure is performed independently for each window.

Graph construction We limit and refer the vision tokens in a window to a bipartite graph. For
notational simplicity, we slightly abuse x as the embedding of a vision node. Step 1: In each window,
we first map each token x to a graph node, with X = {x|x € X, }. Next, we split the set of nodes

into two subsets X 4 and Xz (colored blue and respectively in Fig. [2) of near-equal cardinality,
and construct a bipartite graph from the two sets with edges &:
EZXAXXB:{(XQ,XB)| VXQGXA,VX/gGXB}, (4)

where X denotes set cross product. We modify the feature divergence (FD) in (Tran et al., [2024;
Wang et al.,|2024) to weigh each edge in the graph:

<X0wxﬁ>
FD(a,8) =1 — 2087 5
(@0 = el)

Under review as a conference paper at ICLR 2026

where (-, -) denotes the inner product and || - || is the L2-norm. Step 2: We define the adjacency
matrix M € {0, 1}1¥alxI¥5] where:

Moy = {1, if (o, B) € T,

0, otherwise,

(6

to select | pv/2] pairs of («, 5) with the smallest values of FD(«, 3) as 7,, where p is the chosen
compression ratio. Edges not in 7, are temporarily removed and the remaining unconnected nodes
Xr = {x,| # Bs.t.(r, B) € T,} are left unchanged.

Token message passing In LVLMs, the heterogeneity of tokens introduces a challenge in evaluating
the importance of each vision token, and prior works often disregard this by compressing tokens
uniformly without accounting for their relative significance. Instead, LightKV reuses the attention
weights from the LLM decoder to estimate token importance, which are readily available during
the prefill stage without additional computation, as computed in Eq.[2] This serves as a signal to
preserve the visual features that are most important to the prompt, and is used as guidance in the
message-aggregation process. Step 3: Given A € RH *(P+v)x(p+v) i5 the H-headed attention matrix
before the attention mask, for a vision token with index ¢, we accumulate its attention from prompts:

H
&= Alhijl,)

h=1 jeJ
where J is the set of indices for the p prompt tokens. Next, we gather the attention for each window
w into vectors &€ 4 € RI*4l and £z € RI¥5| with the same partitions as X4 and Xz. We update X
by accumulating messages from its adjacent tokens:

T -1 T
Xp= (+M€) " (Xso& o+ M (Xa0&)), ®
(iii) Normalize by sum of attentions (i) Prompt-guidance for B (i) Prompt-guidance for A

(ii) Message passing as defined by edges M
where © is the Hadamard product. This can be broken down into three parts: (i) Messages from each
token x; are first weighed by its attention &;. (ii) Next, sessages from the tokens in X 4 are passed to
those in Xz through the edges defined in M, updating tokens in Xz. The chosen direction is arbitrary
but symmetrical. (iii) Finally, tokens in Xz are normalized to remain scale-invariant.

Importantly, our aggregation operation utilizes the attention £ as guidance, ensuring the preservation
of visual information that is most relevant to the prompt and the generation of the final response. Step
4: After the update, the now-redundant nodes in X 4 \ X' are deleted. Step 5: Finally, the unchanged
tokens Xz and the updated Az are concatenated to form the final sequence of tokens for window w.

Complexity In contrast to computing fully pairwise FD among v,, = v/(w X w) vision tokens—

which requires %Uw (v, — 1) time complexity, the bipartite matching strategy improves computational

efficiency by reducing this number by half to ~ I (v.,)%.

Difference from ToMe LightKV adopts a bipartite matching approach, similar to ToMe (Bolya
et al., [2023)), to reduce the cost of pairwise calculations. However, ToMe and subsequent methods
assume all tokens are equally important, merging them without differentiation. In contrast, LightKV
uses cross-modality attention to guide message passing and aggregation, preserving the most relevant
information during compression, yielding superior results (see Sec. [).

3.2.2 INTER-WINDOW TOKEN COMPRESSION

Window partitioning As discussed above, we split the entire set of vision tokens into window
partitions in a non-overlapping manner. Specifically, each window w contains v,, = v/(w X w) vision
tokens. This reduces the total number of operations involved in computing FD measures from the
original v(v—1) to % (-% —1) x w? — Lv(-% — 1). Moreover, since spatially adjacent patches
typically share semantic similarities, our window-based method confines message aggregation to
within a small locality, preserving the positional information of tokens in the original image (Song
et al.| 2024; [Norouzi et al., 2024). A global message passing strategy might inadvertently aggre-
gate information from tokens representing unrelated entities, compromising locality and semantic

coherence (Xu et al., 2022} [Pan et al., [2022).

Under review as a conference paper at ICLR 2026

Hierarchical structure We adopt a hierarchical com- claversdi Tl
pression strategy to improve efficiency, as inspired by
Swin-Transformer (Liu et al.,[2021). In an LVLM with L
layers, we perform s < L compression iterations. Let A =
[Alw",AS]) W = [w127"'aw52]7 P = [pla"'aps]a
where)\; is the index of the decoder layer where vision
tokens are compressed, w,? is the number of window par-
titions used at iteration ¢ with w; > w;y1, and p; is the
compression ratio. After each decoder layer J\;, the to-
kens are divided into w% windows. Within each window,
vision-token messages are aggregated and compressed
with ratio p;, and only a fraction (1 — p;) of the vision
tokens remains in subsequent layers. After each com-
pression iteration, the number of windows is decreased
(smaller w) to allow for message passing across greater
spatial distances, as depicted in Fig.[3]

GMP ||| GMP | | GMP ||| GMP | "

Figure 3: After each compression step,
w is reduced to allow message passing
across greater spatial distances.

3.3 COMPLEXITY ANALYSIS

Without any compression, the prefill stage processes in total v X L vision tokensﬂ With compression,
the number of vision tokens processed during pre-fill now reduces to:
s i—1 s
v X {)\1—‘—2((/\7;—/\@‘_1)1_[(1—[)3‘)) +(L—>\S)H(1—pj) } <wvx L. (9)
i=2 j=1 j=1
For an LVLM with L = 40 decoder layers, choosing A = [10, 20, 30] and P = [0.5, 0.5, 0.5] reduces
the vision token count to 46.9% of the baseline. This is further elaborated in Sec.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

LVLM base models We evaluated the efficiency and performance of LightKV by applying it
to eight open-source LVLMs: LLaVA-v1.5-13B, LLaVA-v1.5-7B, LLaVA-NeXT-13B, LLaVA-
NeXT-7B, InternVL2-8B, EVE-7B-v1, EVE-7B-v1-HD, and Qwen2.5-VL-7B-Instruct. LLaVA-v1.5
encodes 576 vision tokens per image, while LLaVA-NeXT uses 2,144. In contrast, InternVL2 and
Qwen2.5-VL adopt dynamic vision encoding, with token counts determined by image resolution. It
is worth noting that, unlike other models, which employ a dedicated image encoder, EVE is vision
encoder-free. These methods are labeled as Vanilla in our results.

Datasets We utilized eight publicly available large-scale benchmarks for evaluation: COCO Cap-
tion (Lin et al.,[2014), GQA (Hudson & Manning|, 2019), MME (Fu et al.,|2024), NoCaps (Agrawal
et al., 2019), POPE (Li et al.| [2023c)), SeedBench (Li et al., [2024b)), ScienceQA (Lu et al., [2022),
and VizWiz (Gurari et al., 2018)). These benchmarks cover a wide range of tasks, from general,
everyday image understanding to fine-grained image reasoning. MME, POPE, SeedBench Lite, and
ScienceQA are limited to single-choice answers, while COCO Caption, GQA, NoCaps, and VizWiz
involve open-ended responses comprising long sentences.

Compared baselines We adapted two existing techniques from other related domains: ToMe (Bolya
et al.| [2023) (labeled ToMe (C)) and ElasticCache (Liu et al.l|2024d)). For comparison, we imple-
mented two random-eviction baselines: Rand and ImgRand. Rand and ElasticCache prune both text
and vision tokens, whereas ImgRand and ToMe reduce vision tokens only. It is important to note
that the previously mentioned methods perform token reduction after the prefill stage. Additionally,
for token reduction during prefill, we implemented ToMe (labeled ToMe (P)) and four recent SOTA
strategies: FastV (Chen et al.l |2024b), PiToMe (Tran et all, 2024), ToFu (Kim et al., [2024) and
HiREDP| (Arif et al.|[2025).

'We omit the double estimation of key and value cache for simplicity.
2Uses the same model but with HuggingFace optimizations; efficiency metrics are omitted for fairness.

Under review as a conference paper at ICLR 2026

Table 1: Results of LightKV on LLaVA models at 55% compression of vision tokens in the KV
cache. Avg % denotes the average of all performance metrics normalized against the vanilla model.
Methods in each category are then sorted from lowest to highest Avg score.

Method | FLOPSL Mem| TTFT| | qog MME o POPE oo viwiz | Avg %
| (Tera) (GB) (sec) C P Acc F1 |
Vanilla | 19.4 0.55 0111 | 116 2954 15320 1.09 087 0.86 0.69 0.57 | 100.00
Post prefill
o Elastic 19.3 0.31 0.568 096 2954 15345 087 043 096 OOM 0.14 | 68.54
“ Rand 19.0 0.31 0.118 0.48 2954 15329 046 046 0.89 0.70 0.13 70.53
v, ImgRand 19.0 0.31 0.117 095 2954 15329 086 0.69 091 0.70 0.19 85.09
% ToMe (C) 19.0 0.33 0.123 1.00 2954 15329 092 079 088 0.70 0.18 87.10
< During prefill
Z ToFu 12.6 0.37 0.081 1.14 292.1 15357 1.08 086 0.86 0.38 0.55 93.36
ﬂ PiToMe 12.6 0.37 0.082 1.14 2975 1529.0 1.07 087 0.85 0.38 0.55 93.42
ToMe (P) 12.6 0.37 0.081 1.16 2975 15299 1.07 087 0.86 0.39 0.55 93.96
LightKV 12.6 0.37 0.084 1.15 302.1 15438 1.08 0.87 086 0.69 0.56 | 99.94
FastV 124 0.36 0.077 1.16 3089 1546.6 1.09 086 0.85 0.68 0.57 | 100.22
Vanilla | 10.2 0.35 0.064 | 110 3557 1509.6 1.05 0.87 086 0.66 0.54 | 100.00
Post prefill
Elastic 10.2 0.20 0.428 0.41 3504 1508.9 030 030 093 OOM 0.09 | 5295
2 Rand 9.9 0.21 0.070 0.13 3504 15089 0.10 074 087 0.66 0.11 65.80
v, ToMe (C) 10.0 0.20 0.075 0.13 3504 1508.9 009 087 086 0.66 0.18 69.02
% ImgRand 9.9 0.20 0.070 022 3504 1508.9 0.16 0.86 086 0.66 0.16 | 70.27
<>C During prefill
Gi HiRED - - - 1.03 3350 14520 1.00 085 0.83 0.66 0.53 96.45
= ToFu 6.6 0.23 0.051 1.09 3400 14823 1.02 086 0.85 0.66 0.52 | 97.98
ToMe (P) 6.6 0.23 0.054 1.09 319.6 1490.5 1.01 0.87 0.86 0.66 052 | 97.52
PiToMe 6.6 0.23 0.053 1.08 341.0 14985 1.02 086 0.85 0.65 0.51 97.63
FastV 53 0.22 0.047 1.10 351.1 1513.7 1.04 085 0.83 0.66 0.54 | 99.03
LightKV 6.6 0.23 0.051 .11 3575 1519.8 1.03 087 0.86 0.66 0.53 99.79
Vanilla | 65.0 1.75 0386 | 1.02 3189 1575.1 088 0.88 0.86 0.69 0.64 | 100.00
Post prefill
g Elastic - - -| OOM OOM OOM OOM OOM OOM OOM OOM 0.00
Q. Rand 60.8 091 0.396 0.06 3189 1575.1 004 082 086 0.69 0.08 64.51
; ToMe (C) 61.3 0.93 0.418 0.07 3189 1575.1 005 0.87 086 0.69 0.08 65.48
2 ImgRand 60.8 0.91 0.392 0.07 3189 1575.1 005 0.87 086 0.69 0.08 65.50
« During prefill
> ToMe (P) 373 1.05 0.268 097 3085 1551.0 084 0.87 086 0.34 0.60 | 90.96
= ToFu 373 1.05 0.268 097 305.0 1539.5 083 0.88 087 0.36 0.60 | 91.31
= PiToMe 37.3 1.05 0.270 098 3119 1558.2 086 0.87 086 0.34 0.60 | 91.56
FastV 36.1 1.04 0.259 091 311.1 14775 0.81 0.82 0.78 0.68 0.61 93.80
LightKV 37.3 1.05 0.271 096 326.1 1576.5 083 0.87 086 0.69 0.61 98.12
Vanilla | 34.8 1.12 0225 | 1.00 3300 15282 088 0.88 0.86 0.68 0.61 | 100.00
Post prefill
o Elastic 34.7 0.58 1.675 0.02 332.1 15193 0.01 0.18 090 OOM 0.08 | 42.67
& Rand 322 0.58 0.234 0.02 3225 15232 0.01 0.65 0.87 0.68 0.08 61.08
; ImgRand 322 0.58 0.234 0.02 3225 15232 002 085 087 0.68 0.08 64.06
= ToMe (C) 325 0.60 0.251 0.03 3225 15232 002 0.87 086 0.68 0.08 64.33
< During prefill
2 Fastv 18.5 0.65 0.148 0.88 2654 13413 078 0.81 077 0.69 0.58 90.37
j HiRED - - - 0.73 2979 13989 0.67 0.88 087 0.66 0.58 90.68
ToMe (P) 21.1 0.67 0.155 0.93 2929 1419.0 078 0.88 087 0.65 0.57 94.18
ToFu 20.0 0.67 0.155 093 2954 14272 078 0.88 087 0.66 0.57 94.52
PiToMe 20.0 0.67 0.157 094 292.1 14155 079 0.88 087 0.65 0.58 94.58
LightKV 223 0.67 0.159 098 3386 15173 083 0.88 0.86 0.69 0.58 98.85

Implementation details In our experiments, we retain the default parameters of the LVLM back-
bones and use greedy decoding for reproducibility. For FastV, we adopt the reported optimal setting
of K = 2 and vary only R to control the KV cache pruning ratio. For other methods, we adapted
them to work with the LVLM backbones to the best of our abilities. To ensure consistency, we fix the
configuration of LightKV’s compression layers A, compression ratios P, and window sizes WV across
all benchmarks for each LVLM model. We utilized Imms-eval (Zhang et al.| [2025)) for all benchmark
evaluations. We profiled the time-to-first-token (TTFT) and the generation latency for 100 tokens by
averaging results over 10 runs on an NVIDIA A100 GPU.

4.2 MAIN RESULTS

We compare the performance of LightKV with other SOTA methods on LLaVA models (Table I)),
InternVL (Table [2), EVE (Table [3) and Qwen2.5-VL (Fig. @] and Table [7]in the appendix). For
each LVLM model, we selected the optimal configurations of A and W based on performance on
COCO and MME, and applied these hyperparameters to the remaining benchmarks. We also profiled
efficiency metrics, including FLOPS, KV cache memory (from prompt, vision, and generated tokens),

Under review as a conference paper at ICLR 2026

Table 2: Results of LightKV on InternVL2-8B at two compression rates of vision tokens in KV cache.
“Avg %" denotes the average of all metrics normalized against the vanilla model. Methods in each
category are then sorted from lowest to highest Avg score.

Method | FLOPS & Mem | TTETL [(06 Goa MME POPE son virwiz | Avg %
‘ (Tera) (GB) (sec) C P Acc Fl ‘

Vanilla \ 35.7 0.24 0.470 \ 090 063 587.5 16238 0.88 0.87 097 0.61 \ 100.00
During prefill, 60% vision compression

FastV 24.8 0.15 0.520 0.80 050 569.6 16109 047 0.87 049 0.53 81.90

ToFu 24.0 0.15 0.520 0.81 0.62 502.1 15755 0.87 0.86 0.94 0.60 | 95.49

PiToMe 24.0 0.15 0.519 099 060 461.8 15453 0.87 0.86 0.90 0.60 | 95.99

ToMe (P) 24.0 0.15 0.523 0.87 062 5514 1621.8 087 0.86 095 0.60 | 97.86

LightKV 24.0 0.15 0.519 091 0.63 590.0 1623.8 0.88 0.87 097 0.61 | 100.19
During prefill, 55% vision compression

FastV 22.9 0.14 0.517 0.68 047 582.1 1611.1 056 0.85 046 0.48 | 79.49

PiToMe 22.9 0.14 0.518 1.00 0.61 4429 15755 0.87 0.86 0.90 0.57 | 9554

ToMe (P) 22.9 0.14 0.519 081 062 5039 1570.0 0.87 0.86 0.95 0.60 | 95.62

ToFu 22.9 0.14 0.519 075 062 541.8 1619.1 087 0.85 095 0.60 | 95.82

LightKV 22.9 0.14 0.515 0.88 0.62 590.0 1623.8 0.88 0.87 097 0.61 99.58

and time to first token (TTFT) when generating 100 tokens (standard deviation reported in the
appendix). Our key findings are summarized as follows:

* Tables|I] 2| [3|and [7] show that LightKV consistently preserves the performance of the base LVLMs
across most benchmarks. In some cases, our method even surpasses the performance of vanilla
LVLMs without compression.

* Compared to methods applied during the prefill stage, LightKV either outperforms or achieves
highly competitive results. Specifically, it ranks first in 3 out of 4 LLaVA models and second in
the remaining one, while other baselines exhibit inconsistent rankings with major degradations in
performance. When efficiency is considered alongside performance, baseline methods are largely
inferior—showing poorer memory usage and less effective FLOP reduction.

* At even more aggressive compression ratios (e.g. 20% and 30%), LightKV is capable of retaining
99% average performance across multiple benchmarks on Qwen2.5-VL (Fig. @ and Table[7). This
further highlights the robustness of our method.

* LightKV is compatible with not only vision encoder-based LVLMs, but also with encoder-free
models such as EVE, which seek to reduce the strong inductive bias in the vision encoders. As
shown in Table [3] our approach substantially outperforms FastV at the same compression rate,
better preserving the LVLM’s original capabilities.

* Post-prefill approaches substantially degrade performance on open-ended tasks e.g. COCO and
NoCaps. Additionally, they yield minimal improvements in computational efficiency, since the
prefill stage remains the dominant bottleneck in LVLMs. In contrast, LightK'V operates on the
prefill stage within the decoder layers. This results in significantly lower computational cost and
memory footprint, while achieving stronger performance across a series of benchmarks.

Table 3: Results of LightKV on EVE-7B-v1 models at 55% com- —tormalized Merics on Compression Rate
pression of vision tokens in the KV cache. 120 T~
2115 T
Method | COCO MME NoCaps — POPE viswiz | Ave % i TEy TER
C P Acc F1 \ 2 T e
© 1.05
EVE-7B-v1 5 anills = 100 U T
Vanilla 096 2692 12308 094 084 083 046 | 100.00 R By S
FastV 085 2593 11445 078 080 077 044 | 92.07 0ss |ttt
LightkV | 1.00 2693 1203.1 093 084 083 043 | 99.20 —
0.20 0.30 0.40 0.55
EVE-7B-v1-HD Compression rate
Vanilla 105 3046 13141 102 086 085 056 | 100.00
FastV 097 2903 12386 093 083 082 055 | 9490 Figure 4: Effect of varying com-
LightKV | 097 2914 13089 094 086 085 054 | 96.61

pression rates on Qwen2.5-VL.

4.3 ADDITIONAL EXPERIMENTS

Latency profiling Table[d]illustrates the reduction in time to first token latency achieved by LightKV.
Since our approach requires explicit attention matrices for token reduction, it is incompatible with

Under review as a conference paper at ICLR 2026

I/O-optimized mechanisms like FlashAttention (Dao et al., 2022). To overcome this, we selectively
switch to eager computation in the small subset (s < L) of layers where compression is applied,
whi.le .retaining the thimized attemion implementatiqn forthe Typle 4: Time to first token (ms) +
majority. The marginal overhead introduced is effectively off- ¢4 Dev. on LLaVA 13B models.
set by the increased throughput gained from processing fewer
vision tokens in the downstream layers. See Sec. [E.3|for a more Method LLaVA-vl.5 LLaVA-NeXT
detailed analysis of both TTFT and the generation latency of =~ Vanilla 111091 386 £222
100 tokens with their corresponding standard deviations. LightkV 84+072 2714079

Influence of hierarchical compression We conducted experiments with the same configuration
of A while varying the window sizes, as presented in Table[5] Across different compression layers
A, the results show a similar general trend: there is more pronounced degradation with a global
compression strategy w = 1, likely due to the inadvertent destruction of spatial locality (Xu et al.,
2022; |Pan et al.| 2022} Song et al.|,|2024; Norouzi et al.| 2024). However, with larger values of w,
similar degradation occurs. This is attributed to the small number of tokens within each window,
resulting in the compression of mismatched tokens with high FD scores. Furthermore, we summarize
the FLOPs and KV cache memory usage for different inference configurations in Table[6] The results
indicate that larger window sizes in the early layers lead to higher efficiency improvements.

Influence of compression layers We investigate the impact of varying layers for token compression,
as illustrated in Fig. [6]in the appendix. Trends between the compression layer and model performance
reveal that compressing in the shallow layers has a more substantial impact on performance. This
effect is particularly pronounced in VizWiz, where LVLMs must refrain from answering (e.g., when
the ground truth is “unanswerable”). Compression in the deeper layers yields performance nearly
identical to the base LVLM models, but offers little reduction in memory usage.

Table 5: Effect of varying window sizes w at vari- Table 6: Profiling results by varying compres-

ous compression layers on InternVL-8B. sion layers A and window sizes ¥V on LLaVA
13B models.
Method | W coco coa _ MME POPE qou viwig
\ c P Acc FI LLaVA-vL.5-13B | LLaVA-NeXT-13B
Vanilla | - 090 063 5875 16238 088 087 097 061 Method A W | FLOPS Mem |FLOPS Mem
A=3 -

I 080 062 5475 16025 087 086 095 0.60 Vaiitll " [EE RGO 75
> 2 08 059 5550 1621.1 087 086 096 0.60 2 152331 21| 126 0.37 37.3 1.05
% 4 090 060 5468 15948 087 085 095 0.60 e 642 | 126 0.37 373 105
Z 14 B | g 421 131 038 39.0 1.09
- 089 062 577.1 16158 087 086 097 0.61 - U642 131 0.38 39.0 1.09

090 0.62 577.1 16203 087 0.86 0.97 0.61
092 0.62 5779 16175 088 0.86 0.97 0.61

NI

5 CONCLUSION

In this paper, we present LightKV, a novel training-free approach for optimizing KV cache storage
in general LVLMs. It leverages text-prompt—guided graph message passing and aggregation to
informatively compress vision tokens during the prefill stage of inference. Our method is designed
to be: (i) memory-efficient: by progressively and dynamically compressing vision nodes through
a hierarchical multi-stage process; and (ii) compute-efficient: by employing window-based graph
partitioning and bipartite matching to accelerate message aggregation. The experimental results
demonstrate that our approach: (a) largely preserves the general-purpose performance of the base
LVLM across multiple benchmarks, and (b) outperforms existing baselines in KV cache efficiency.

Limitations We acknowledge two limitations of this work: (i) LightKV leverages a bipartite graph
matching algorithm, which splits vision tokens into two disjoint sets, then finds optimal pairings
between nodes across the sets. This limits the compression rate to a maximum of 50% per step, thus
requiring multiple iterations to achieve higher overall reduction. (ii) Furthermore, our method requires
explicitly computing attention matrices for cross-modality guidance during a few compression steps,
similar to other efficient methods (Chen et al.;2024b; [Liu et al.,|2023a), which are less compatible
with FlashAttention (Dao et al., 2022).

Under review as a conference paper at ICLR 2026

REFERENCES

Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen, Rishabh Jain, Mark Johnson, Dhruv Batra,
Devi Parikh, Stefan Lee, and Peter Anderson. Nocaps: Novel object captioning at scale. In CVPR,
pp- 8948-8957, 2019.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023. doi: 10.48550/arXiv.2305.13245.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford,
Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob L. Menick,
Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikotaj Binkowski,
Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén Simonyan. Flamingo: A visual
language model for few-shot learning. In NeurlIPS, pp. 23716-23736, 2022.

Saeed Ranjbar Alvar, Gursimran Singh, Mohammad Akbari, and Yong Zhang. Divprune: Diversity-
based visual token pruning for large multimodal models. In CVPR, 2025. doi: 10.48550/arXiv.
2503.02175.

Kazi Hasan Ibn Arif, JinYi Yoon, Dimitrios S. Nikolopoulos, Hans Vandierendonck, Deepu John,
and Bo Ji. Hired: Attention-guided token dropping for efficient inference of high-resolution
vision-language models. In AAAI, volume 39 of AAAI'25/IAAI’25/EAAIL’2S5, pp. 1773-1781, 2025.
ISBN 978-1-57735-897-8. doi: 10.1609/aaai.v39i2.32171.

Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe,
Yonatan Bitton, Samir Gadre, Shiori Sagawa, Jenia Jitsev, Simon Kornblith, Pang Wei Koh, Gabriel
ITharco, Mitchell Wortsman, and Ludwig Schmidt. Openflamingo: An open-source framework for
training large autoregressive vision-language models. arXiv preprint arXiv:2308.01390, 2023. doi:
10.48550/arXiv.2308.01390.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jiangiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025. doi: 10.48550/arXiv.2502.13923.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
In ICLR, 2022.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. In /CLR, 2023.

Maxim Bonnaerens and Joni Dambre. Learned thresholds token merging and pruning for vision
transformers. TMLR, (2835-8856), 2023.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic kv cache compression based on
pyramidal information funneling. arXiv preprint arXiv:2406.02069, 2024.

Jieneng Chen, Luoxin Ye, Ju He, Zhao-Yang Wang, Daniel Khashabi, and Alan Yuille. Efficient large
multi-modal models via visual context compression. In NeurIPS, pp. 73986-74007, 2024a.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
language models. In Ale§ Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler,
and Giil Varol (eds.), ECCV, pp. 19-35, 2024b. ISBN 978-3-031-73004-7. doi: 10.1007/
978-3-031-73004-7_2.

10

Under review as a conference paper at ICLR 2026

Mengzhao Chen, Wenqi Shao, Peng Xu, Mingbao Lin, Kaipeng Zhang, Fei Chao, Rongrong Ji,
Yu Qiao, and Ping Luo. Diffrate : Differentiable compression rate for efficient vision transformers.
In ICCV, pp. 17118-17128, 2023. doi: 10.1109/ICCV51070.2023.01574.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
Kongzhi Hu, Jiapeng Luo, Zheng Ma, Ji Ma, Jiaqi Wang, Xiaoyi Dong, Hang Yan, Hewei Guo,
Conghui He, Botian Shi, Zhenjiang Jin, Chao Xu, Bin Wang, Xingjian Wei, Wei Li, Wenjian Zhang,
Bo Zhang, Pinlong Cai, Licheng Wen, Xiangchao Yan, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu,
Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhai Wang. How far are we to gpt-4v? closing the gap to
commercial multimodal models with open-source suites. arXiv preprint arXiv:2404.16821, 2024c.
doi: 10.48550/arXiv.2404.16821.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Intern vl:
Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In CVPR, pp.
24185-24198, 2024d. doi: 10.1109/CVPR52733.2024.02283.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
Ye, Hao Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang, Qingyun Li, Yimin Ren, Zixuan Chen,
Jiapeng Luo, Jiahao Wang, Tan Jiang, Bo Wang, Conghui He, Botian Shi, Xingcheng Zhang, Han
Lv, Yi Wang, Wenqi Shao, Pei Chu, Zhongying Tu, Tong He, Zhiyong Wu, Huipeng Deng, Jiaye
Ge, Kai Chen, Kaipeng Zhang, Limin Wang, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua
Lin, Yu Qiao, Jifeng Dai, and Wenhai Wang. Expanding performance boundaries of open-source
multimodal models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271,
2025. doi: 10.48550/arXiv.2412.05271.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
Pascale N. Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models
with instruction tuning. In NeurIPS, pp. 49250-49267, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. In NeurIPS, pp. 16344—16359, 2022.

Haiwen Diao, Yufeng Cui, Xiaotong Li, Yueze Wang, Huchuan Lu, and Xinlong Wang. Unveiling
encoder-free vision-language models. In NeurIPS, volume 37, pp. 52545-52567, 2025. ISBN
979-8-3313-1438-5.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In ICLR, 2021.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied
multimodal language model. arXiv preprint arXiv:2303.03378, 2023.

Mohsen Fayyaz, Soroush Abbasi Koohpayegani, Farnoush Rezaei Jafari, Sunando Sengupta, Hamid
Reza Vaezi Joze, Eric Sommerlade, Hamed Pirsiavash, and Jiirgen Gall. Adaptive token sampling
for efficient vision transformers. In ECCV, pp. 396-414, 2022. ISBN 978-3-031-20082-3. doi:
10.1007/978-3-031-20083-0_24.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
benchmark for multimodal large language models. arXiv preprint arXiv:2306.13394, 2024. doi:
10.48550/arXiv.2306.13394.

Alicia Golden, Samuel Hsia, Fei Sun, Bilge Acun, Basil Hosmer, Yejin Lee, Zachary DeVito,
Jeff Johnson, Gu-Yeon Wei, David Brooks, and Carole-Jean Wu. Generative ai beyond 1lms:
System implications of multi-modal generation. In ISPASS, pp. 257-267, 2024. doi: 10.1109/
ISPASS61541.2024.00032.

11

Under review as a conference paper at ICLR 2026

Tao Gong, Chengqi Lyu, Shilong Zhang, Yudong Wang, Miao Zheng, Qian Zhao, Kuikun Liu,
Wenwei Zhang, Ping Luo, and Kai Chen. Multimodal-gpt: A vision and language model for
dialogue with humans. arXiv preprint arXiv:2305.04790, 2023.

Danna Gurari, Qing Li, Abigale J. Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
Jeffrey P. Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
CVPR, pp. 3608-3617, 2018.

Wenbo Hu, Zi-Yi Dou, Liunian Li, Amita Kamath, Nanyun Peng, and Kai-Wei Chang. Matryoshka
query transformer for large vision-language models. In NeurIPS, volume 37, pp. 50168-50188,
2025.

Kai Huang, Hao Zou, Ye Xi, BoChen Wang, Zhen Xie, and Liang Yu. Ivtp: Instruction-guided visual
token pruning for large vision-language models. In ECCV, pp. 214-230, 2024.

Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao, Saksham Singhal, Shuming Ma, Tengchao
Lv, Lei Cui, Owais Khan Mohammed, Barun Patra, Qiang Liu, Kriti Aggarwal, Zewen Chi, Nils
Bjorck, Vishrav Chaudhary, Subhojit Som, Xia Song, and Furu Wei. Language is not all you need:
Aligning perception with language models. In NeurIPS, pp. 72096-72109, 2023.

Drew A. Hudson and Christopher D. Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In CVPR, pp. 6693-6702, 2019. doi: 10.1109/CVPR.2019.
00686.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. arXiv preprint arXiv:2310.06825,
2023. doi: 10.48550/arXiv.2310.06825.

Minchul Kim, Shangqgian Gao, Yen-Chang Hsu, Yilin Shen, and Hongxia Jin. Token fusion: Bridging
the gap between token pruning and token merging. In WACV, pp. 1372-1381, Waikoloa, HI, USA,
2024. ISBN 979-8-3503-1892-0. doi: 10.1109/WACV57701.2024.00141.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In SOSP, pp. 611-626, 2023. ISBN 979-8-4007-0229-7. doi:
10.1145/3600006.3613165.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. Infinigen: Efficient generative
inference of large language models with dynamic kv cache management. In OSDI, pp. 155-172,
2024. ISBN 978-1-939133-40-3.

Bo Li, Peiyuan Zhang, Jingkang Yang, Yuanhan Zhang, Fanyi Pu, and Ziwei Liu. Otterhd: A
high-resolution multi-modality model. arXiv preprint arXiv:2311.04219, 2023a. doi: 10.48550/
arXiv.2311.04219.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. arXiv
preprint arXiv:2408.03326, 2024a. doi: 10.48550/arXiv.2408.03326.

Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan.
Seed-bench: Benchmarking multimodal large language models. In CVPR, pp. 13299-13308,
2024b. doi: 10.1109/CVPR52733.2024.01263.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In ICML, pp. 19730-19742,
2023b.

Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large
language models. In AleS Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten
Sattler, and Giil Varol (eds.), ECCV, pp. 323-340, 2024c. ISBN 978-3-031-72952-2. doi:
10.1007/978-3-031-72952-2_19.

12

Under review as a conference paper at ICLR 2026

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Xin Zhao, and Ji-Rong Wen. Evaluating object
hallucination in large vision-language models. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), EMNLP, pp. 292-305, 2023c. doi: 10.18653/v1/2023.emnlp-main.20.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
In NeurlPS, pp. 22947-22970, 2024d.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet,
Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), ECCV, pp. 740-755, Cham, 2014. ISBN
978-3-319-10602-1. doi: 10.1007/978-3-319-10602-1_48.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Minicache: Kv
cache compression in depth dimension for large language models. In NeurIPS, pp. 139997-140031,
2024a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
pp. 34892-34916, 2023a.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. arXiv preprint arXiv:2310.03744, 2024b. doi: 10.48550/arXiv.2310.03744.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge. https://llava-vl.github.io/blog/2024-
01-30-1lava-next/, 2024c.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, pp.
10012-10022, 2021.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for Ilm kv cache compression at test time. In NeurIPS, pp. 52342-52364, 2023b.

Zuyan Liu, Benlin Liu, Jiahui Wang, Yuhao Dong, Guangyi Chen, Yongming Rao, Ranjay Krishna,
and Jiwen Lu. Efficient inference of vision instruction-following models with elastic cache. In
Ales Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Giil Varol (eds.),
ECCYV, pp. 54-69, 2024d. ISBN 978-3-031-72643-9. doi: 10.1007/978-3-031-72643-9_4.

Chenyang Lu, Daan de Geus, and Gijs Dubbelman. Content-aware token sharing for efficient
semantic segmentation with vision transformers. In CVPR, pp. 23631-23640, 2023. doi: 10.1109/
CVPR52729.2023.02263.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong Ruan.
Deepseek-vl: Towards real-world vision-language understanding. arXiv preprint arXiv:2403.05525,
2024. doi: 10.48550/arXiv.2403.05525.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. In NeurIPS, pp. 2507-2521, 2022.

Junzhu Mao, Yang Shen, Jinyang Guo, Yazhou Yao, Xiansheng Hua, and Hengtao Shen. Prune
and merge: Efficient token compression for vision transformer with spatial information preserved.
TMM, pp. 1-14, 2025. ISSN 1941-0077. doi: 10.1109/TMM.2025.3535405.

Meta. The llama 3 herd of models. arXiv preprint arXiv:2407.21783v3, 2024. doi: 10.48550/arXiv.
2407.21783.

Narges Norouzi, Svetlana Orlova, Daan De Geus, and Gijs Dubbelman. Algm: Adaptive local-then-
global token merging for efficient semantic segmentation with plain vision transformers. In CVPR,
pp. 15773-15782, 2024. doi: 10.1109/CVPR52733.2024.01493.

13

Under review as a conference paper at ICLR 2026

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2024. doi: 10.48550/arXiv.2303.
08774.

Zizheng Pan, Bohan Zhuang, Haoyu He, Jing Liu, and Jianfei Cai. Less is more: Pay less attention in
vision transformers. In AAAI, volume 36, pp. 2035-2043, 2022. doi: 10.1609/aaai.v36i2.20099.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling
transformer inference. In MLSys, pp. 606-624, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In ICML, pp. 8748-8763,
2021.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. In NeurIPS, volume 34, pp.
13937-13949, 2021.

Woomin Song, Seunghyuk Oh, Sangwoo Mo, Jaehyung Kim, Sukmin Yun, Jung-Woo Ha, and Jinwoo
Shin. Hierarchical context merging: Better long context understanding for pre-trained llms. In
ICLR, 2024.

Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530, 2024a. doi: 10.48550/arXiv.2403.05530.

Gemini Team. Gemini: A family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2024b. doi: 10.48550/arXiv.2312.11805.

Hoai-Chau Tran, Duy M. Nguyen, TrungTin Nguyen, Ngan Le, Pengtao Xie, Daniel Sonntag, James
Zou, Binh T. Nguyen, and Mathias Niepert. Accelerating transformers with spectrum-preserving
token merging. In NeurIPS, pp. 30772-30810, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, volume 30, pp. 6000-6010,
2017.

Vicuna Team. Vicuna: An open-source chatbot impressing gpt-4 with 90% chatgpt quality.
https://Imsys.org/blog/2023-03-30-vicuna, 2023.

Shuoyuan Wang, Yixuan Li, and Hongxin Wei. Understanding and mitigating miscalibration in
prompt tuning for vision-language models. arXiv preprint arXiv:2410.02681, 2024. doi: 10.48550/
arXiv.2410.02681.

Weiyun Wang, Zhe Chen, Wenhai Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Jinguo Zhu,
Xizhou Zhu, Lewei Lu, Yu Qiao, and Jifeng Dai. Enhancing the reasoning ability of multimodal
large language models via mixed preference optimization. arXiv preprint arXiv:2411.10442, 2025.
doi: 10.48550/arXiv.2411.10442.

Siyuan Wei, Tianzhu Ye, Shen Zhang, Yao Tang, and Jiajun Liang. Joint token pruning and squeezing
towards more aggressive compression of vision transformers. In CVPR, pp. 2092-2101, 2023. doi:
10.1109/CVPR52729.2023.00208.

Daliang Xu, Hao Zhang, Liming Yang, Ruiqi Liu, Gang Huang, Mengwei Xu, and Xuanzhe Liu.
Fast on-device 1lm inference with npus. In ASPLOS, ASPLOS °25, pp. 445-462, 2025. ISBN
979-8-4007-0698-1. doi: 10.1145/3669940.3707239.

Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, and Xiaolong
Wang. Groupvit: Semantic segmentation emerges from text supervision. In CVPR, pp. 18113—
18123, 2022. ISBN 978-1-6654-6946-3. doi: 10.1109/CVPR52688.2022.01760.

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyramid
kv cache compression for high-throughput Ilm inference. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), ACL Findings, pp. 3258-3270, 2024. doi: 10.18653/v1/2024.findings-acl.195.

14

Under review as a conference paper at ICLR 2026

Hongxu Yin, Arash Vahdat, Jose M. Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-vit:
Adaptive tokens for efficient vision transformer. In CVPR, pp. 10809-10818, 2022.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang, and
Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. In /ICML,
volume 235, pp. 57730-57754, 2024.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding. In Yansong Feng and Els Lefever (eds.), EMNLP, pp. 543-553,
2023a. doi: 10.18653/v1/2023.emnlp-demo.49.

Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai
Liu, Yuanhan Zhang, Jingkang Yang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Reality check
on the evaluation of large multimodal models. arXiv preprint arXiv:2407.12772, 2025. doi:
10.48550/arXiv.2407.12772.

Shaolei Zhang, Qingkai Fang, Zhe Yang, and Yang Feng. Llava-mini: Efficient image and video
large multimodal models with one vision token. In ICLR, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H20: Heavy-

hitter oracle for efficient generative inference of large language models. In NeurIPS, pp. 34661—
34710, 2023b.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
vision-language understanding with advanced large language models. In ICLR, 2024.

15

Under review as a conference paper at ICLR 2026

APPENDIX

A DECLARATION OF THE USE OF LLMS

The use of LLMs was limited to language editing and formatting support; the intellectual contributions,
analysis, results, and conclusions presented in this work remain entirely those of the authors.

B ETHICS STATEMENT

The authors have reviewed and conformed with ICLR Code of Ethics https://iclr.cc/
public/CodeOfEthicsl

C REPRODUCIBILITY STATEMENT

We introduced details of our method in Sec.[3] We are committed to releasing the code upon the
acceptance of this paper, with sufficient details for reproducibility.

D METHOD

D.1 METHOD OVERVIEW
< output >
f
% Decoder Layers
00000000
Decoder Layer (i + 1)
0000002020
Graph Message Passing

OO0O0O0O000O0000

Decoder Layer (i)

)
OO0O0O0O00O00O00O
O P tokens O Original V tokens

O V tokens from A O V tokens from B

O Updated V tokens '::‘ Eliminated V tokens

Figure 5: LightKV dynamically compresses vision tokens between two consecutive LVLM decoder
layers. The key and value tokens are compressed simultaneously for latter layers, reducing the
memory used by KV cache.

As illustrated in Fig.[5] we insert graph message passing-based compression between two selected
decoder layers in the LVLM, simultaneously reducing the KV cache size and the number of vision
tokens processed by downstream layers. Compression is performed 3 times in our experiments to
achieve the overall compression ratio.

D.2 ADJACENCY MATRIX

In Section 3.2, we defined for our bipartite graph the adjacency matrix M € {0, 1}!*4lxI¥5] whose
rows correspond to nodes in X 4 and columns to nodes in Xz. However, as the two subsets need not

16

https://iclr.cc/public/CodeOfEthics
https://iclr.cc/public/CodeOfEthics

Under review as a conference paper at ICLR 2026

contain the same number of nodes, M is generally rectangular. Conventionally, for a standard graph,
the adjacency matrix is square with side length equal to the total number of nodes. The analogous
square adjacency matrix for our bipartite graph is

(A;T Ag) (10)

where the upper-left and lower-right blocks are zero by definition. Throughout our paper, we work
directly with M, as this rectangular form is sufficient for message passing between the two partitions.

D.3 COMPLEXITY ANALYSIS

In section 3.3, we claimed that the total number of vision tokens processed during pre-fill reduces to:

k 1 k
Nx{ A —s—Z(()\i— 1—p7) (L)\knl—p7 } (11)
1=2 j=1

J=1
~—~
(O] () 3)

i—

We consider the number of vision tokens in each layer independently, then the total number of vision
tokens processed in L decoder layers in a vanilla LVLM is simply N x L. However, the number of
vision tokens reduces at every accumulation layer \; (note that message passing and accumulation
occur after each decoder layer \;). Let N; = N x H;;ll (1 — p;) be the number of remaining vision
tokens after ¢ — 1 accumulation steps. Between each pair of accumulation layers \;_; and A;, the
number of vision tokens processed is IV; x (\; — A;_1). Therefore, Eq. Can be broken down into:

1. Percentage of vision tokens processed before the first accumulation step,
2. Percentage of vision tokens processed between the first and the last accumulation step,

3. Percentage of vision tokens processed after the last accumulation step.

E ADDITIONAL RESULTS

E.1 ADDITIONAL BACKBONES

QwenVL We also evaluated LightKV on Qwen2.5-VL-7B-Instruct (Bai et al.,[2025) across multiple
compression ratios. The results in Table[7]demonstrate that LightKV yields substantial improvements
compared to baseline approaches, preserving accuracy more effectively and delivering stronger overall
performance under compression. Notably, as presented in Table[8] at more aggressive compression
ratios, LightKV still delivers near-identical performance to the vanilla model.

Table 7: Results of LightKV on Qwen2.5-VL-7B-Instruct model at 55% compression of vision tokens
in the KV cache. Avg % denotes the average of all performance metrics normalized against the
vanilla model. Methods in each category are then sorted from lowest to highest Avg score.

Method | coco Goa — MME Nocaps POPE L qppp vigwiz | Ave %

| C P Acc Fl1 |

Vanilla 0319 0.604 63821 169525 0372 0.875 0.862 0.790 0.704 | 100.00
FastV 0339 0587 62535 1687.78 0386 0.869 0.853 0.744 0.698 98.77

ToMe 0329 0591 640.71 1687.75 0425 0.862 0.782 0.782 0.683 100.04
PiToMe 0.389 0.584 624.64 1671.09 0433 0.860 0.842 0.774 0.691 100.24
ToFu 0.383 0.587 657.86 1683.05 0418 0.857 0.839 0.788 0.696 | 100.75

LightKV | 0389 0.591 647.50 1706.38 0.435 0.863 0.846 0.780 0.694 | 101.37

E.2 ADDITIONAL ABLATION STUDIES
Influence of window sizes The choice of W is closely related to the number of vision tokens used

by the LVLM. A larger initial window size is appropriate when the model encodes images at high
resolution, e.g., LLaVA-NeXT encodes an image into 2,144 tokens. In contrast, a smaller value

17

Under review as a conference paper at ICLR 2026

Table 8: Results of LightKV on Qwen2.5-VL-7B-Instruct model at various compression of vision
tokens in the KV cache. Avg % denotes the average of all performance metrics normalized against
the vanilla model.

Rae | coco coa MME \ocaps POPE sepp viewiz | Avg %

C P Acc Fl |

Vanilla | 0319 0.604 63821 169525 0372 0.875 0.862 0.790 0.704 | 100.00
55% 0.389 0.591 647.50 170638 0435 0.863 0.846 0.780 0.694 | 101.37
40% 0.370 0.586 611.78 1632.64 0450 0.851 0.830 0.754 0.666 | 101.01
30% 0.361 0.581 58893 157434 0455 0.833 0.806 0.732 0.670 98.89
20% 0.356 0.569 591.78 1612.83 0458 0.835 0.809 0.730 0.667 99.24

of is more favorable when there are fewer vision tokens, e.g., LLaVA-v1.5, which uses 576 vision
tokens per image. In our experiments, we used W = [6, 4, 2] for LLaVA-NeXT and W = [4, 2, 1]
for LLaVA-v1.5. We found that using a large window size with fewer vision tokens overly restricts
token matching, often resulting in mismatches. As shown in Table 0] below, larger windows yield
better overall performance.

Table 9: Effect of W on LLaVA-13B models.

Method | coco poevoa Goa MME nocaps FOPE oA SEED vViewiz | Ave %
\ C P Acc F1
LLaVA-v1.5-13B
Vanilla 116 023 063 29536 15320 109 087 086 073 069 057 | 100.00
LightKV W=[42,11 | 115 022 062 30214 15438 108 087 086 072 069 056 | 99.18
LightKV W=[642] | 116 022 063 30179 15411 108 087 086 072 069 056 | 99.01
LLaVA-NeXT-13B
Vanilla 102 071 065 31893 15751 0.88 088 086 073 069 064 | 100.00
LightKV W=[42,1] | 096 053 043 31143 15763 083 087 086 059 069 061 | 101.39
LightKV W=[642] | 096 051 043 32607 15765 083 087 086 059 069 061 | 102.19

Influence of compression layers We investigate the impact of varying layers for token compression,
as illustrated in Fig.[6] Trends between the compression layer and model performance reveal that
compressing in the shallow layers has a more substantial impact on performance. This effect is
particularly pronounced in VizWiz, where LVLMs must refrain from answering (e.g., when the ground
truth is “unanswerable”). Compression in the deeper layers yields performance nearly identical to the
base LVLM models, but offers little reduction in memory usage.

Normalized metrics for LLaVA-NeXT-13B

COCO VizWiz
1.001
o 1.00
g
s 0.984 0.95
°
8
= 0.961 0.90
£
Zo 0.941 Ours 0.85 Ours
Vanilla ’ Vanilla
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Compression layer A Compression layer A

Figure 6: Effect of varying compression layer A on LLaVA-NeXT-13B.

E.3 ADDITIONAL LATENCY PROFILES

We evaluate model responsiveness using two latency metrics: time-to-first-token (TTFT) and genera-
tion latency for 100 tokens. As shown in Table|[10, TTFT highlights the overhead of the pre-filling
stage and directly reflects user-perceived responsiveness, while generation latency characterizes
decoding efficiency. Together, these results provide a comprehensive view of both initial response
delay and sustained throughput.

18

Under review as a conference paper at ICLR 2026

Table 10: Latency comparison across LLaVA models. TTFT = Time to First Token. Gen latency =
generation latency per output.

Method | TTFT (ms) Genlatency (s) | TTFT (ms) Gen latency (s)

LLaVA-v1.5-13B LLaVA-v1.5-7B
Vanilla 111 £0905 3.85£0.017 64 £ 0.889 3.00 £ 0.012
FastV 77+ 0.788 2.52 +0.001 47 £+ 0.381 1.70 £ 0.013
PiToMe 82 £0.818 2.85 +0.002 53 £0.171 2.14 £ 0.022
ToFu 81 £0.622 2.86 + 0.001 51 £0.677 2.13 £ 0.004

ToMe (P) | 81 £ 0.889 2.86 + 0.003 54 £ 0.641 2.10+0.011
LightKV | 84 £0.715 2.87 £+ 0.005 51 £0.801 2.11 £ 0.009

LLaVA-NeXT-13B LLaVA-NeXT-7B

Vanilla 386 £2.224 4.17 £0.027 225 £1.552 3.20 £0.026
FastV 259 £1.759 2.94 £ 0.006 148 £1.110 1.83 £0.021
PiToMe 270 £0.776 3.29 £0.003 157 £0.602 2.26 £0.025
ToFu 268 £1.317 3.28 £0.003 155 £0.607 2.24 £0.011
ToMe (P) | 268 £2.023 3.28 4+ 0.004 155 £0.820 2.23 £0.028
LightKV | 271 +£0.788 3.31 4 0.003 159 +£1.000 2.24 & 0.006

E.4 VISUALIZATION

We provide visualization cases for vision token compression of COCO images in Fig.[7]for a 3-stage
compression on LLaVA-v1.5-13B, reducing the number of tokens from 576 — 288 — 145 — 77.
Unlike conventional vision encoders, vision tokens in LVLMs incorporate prompt information. As a
result, visually similar patches may differ significantly in the embedding space, making it plausible
to aggregate non-adjacent patches. To this end, our intra-window strategy imposes constraints on this
aggregation process to maintain spatial coherence during compression.

Pre-processed image

Layer 15

Layer 31
A i
= | i

Layer 23

Pre-processed image Layer 15 Layer 23 Layer 31
. -

576 tokens 288 tokens 145 tokens 77 tokens 576 tokens 288 tokens 145 tokens 77 tokens

Figure 7: Visualization of a 3-stage vision token compression, halving tokens at each stage and
achieving 55% KV cache reduction. Distant patches may be compressed into a single token.

19

	Introduction
	Related Work
	Method
	Preliminaries
	LightKV
	Intra-window token compression
	Inter-window token compression

	Complexity analysis

	Experiments
	Experimental settings
	Main results
	Additional experiments

	Conclusion
	Declaration of the use of LLMs
	Ethics statement
	Reproducibility statement
	Method
	Method overview
	Adjacency matrix
	Complexity analysis

	Additional Results
	Additional backbones
	Additional ablation studies
	Additional latency profiles
	Visualization

