
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MAKE YOUR LVLM KV CACHE MORE LIGHTWEIGHT

Anonymous authors
Paper under double-blind review

ABSTRACT

Key-Value (KV) cache has become a de facto component of modern Large Vision-
Language Models (LVLMs) for inference. While it enhances decoding efficiency
in Large Language Models (LLMs), its direct adoption in LVLMs introduces sub-
stantial GPU memory overhead due to the large number of vision tokens processed
during the prefill stage. To tackle this problem, we propose LightKV, a novel
approach that reduces KV cache size by exploiting the redundancy among vision-
token embeddings. Guided by text prompts, LightKV employs cross-modality
message passing to aggregate informative messages across vision tokens and pro-
gressively compress them during prefill. This prompt-aware guidance distinguishes
our method from prior vision-only compression strategies. We evaluate LightKV
on eight open-source LVLMs across eight public benchmarks, such as MME and
SeedBench. Experimental results demonstrate that with only 50% of the original
vision tokens, LightKV (i) halves KV cache size, (ii) reduces computation by
up to 40%, and (iii) preserves general-purpose performance while significantly
outperforming existing baselines.

1 INTRODUCTION

LLa
VA-v1

.5-13B

LLa
VA-v1

.5-13B

+ Lig
htKV

LLa
VA-v1

.5-7B

LLa
VA-v1

.5-7B

+ Lig
htKV

LLa
VA-NeXT-V

icu
na-13B

LLa
VA-NeXT-V

icu
na-13B

+ Lig
htKV

LLa
VA-NeXT-V

icu
na-7B

LLa
VA-NeXT-V

icu
na-7B

+ Lig
htKV

0

20

40

60

80

100

120

140

M
em

or
y

(G
B)

A1
00

-8
0

A1
00

-4
0

Memory Breakdown during Inference
Model
KV - Vision
KV - System + User prompt

Figure 1: Breakdown of memory consumption
in LLaVA models during the prefill stage shows
the substantial reduction in KV cache usage with
LightKV. Note that LLaVA-NeXT uses 4× the
vision tokens as LLaVA-v1.5, resulting in a sharp
increase in the memory consumption.

Benefiting from the rapid advancements in Large
Language Models (LLMs) (Vicuna Team, 2023;
OpenAI, 2024; Meta, 2024), Large Vision-
Language Models (LVLMs) (Alayrac et al., 2022;
Li et al., 2023b; Dai et al., 2023; Bai et al.,
2023; Liu et al., 2023a; 2024b;c; Lu et al., 2024;
Chen et al., 2024d;c; Wang et al., 2025; Chen
et al., 2025) have recently garnered extensive at-
tention. For example, LLaVA (Liu et al., 2023a)
and DeepSeek-VL (Lu et al., 2024) have achieved
impressive performance on a multitude of general-
purpose multi-modal benchmarks (Fu et al., 2024;
Yu et al., 2024; Li et al., 2023c). Despite their po-
tential, the efficiency of LVLMs remains a signif-
icant bottleneck for researchers and practitioners
in resource-constrained environments.

Key-Value (KV) cache (Pope et al., 2023; Kwon
et al., 2023) serves as a fundamental technique in
optimizing the inference efficiency of mainstream
LLMs and LVLMs. However, though the infer-
ence speed is improved without compromising model performance, the GPU memory consumed
becomes more substantial. This limitation is especially severe with longer sequences generated (Yang
et al., 2024; Liu et al., 2024a; Li et al., 2024d). To alleviate this issue, some training-based methods,
such as MQA (Hu et al., 2025) and GQA (Ainslie et al., 2023), introduce the sharing of keys and
values across attention heads. The overall KV cache size is accordingly reduced. These approaches,
however, suffer from the requirement of heavy model retraining. In contrast, methods such as
H2O (Zhang et al., 2023b), MiniCache (Liu et al., 2024a), and ElasticCache (Liu et al., 2024d)
focus on pruning tokens within the KV cache during inference after the prefill stage. These methods
offer greater flexibility and can be seamlessly applied to existing decoder-only models with minimal
degradation in performance. Given this, we primarily focus on token reduction during inference time.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Unlike LLMs, reducing the cost of memory-bound KV cache is challenging in LVLMs due to the
following two factors: (i) Tokens in LVLMs are heterogeneous, representing both image patches
and text. Determining which tokens should be pruned thus becomes more difficult; (ii) The number
of tokens computed during the prefill stage is significantly larger than that in LLMs. Each image
or video frame in LVLMs is embedded into hundreds to thousands of tokens upfront (e.g. 576 in
LLaVA-1.5 (Liu et al., 2023a) and 7,290 in LLaVA-OneVision (Li et al., 2024a)), a considerable
amount compared to the context lengths of LLMs (see Fig. 1) (Meta, 2024; Jiang et al., 2023; Vicuna
Team, 2023). As a result, current LVLMs are limited by significantly heavier GPU memory usage
than their LLM counterparts during the prefill stage. A few recent studies have proposed addressing
the first challenge on token heterogeneity (Chen et al., 2024a; Li et al., 2024c). However, existing
research on solving the second remains largely sparse.

In this paper, we propose LightKV, a novel method for optimizing KV cache storage in LVLMs during
the prefill stage without retraining. To this end, we leverage cross-modal prompt guidance for the
compression of vision tokens. Our method follows a three-step design. First, we conceptually map
each vision token to a graph node, constructing a bipartite graph with edges representing a feature
divergence (FD) metric between the connected nodes. Nonetheless, computing FD in a pairwise
manner is still expensive, especially with a large number of vision tokens. To alleviate this problem,
second, we split the vision tokens into subwindows based on their original spatial locations. This
allows us to reduce the complexity of computing FD and aggregating information across tokens, thus
improving efficiency. Third, our method does not follow existing studies (Chen et al., 2024b) to
perform vision token reduction independently, as the text prompts offer more informative signals for
vision token importance. Consequently, we propose to leverage on-the-fly attention scores from text
prompts for informed token updates. As found in our experiments, though this approach has been
largely ignored by the existing literature, it delivers superior results than state-of-the-art baselines.

We apply LightKV to eight state-of-the-art LVLM models: LLaVA-v1.5-13B, LLaVA-v1.5-7B (Liu
et al., 2023a), LLaVA-NeXT-13B, LLaVA-NeXT-7B (Liu et al., 2024b), InternVL2-8B (Chen
et al., 2024c), EVE-7B-v1, EVE-7B-v1-HD (Diao et al., 2025), Qwen2.5-VL (Bai et al., 2025)
and conduct extensive experiments across eight benchmarks: COCO Caption (Lin et al., 2014),
GQA (Hudson & Manning, 2019), MME (Fu et al., 2024), NoCaps (Agrawal et al., 2019), POPE (Li
et al., 2023c), SeedBench (Li et al., 2024b), ScienceQA (Lu et al., 2022), and VizWiz (Gurari et al.,
2018). Our results demonstrate that LightKV can reduce the KV memory of vision tokens by 50%
while maintaining, sometimes even surpassing, the vanilla LVLM performance. Furthermore, when
constrained with the same token length generation budget, the inference overhead (in FLOPs) is
significantly improved by 40%.

In summary, LightKV reduces the KV cache footprint in LVLMs by compressing vision tokens
during the prefill stage under the guidance of text prompts. This prompt-aware design distinguishes it
from existing SOTA vision-only methods, delivering (i) greater efficiency and (2) superior benchmark
performance. Importantly, LightKV is entirely training-free and can be seamlessly applied to a wide
range of LVLMs, including both vision encoder–based and encoder-free models.

2 RELATED WORK

Large vision-language models Following the success of large language models (LLMs) in the
language domain (Vicuna Team, 2023; OpenAI, 2024; Meta, 2024), large vision-language models
(LVLMs) have showcased pervasive progress on various multimodal tasks (Team, 2024b;a; Driess
et al., 2023). Current LVLMs primarily fall into the following three directions: (i) Fusion-based
methods directly include vision information into the LLM decoders using cross-attention (Alayrac
et al., 2022; Awadalla et al., 2023; Li et al., 2023a; Gong et al., 2023). (ii) Query-based LVLMs extract
vision information with learnable query tokens, which are then concatenated with text tokens (Li et al.,
2023b; Dai et al., 2023; Zhu et al., 2024; Li et al., 2024c; Zhang et al., 2023a). (iii) Projection-based
methods, instead, directly map the encoded tokens from a vision encoder into the text space (Liu et al.,
2023a; 2024b;c; Li et al., 2024a; Bai et al., 2023; Huang et al., 2023; Diao et al., 2025). However,
despite their simplicity and effectiveness, the projection of vision tokens leads to a substantial increase
in memory footprint.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

KV cache optimization KV cache has been widely used in LLMs and LVLMs to improve their
inference efficiency (Dao et al., 2022; Pope et al., 2023; Kwon et al., 2023; Lee et al., 2024). The
core idea is to store the key and value tokens to reduce future redundant computations. However, in
situations with long contexts, keeping the KV cache imposes an increased burden on GPU memory.
Existing approaches addressing this can be roughly categorized into two groups: (i) KV-sharing-based
and (ii) token-reduction-based. Specifically, methods from the (i) improve the multi-headed attention
mechanism to achieve efficiency. For instance, MQA (Hu et al., 2025) and GQA (Ainslie et al., 2023)
propose the sharing of keys and values across attention heads (Vaswani et al., 2017), reducing the
amount of KV needed to be cached. In contrast, methods from the (ii) reduce KV cache size by
pruning or merging tokens based either on minimal importance (Zhang et al., 2023b; Li et al., 2024d;
Cai et al., 2024) or attention consistency across layers (Liu et al., 2023b; 2024d; Yang et al., 2024).
Beyond LLMs, some initial efforts have been devoted to optimizing the KV cache for LVLMs. In
particular, LLaVolta (Chen et al., 2024a), IVTP (Huang et al., 2024) and FastV (Chen et al., 2024b)
propose pruning vision tokens at the decoder layers of the LLM backbone. The first two require
model retraining; FastV, though training-free, prunes vision tokens without cross-modality guidance,
yielding inconsistent results across models and benchmarks. In contrast, LightKV leverages guidance
from text tokens to deliver more consistent and superior performance.

Vision token compression Tokens in vision transformers (ViTs) (Dosovitskiy et al., 2021) often
exhibit high redundancy (Bolya et al., 2023; Pan et al., 2022; Chen et al., 2024b). To address this,
some approaches train modules to identify and discard less important tokens (Rao et al., 2021;
Bonnaerens & Dambre, 2023; Yin et al., 2022; Fayyaz et al., 2022; Wei et al., 2023; Chen et al.,
2023; Zhang et al., 2024; Mao et al., 2025). Some other typical methods first group tokens based on
similarity or distance (Bolya et al., 2023; Tran et al., 2024; Kim et al., 2024; Alvar et al., 2025) or
image segmentation (Xu et al., 2022; Lu et al., 2023) and then prune or merge the tokens with the
maximum similarity. These methods either (i) require the training of additional module(s), or (ii) do
not support the vision-language joint reasoning as in LVLMs.

3 METHOD

3.1 PRELIMINARIES

Recent LLMs often operate in an autoregressive fashion: given a sequence of p text prompt tokens
[x1, . . . , xp] (including both system prompt and user prompt), and t− p previously generated tokens
[xp+1, . . . , xt], an LLM with parameters Θ predicts the next token xt+1 with:

xt+1 ∼ PΘ

(
xt+1 | x1, . . . , xp︸ ︷︷ ︸

Prompt tokens

, xp+1, . . . , xt︸ ︷︷ ︸
Generated tokens

)
. (1)

The above process is often implemented in two stages: prefill and generation (Golden et al.,
2024). During prefill, the model tokenizes all p prompt tokens and computes the queries Qp =
[q1,q2, . . . ,qp], similarly for keys Kp and values Vp (Vaswani et al., 2017). In contrast, during
generation, when a new token arrives, the model first obtains the query qt+1, key kt+1, and value
vt+1 vectors. It then computes the attention matrix by applying qt+1 to the full set of keys Kt+1:

A = softmax
(
qt+1 K

⊤
t+1/

√
dk

)
, (2)

where dk represents the embedding dimension. In practice, the attention output would be a concate-
nation of matrices A = [A1, . . . ,AH] from H independent attention heads.

KV cache From the above, we observe that the autoregressive nature of LLMs allows for the
previously computed keys Kt and values Vt to be reused in future time steps during generation. This
operation reduces the computational overhead by preventing the recomputation of key and value
tokens (Xu et al., 2025). However, an increased consumption of GPU memory is usually induced by
the growing size of the KV cache. This is often manifested as: (i) generating lengthy sequences and
(ii) caching many contexts during prefill. In this work, we primarily focus on improving the second.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Vision tokens from 𝒜 Vision tokens from ℬ 𝜉 Prompt guidance weight Updated vision token
< Sequence of vision tokens >

…

Graph Message Passing

𝜉

𝜉

𝜉 𝜉

𝜉

𝜉

Eliminated vision token

(1) Construct graph (2) Select edges (3) Message passing (4) Eliminate nodes (5) Reorder into sequence

Figure 2: Method overview of intra-window token compression. Step 1: Construct a bipartite graph
by splitting the vision tokens into sets A (blue) and B (orange), weigh each edge by an FD metric,
as defined in Eq. 5. Step 2: Select edges with the smallest ⌊ρv/2⌋ FD values and delete the rest.
Unconnected nodes are left unchanged. Step 3: Pass messages from nodes in A to nodes in B
weighted by its attention ξ, as defined in Eq. 7. Aggregate messages and update nodes in B. Step 4:
Eliminate now-redundant nodes from A. Step 5: Reorder the remaining nodes into a sequence of
vision tokens, serving as input to the next decoder layer.

LVLMs LVLMs build on LLMs by extending their architecture to process visual information.
A common paradigm in LVLMs is to first map the split image patches into tokens using ViT-
based encoders (Dosovitskiy et al., 2021; Radford et al., 2021; Bao et al., 2022), which are then
concatenated with the prompt tokens to form the input sequence. In general, LVLMs generate tokens
by conditioning on both text prompt tokens and vision tokens:

xt+1 ∼ PΘ

(
xt+1 | x1, . . . , xp︸ ︷︷ ︸

Prompt tokens

, xp+1, . . . , xp+v︸ ︷︷ ︸
Vision tokens

, xp+v+1, . . . , xt︸ ︷︷ ︸
Generated tokens

)
. (3)

We denote Xv as the sequence of v vision tokens in Eq. 3. Similar to LLMs, KV cache is a key com-
ponent in speeding up inference in LVLMs. In this paper, we focus primarily on compressing vision
tokens for two reasons: (i) as shown in Fig. 1, vision tokens greatly outnumber text prompt tokens;
(ii) preliminary studies showed that reducing text tokens causes harsh performance degradation.

3.2 LIGHTKV

As illustrated in Fig. 2, the pipeline of LightKV functions as follows: At each specified decoder layer
during the prefill stage, given a sequence of vision tokens, we first reconstruct their grid structure as
in the original image. These tokens are then partitioned into w × w small, non-overlapping windows,
each containing an equal number of tokens. Within each window, we perform graph message passing
to compress vision tokens, simultaneously reducing both KV size and the length of the vision input to
the next decoder layer (as detailed in Sec. 3.2.1). A similar operation is repeated in later decoder layers
with larger window sizes to achieve inter-window compression (further elaborated in Sec. 3.2.2).

3.2.1 INTRA-WINDOW TOKEN COMPRESSION

To address redundancy in vision tokens, we utilize graph message passing to aggregate information
with low FD (defined below in Eq. 5), and then eliminate redundant nodes in each window ω. Note
that the message passing and update procedure is performed independently for each window.

Graph construction We limit and refer the vision tokens in a window to a bipartite graph. For
notational simplicity, we slightly abuse x as the embedding of a vision node. Step 1: In each window,
we first map each token x to a graph node, with X = {x|x ∈ Xv}. Next, we split the set of nodes
into two subsets XA and XB (colored blue and orange respectively in Fig. 2) of near-equal cardinality,
and construct a bipartite graph from the two sets with edges E :

E = XA ×XB =
{
(xα,xβ) | ∀ xα ∈ XA, ∀ xβ ∈ XB

}
, (4)

where × denotes set cross product. We modify the feature divergence (FD) in (Tran et al., 2024;
Wang et al., 2024) to weigh each edge in the graph:

FD(α, β) = 1− ⟨xα,xβ⟩
||xα|| ||xβ ||

, (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where ⟨·, ·⟩ denotes the inner product and || · || is the L2-norm. Step 2: We define the adjacency
matrix M ∈ {0, 1}|XA|×|XB| where:

Mα,β =

{
1, if (α, β) ∈ T ρ,

0, otherwise,
(6)

to select ⌊ρv/2⌋ pairs of (α, β) with the smallest values of FD(α, β) as Tρ, where ρ is the chosen
compression ratio. Edges not in Tρ are temporarily removed and the remaining unconnected nodes
XR = {xr| ∄ β s.t.(r, β) ∈ Tρ} are left unchanged.

Token message passing In LVLMs, the heterogeneity of tokens introduces a challenge in evaluating
the importance of each vision token, and prior works often disregard this by compressing tokens
uniformly without accounting for their relative significance. Instead, LightKV reuses the attention
weights from the LLM decoder to estimate token importance, which are readily available during
the prefill stage without additional computation, as computed in Eq. 2. This serves as a signal to
preserve the visual features that are most important to the prompt, and is used as guidance in the
message-aggregation process. Step 3: Given A ∈ RH×(p+v)×(p+v) is the H-headed attention matrix
before the attention mask, for a vision token with index i, we accumulate its attention from prompts:

ξi =

H∑
h=1

∑
j∈J

A[h, i, j], (7)

where J is the set of indices for the p prompt tokens. Next, we gather the attention for each window
ω into vectors ξA ∈ R|XA| and ξB ∈ R|XB| with the same partitions as XA and XB. We update XB
by accumulating messages from its adjacent tokens:

XB =
(
ξB +M⊤ξA

)−1︸ ︷︷ ︸
(iii) Normalize by sum of attentions

(
XB ⊙ ξB︸ ︷︷ ︸

(i) Prompt-guidance for B

+ M⊤ (XA ⊙ ξA)︸ ︷︷ ︸
(i) Prompt-guidance for A︸ ︷︷ ︸

(ii) Message passing as defined by edges M

)
, (8)

where ⊙ is the Hadamard product. This can be broken down into three parts: (i) Messages from each
token xi are first weighed by its attention ξi. (ii) Next, sessages from the tokens in XA are passed to
those in XB through the edges defined in M , updating tokens in XB. The chosen direction is arbitrary
but symmetrical. (iii) Finally, tokens in XB are normalized to remain scale-invariant.

Importantly, our aggregation operation utilizes the attention ξ as guidance, ensuring the preservation
of visual information that is most relevant to the prompt and the generation of the final response. Step
4: After the update, the now-redundant nodes in XA \XR are deleted. Step 5: Finally, the unchanged
tokens XR and the updated XB are concatenated to form the final sequence of tokens for window ω.

Complexity In contrast to computing fully pairwise FD among vω = v/(w × w) vision tokens–
which requires 1

2vω(vω − 1) time complexity, the bipartite matching strategy improves computational
efficiency by reducing this number by half to ∼ 1

4 (vω)
2.

Difference from ToMe LightKV adopts a bipartite matching approach, similar to ToMe (Bolya
et al., 2023), to reduce the cost of pairwise calculations. However, ToMe and subsequent methods
assume all tokens are equally important, merging them without differentiation. In contrast, LightKV
uses cross-modality attention to guide message passing and aggregation, preserving the most relevant
information during compression, yielding superior results (see Sec. 4).

3.2.2 INTER-WINDOW TOKEN COMPRESSION

Window partitioning As discussed above, we split the entire set of vision tokens into window
partitions in a non-overlapping manner. Specifically, each window ω contains vω = v/(w×w) vision
tokens. This reduces the total number of operations involved in computing FD measures from the
original 1

2v(v− 1) to 1
2

v
w2 (

v
w2 − 1)×w2 → 1

2v(
v
w2 − 1). Moreover, since spatially adjacent patches

typically share semantic similarities, our window-based method confines message aggregation to
within a small locality, preserving the positional information of tokens in the original image (Song
et al., 2024; Norouzi et al., 2024). A global message passing strategy might inadvertently aggre-
gate information from tokens representing unrelated entities, compromising locality and semantic
coherence (Xu et al., 2022; Pan et al., 2022).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

< Layers 1 to 𝜆! >

< Layers 𝜆! + 1 to 𝜆" >

< Layers 𝜆# + 1 to 𝐿 >

< Layers 𝜆" + 1 to 𝜆# >

GMP …

GMP …

GMP GMP …GMP GMP

GMP

Figure 3: After each compression step,
w is reduced to allow message passing
across greater spatial distances.

Hierarchical structure We adopt a hierarchical com-
pression strategy to improve efficiency, as inspired by
Swin-Transformer (Liu et al., 2021). In an LVLM with L
layers, we perform s < L compression iterations. Let Λ =
[λ1, . . . , λs], W = [w 2

1 , . . . , w
2
s], P = [ρ1, . . . , ρs],

where λi is the index of the decoder layer where vision
tokens are compressed, w 2

i is the number of window par-
titions used at iteration i with wi > wi+1, and ρi is the
compression ratio. After each decoder layer λi, the to-
kens are divided into w2

i windows. Within each window,
vision-token messages are aggregated and compressed
with ratio ρi, and only a fraction (1 − ρi) of the vision
tokens remains in subsequent layers. After each com-
pression iteration, the number of windows is decreased
(smaller w) to allow for message passing across greater
spatial distances, as depicted in Fig. 3.

3.3 COMPLEXITY ANALYSIS

Without any compression, the prefill stage processes in total v ×L vision tokens1. With compression,
the number of vision tokens processed during pre-fill now reduces to:

v ×

{
λ1 +

s∑
i=2

(
(λi − λi−1)

i−1∏
j=1

(1− ρj)
)
+ (L− λs)

s∏
j=1

(1− ρj)

}
< v × L. (9)

For an LVLM with L = 40 decoder layers, choosing Λ = [10, 20, 30] and P = [0.5, 0.5, 0.5] reduces
the vision token count to 46.9% of the baseline. This is further elaborated in Sec. D.3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

LVLM base models We evaluated the efficiency and performance of LightKV by applying it
to eight open-source LVLMs: LLaVA-v1.5-13B, LLaVA-v1.5-7B, LLaVA-NeXT-13B, LLaVA-
NeXT-7B, InternVL2-8B, EVE-7B-v1, EVE-7B-v1-HD, and Qwen2.5-VL-7B-Instruct. LLaVA-v1.5
encodes 576 vision tokens per image, while LLaVA-NeXT uses 2,144. In contrast, InternVL2 and
Qwen2.5-VL adopt dynamic vision encoding, with token counts determined by image resolution. It
is worth noting that, unlike other models, which employ a dedicated image encoder, EVE is vision
encoder-free. These methods are labeled as Vanilla in our results.

Datasets We utilized eight publicly available large-scale benchmarks for evaluation: COCO Cap-
tion (Lin et al., 2014), GQA (Hudson & Manning, 2019), MME (Fu et al., 2024), NoCaps (Agrawal
et al., 2019), POPE (Li et al., 2023c), SeedBench (Li et al., 2024b), ScienceQA (Lu et al., 2022),
and VizWiz (Gurari et al., 2018). These benchmarks cover a wide range of tasks, from general,
everyday image understanding to fine-grained image reasoning. MME, POPE, SeedBench Lite, and
ScienceQA are limited to single-choice answers, while COCO Caption, GQA, NoCaps, and VizWiz
involve open-ended responses comprising long sentences.

Compared baselines We adapted two existing techniques from other related domains: ToMe (Bolya
et al., 2023) (labeled ToMe (C)) and ElasticCache (Liu et al., 2024d). For comparison, we imple-
mented two random-eviction baselines: Rand and ImgRand. Rand and ElasticCache prune both text
and vision tokens, whereas ImgRand and ToMe reduce vision tokens only. It is important to note
that the previously mentioned methods perform token reduction after the prefill stage. Additionally,
for token reduction during prefill, we implemented ToMe (labeled ToMe (P)) and four recent SOTA
strategies: FastV (Chen et al., 2024b), PiToMe (Tran et al., 2024), ToFu (Kim et al., 2024) and
HiRED2 (Arif et al., 2025).

1We omit the double estimation of key and value cache for simplicity.
2Uses the same model but with HuggingFace optimizations; efficiency metrics are omitted for fairness.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results of LightKV on LLaVA models at 55% compression of vision tokens in the KV
cache. Avg % denotes the average of all performance metrics normalized against the vanilla model.
Methods in each category are then sorted from lowest to highest Avg score.

Method FLOPS ↓ Mem ↓ TTFT ↓ COCO MME NoCaps POPE SEED VizWiz Avg %
(Tera) (GB) (sec) C P Acc F1

L
L

aV
A

-v
1.

5-
13

B

Vanilla 19.4 0.55 0.111 1.16 295.4 1532.0 1.09 0.87 0.86 0.69 0.57 100.00
Post prefill

Elastic 19.3 0.31 0.568 0.96 295.4 1534.5 0.87 0.43 0.96 OOM 0.14 68.54
Rand 19.0 0.31 0.118 0.48 295.4 1532.9 0.46 0.46 0.89 0.70 0.13 70.53
ImgRand 19.0 0.31 0.117 0.95 295.4 1532.9 0.86 0.69 0.91 0.70 0.19 85.09
ToMe (C) 19.0 0.33 0.123 1.00 295.4 1532.9 0.92 0.79 0.88 0.70 0.18 87.10

During prefill
ToFu 12.6 0.37 0.081 1.14 292.1 1535.7 1.08 0.86 0.86 0.38 0.55 93.36
PiToMe 12.6 0.37 0.082 1.14 297.5 1529.0 1.07 0.87 0.85 0.38 0.55 93.42
ToMe (P) 12.6 0.37 0.081 1.16 297.5 1529.9 1.07 0.87 0.86 0.39 0.55 93.96
LightKV 12.6 0.37 0.084 1.15 302.1 1543.8 1.08 0.87 0.86 0.69 0.56 99.94
FastV 12.4 0.36 0.077 1.16 308.9 1546.6 1.09 0.86 0.85 0.68 0.57 100.22

L
L

aV
A

-v
1.

5-
7B

Vanilla 10.2 0.35 0.064 1.10 355.7 1509.6 1.05 0.87 0.86 0.66 0.54 100.00
Post prefill

Elastic 10.2 0.20 0.428 0.41 350.4 1508.9 0.30 0.30 0.93 OOM 0.09 52.95
Rand 9.9 0.21 0.070 0.13 350.4 1508.9 0.10 0.74 0.87 0.66 0.11 65.80
ToMe (C) 10.0 0.20 0.075 0.13 350.4 1508.9 0.09 0.87 0.86 0.66 0.18 69.02
ImgRand 9.9 0.20 0.070 0.22 350.4 1508.9 0.16 0.86 0.86 0.66 0.16 70.27

During prefill
HiRED - - - 1.03 335.0 1452.0 1.00 0.85 0.83 0.66 0.53 96.45
ToFu 6.6 0.23 0.051 1.09 340.0 1482.3 1.02 0.86 0.85 0.66 0.52 97.98
ToMe (P) 6.6 0.23 0.054 1.09 319.6 1490.5 1.01 0.87 0.86 0.66 0.52 97.52
PiToMe 6.6 0.23 0.053 1.08 341.0 1498.5 1.02 0.86 0.85 0.65 0.51 97.63
FastV 5.3 0.22 0.047 1.10 351.1 1513.7 1.04 0.85 0.83 0.66 0.54 99.03
LightKV 6.6 0.23 0.051 1.11 357.5 1519.8 1.03 0.87 0.86 0.66 0.53 99.79

L
L

aV
A

-N
eX

T-
13

B

Vanilla 65.0 1.75 0.386 1.02 318.9 1575.1 0.88 0.88 0.86 0.69 0.64 100.00
Post prefill

Elastic - - - OOM OOM OOM OOM OOM OOM OOM OOM 0.00
Rand 60.8 0.91 0.396 0.06 318.9 1575.1 0.04 0.82 0.86 0.69 0.08 64.51
ToMe (C) 61.3 0.93 0.418 0.07 318.9 1575.1 0.05 0.87 0.86 0.69 0.08 65.48
ImgRand 60.8 0.91 0.392 0.07 318.9 1575.1 0.05 0.87 0.86 0.69 0.08 65.50

During prefill
ToMe (P) 37.3 1.05 0.268 0.97 308.5 1551.0 0.84 0.87 0.86 0.34 0.60 90.96
ToFu 37.3 1.05 0.268 0.97 305.0 1539.5 0.83 0.88 0.87 0.36 0.60 91.31
PiToMe 37.3 1.05 0.270 0.98 311.9 1558.2 0.86 0.87 0.86 0.34 0.60 91.56
FastV 36.1 1.04 0.259 0.91 311.1 1477.5 0.81 0.82 0.78 0.68 0.61 93.80
LightKV 37.3 1.05 0.271 0.96 326.1 1576.5 0.83 0.87 0.86 0.69 0.61 98.12

L
L

aV
A

-N
eX

T-
7B

Vanilla 34.8 1.12 0.225 1.00 330.0 1528.2 0.88 0.88 0.86 0.68 0.61 100.00
Post prefill

Elastic 34.7 0.58 1.675 0.02 332.1 1519.3 0.01 0.18 0.90 OOM 0.08 42.67
Rand 32.2 0.58 0.234 0.02 322.5 1523.2 0.01 0.65 0.87 0.68 0.08 61.08
ImgRand 32.2 0.58 0.234 0.02 322.5 1523.2 0.02 0.85 0.87 0.68 0.08 64.06
ToMe (C) 32.5 0.60 0.251 0.03 322.5 1523.2 0.02 0.87 0.86 0.68 0.08 64.33

During prefill
FastV 18.5 0.65 0.148 0.88 265.4 1341.3 0.78 0.81 0.77 0.69 0.58 90.37
HiRED - - - 0.73 297.9 1398.9 0.67 0.88 0.87 0.66 0.58 90.68
ToMe (P) 21.1 0.67 0.155 0.93 292.9 1419.0 0.78 0.88 0.87 0.65 0.57 94.18
ToFu 20.0 0.67 0.155 0.93 295.4 1427.2 0.78 0.88 0.87 0.66 0.57 94.52
PiToMe 20.0 0.67 0.157 0.94 292.1 1415.5 0.79 0.88 0.87 0.65 0.58 94.58
LightKV 22.3 0.67 0.159 0.98 338.6 1517.3 0.83 0.88 0.86 0.69 0.58 98.85

Implementation details In our experiments, we retain the default parameters of the LVLM back-
bones and use greedy decoding for reproducibility. For FastV, we adopt the reported optimal setting
of K = 2 and vary only R to control the KV cache pruning ratio. For other methods, we adapted
them to work with the LVLM backbones to the best of our abilities. To ensure consistency, we fix the
configuration of LightKV’s compression layers Λ, compression ratios P , and window sizes W across
all benchmarks for each LVLM model. We utilized lmms-eval (Zhang et al., 2025) for all benchmark
evaluations. We profiled the time-to-first-token (TTFT) and the generation latency for 100 tokens by
averaging results over 10 runs on an NVIDIA A100 GPU.

4.2 MAIN RESULTS

We compare the performance of LightKV with other SOTA methods on LLaVA models (Table 1),
InternVL (Table 2), EVE (Table 3) and Qwen2.5-VL (Fig. 4 and Table 7 in the appendix). For
each LVLM model, we selected the optimal configurations of Λ and W based on performance on
COCO and MME, and applied these hyperparameters to the remaining benchmarks. We also profiled
efficiency metrics, including FLOPS, KV cache memory (from prompt, vision, and generated tokens),

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Results of LightKV on InternVL2-8B at two compression rates of vision tokens in KV cache.
“Avg %” denotes the average of all metrics normalized against the vanilla model. Methods in each
category are then sorted from lowest to highest Avg score.

Method FLOPS ↓ Mem ↓ TTFT ↓ COCO GQA MME POPE SQA VizWiz Avg %
(Tera) (GB) (sec) C P Acc F1

Vanilla 35.7 0.24 0.470 0.90 0.63 587.5 1623.8 0.88 0.87 0.97 0.61 100.00
During prefill, 60% vision compression

FastV 24.8 0.15 0.520 0.80 0.50 569.6 1610.9 0.47 0.87 0.49 0.53 81.90
ToFu 24.0 0.15 0.520 0.81 0.62 502.1 1575.5 0.87 0.86 0.94 0.60 95.49
PiToMe 24.0 0.15 0.519 0.99 0.60 461.8 1545.3 0.87 0.86 0.90 0.60 95.99
ToMe (P) 24.0 0.15 0.523 0.87 0.62 551.4 1621.8 0.87 0.86 0.95 0.60 97.86
LightKV 24.0 0.15 0.519 0.91 0.63 590.0 1623.8 0.88 0.87 0.97 0.61 100.19

During prefill, 55% vision compression
FastV 22.9 0.14 0.517 0.68 0.47 582.1 1611.1 0.56 0.85 0.46 0.48 79.49
PiToMe 22.9 0.14 0.518 1.00 0.61 442.9 1575.5 0.87 0.86 0.90 0.57 95.54
ToMe (P) 22.9 0.14 0.519 0.81 0.62 503.9 1570.0 0.87 0.86 0.95 0.60 95.62
ToFu 22.9 0.14 0.519 0.75 0.62 541.8 1619.1 0.87 0.85 0.95 0.60 95.82
LightKV 22.9 0.14 0.515 0.88 0.62 590.0 1623.8 0.88 0.87 0.97 0.61 99.58

and time to first token (TTFT) when generating 100 tokens (standard deviation reported in the
appendix). Our key findings are summarized as follows:

• Tables 1, 2, 3 and 7 show that LightKV consistently preserves the performance of the base LVLMs
across most benchmarks. In some cases, our method even surpasses the performance of vanilla
LVLMs without compression.

• Compared to methods applied during the prefill stage, LightKV either outperforms or achieves
highly competitive results. Specifically, it ranks first in 3 out of 4 LLaVA models and second in
the remaining one, while other baselines exhibit inconsistent rankings with major degradations in
performance. When efficiency is considered alongside performance, baseline methods are largely
inferior—showing poorer memory usage and less effective FLOP reduction.

• At even more aggressive compression ratios (e.g. 20% and 30%), LightKV is capable of retaining
99% average performance across multiple benchmarks on Qwen2.5-VL (Fig. 4 and Table 7). This
further highlights the robustness of our method.

• LightKV is compatible with not only vision encoder-based LVLMs, but also with encoder-free
models such as EVE, which seek to reduce the strong inductive bias in the vision encoders. As
shown in Table 3, our approach substantially outperforms FastV at the same compression rate,
better preserving the LVLM’s original capabilities.

• Post-prefill approaches substantially degrade performance on open-ended tasks e.g. COCO and
NoCaps. Additionally, they yield minimal improvements in computational efficiency, since the
prefill stage remains the dominant bottleneck in LVLMs. In contrast, LightKV operates on the
prefill stage within the decoder layers. This results in significantly lower computational cost and
memory footprint, while achieving stronger performance across a series of benchmarks.

Table 3: Results of LightKV on EVE-7B-v1 models at 55% com-
pression of vision tokens in the KV cache.

Method COCO MME NoCaps POPE VizWiz Avg %
C P Acc F1

EVE-7B-v1
Vanilla 0.96 269.2 1230.8 0.94 0.84 0.83 0.46 100.00
FastV 0.85 259.3 1144.5 0.78 0.80 0.77 0.44 92.07
LightKV 1.00 269.3 1203.1 0.93 0.84 0.83 0.43 99.20

EVE-7B-v1-HD
Vanilla 1.05 304.6 1314.1 1.02 0.86 0.85 0.56 100.00
FastV 0.97 290.3 1238.6 0.93 0.83 0.82 0.55 94.90
LightKV 0.97 291.4 1308.9 0.94 0.86 0.85 0.54 96.61

0.550.400.300.20
Compression rate

0.95

1.00

1.05

1.10

1.15

1.20

No
rm

al
ize

d
m

et
ric

1.04
1.01

0.990.99

Vanilla = 1.00

Normalized Metrics on Compression Rate

Average
COCO
GQA
MME C
MME P

NoCaps
POPE Acc
POPE F1
SEED
VizWiz

Figure 4: Effect of varying com-
pression rates on Qwen2.5-VL.

4.3 ADDITIONAL EXPERIMENTS

Latency profiling Table 4 illustrates the reduction in time to first token latency achieved by LightKV.
Since our approach requires explicit attention matrices for token reduction, it is incompatible with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

I/O-optimized mechanisms like FlashAttention (Dao et al., 2022). To overcome this, we selectively
switch to eager computation in the small subset (s ≪ L) of layers where compression is applied,

Table 4: Time to first token (ms) ±
Std. Dev. on LLaVA 13B models.

Method LLaVA-v1.5 LLaVA-NeXT

Vanilla 111 ± 0.91 386 ± 2.22
LightKV 84 ± 0.72 271 ± 0.79

while retaining the optimized attention implementation for the
majority. The marginal overhead introduced is effectively off-
set by the increased throughput gained from processing fewer
vision tokens in the downstream layers. See Sec. E.3 for a more
detailed analysis of both TTFT and the generation latency of
100 tokens with their corresponding standard deviations.

Influence of hierarchical compression We conducted experiments with the same configuration
of Λ while varying the window sizes, as presented in Table 5. Across different compression layers
λ, the results show a similar general trend: there is more pronounced degradation with a global
compression strategy w = 1, likely due to the inadvertent destruction of spatial locality (Xu et al.,
2022; Pan et al., 2022; Song et al., 2024; Norouzi et al., 2024). However, with larger values of w,
similar degradation occurs. This is attributed to the small number of tokens within each window,
resulting in the compression of mismatched tokens with high FD scores. Furthermore, we summarize
the FLOPs and KV cache memory usage for different inference configurations in Table 6. The results
indicate that larger window sizes in the early layers lead to higher efficiency improvements.

Influence of compression layers We investigate the impact of varying layers for token compression,
as illustrated in Fig. 6 in the appendix. Trends between the compression layer and model performance
reveal that compressing in the shallow layers has a more substantial impact on performance. This
effect is particularly pronounced in VizWiz, where LVLMs must refrain from answering (e.g., when
the ground truth is “unanswerable”). Compression in the deeper layers yields performance nearly
identical to the base LVLM models, but offers little reduction in memory usage.

Table 5: Effect of varying window sizes w at vari-
ous compression layers on InternVL-8B.

Method W COCO GQA MME POPE SQA VizWiz
C P Acc F1

Vanilla - 0.90 0.63 587.5 1623.8 0.88 0.87 0.97 0.61

L
ig

ht
K

V

λ= 3
1 0.80 0.62 547.5 1602.5 0.87 0.86 0.95 0.60
2 0.83 0.59 555.0 1621.1 0.87 0.86 0.96 0.60
4 0.90 0.60 546.8 1594.8 0.87 0.85 0.95 0.60

λ= 14
1 0.89 0.62 577.1 1615.8 0.87 0.86 0.97 0.61
2 0.90 0.62 577.1 1620.3 0.87 0.86 0.97 0.61
4 0.92 0.62 577.9 1617.5 0.88 0.86 0.97 0.61

Table 6: Profiling results by varying compres-
sion layers Λ and window sizes W on LLaVA
13B models.

LLaVA-v1.5-13B LLaVA-NeXT-13B
Method Λ W FLOPS Mem FLOPS Mem

Vanilla - - 19.4 0.55 65.0 1.75

L
ig

ht
K

V 15,23,31 4,2,1 12.6 0.37 37.3 1.05
6,4,2 12.6 0.37 37.3 1.05

17,24,31 4,2,1 13.1 0.38 39.0 1.09
6,4,2 13.1 0.38 39.0 1.09

5 CONCLUSION

In this paper, we present LightKV, a novel training-free approach for optimizing KV cache storage
in general LVLMs. It leverages text-prompt–guided graph message passing and aggregation to
informatively compress vision tokens during the prefill stage of inference. Our method is designed
to be: (i) memory-efficient: by progressively and dynamically compressing vision nodes through
a hierarchical multi-stage process; and (ii) compute-efficient: by employing window-based graph
partitioning and bipartite matching to accelerate message aggregation. The experimental results
demonstrate that our approach: (a) largely preserves the general-purpose performance of the base
LVLM across multiple benchmarks, and (b) outperforms existing baselines in KV cache efficiency.

Limitations We acknowledge two limitations of this work: (i) LightKV leverages a bipartite graph
matching algorithm, which splits vision tokens into two disjoint sets, then finds optimal pairings
between nodes across the sets. This limits the compression rate to a maximum of 50% per step, thus
requiring multiple iterations to achieve higher overall reduction. (ii) Furthermore, our method requires
explicitly computing attention matrices for cross-modality guidance during a few compression steps,
similar to other efficient methods (Chen et al., 2024b; Liu et al., 2023a), which are less compatible
with FlashAttention (Dao et al., 2022).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen, Rishabh Jain, Mark Johnson, Dhruv Batra,
Devi Parikh, Stefan Lee, and Peter Anderson. Nocaps: Novel object captioning at scale. In CVPR,
pp. 8948–8957, 2019.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023. doi: 10.48550/arXiv.2305.13245.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford,
Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob L. Menick,
Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikołaj Bińkowski,
Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén Simonyan. Flamingo: A visual
language model for few-shot learning. In NeurIPS, pp. 23716–23736, 2022.

Saeed Ranjbar Alvar, Gursimran Singh, Mohammad Akbari, and Yong Zhang. Divprune: Diversity-
based visual token pruning for large multimodal models. In CVPR, 2025. doi: 10.48550/arXiv.
2503.02175.

Kazi Hasan Ibn Arif, JinYi Yoon, Dimitrios S. Nikolopoulos, Hans Vandierendonck, Deepu John,
and Bo Ji. Hired: Attention-guided token dropping for efficient inference of high-resolution
vision-language models. In AAAI, volume 39 of AAAI’25/IAAI’25/EAAI’25, pp. 1773–1781, 2025.
ISBN 978-1-57735-897-8. doi: 10.1609/aaai.v39i2.32171.

Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe,
Yonatan Bitton, Samir Gadre, Shiori Sagawa, Jenia Jitsev, Simon Kornblith, Pang Wei Koh, Gabriel
Ilharco, Mitchell Wortsman, and Ludwig Schmidt. Openflamingo: An open-source framework for
training large autoregressive vision-language models. arXiv preprint arXiv:2308.01390, 2023. doi:
10.48550/arXiv.2308.01390.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025. doi: 10.48550/arXiv.2502.13923.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
In ICLR, 2022.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. In ICLR, 2023.

Maxim Bonnaerens and Joni Dambre. Learned thresholds token merging and pruning for vision
transformers. TMLR, (2835-8856), 2023.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic kv cache compression based on
pyramidal information funneling. arXiv preprint arXiv:2406.02069, 2024.

Jieneng Chen, Luoxin Ye, Ju He, Zhao-Yang Wang, Daniel Khashabi, and Alan Yuille. Efficient large
multi-modal models via visual context compression. In NeurIPS, pp. 73986–74007, 2024a.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
language models. In Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler,
and Gül Varol (eds.), ECCV, pp. 19–35, 2024b. ISBN 978-3-031-73004-7. doi: 10.1007/
978-3-031-73004-7_2.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mengzhao Chen, Wenqi Shao, Peng Xu, Mingbao Lin, Kaipeng Zhang, Fei Chao, Rongrong Ji,
Yu Qiao, and Ping Luo. Diffrate : Differentiable compression rate for efficient vision transformers.
In ICCV, pp. 17118–17128, 2023. doi: 10.1109/ICCV51070.2023.01574.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
Kongzhi Hu, Jiapeng Luo, Zheng Ma, Ji Ma, Jiaqi Wang, Xiaoyi Dong, Hang Yan, Hewei Guo,
Conghui He, Botian Shi, Zhenjiang Jin, Chao Xu, Bin Wang, Xingjian Wei, Wei Li, Wenjian Zhang,
Bo Zhang, Pinlong Cai, Licheng Wen, Xiangchao Yan, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu,
Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhai Wang. How far are we to gpt-4v? closing the gap to
commercial multimodal models with open-source suites. arXiv preprint arXiv:2404.16821, 2024c.
doi: 10.48550/arXiv.2404.16821.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Intern vl:
Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In CVPR, pp.
24185–24198, 2024d. doi: 10.1109/CVPR52733.2024.02283.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
Ye, Hao Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang, Qingyun Li, Yimin Ren, Zixuan Chen,
Jiapeng Luo, Jiahao Wang, Tan Jiang, Bo Wang, Conghui He, Botian Shi, Xingcheng Zhang, Han
Lv, Yi Wang, Wenqi Shao, Pei Chu, Zhongying Tu, Tong He, Zhiyong Wu, Huipeng Deng, Jiaye
Ge, Kai Chen, Kaipeng Zhang, Limin Wang, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua
Lin, Yu Qiao, Jifeng Dai, and Wenhai Wang. Expanding performance boundaries of open-source
multimodal models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271,
2025. doi: 10.48550/arXiv.2412.05271.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
Pascale N. Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models
with instruction tuning. In NeurIPS, pp. 49250–49267, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. In NeurIPS, pp. 16344–16359, 2022.

Haiwen Diao, Yufeng Cui, Xiaotong Li, Yueze Wang, Huchuan Lu, and Xinlong Wang. Unveiling
encoder-free vision-language models. In NeurIPS, volume 37, pp. 52545–52567, 2025. ISBN
979-8-3313-1438-5.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In ICLR, 2021.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied
multimodal language model. arXiv preprint arXiv:2303.03378, 2023.

Mohsen Fayyaz, Soroush Abbasi Koohpayegani, Farnoush Rezaei Jafari, Sunando Sengupta, Hamid
Reza Vaezi Joze, Eric Sommerlade, Hamed Pirsiavash, and Jürgen Gall. Adaptive token sampling
for efficient vision transformers. In ECCV, pp. 396–414, 2022. ISBN 978-3-031-20082-3. doi:
10.1007/978-3-031-20083-0_24.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
benchmark for multimodal large language models. arXiv preprint arXiv:2306.13394, 2024. doi:
10.48550/arXiv.2306.13394.

Alicia Golden, Samuel Hsia, Fei Sun, Bilge Acun, Basil Hosmer, Yejin Lee, Zachary DeVito,
Jeff Johnson, Gu-Yeon Wei, David Brooks, and Carole-Jean Wu. Generative ai beyond llms:
System implications of multi-modal generation. In ISPASS, pp. 257–267, 2024. doi: 10.1109/
ISPASS61541.2024.00032.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tao Gong, Chengqi Lyu, Shilong Zhang, Yudong Wang, Miao Zheng, Qian Zhao, Kuikun Liu,
Wenwei Zhang, Ping Luo, and Kai Chen. Multimodal-gpt: A vision and language model for
dialogue with humans. arXiv preprint arXiv:2305.04790, 2023.

Danna Gurari, Qing Li, Abigale J. Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
Jeffrey P. Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
CVPR, pp. 3608–3617, 2018.

Wenbo Hu, Zi-Yi Dou, Liunian Li, Amita Kamath, Nanyun Peng, and Kai-Wei Chang. Matryoshka
query transformer for large vision-language models. In NeurIPS, volume 37, pp. 50168–50188,
2025.

Kai Huang, Hao Zou, Ye Xi, BoChen Wang, Zhen Xie, and Liang Yu. Ivtp: Instruction-guided visual
token pruning for large vision-language models. In ECCV, pp. 214–230, 2024.

Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao, Saksham Singhal, Shuming Ma, Tengchao
Lv, Lei Cui, Owais Khan Mohammed, Barun Patra, Qiang Liu, Kriti Aggarwal, Zewen Chi, Nils
Bjorck, Vishrav Chaudhary, Subhojit Som, Xia Song, and Furu Wei. Language is not all you need:
Aligning perception with language models. In NeurIPS, pp. 72096–72109, 2023.

Drew A. Hudson and Christopher D. Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In CVPR, pp. 6693–6702, 2019. doi: 10.1109/CVPR.2019.
00686.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. arXiv preprint arXiv:2310.06825,
2023. doi: 10.48550/arXiv.2310.06825.

Minchul Kim, Shangqian Gao, Yen-Chang Hsu, Yilin Shen, and Hongxia Jin. Token fusion: Bridging
the gap between token pruning and token merging. In WACV, pp. 1372–1381, Waikoloa, HI, USA,
2024. ISBN 979-8-3503-1892-0. doi: 10.1109/WACV57701.2024.00141.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In SOSP, pp. 611–626, 2023. ISBN 979-8-4007-0229-7. doi:
10.1145/3600006.3613165.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. Infinigen: Efficient generative
inference of large language models with dynamic kv cache management. In OSDI, pp. 155–172,
2024. ISBN 978-1-939133-40-3.

Bo Li, Peiyuan Zhang, Jingkang Yang, Yuanhan Zhang, Fanyi Pu, and Ziwei Liu. Otterhd: A
high-resolution multi-modality model. arXiv preprint arXiv:2311.04219, 2023a. doi: 10.48550/
arXiv.2311.04219.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. arXiv
preprint arXiv:2408.03326, 2024a. doi: 10.48550/arXiv.2408.03326.

Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan.
Seed-bench: Benchmarking multimodal large language models. In CVPR, pp. 13299–13308,
2024b. doi: 10.1109/CVPR52733.2024.01263.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In ICML, pp. 19730–19742,
2023b.

Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large
language models. In Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten
Sattler, and Gül Varol (eds.), ECCV, pp. 323–340, 2024c. ISBN 978-3-031-72952-2. doi:
10.1007/978-3-031-72952-2_19.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Xin Zhao, and Ji-Rong Wen. Evaluating object
hallucination in large vision-language models. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), EMNLP, pp. 292–305, 2023c. doi: 10.18653/v1/2023.emnlp-main.20.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
In NeurIPS, pp. 22947–22970, 2024d.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet,
Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), ECCV, pp. 740–755, Cham, 2014. ISBN
978-3-319-10602-1. doi: 10.1007/978-3-319-10602-1_48.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Minicache: Kv
cache compression in depth dimension for large language models. In NeurIPS, pp. 139997–140031,
2024a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
pp. 34892–34916, 2023a.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. arXiv preprint arXiv:2310.03744, 2024b. doi: 10.48550/arXiv.2310.03744.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge. https://llava-vl.github.io/blog/2024-
01-30-llava-next/, 2024c.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, pp.
10012–10022, 2021.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. In NeurIPS, pp. 52342–52364, 2023b.

Zuyan Liu, Benlin Liu, Jiahui Wang, Yuhao Dong, Guangyi Chen, Yongming Rao, Ranjay Krishna,
and Jiwen Lu. Efficient inference of vision instruction-following models with elastic cache. In
Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gül Varol (eds.),
ECCV, pp. 54–69, 2024d. ISBN 978-3-031-72643-9. doi: 10.1007/978-3-031-72643-9_4.

Chenyang Lu, Daan de Geus, and Gijs Dubbelman. Content-aware token sharing for efficient
semantic segmentation with vision transformers. In CVPR, pp. 23631–23640, 2023. doi: 10.1109/
CVPR52729.2023.02263.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong Ruan.
Deepseek-vl: Towards real-world vision-language understanding. arXiv preprint arXiv:2403.05525,
2024. doi: 10.48550/arXiv.2403.05525.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. In NeurIPS, pp. 2507–2521, 2022.

Junzhu Mao, Yang Shen, Jinyang Guo, Yazhou Yao, Xiansheng Hua, and Hengtao Shen. Prune
and merge: Efficient token compression for vision transformer with spatial information preserved.
TMM, pp. 1–14, 2025. ISSN 1941-0077. doi: 10.1109/TMM.2025.3535405.

Meta. The llama 3 herd of models. arXiv preprint arXiv:2407.21783v3, 2024. doi: 10.48550/arXiv.
2407.21783.

Narges Norouzi, Svetlana Orlova, Daan De Geus, and Gijs Dubbelman. Algm: Adaptive local-then-
global token merging for efficient semantic segmentation with plain vision transformers. In CVPR,
pp. 15773–15782, 2024. doi: 10.1109/CVPR52733.2024.01493.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2024. doi: 10.48550/arXiv.2303.
08774.

Zizheng Pan, Bohan Zhuang, Haoyu He, Jing Liu, and Jianfei Cai. Less is more: Pay less attention in
vision transformers. In AAAI, volume 36, pp. 2035–2043, 2022. doi: 10.1609/aaai.v36i2.20099.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling
transformer inference. In MLSys, pp. 606–624, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In ICML, pp. 8748–8763,
2021.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. In NeurIPS, volume 34, pp.
13937–13949, 2021.

Woomin Song, Seunghyuk Oh, Sangwoo Mo, Jaehyung Kim, Sukmin Yun, Jung-Woo Ha, and Jinwoo
Shin. Hierarchical context merging: Better long context understanding for pre-trained llms. In
ICLR, 2024.

Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530, 2024a. doi: 10.48550/arXiv.2403.05530.

Gemini Team. Gemini: A family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2024b. doi: 10.48550/arXiv.2312.11805.

Hoai-Chau Tran, Duy M. Nguyen, TrungTin Nguyen, Ngan Le, Pengtao Xie, Daniel Sonntag, James
Zou, Binh T. Nguyen, and Mathias Niepert. Accelerating transformers with spectrum-preserving
token merging. In NeurIPS, pp. 30772–30810, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, volume 30, pp. 6000–6010,
2017.

Vicuna Team. Vicuna: An open-source chatbot impressing gpt-4 with 90% chatgpt quality.
https://lmsys.org/blog/2023-03-30-vicuna, 2023.

Shuoyuan Wang, Yixuan Li, and Hongxin Wei. Understanding and mitigating miscalibration in
prompt tuning for vision-language models. arXiv preprint arXiv:2410.02681, 2024. doi: 10.48550/
arXiv.2410.02681.

Weiyun Wang, Zhe Chen, Wenhai Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Jinguo Zhu,
Xizhou Zhu, Lewei Lu, Yu Qiao, and Jifeng Dai. Enhancing the reasoning ability of multimodal
large language models via mixed preference optimization. arXiv preprint arXiv:2411.10442, 2025.
doi: 10.48550/arXiv.2411.10442.

Siyuan Wei, Tianzhu Ye, Shen Zhang, Yao Tang, and Jiajun Liang. Joint token pruning and squeezing
towards more aggressive compression of vision transformers. In CVPR, pp. 2092–2101, 2023. doi:
10.1109/CVPR52729.2023.00208.

Daliang Xu, Hao Zhang, Liming Yang, Ruiqi Liu, Gang Huang, Mengwei Xu, and Xuanzhe Liu.
Fast on-device llm inference with npus. In ASPLOS, ASPLOS ’25, pp. 445–462, 2025. ISBN
979-8-4007-0698-1. doi: 10.1145/3669940.3707239.

Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, and Xiaolong
Wang. Groupvit: Semantic segmentation emerges from text supervision. In CVPR, pp. 18113–
18123, 2022. ISBN 978-1-6654-6946-3. doi: 10.1109/CVPR52688.2022.01760.

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyramid
kv cache compression for high-throughput llm inference. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), ACL Findings, pp. 3258–3270, 2024. doi: 10.18653/v1/2024.findings-acl.195.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Hongxu Yin, Arash Vahdat, Jose M. Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-vit:
Adaptive tokens for efficient vision transformer. In CVPR, pp. 10809–10818, 2022.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang, and
Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. In ICML,
volume 235, pp. 57730–57754, 2024.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding. In Yansong Feng and Els Lefever (eds.), EMNLP, pp. 543–553,
2023a. doi: 10.18653/v1/2023.emnlp-demo.49.

Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai
Liu, Yuanhan Zhang, Jingkang Yang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Reality check
on the evaluation of large multimodal models. arXiv preprint arXiv:2407.12772, 2025. doi:
10.48550/arXiv.2407.12772.

Shaolei Zhang, Qingkai Fang, Zhe Yang, and Yang Feng. Llava-mini: Efficient image and video
large multimodal models with one vision token. In ICLR, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models. In NeurIPS, pp. 34661–
34710, 2023b.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
vision-language understanding with advanced large language models. In ICLR, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDIX

A DECLARATION OF THE USE OF LLMS

The use of LLMs was limited to language editing and formatting support; the intellectual contributions,
analysis, results, and conclusions presented in this work remain entirely those of the authors.

B ETHICS STATEMENT

The authors have reviewed and conformed with ICLR Code of Ethics https://iclr.cc/
public/CodeOfEthics.

C REPRODUCIBILITY STATEMENT

We introduced details of our method in Sec. 3. We are committed to releasing the code upon the
acceptance of this paper, with sufficient details for reproducibility.

D METHOD

D.1 METHOD OVERVIEW

Decoder Layers
…

…

< output >

Original V tokens

Updated V tokens

P tokens

Decoder Layer 𝑖Decoder Layer 𝑖Decoder Layer 𝑖

Decoder Layer 𝑖Decoder Layer 𝑖Decoder Layer 𝑖 + 1

Graph Message Passing

Eliminated V tokens

V tokens from 𝒜 V tokens from ℬ

Figure 5: LightKV dynamically compresses vision tokens between two consecutive LVLM decoder
layers. The key and value tokens are compressed simultaneously for latter layers, reducing the
memory used by KV cache.

As illustrated in Fig. 5, we insert graph message passing-based compression between two selected
decoder layers in the LVLM, simultaneously reducing the KV cache size and the number of vision
tokens processed by downstream layers. Compression is performed 3 times in our experiments to
achieve the overall compression ratio.

D.2 ADJACENCY MATRIX

In Section 3.2, we defined for our bipartite graph the adjacency matrix M ∈ {0, 1}|XA|×|XB|, whose
rows correspond to nodes in XA and columns to nodes in XB. However, as the two subsets need not

16

https://iclr.cc/public/CodeOfEthics
https://iclr.cc/public/CodeOfEthics

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

contain the same number of nodes, M is generally rectangular. Conventionally, for a standard graph,
the adjacency matrix is square with side length equal to the total number of nodes. The analogous
square adjacency matrix for our bipartite graph is(

0 M
M⊤ 0

)
, (10)

where the upper-left and lower-right blocks are zero by definition. Throughout our paper, we work
directly with M , as this rectangular form is sufficient for message passing between the two partitions.

D.3 COMPLEXITY ANALYSIS

In section 3.3, we claimed that the total number of vision tokens processed during pre-fill reduces to:

N ×

{
λ1︸︷︷︸
(1)

+

k∑
i=2

(
(λi − λi−1)

i−1∏
j=1

(1− ρj)
)

︸ ︷︷ ︸
(2)

+(L− λk)

k∏
j=1

(1− ρj)︸ ︷︷ ︸
(3)

}
. (11)

We consider the number of vision tokens in each layer independently, then the total number of vision
tokens processed in L decoder layers in a vanilla LVLM is simply N × L. However, the number of
vision tokens reduces at every accumulation layer λi (note that message passing and accumulation
occur after each decoder layer λi). Let Ni = N ×

∏i−1
j=1(1− ρj) be the number of remaining vision

tokens after i− 1 accumulation steps. Between each pair of accumulation layers λi−1 and λi, the
number of vision tokens processed is Ni × (λi − λi−1). Therefore, Eq. 11 can be broken down into:

1. Percentage of vision tokens processed before the first accumulation step,

2. Percentage of vision tokens processed between the first and the last accumulation step,

3. Percentage of vision tokens processed after the last accumulation step.

E ADDITIONAL RESULTS

E.1 ADDITIONAL BACKBONES

QwenVL We also evaluated LightKV on Qwen2.5-VL-7B-Instruct (Bai et al., 2025) across multiple
compression ratios. The results in Table 7 demonstrate that LightKV yields substantial improvements
compared to baseline approaches, preserving accuracy more effectively and delivering stronger overall
performance under compression. Notably, as presented in Table 8, at more aggressive compression
ratios, LightKV still delivers near-identical performance to the vanilla model.

Table 7: Results of LightKV on Qwen2.5-VL-7B-Instruct model at 55% compression of vision tokens
in the KV cache. Avg % denotes the average of all performance metrics normalized against the
vanilla model. Methods in each category are then sorted from lowest to highest Avg score.

Method COCO GQA MME NoCaps POPE SEED VizWiz Avg %
C P Acc F1

Vanilla 0.319 0.604 638.21 1695.25 0.372 0.875 0.862 0.790 0.704 100.00
FastV 0.339 0.587 625.35 1687.78 0.386 0.869 0.853 0.744 0.698 98.77
ToMe 0.329 0.591 640.71 1687.75 0.425 0.862 0.782 0.782 0.683 100.04
PiToMe 0.389 0.584 624.64 1671.09 0.433 0.860 0.842 0.774 0.691 100.24
ToFu 0.383 0.587 657.86 1683.05 0.418 0.857 0.839 0.788 0.696 100.75
LightKV 0.389 0.591 647.50 1706.38 0.435 0.863 0.846 0.780 0.694 101.37

E.2 ADDITIONAL ABLATION STUDIES

Influence of window sizes The choice of W is closely related to the number of vision tokens used
by the LVLM. A larger initial window size is appropriate when the model encodes images at high
resolution, e.g., LLaVA-NeXT encodes an image into 2,144 tokens. In contrast, a smaller value

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Results of LightKV on Qwen2.5-VL-7B-Instruct model at various compression of vision
tokens in the KV cache. Avg % denotes the average of all performance metrics normalized against
the vanilla model.

Rate COCO GQA MME NoCaps POPE SEED VizWiz Avg %
C P Acc F1

Vanilla 0.319 0.604 638.21 1695.25 0.372 0.875 0.862 0.790 0.704 100.00
55% 0.389 0.591 647.50 1706.38 0.435 0.863 0.846 0.780 0.694 101.37
40% 0.370 0.586 611.78 1632.64 0.450 0.851 0.830 0.754 0.666 101.01
30% 0.361 0.581 588.93 1574.34 0.455 0.833 0.806 0.732 0.670 98.89
20% 0.356 0.569 591.78 1612.83 0.458 0.835 0.809 0.730 0.667 99.24

of is more favorable when there are fewer vision tokens, e.g., LLaVA-v1.5, which uses 576 vision
tokens per image. In our experiments, we used W = [6, 4, 2] for LLaVA-NeXT and W = [4, 2, 1]
for LLaVA-v1.5. We found that using a large window size with fewer vision tokens overly restricts
token matching, often resulting in mismatches. As shown in Table 9 below, larger windows yield
better overall performance.

Table 9: Effect of W on LLaVA-13B models.

Method COCO DocVQA GQA MME NoCaps POPE SQA SEED VizWiz Avg %
C P Acc F1

LLaVA-v1.5-13B
Vanilla 1.16 0.23 0.63 295.36 1532.0 1.09 0.87 0.86 0.73 0.69 0.57 100.00
LightKV W=[4,2,1] 1.15 0.22 0.62 302.14 1543.8 1.08 0.87 0.86 0.72 0.69 0.56 99.18
LightKV W=[6,4,2] 1.16 0.22 0.63 301.79 1541.1 1.08 0.87 0.86 0.72 0.69 0.56 99.01

LLaVA-NeXT-13B
Vanilla 1.02 0.71 0.65 318.93 1575.1 0.88 0.88 0.86 0.73 0.69 0.64 100.00
LightKV W=[4,2,1] 0.96 0.53 0.43 311.43 1576.3 0.83 0.87 0.86 0.59 0.69 0.61 101.39
LightKV W=[6,4,2] 0.96 0.51 0.43 326.07 1576.5 0.83 0.87 0.86 0.59 0.69 0.61 102.19

Influence of compression layers We investigate the impact of varying layers for token compression,
as illustrated in Fig. 6. Trends between the compression layer and model performance reveal that
compressing in the shallow layers has a more substantial impact on performance. This effect is
particularly pronounced in VizWiz, where LVLMs must refrain from answering (e.g., when the ground
truth is “unanswerable”). Compression in the deeper layers yields performance nearly identical to the
base LVLM models, but offers little reduction in memory usage.

5 10 15 20 25 30 35 40
Compression layer

0.94

0.96

0.98

1.00

No
rm

al
ize

d
M

et
ric

COCO

Ours
Vanilla

5 10 15 20 25 30 35 40
Compression layer

0.85

0.90

0.95

1.00
VizWiz

Ours
Vanilla

Normalized metrics for LLaVA-NeXT-13B

Figure 6: Effect of varying compression layer λ on LLaVA-NeXT-13B.

E.3 ADDITIONAL LATENCY PROFILES

We evaluate model responsiveness using two latency metrics: time-to-first-token (TTFT) and genera-
tion latency for 100 tokens. As shown in Table 10, TTFT highlights the overhead of the pre-filling
stage and directly reflects user-perceived responsiveness, while generation latency characterizes
decoding efficiency. Together, these results provide a comprehensive view of both initial response
delay and sustained throughput.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 10: Latency comparison across LLaVA models. TTFT = Time to First Token. Gen latency =
generation latency per output.

Method TTFT (ms) Gen latency (s) TTFT (ms) Gen latency (s)
LLaVA-v1.5-13B LLaVA-v1.5-7B

Vanilla 111 ± 0.905 3.85 ± 0.017 64 ± 0.889 3.00 ± 0.012
FastV 77 ± 0.788 2.52 ± 0.001 47 ± 0.381 1.70 ± 0.013
PiToMe 82 ± 0.818 2.85 ± 0.002 53 ± 0.171 2.14 ± 0.022
ToFu 81 ± 0.622 2.86 ± 0.001 51 ± 0.677 2.13 ± 0.004
ToMe (P) 81 ± 0.889 2.86 ± 0.003 54 ± 0.641 2.10 ± 0.011
LightKV 84 ± 0.715 2.87 ± 0.005 51 ± 0.801 2.11 ± 0.009

LLaVA-NeXT-13B LLaVA-NeXT-7B
Vanilla 386 ± 2.224 4.17 ± 0.027 225 ± 1.552 3.20 ± 0.026
FastV 259 ± 1.759 2.94 ± 0.006 148 ± 1.110 1.83 ± 0.021
PiToMe 270 ± 0.776 3.29 ± 0.003 157 ± 0.602 2.26 ± 0.025
ToFu 268 ± 1.317 3.28 ± 0.003 155 ± 0.607 2.24 ± 0.011
ToMe (P) 268 ± 2.023 3.28 ± 0.004 155 ± 0.820 2.23 ± 0.028
LightKV 271 ± 0.788 3.31 ± 0.003 159 ± 1.000 2.24 ± 0.006

E.4 VISUALIZATION

We provide visualization cases for vision token compression of COCO images in Fig. 7 for a 3-stage
compression on LLaVA-v1.5-13B, reducing the number of tokens from 576 → 288 → 145 → 77.
Unlike conventional vision encoders, vision tokens in LVLMs incorporate prompt information. As a
result, visually similar patches may differ significantly in the embedding space, making it plausible
to aggregate non-adjacent patches. To this end, our intra-window strategy imposes constraints on this
aggregation process to maintain spatial coherence during compression.

Pre-processed image

288 tokens 145 tokens 77 tokens576 tokens

Layer 15 Layer 23 Layer 31

288 tokens 145 tokens 77 tokens576 tokens

Pre-processed image Layer 15 Layer 23 Layer 31

Figure 7: Visualization of a 3-stage vision token compression, halving tokens at each stage and
achieving 55% KV cache reduction. Distant patches may be compressed into a single token.

19

	Introduction
	Related Work
	Method
	Preliminaries
	LightKV
	Intra-window token compression
	Inter-window token compression

	Complexity analysis

	Experiments
	Experimental settings
	Main results
	Additional experiments

	Conclusion
	Declaration of the use of LLMs
	Ethics statement
	Reproducibility statement
	Method
	Method overview
	Adjacency matrix
	Complexity analysis

	Additional Results
	Additional backbones
	Additional ablation studies
	Additional latency profiles
	Visualization

