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ABSTRACT

Key-Value (KV) cache has become a de facto component of modern Large Vision-
Language Models (LVLMs) for inference. While it enhances decoding efficiency
in Large Language Models (LLMs), its direct adoption in LVLMs introduces sub-
stantial GPU memory overhead due to the large number of vision tokens processed
during the prefill stage. To tackle this problem, we propose LightKV, a novel
approach that reduces KV cache size by exploiting the redundancy among vision-
token embeddings. Guided by text prompts, LightKV employs cross-modality
message passing to aggregate informative messages across vision tokens and pro-
gressively compress them during prefill. This prompt-aware guidance distinguishes
our method from prior vision-only compression strategies. We evaluate LightKV
on eight open-source LVLMs across eight public benchmarks, such as MME and
SeedBench. Experimental results demonstrate that with only 50% of the original
vision tokens, LightKV (i) halves KV cache size, (ii) reduces computation by
up to 40%, and (iii) preserves general-purpose performance while significantly
outperforming existing baselines.

1 INTRODUCTION
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Figure 1: Breakdown of memory consumption
in LLaVA models during the prefill stage shows
the substantial reduction in KV cache usage with
LightKV. Note that LLaVA-NeXT uses 4× the
vision tokens as LLaVA-v1.5, resulting in a sharp
increase in the memory consumption.

Benefiting from the rapid advancements in Large
Language Models (LLMs) (Vicuna Team, 2023;
OpenAI, 2024; Meta, 2024), Large Vision-
Language Models (LVLMs) (Alayrac et al., 2022;
Li et al., 2023b; Dai et al., 2023; Bai et al.,
2023; Liu et al., 2023a; 2024b;c; Lu et al., 2024;
Chen et al., 2024d;c; Wang et al., 2025; Chen
et al., 2025) have recently garnered extensive at-
tention. For example, LLaVA (Liu et al., 2023a)
and DeepSeek-VL (Lu et al., 2024) have achieved
impressive performance on a multitude of general-
purpose multi-modal benchmarks (Fu et al., 2024;
Yu et al., 2024; Li et al., 2023c). Despite their po-
tential, the efficiency of LVLMs remains a signif-
icant bottleneck for researchers and practitioners
in resource-constrained environments.

Key-Value (KV) cache (Pope et al., 2023; Kwon
et al., 2023) serves as a fundamental technique in
optimizing the inference efficiency of mainstream
LLMs and LVLMs. However, though the infer-
ence speed is improved without compromising model performance, the GPU memory consumed
becomes more substantial. This limitation is especially severe with longer sequences generated (Yang
et al., 2024; Liu et al., 2024a; Li et al., 2024d). To alleviate this issue, some training-based methods,
such as MQA (Hu et al., 2025) and GQA (Ainslie et al., 2023), introduce the sharing of keys and
values across attention heads. The overall KV cache size is accordingly reduced. These approaches,
however, suffer from the requirement of heavy model retraining. In contrast, methods such as
H2O (Zhang et al., 2023b), MiniCache (Liu et al., 2024a), and ElasticCache (Liu et al., 2024d)
focus on pruning tokens within the KV cache during inference after the prefill stage. These methods
offer greater flexibility and can be seamlessly applied to existing decoder-only models with minimal
degradation in performance. Given this, we primarily focus on token reduction during inference time.
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Unlike LLMs, reducing the cost of memory-bound KV cache is challenging in LVLMs due to the
following two factors: (i) Tokens in LVLMs are heterogeneous, representing both image patches
and text. Determining which tokens should be pruned thus becomes more difficult; (ii) The number
of tokens computed during the prefill stage is significantly larger than that in LLMs. Each image
or video frame in LVLMs is embedded into hundreds to thousands of tokens upfront (e.g. 576 in
LLaVA-1.5 (Liu et al., 2023a) and 7,290 in LLaVA-OneVision (Li et al., 2024a)), a considerable
amount compared to the context lengths of LLMs (see Fig. 1) (Meta, 2024; Jiang et al., 2023; Vicuna
Team, 2023). As a result, current LVLMs are limited by significantly heavier GPU memory usage
than their LLM counterparts during the prefill stage. A few recent studies have proposed addressing
the first challenge on token heterogeneity (Chen et al., 2024a; Li et al., 2024c). However, existing
research on solving the second remains largely sparse.

In this paper, we propose LightKV, a novel method for optimizing KV cache storage in LVLMs during
the prefill stage without retraining. To this end, we leverage cross-modal prompt guidance for the
compression of vision tokens. Our method follows a three-step design. First, we conceptually map
each vision token to a graph node, constructing a bipartite graph with edges representing a feature
divergence (FD) metric between the connected nodes. Nonetheless, computing FD in a pairwise
manner is still expensive, especially with a large number of vision tokens. To alleviate this problem,
second, we split the vision tokens into subwindows based on their original spatial locations. This
allows us to reduce the complexity of computing FD and aggregating information across tokens, thus
improving efficiency. Third, our method does not follow existing studies (Chen et al., 2024b) to
perform vision token reduction independently, as the text prompts offer more informative signals for
vision token importance. Consequently, we propose to leverage on-the-fly attention scores from text
prompts for informed token updates. As found in our experiments, though this approach has been
largely ignored by the existing literature, it delivers superior results than state-of-the-art baselines.

We apply LightKV to eight state-of-the-art LVLM models: LLaVA-v1.5-13B, LLaVA-v1.5-7B (Liu
et al., 2023a), LLaVA-NeXT-13B, LLaVA-NeXT-7B (Liu et al., 2024b), InternVL2-8B (Chen
et al., 2024c), EVE-7B-v1, EVE-7B-v1-HD (Diao et al., 2025), Qwen2.5-VL (Bai et al., 2025)
and conduct extensive experiments across eight benchmarks: COCO Caption (Lin et al., 2014),
GQA (Hudson & Manning, 2019), MME (Fu et al., 2024), NoCaps (Agrawal et al., 2019), POPE (Li
et al., 2023c), SeedBench (Li et al., 2024b), ScienceQA (Lu et al., 2022), and VizWiz (Gurari et al.,
2018). Our results demonstrate that LightKV can reduce the KV memory of vision tokens by 50%
while maintaining, sometimes even surpassing, the vanilla LVLM performance. Furthermore, when
constrained with the same token length generation budget, the inference overhead (in FLOPs) is
significantly improved by 40%.

In summary, LightKV reduces the KV cache footprint in LVLMs by compressing vision tokens
during the prefill stage under the guidance of text prompts. This prompt-aware design distinguishes it
from existing SOTA vision-only methods, delivering (i) greater efficiency and (2) superior benchmark
performance. Importantly, LightKV is entirely training-free and can be seamlessly applied to a wide
range of LVLMs, including both vision encoder–based and encoder-free models.

2 RELATED WORK

Large vision-language models Following the success of large language models (LLMs) in the
language domain (Vicuna Team, 2023; OpenAI, 2024; Meta, 2024), large vision-language models
(LVLMs) have showcased pervasive progress on various multimodal tasks (Team, 2024b;a; Driess
et al., 2023). Current LVLMs primarily fall into the following three directions: (i) Fusion-based
methods directly include vision information into the LLM decoders using cross-attention (Alayrac
et al., 2022; Awadalla et al., 2023; Li et al., 2023a; Gong et al., 2023). (ii) Query-based LVLMs extract
vision information with learnable query tokens, which are then concatenated with text tokens (Li et al.,
2023b; Dai et al., 2023; Zhu et al., 2024; Li et al., 2024c; Zhang et al., 2023a). (iii) Projection-based
methods, instead, directly map the encoded tokens from a vision encoder into the text space (Liu et al.,
2023a; 2024b;c; Li et al., 2024a; Bai et al., 2023; Huang et al., 2023; Diao et al., 2025). However,
despite their simplicity and effectiveness, the projection of vision tokens leads to a substantial increase
in memory footprint.
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KV cache optimization KV cache has been widely used in LLMs and LVLMs to improve their
inference efficiency (Dao et al., 2022; Pope et al., 2023; Kwon et al., 2023; Lee et al., 2024). The
core idea is to store the key and value tokens to reduce future redundant computations. However, in
situations with long contexts, keeping the KV cache imposes an increased burden on GPU memory.
Existing approaches addressing this can be roughly categorized into two groups: (i) KV-sharing-based
and (ii) token-reduction-based. Specifically, methods from the (i) improve the multi-headed attention
mechanism to achieve efficiency. For instance, MQA (Hu et al., 2025) and GQA (Ainslie et al., 2023)
propose the sharing of keys and values across attention heads (Vaswani et al., 2017), reducing the
amount of KV needed to be cached. In contrast, methods from the (ii) reduce KV cache size by
pruning or merging tokens based either on minimal importance (Zhang et al., 2023b; Li et al., 2024d;
Cai et al., 2024) or attention consistency across layers (Liu et al., 2023b; 2024d; Yang et al., 2024).
Beyond LLMs, some initial efforts have been devoted to optimizing the KV cache for LVLMs. In
particular, LLaVolta (Chen et al., 2024a), IVTP (Huang et al., 2024) and FastV (Chen et al., 2024b)
propose pruning vision tokens at the decoder layers of the LLM backbone. The first two require
model retraining; FastV, though training-free, prunes vision tokens without cross-modality guidance,
yielding inconsistent results across models and benchmarks. In contrast, LightKV leverages guidance
from text tokens to deliver more consistent and superior performance.

Vision token compression Tokens in vision transformers (ViTs) (Dosovitskiy et al., 2021) often
exhibit high redundancy (Bolya et al., 2023; Pan et al., 2022; Chen et al., 2024b). To address this,
some approaches train modules to identify and discard less important tokens (Rao et al., 2021;
Bonnaerens & Dambre, 2023; Yin et al., 2022; Fayyaz et al., 2022; Wei et al., 2023; Chen et al.,
2023; Zhang et al., 2024; Mao et al., 2025). Some other typical methods first group tokens based on
similarity or distance (Bolya et al., 2023; Tran et al., 2024; Kim et al., 2024; Alvar et al., 2025) or
image segmentation (Xu et al., 2022; Lu et al., 2023) and then prune or merge the tokens with the
maximum similarity. These methods either (i) require the training of additional module(s), or (ii) do
not support the vision-language joint reasoning as in LVLMs.

3 METHOD

3.1 PRELIMINARIES

Recent LLMs often operate in an autoregressive fashion: given a sequence of p text prompt tokens
[x1, . . . , xp] (including both system prompt and user prompt), and t− p previously generated tokens
[xp+1, . . . , xt], an LLM with parameters Θ predicts the next token xt+1 with:

xt+1 ∼ PΘ

(
xt+1 | x1, . . . , xp︸ ︷︷ ︸

Prompt tokens

, xp+1, . . . , xt︸ ︷︷ ︸
Generated tokens

)
. (1)

The above process is often implemented in two stages: prefill and generation (Golden et al.,
2024). During prefill, the model tokenizes all p prompt tokens and computes the queries Qp =
[q1,q2, . . . ,qp], similarly for keys Kp and values Vp (Vaswani et al., 2017). In contrast, during
generation, when a new token arrives, the model first obtains the query qt+1, key kt+1, and value
vt+1 vectors. It then computes the attention matrix by applying qt+1 to the full set of keys Kt+1:

A = softmax
(
qt+1 K

⊤
t+1/

√
dk

)
, (2)

where dk represents the embedding dimension. In practice, the attention output would be a concate-
nation of matrices A = [A1, . . . ,AH ] from H independent attention heads.

KV cache From the above, we observe that the autoregressive nature of LLMs allows for the
previously computed keys Kt and values Vt to be reused in future time steps during generation. This
operation reduces the computational overhead by preventing the recomputation of key and value
tokens (Xu et al., 2025). However, an increased consumption of GPU memory is usually induced by
the growing size of the KV cache. This is often manifested as: (i) generating lengthy sequences and
(ii) caching many contexts during prefill. In this work, we primarily focus on improving the second.

3
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Figure 2: Method overview of intra-window token compression. Step 1: Construct a bipartite graph
by splitting the vision tokens into sets A (blue) and B (orange), weigh each edge by an FD metric,
as defined in Eq. 5. Step 2: Select edges with the smallest ⌊ρv/2⌋ FD values and delete the rest.
Unconnected nodes are left unchanged. Step 3: Pass messages from nodes in A to nodes in B
weighted by its attention ξ, as defined in Eq. 7. Aggregate messages and update nodes in B. Step 4:
Eliminate now-redundant nodes from A. Step 5: Reorder the remaining nodes into a sequence of
vision tokens, serving as input to the next decoder layer.

LVLMs LVLMs build on LLMs by extending their architecture to process visual information.
A common paradigm in LVLMs is to first map the split image patches into tokens using ViT-
based encoders (Dosovitskiy et al., 2021; Radford et al., 2021; Bao et al., 2022), which are then
concatenated with the prompt tokens to form the input sequence. In general, LVLMs generate tokens
by conditioning on both text prompt tokens and vision tokens:

xt+1 ∼ PΘ

(
xt+1 | x1, . . . , xp︸ ︷︷ ︸

Prompt tokens

, xp+1, . . . , xp+v︸ ︷︷ ︸
Vision tokens

, xp+v+1, . . . , xt︸ ︷︷ ︸
Generated tokens

)
. (3)

We denote Xv as the sequence of v vision tokens in Eq. 3. Similar to LLMs, KV cache is a key com-
ponent in speeding up inference in LVLMs. In this paper, we focus primarily on compressing vision
tokens for two reasons: (i) as shown in Fig. 1, vision tokens greatly outnumber text prompt tokens;
(ii) preliminary studies showed that reducing text tokens causes harsh performance degradation.

3.2 LIGHTKV

As illustrated in Fig. 2, the pipeline of LightKV functions as follows: At each specified decoder layer
during the prefill stage, given a sequence of vision tokens, we first reconstruct their grid structure as
in the original image. These tokens are then partitioned into w × w small, non-overlapping windows,
each containing an equal number of tokens. Within each window, we perform graph message passing
to compress vision tokens, simultaneously reducing both KV size and the length of the vision input to
the next decoder layer (as detailed in Sec. 3.2.1). A similar operation is repeated in later decoder layers
with larger window sizes to achieve inter-window compression (further elaborated in Sec. 3.2.2).

3.2.1 INTRA-WINDOW TOKEN COMPRESSION

To address redundancy in vision tokens, we utilize graph message passing to aggregate information
with low FD (defined below in Eq. 5), and then eliminate redundant nodes in each window ω. Note
that the message passing and update procedure is performed independently for each window.

Graph construction We limit and refer the vision tokens in a window to a bipartite graph. For
notational simplicity, we slightly abuse x as the embedding of a vision node. Step 1: In each window,
we first map each token x to a graph node, with X = {x|x ∈ Xv}. Next, we split the set of nodes
into two subsets XA and XB (colored blue and orange respectively in Fig. 2) of near-equal cardinality,
and construct a bipartite graph from the two sets with edges E :

E = XA ×XB =
{
(xα,xβ) | ∀ xα ∈ XA, ∀ xβ ∈ XB

}
, (4)

where × denotes set cross product. We modify the feature divergence (FD) in (Tran et al., 2024;
Wang et al., 2024) to weigh each edge in the graph:

FD(α, β) = 1− ⟨xα,xβ⟩
||xα|| ||xβ ||

, (5)

4
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where ⟨·, ·⟩ denotes the inner product and || · || is the L2-norm. Step 2: We define the adjacency
matrix M ∈ {0, 1}|XA|×|XB| where:

Mα,β =

{
1, if (α, β) ∈ T ρ,

0, otherwise,
(6)

to select ⌊ρv/2⌋ pairs of (α, β) with the smallest values of FD(α, β) as Tρ, where ρ is the chosen
compression ratio. Edges not in Tρ are temporarily removed and the remaining unconnected nodes
XR = {xr| ∄ β s.t.(r, β) ∈ Tρ} are left unchanged.

Token message passing In LVLMs, the heterogeneity of tokens introduces a challenge in evaluating
the importance of each vision token, and prior works often disregard this by compressing tokens
uniformly without accounting for their relative significance. Instead, LightKV reuses the attention
weights from the LLM decoder to estimate token importance, which are readily available during
the prefill stage without additional computation, as computed in Eq. 2. This serves as a signal to
preserve the visual features that are most important to the prompt, and is used as guidance in the
message-aggregation process. Step 3: Given A ∈ RH×(p+v)×(p+v) is the H-headed attention matrix
before the attention mask, for a vision token with index i, we accumulate its attention from prompts:

ξi =

H∑
h=1

∑
j∈J

A[h, i, j], (7)

where J is the set of indices for the p prompt tokens. Next, we gather the attention for each window
ω into vectors ξA ∈ R|XA| and ξB ∈ R|XB| with the same partitions as XA and XB. We update XB
by accumulating messages from its adjacent tokens:

XB =
(
ξB +M⊤ξA

)−1︸ ︷︷ ︸
(iii) Normalize by sum of attentions

(
XB ⊙ ξB︸ ︷︷ ︸

(i) Prompt-guidance for B

+ M⊤ ( XA ⊙ ξA )︸ ︷︷ ︸
(i) Prompt-guidance for A︸ ︷︷ ︸

(ii) Message passing as defined by edges M

)
, (8)

where ⊙ is the Hadamard product. This can be broken down into three parts: (i) Messages from each
token xi are first weighed by its attention ξi. (ii) Next, sessages from the tokens in XA are passed to
those in XB through the edges defined in M , updating tokens in XB. The chosen direction is arbitrary
but symmetrical. (iii) Finally, tokens in XB are normalized to remain scale-invariant.

Importantly, our aggregation operation utilizes the attention ξ as guidance, ensuring the preservation
of visual information that is most relevant to the prompt and the generation of the final response. Step
4: After the update, the now-redundant nodes in XA \XR are deleted. Step 5: Finally, the unchanged
tokens XR and the updated XB are concatenated to form the final sequence of tokens for window ω.

Complexity In contrast to computing fully pairwise FD among vω = v/(w × w) vision tokens–
which requires 1

2vω(vω − 1) time complexity, the bipartite matching strategy improves computational
efficiency by reducing this number by half to ∼ 1

4 (vω)
2.

Difference from ToMe LightKV adopts a bipartite matching approach, similar to ToMe (Bolya
et al., 2023), to reduce the cost of pairwise calculations. However, ToMe and subsequent methods
assume all tokens are equally important, merging them without differentiation. In contrast, LightKV
uses cross-modality attention to guide message passing and aggregation, preserving the most relevant
information during compression, yielding superior results (see Sec. 4).

3.2.2 INTER-WINDOW TOKEN COMPRESSION

Window partitioning As discussed above, we split the entire set of vision tokens into window
partitions in a non-overlapping manner. Specifically, each window ω contains vω = v/(w×w) vision
tokens. This reduces the total number of operations involved in computing FD measures from the
original 1

2v(v− 1) to 1
2

v
w2 (

v
w2 − 1)×w2 → 1

2v(
v
w2 − 1). Moreover, since spatially adjacent patches

typically share semantic similarities, our window-based method confines message aggregation to
within a small locality, preserving the positional information of tokens in the original image (Song
et al., 2024; Norouzi et al., 2024). A global message passing strategy might inadvertently aggre-
gate information from tokens representing unrelated entities, compromising locality and semantic
coherence (Xu et al., 2022; Pan et al., 2022).
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Figure 3: After each compression step,
w is reduced to allow message passing
across greater spatial distances.

Hierarchical structure We adopt a hierarchical com-
pression strategy to improve efficiency, as inspired by
Swin-Transformer (Liu et al., 2021). In an LVLM with L
layers, we perform s < L compression iterations. Let Λ =
[λ1, . . . , λs], W = [w 2

1 , . . . , w
2
s ], P = [ρ1, . . . , ρs],

where λi is the index of the decoder layer where vision
tokens are compressed, w 2

i is the number of window par-
titions used at iteration i with wi > wi+1, and ρi is the
compression ratio. After each decoder layer λi, the to-
kens are divided into w2

i windows. Within each window,
vision-token messages are aggregated and compressed
with ratio ρi, and only a fraction (1 − ρi) of the vision
tokens remains in subsequent layers. After each com-
pression iteration, the number of windows is decreased
(smaller w) to allow for message passing across greater
spatial distances, as depicted in Fig. 3.

3.3 COMPLEXITY ANALYSIS

Without any compression, the prefill stage processes in total v ×L vision tokens1. With compression,
the number of vision tokens processed during pre-fill now reduces to:

v ×

{
λ1 +

s∑
i=2

(
(λi − λi−1)

i−1∏
j=1

(1− ρj)
)
+ (L− λs)

s∏
j=1

(1− ρj)

}
< v × L. (9)

For an LVLM with L = 40 decoder layers, choosing Λ = [10, 20, 30] and P = [0.5, 0.5, 0.5] reduces
the vision token count to 46.9% of the baseline. This is further elaborated in Sec. D.3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

LVLM base models We evaluated the efficiency and performance of LightKV by applying it
to eight open-source LVLMs: LLaVA-v1.5-13B, LLaVA-v1.5-7B, LLaVA-NeXT-13B, LLaVA-
NeXT-7B, InternVL2-8B, EVE-7B-v1, EVE-7B-v1-HD, and Qwen2.5-VL-7B-Instruct. LLaVA-v1.5
encodes 576 vision tokens per image, while LLaVA-NeXT uses 2,144. In contrast, InternVL2 and
Qwen2.5-VL adopt dynamic vision encoding, with token counts determined by image resolution. It
is worth noting that, unlike other models, which employ a dedicated image encoder, EVE is vision
encoder-free. These methods are labeled as Vanilla in our results.

Datasets We utilized eight publicly available large-scale benchmarks for evaluation: COCO Cap-
tion (Lin et al., 2014), GQA (Hudson & Manning, 2019), MME (Fu et al., 2024), NoCaps (Agrawal
et al., 2019), POPE (Li et al., 2023c), SeedBench (Li et al., 2024b), ScienceQA (Lu et al., 2022),
and VizWiz (Gurari et al., 2018). These benchmarks cover a wide range of tasks, from general,
everyday image understanding to fine-grained image reasoning. MME, POPE, SeedBench Lite, and
ScienceQA are limited to single-choice answers, while COCO Caption, GQA, NoCaps, and VizWiz
involve open-ended responses comprising long sentences.

Compared baselines We adapted two existing techniques from other related domains: ToMe (Bolya
et al., 2023) (labeled ToMe (C)) and ElasticCache (Liu et al., 2024d). For comparison, we imple-
mented two random-eviction baselines: Rand and ImgRand. Rand and ElasticCache prune both text
and vision tokens, whereas ImgRand and ToMe reduce vision tokens only. It is important to note
that the previously mentioned methods perform token reduction after the prefill stage. Additionally,
for token reduction during prefill, we implemented ToMe (labeled ToMe (P)) and four recent SOTA
strategies: FastV (Chen et al., 2024b), PiToMe (Tran et al., 2024), ToFu (Kim et al., 2024) and
HiRED2 (Arif et al., 2025).

1We omit the double estimation of key and value cache for simplicity.
2Uses the same model but with HuggingFace optimizations; efficiency metrics are omitted for fairness.
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Table 1: Results of LightKV on LLaVA models at 55% compression of vision tokens in the KV
cache. Avg % denotes the average of all performance metrics normalized against the vanilla model.
Methods in each category are then sorted from lowest to highest Avg score.

Method FLOPS ↓ Mem ↓ TTFT ↓ COCO MME NoCaps POPE SEED VizWiz Avg %
(Tera) (GB) (sec) C P Acc F1

L
L

aV
A

-v
1.

5-
13

B

Vanilla 19.4 0.55 0.111 1.16 295.4 1532.0 1.09 0.87 0.86 0.69 0.57 100.00
Post prefill

Elastic 19.3 0.31 0.568 0.96 295.4 1534.5 0.87 0.43 0.96 OOM 0.14 68.54
Rand 19.0 0.31 0.118 0.48 295.4 1532.9 0.46 0.46 0.89 0.70 0.13 70.53
ImgRand 19.0 0.31 0.117 0.95 295.4 1532.9 0.86 0.69 0.91 0.70 0.19 85.09
ToMe (C) 19.0 0.33 0.123 1.00 295.4 1532.9 0.92 0.79 0.88 0.70 0.18 87.10

During prefill
ToFu 12.6 0.37 0.081 1.14 292.1 1535.7 1.08 0.86 0.86 0.38 0.55 93.36
PiToMe 12.6 0.37 0.082 1.14 297.5 1529.0 1.07 0.87 0.85 0.38 0.55 93.42
ToMe (P) 12.6 0.37 0.081 1.16 297.5 1529.9 1.07 0.87 0.86 0.39 0.55 93.96
LightKV 12.6 0.37 0.084 1.15 302.1 1543.8 1.08 0.87 0.86 0.69 0.56 99.94
FastV 12.4 0.36 0.077 1.16 308.9 1546.6 1.09 0.86 0.85 0.68 0.57 100.22

L
L

aV
A

-v
1.

5-
7B

Vanilla 10.2 0.35 0.064 1.10 355.7 1509.6 1.05 0.87 0.86 0.66 0.54 100.00
Post prefill

Elastic 10.2 0.20 0.428 0.41 350.4 1508.9 0.30 0.30 0.93 OOM 0.09 52.95
Rand 9.9 0.21 0.070 0.13 350.4 1508.9 0.10 0.74 0.87 0.66 0.11 65.80
ToMe (C) 10.0 0.20 0.075 0.13 350.4 1508.9 0.09 0.87 0.86 0.66 0.18 69.02
ImgRand 9.9 0.20 0.070 0.22 350.4 1508.9 0.16 0.86 0.86 0.66 0.16 70.27

During prefill
HiRED - - - 1.03 335.0 1452.0 1.00 0.85 0.83 0.66 0.53 96.45
ToFu 6.6 0.23 0.051 1.09 340.0 1482.3 1.02 0.86 0.85 0.66 0.52 97.98
ToMe (P) 6.6 0.23 0.054 1.09 319.6 1490.5 1.01 0.87 0.86 0.66 0.52 97.52
PiToMe 6.6 0.23 0.053 1.08 341.0 1498.5 1.02 0.86 0.85 0.65 0.51 97.63
FastV 5.3 0.22 0.047 1.10 351.1 1513.7 1.04 0.85 0.83 0.66 0.54 99.03
LightKV 6.6 0.23 0.051 1.11 357.5 1519.8 1.03 0.87 0.86 0.66 0.53 99.79

L
L

aV
A

-N
eX

T-
13

B

Vanilla 65.0 1.75 0.386 1.02 318.9 1575.1 0.88 0.88 0.86 0.69 0.64 100.00
Post prefill

Elastic - - - OOM OOM OOM OOM OOM OOM OOM OOM 0.00
Rand 60.8 0.91 0.396 0.06 318.9 1575.1 0.04 0.82 0.86 0.69 0.08 64.51
ToMe (C) 61.3 0.93 0.418 0.07 318.9 1575.1 0.05 0.87 0.86 0.69 0.08 65.48
ImgRand 60.8 0.91 0.392 0.07 318.9 1575.1 0.05 0.87 0.86 0.69 0.08 65.50

During prefill
ToMe (P) 37.3 1.05 0.268 0.97 308.5 1551.0 0.84 0.87 0.86 0.34 0.60 90.96
ToFu 37.3 1.05 0.268 0.97 305.0 1539.5 0.83 0.88 0.87 0.36 0.60 91.31
PiToMe 37.3 1.05 0.270 0.98 311.9 1558.2 0.86 0.87 0.86 0.34 0.60 91.56
FastV 36.1 1.04 0.259 0.91 311.1 1477.5 0.81 0.82 0.78 0.68 0.61 93.80
LightKV 37.3 1.05 0.271 0.96 326.1 1576.5 0.83 0.87 0.86 0.69 0.61 98.12

L
L

aV
A

-N
eX

T-
7B

Vanilla 34.8 1.12 0.225 1.00 330.0 1528.2 0.88 0.88 0.86 0.68 0.61 100.00
Post prefill

Elastic 34.7 0.58 1.675 0.02 332.1 1519.3 0.01 0.18 0.90 OOM 0.08 42.67
Rand 32.2 0.58 0.234 0.02 322.5 1523.2 0.01 0.65 0.87 0.68 0.08 61.08
ImgRand 32.2 0.58 0.234 0.02 322.5 1523.2 0.02 0.85 0.87 0.68 0.08 64.06
ToMe (C) 32.5 0.60 0.251 0.03 322.5 1523.2 0.02 0.87 0.86 0.68 0.08 64.33

During prefill
FastV 18.5 0.65 0.148 0.88 265.4 1341.3 0.78 0.81 0.77 0.69 0.58 90.37
HiRED - - - 0.73 297.9 1398.9 0.67 0.88 0.87 0.66 0.58 90.68
ToMe (P) 21.1 0.67 0.155 0.93 292.9 1419.0 0.78 0.88 0.87 0.65 0.57 94.18
ToFu 20.0 0.67 0.155 0.93 295.4 1427.2 0.78 0.88 0.87 0.66 0.57 94.52
PiToMe 20.0 0.67 0.157 0.94 292.1 1415.5 0.79 0.88 0.87 0.65 0.58 94.58
LightKV 22.3 0.67 0.159 0.98 338.6 1517.3 0.83 0.88 0.86 0.69 0.58 98.85

Implementation details In our experiments, we retain the default parameters of the LVLM back-
bones and use greedy decoding for reproducibility. For FastV, we adopt the reported optimal setting
of K = 2 and vary only R to control the KV cache pruning ratio. For other methods, we adapted
them to work with the LVLM backbones to the best of our abilities. To ensure consistency, we fix the
configuration of LightKV’s compression layers Λ, compression ratios P , and window sizes W across
all benchmarks for each LVLM model. We utilized lmms-eval (Zhang et al., 2025) for all benchmark
evaluations. We profiled the time-to-first-token (TTFT) and the generation latency for 100 tokens by
averaging results over 10 runs on an NVIDIA A100 GPU.

4.2 MAIN RESULTS

We compare the performance of LightKV with other SOTA methods on LLaVA models (Table 1),
InternVL (Table 2), EVE (Table 3) and Qwen2.5-VL (Fig. 4 and Table 7 in the appendix). For
each LVLM model, we selected the optimal configurations of Λ and W based on performance on
COCO and MME, and applied these hyperparameters to the remaining benchmarks. We also profiled
efficiency metrics, including FLOPS, KV cache memory (from prompt, vision, and generated tokens),
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Table 2: Results of LightKV on InternVL2-8B at two compression rates of vision tokens in KV cache.
“Avg %” denotes the average of all metrics normalized against the vanilla model. Methods in each
category are then sorted from lowest to highest Avg score.

Method FLOPS ↓ Mem ↓ TTFT ↓ COCO GQA MME POPE SQA VizWiz Avg %
(Tera) (GB) (sec) C P Acc F1

Vanilla 35.7 0.24 0.470 0.90 0.63 587.5 1623.8 0.88 0.87 0.97 0.61 100.00
During prefill, 60% vision compression

FastV 24.8 0.15 0.520 0.80 0.50 569.6 1610.9 0.47 0.87 0.49 0.53 81.90
ToFu 24.0 0.15 0.520 0.81 0.62 502.1 1575.5 0.87 0.86 0.94 0.60 95.49
PiToMe 24.0 0.15 0.519 0.99 0.60 461.8 1545.3 0.87 0.86 0.90 0.60 95.99
ToMe (P) 24.0 0.15 0.523 0.87 0.62 551.4 1621.8 0.87 0.86 0.95 0.60 97.86
LightKV 24.0 0.15 0.519 0.91 0.63 590.0 1623.8 0.88 0.87 0.97 0.61 100.19

During prefill, 55% vision compression
FastV 22.9 0.14 0.517 0.68 0.47 582.1 1611.1 0.56 0.85 0.46 0.48 79.49
PiToMe 22.9 0.14 0.518 1.00 0.61 442.9 1575.5 0.87 0.86 0.90 0.57 95.54
ToMe (P) 22.9 0.14 0.519 0.81 0.62 503.9 1570.0 0.87 0.86 0.95 0.60 95.62
ToFu 22.9 0.14 0.519 0.75 0.62 541.8 1619.1 0.87 0.85 0.95 0.60 95.82
LightKV 22.9 0.14 0.515 0.88 0.62 590.0 1623.8 0.88 0.87 0.97 0.61 99.58

and time to first token (TTFT) when generating 100 tokens (standard deviation reported in the
appendix). Our key findings are summarized as follows:

• Tables 1, 2, 3 and 7 show that LightKV consistently preserves the performance of the base LVLMs
across most benchmarks. In some cases, our method even surpasses the performance of vanilla
LVLMs without compression.

• Compared to methods applied during the prefill stage, LightKV either outperforms or achieves
highly competitive results. Specifically, it ranks first in 3 out of 4 LLaVA models and second in
the remaining one, while other baselines exhibit inconsistent rankings with major degradations in
performance. When efficiency is considered alongside performance, baseline methods are largely
inferior—showing poorer memory usage and less effective FLOP reduction.

• At even more aggressive compression ratios (e.g. 20% and 30%), LightKV is capable of retaining
99% average performance across multiple benchmarks on Qwen2.5-VL (Fig. 4 and Table 7). This
further highlights the robustness of our method.

• LightKV is compatible with not only vision encoder-based LVLMs, but also with encoder-free
models such as EVE, which seek to reduce the strong inductive bias in the vision encoders. As
shown in Table 3, our approach substantially outperforms FastV at the same compression rate,
better preserving the LVLM’s original capabilities.

• Post-prefill approaches substantially degrade performance on open-ended tasks e.g. COCO and
NoCaps. Additionally, they yield minimal improvements in computational efficiency, since the
prefill stage remains the dominant bottleneck in LVLMs. In contrast, LightKV operates on the
prefill stage within the decoder layers. This results in significantly lower computational cost and
memory footprint, while achieving stronger performance across a series of benchmarks.

Table 3: Results of LightKV on EVE-7B-v1 models at 55% com-
pression of vision tokens in the KV cache.

Method COCO MME NoCaps POPE VizWiz Avg %
C P Acc F1

EVE-7B-v1
Vanilla 0.96 269.2 1230.8 0.94 0.84 0.83 0.46 100.00
FastV 0.85 259.3 1144.5 0.78 0.80 0.77 0.44 92.07
LightKV 1.00 269.3 1203.1 0.93 0.84 0.83 0.43 99.20

EVE-7B-v1-HD
Vanilla 1.05 304.6 1314.1 1.02 0.86 0.85 0.56 100.00
FastV 0.97 290.3 1238.6 0.93 0.83 0.82 0.55 94.90
LightKV 0.97 291.4 1308.9 0.94 0.86 0.85 0.54 96.61
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Figure 4: Effect of varying com-
pression rates on Qwen2.5-VL.

4.3 ADDITIONAL EXPERIMENTS

Latency profiling Table 4 illustrates the reduction in time to first token latency achieved by LightKV.
Since our approach requires explicit attention matrices for token reduction, it is incompatible with
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I/O-optimized mechanisms like FlashAttention (Dao et al., 2022). To overcome this, we selectively
switch to eager computation in the small subset (s ≪ L) of layers where compression is applied,

Table 4: Time to first token (ms) ±
Std. Dev. on LLaVA 13B models.

Method LLaVA-v1.5 LLaVA-NeXT

Vanilla 111 ± 0.91 386 ± 2.22
LightKV 84 ± 0.72 271 ± 0.79

while retaining the optimized attention implementation for the
majority. The marginal overhead introduced is effectively off-
set by the increased throughput gained from processing fewer
vision tokens in the downstream layers. See Sec. E.3 for a more
detailed analysis of both TTFT and the generation latency of
100 tokens with their corresponding standard deviations.

Influence of hierarchical compression We conducted experiments with the same configuration
of Λ while varying the window sizes, as presented in Table 5. Across different compression layers
λ, the results show a similar general trend: there is more pronounced degradation with a global
compression strategy w = 1, likely due to the inadvertent destruction of spatial locality (Xu et al.,
2022; Pan et al., 2022; Song et al., 2024; Norouzi et al., 2024). However, with larger values of w,
similar degradation occurs. This is attributed to the small number of tokens within each window,
resulting in the compression of mismatched tokens with high FD scores. Furthermore, we summarize
the FLOPs and KV cache memory usage for different inference configurations in Table 6. The results
indicate that larger window sizes in the early layers lead to higher efficiency improvements.

Influence of compression layers We investigate the impact of varying layers for token compression,
as illustrated in Fig. 6 in the appendix. Trends between the compression layer and model performance
reveal that compressing in the shallow layers has a more substantial impact on performance. This
effect is particularly pronounced in VizWiz, where LVLMs must refrain from answering (e.g., when
the ground truth is “unanswerable”). Compression in the deeper layers yields performance nearly
identical to the base LVLM models, but offers little reduction in memory usage.

Table 5: Effect of varying window sizes w at vari-
ous compression layers on InternVL-8B.

Method W COCO GQA MME POPE SQA VizWiz
C P Acc F1

Vanilla - 0.90 0.63 587.5 1623.8 0.88 0.87 0.97 0.61

L
ig

ht
K

V

λ= 3
1 0.80 0.62 547.5 1602.5 0.87 0.86 0.95 0.60
2 0.83 0.59 555.0 1621.1 0.87 0.86 0.96 0.60
4 0.90 0.60 546.8 1594.8 0.87 0.85 0.95 0.60

λ= 14
1 0.89 0.62 577.1 1615.8 0.87 0.86 0.97 0.61
2 0.90 0.62 577.1 1620.3 0.87 0.86 0.97 0.61
4 0.92 0.62 577.9 1617.5 0.88 0.86 0.97 0.61

Table 6: Profiling results by varying compres-
sion layers Λ and window sizes W on LLaVA
13B models.

LLaVA-v1.5-13B LLaVA-NeXT-13B
Method Λ W FLOPS Mem FLOPS Mem

Vanilla - - 19.4 0.55 65.0 1.75

L
ig

ht
K

V 15,23,31 4,2,1 12.6 0.37 37.3 1.05
6,4,2 12.6 0.37 37.3 1.05

17,24,31 4,2,1 13.1 0.38 39.0 1.09
6,4,2 13.1 0.38 39.0 1.09

5 CONCLUSION

In this paper, we present LightKV, a novel training-free approach for optimizing KV cache storage
in general LVLMs. It leverages text-prompt–guided graph message passing and aggregation to
informatively compress vision tokens during the prefill stage of inference. Our method is designed
to be: (i) memory-efficient: by progressively and dynamically compressing vision nodes through
a hierarchical multi-stage process; and (ii) compute-efficient: by employing window-based graph
partitioning and bipartite matching to accelerate message aggregation. The experimental results
demonstrate that our approach: (a) largely preserves the general-purpose performance of the base
LVLM across multiple benchmarks, and (b) outperforms existing baselines in KV cache efficiency.

Limitations We acknowledge two limitations of this work: (i) LightKV leverages a bipartite graph
matching algorithm, which splits vision tokens into two disjoint sets, then finds optimal pairings
between nodes across the sets. This limits the compression rate to a maximum of 50% per step, thus
requiring multiple iterations to achieve higher overall reduction. (ii) Furthermore, our method requires
explicitly computing attention matrices for cross-modality guidance during a few compression steps,
similar to other efficient methods (Chen et al., 2024b; Liu et al., 2023a), which are less compatible
with FlashAttention (Dao et al., 2022).
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APPENDIX

A DECLARATION OF THE USE OF LLMS

The use of LLMs was limited to language editing and formatting support; the intellectual contributions,
analysis, results, and conclusions presented in this work remain entirely those of the authors.

B ETHICS STATEMENT

The authors have reviewed and conformed with ICLR Code of Ethics https://iclr.cc/
public/CodeOfEthics.

C REPRODUCIBILITY STATEMENT

We introduced details of our method in Sec. 3. We are committed to releasing the code upon the
acceptance of this paper, with sufficient details for reproducibility.

D METHOD

D.1 METHOD OVERVIEW

Decoder Layers
…

…

< output >

Original V tokens

Updated V tokens

P tokens

Decoder Layer 𝑖Decoder Layer 𝑖Decoder Layer 𝑖

Decoder Layer 𝑖Decoder Layer 𝑖Decoder Layer 𝑖 + 1

Graph Message Passing

Eliminated V tokens

V tokens from 𝒜 V tokens from ℬ

Figure 5: LightKV dynamically compresses vision tokens between two consecutive LVLM decoder
layers. The key and value tokens are compressed simultaneously for latter layers, reducing the
memory used by KV cache.

As illustrated in Fig. 5, we insert graph message passing-based compression between two selected
decoder layers in the LVLM, simultaneously reducing the KV cache size and the number of vision
tokens processed by downstream layers. Compression is performed 3 times in our experiments to
achieve the overall compression ratio.

D.2 ADJACENCY MATRIX

In Section 3.2, we defined for our bipartite graph the adjacency matrix M ∈ {0, 1}|XA|×|XB|, whose
rows correspond to nodes in XA and columns to nodes in XB. However, as the two subsets need not
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contain the same number of nodes, M is generally rectangular. Conventionally, for a standard graph,
the adjacency matrix is square with side length equal to the total number of nodes. The analogous
square adjacency matrix for our bipartite graph is(

0 M
M⊤ 0

)
, (10)

where the upper-left and lower-right blocks are zero by definition. Throughout our paper, we work
directly with M , as this rectangular form is sufficient for message passing between the two partitions.

D.3 COMPLEXITY ANALYSIS

In section 3.3, we claimed that the total number of vision tokens processed during pre-fill reduces to:

N ×

{
λ1︸︷︷︸
(1)

+

k∑
i=2

(
(λi − λi−1)

i−1∏
j=1

(1− ρj)
)

︸ ︷︷ ︸
(2)

+(L− λk)

k∏
j=1

(1− ρj)︸ ︷︷ ︸
(3)

}
. (11)

We consider the number of vision tokens in each layer independently, then the total number of vision
tokens processed in L decoder layers in a vanilla LVLM is simply N × L. However, the number of
vision tokens reduces at every accumulation layer λi (note that message passing and accumulation
occur after each decoder layer λi). Let Ni = N ×

∏i−1
j=1(1− ρj) be the number of remaining vision

tokens after i− 1 accumulation steps. Between each pair of accumulation layers λi−1 and λi, the
number of vision tokens processed is Ni × (λi − λi−1). Therefore, Eq. 11 can be broken down into:

1. Percentage of vision tokens processed before the first accumulation step,

2. Percentage of vision tokens processed between the first and the last accumulation step,

3. Percentage of vision tokens processed after the last accumulation step.

E ADDITIONAL RESULTS

E.1 ADDITIONAL BACKBONES

QwenVL We also evaluated LightKV on Qwen2.5-VL-7B-Instruct (Bai et al., 2025) across multiple
compression ratios. The results in Table 7 demonstrate that LightKV yields substantial improvements
compared to baseline approaches, preserving accuracy more effectively and delivering stronger overall
performance under compression. Notably, as presented in Table 8, at more aggressive compression
ratios, LightKV still delivers near-identical performance to the vanilla model.

Table 7: Results of LightKV on Qwen2.5-VL-7B-Instruct model at 55% compression of vision tokens
in the KV cache. Avg % denotes the average of all performance metrics normalized against the
vanilla model. Methods in each category are then sorted from lowest to highest Avg score.

Method COCO GQA MME NoCaps POPE SEED VizWiz Avg %
C P Acc F1

Vanilla 0.319 0.604 638.21 1695.25 0.372 0.875 0.862 0.790 0.704 100.00
FastV 0.339 0.587 625.35 1687.78 0.386 0.869 0.853 0.744 0.698 98.77
ToMe 0.329 0.591 640.71 1687.75 0.425 0.862 0.782 0.782 0.683 100.04
PiToMe 0.389 0.584 624.64 1671.09 0.433 0.860 0.842 0.774 0.691 100.24
ToFu 0.383 0.587 657.86 1683.05 0.418 0.857 0.839 0.788 0.696 100.75
LightKV 0.389 0.591 647.50 1706.38 0.435 0.863 0.846 0.780 0.694 101.37

E.2 ADDITIONAL ABLATION STUDIES

Influence of window sizes The choice of W is closely related to the number of vision tokens used
by the LVLM. A larger initial window size is appropriate when the model encodes images at high
resolution, e.g., LLaVA-NeXT encodes an image into 2,144 tokens. In contrast, a smaller value
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Table 8: Results of LightKV on Qwen2.5-VL-7B-Instruct model at various compression of vision
tokens in the KV cache. Avg % denotes the average of all performance metrics normalized against
the vanilla model.

Rate COCO GQA MME NoCaps POPE SEED VizWiz Avg %
C P Acc F1

Vanilla 0.319 0.604 638.21 1695.25 0.372 0.875 0.862 0.790 0.704 100.00
55% 0.389 0.591 647.50 1706.38 0.435 0.863 0.846 0.780 0.694 101.37
40% 0.370 0.586 611.78 1632.64 0.450 0.851 0.830 0.754 0.666 101.01
30% 0.361 0.581 588.93 1574.34 0.455 0.833 0.806 0.732 0.670 98.89
20% 0.356 0.569 591.78 1612.83 0.458 0.835 0.809 0.730 0.667 99.24

of is more favorable when there are fewer vision tokens, e.g., LLaVA-v1.5, which uses 576 vision
tokens per image. In our experiments, we used W = [6, 4, 2] for LLaVA-NeXT and W = [4, 2, 1]
for LLaVA-v1.5. We found that using a large window size with fewer vision tokens overly restricts
token matching, often resulting in mismatches. As shown in Table 9 below, larger windows yield
better overall performance.

Table 9: Effect of W on LLaVA-13B models.

Method COCO DocVQA GQA MME NoCaps POPE SQA SEED VizWiz Avg %
C P Acc F1

LLaVA-v1.5-13B
Vanilla 1.16 0.23 0.63 295.36 1532.0 1.09 0.87 0.86 0.73 0.69 0.57 100.00
LightKV W=[4,2,1] 1.15 0.22 0.62 302.14 1543.8 1.08 0.87 0.86 0.72 0.69 0.56 99.18
LightKV W=[6,4,2] 1.16 0.22 0.63 301.79 1541.1 1.08 0.87 0.86 0.72 0.69 0.56 99.01

LLaVA-NeXT-13B
Vanilla 1.02 0.71 0.65 318.93 1575.1 0.88 0.88 0.86 0.73 0.69 0.64 100.00
LightKV W=[4,2,1] 0.96 0.53 0.43 311.43 1576.3 0.83 0.87 0.86 0.59 0.69 0.61 101.39
LightKV W=[6,4,2] 0.96 0.51 0.43 326.07 1576.5 0.83 0.87 0.86 0.59 0.69 0.61 102.19

Influence of compression layers We investigate the impact of varying layers for token compression,
as illustrated in Fig. 6. Trends between the compression layer and model performance reveal that
compressing in the shallow layers has a more substantial impact on performance. This effect is
particularly pronounced in VizWiz, where LVLMs must refrain from answering (e.g., when the ground
truth is “unanswerable”). Compression in the deeper layers yields performance nearly identical to the
base LVLM models, but offers little reduction in memory usage.
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Figure 6: Effect of varying compression layer λ on LLaVA-NeXT-13B.

E.3 ADDITIONAL LATENCY PROFILES

We evaluate model responsiveness using two latency metrics: time-to-first-token (TTFT) and genera-
tion latency for 100 tokens. As shown in Table 10, TTFT highlights the overhead of the pre-filling
stage and directly reflects user-perceived responsiveness, while generation latency characterizes
decoding efficiency. Together, these results provide a comprehensive view of both initial response
delay and sustained throughput.
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Table 10: Latency comparison across LLaVA models. TTFT = Time to First Token. Gen latency =
generation latency per output.

Method TTFT (ms) Gen latency (s) TTFT (ms) Gen latency (s)
LLaVA-v1.5-13B LLaVA-v1.5-7B

Vanilla 111 ± 0.905 3.85 ± 0.017 64 ± 0.889 3.00 ± 0.012
FastV 77 ± 0.788 2.52 ± 0.001 47 ± 0.381 1.70 ± 0.013
PiToMe 82 ± 0.818 2.85 ± 0.002 53 ± 0.171 2.14 ± 0.022
ToFu 81 ± 0.622 2.86 ± 0.001 51 ± 0.677 2.13 ± 0.004
ToMe (P) 81 ± 0.889 2.86 ± 0.003 54 ± 0.641 2.10 ± 0.011
LightKV 84 ± 0.715 2.87 ± 0.005 51 ± 0.801 2.11 ± 0.009

LLaVA-NeXT-13B LLaVA-NeXT-7B
Vanilla 386 ± 2.224 4.17 ± 0.027 225 ± 1.552 3.20 ± 0.026
FastV 259 ± 1.759 2.94 ± 0.006 148 ± 1.110 1.83 ± 0.021
PiToMe 270 ± 0.776 3.29 ± 0.003 157 ± 0.602 2.26 ± 0.025
ToFu 268 ± 1.317 3.28 ± 0.003 155 ± 0.607 2.24 ± 0.011
ToMe (P) 268 ± 2.023 3.28 ± 0.004 155 ± 0.820 2.23 ± 0.028
LightKV 271 ± 0.788 3.31 ± 0.003 159 ± 1.000 2.24 ± 0.006

E.4 VISUALIZATION

We provide visualization cases for vision token compression of COCO images in Fig. 7 for a 3-stage
compression on LLaVA-v1.5-13B, reducing the number of tokens from 576 → 288 → 145 → 77.
Unlike conventional vision encoders, vision tokens in LVLMs incorporate prompt information. As a
result, visually similar patches may differ significantly in the embedding space, making it plausible
to aggregate non-adjacent patches. To this end, our intra-window strategy imposes constraints on this
aggregation process to maintain spatial coherence during compression.

Pre-processed image

288 tokens 145 tokens 77 tokens576 tokens

Layer 15 Layer 23 Layer 31

288 tokens 145 tokens 77 tokens576 tokens

Pre-processed image Layer 15 Layer 23 Layer 31

Figure 7: Visualization of a 3-stage vision token compression, halving tokens at each stage and
achieving 55% KV cache reduction. Distant patches may be compressed into a single token.
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