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ABSTRACT

Euclidean graphs have unordered vertices and non-intersecting straight-line edges
in any Euclidean space. Our main application is for molecular graphs with vertices
at atomic centers and edges representing inter-atomic bonds. Euclidean graphs
are considered equivalent if they are related by isometry (any distance-preserving
transformation). This paper introduces the strongest descriptors that are provably
(1) invariant under any isometry, (2) complete and sufficient to reconstruct any
Euclidean graph up to isometry, (3) Lipschitz continuous so that perturbations
of all vertices within their ε-neighborhoods change the complete invariant up to
a constant multiple of ε in a suitable metric, and (4) computable (both invariant
and metric) in polynomial time in the number of vertices for a fixed dimension.
These strongest invariants transparently explained a continuous structure-property
landscape for molecular graphs from the QM9 database of 130K+ molecules.

1 MOTIVATIONS FOR COMPLETE REPRESENTATIONS OF EUCLIDEAN GRAPHS

In real life, many rigid structures from buildings to molecules are naturally represented by geometric
graphs in Euclidean space Rn. More precisely, a Euclidean graph or a geometric graph G ⊂ Rn is
a finite set of m vertices located at distinct points of Rn and connected by non-intersecting straight-
line edges. The vertices of G are unordered (unlabeled without any indices such as 1, . . . ,m), hence
forgetting all edges of G gives us the vertex cloud V (G) of m unordered points, see Fig. 1.

Figure 1: The Euclidean graphs Ti ⊂ R3, i = 1, . . . , 6, with solid straight edges are all different but
have the same four vertices of a regular tetrahedron with all pairwise distances 1, see Example 3.2.

Any Euclidean graph can be considered a geometric embedding of an abstract combinatorial graph
into Rn so that all edges map to straight-line edges. We use the term Euclidean graph only for a
straight-line graph in Rn because graphs can be embedded into metric spaces with other geometries
such as spherical or grid-like spaces where straight lines consist of horizontal or vertical segments.

A Euclidean graph can be disconnected and can have vertices v of any degree that is the number of
edges whose endpoint is v. Loops and multiple edges (with the same endpoints) do not appear in a
Euclidean graph only because all edges are straight and can meet only at their endpoints. However,
cycles (closed paths) consisting of at least three edges are allowed. The graph of a piecewise linear
function f : [0, 1] → R can be considered as a Euclidean graph G(f) = {(x, f(x)) | x ∈ [0, 1]} ⊂
R2 for n = 2. Since any continuous function f : [0, 1] → R can be approximated by piecewise
linear ones, any road network with curved routes can be approximated by a Euclidean graph in R2.

The most practical cases are the low dimensions n = 2, 3, 4, while the number m of vertices can
be much larger. Our main application is for molecular graphs in R3, where vertices are centers of
atoms and edges are inter-atomic bonds that keep atoms together in a stable enough molecule.

Any data objects including molecular graphs are always considered up to some equivalence that
satisfies the axioms: any G ∼ G, if G ∼ G′ then G′ ∼ G, if G ∼ G′ and G′ ∼ G′′ then G ∼ G′′.
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In computer science, the traditional equivalence of graphs is an isomorphism that bijectively maps
all vertices and edges. The graph isomorphism problem still has no polynomial-time solution, see
Grohe & Schweitzer (2020). In chemistry, the simplest equivalence of molecular graphs is defined
by composition of chemical elements. Fig. 2 shows classical stereoisomers whose different con-
formations in space have equivalent compositions and isomorphic graphs but substantially differ by
properties. These equivalences are weaker than rigid motion (a composition of translations and ro-
tations), or isometry, which is any distance-preserving transformation and also includes reflections.

Figure 2: The graphs of stereoisomers are isomorphic even with atomic types but are not isometric.

Moving a molecule as a rigid body keeps all its chemical properties under the same ambient condi-
tions. Even if a molecule (or another real object) is flexible, it makes sense to distinguish its different
rigid shapes (3-dimensional conformations) because they can have different properties. Hence rigid
motion is the strongest and most practical equivalence between real objects including molecules.

The classes of all Euclidean graphs on m unordered vertices under rigid motion in Rn form the
Rigid Graph Space RGS(Rn;m). If we replace rigid motion with isometry, which can reverse the
orientation of Rn, the resulting Isometry Graph Space IGS(Rn;m) is obtained from RGS(Rn;m)
by identifying mirror images of (rigid classes of) graphs in Rn. These spaces are continuously
infinite because almost any perturbation of vertices of G ⊂ Rn yields a slightly different (non-
rigidly equivalent) graph G′. The SSS theorem from school geometry says that any triangles are
congruent (isometric) if and only if they have the same triple of sides (pairwise distances) a, b, c up
to 6 permutations (only 3 cyclic permutations for rigid motion excluding reflections), see Fig. 3 (left).

Figure 3: Left: all isometry classes of graphs form a continuous space of shapes. Right: the space
IGS(Rn; 3) of triangular cycles under Euclidean isometry {0 < a ≤ b ≤ c ≤ a + b} continuously
parametrised by inter-point distances a, b, c with isosceles and degenerate triangles on the boundary.

Hence IGS(Rn; 3) is the triangular cone {0 < a ≤ b ≤ c ≤ a + b} in R3, where the last triangle
inequality c ≤ a+ b guarantees that three distances a, b, c are realisable for some m = 3 points.

If we exclude reflections, mirror images are distinguished in the larger space RGS(Rn; 3), which is
obtained by gluing two copies of IGS(Rn; 3) along their boundaries representing mirror-symmetric
triangles (isosceles and degenerate). We will define complete representations for m ≥ 4 vertices.

Many graph descriptors such as atomic coordinates can easily change by translation and cannot
reliably distinguish any objects under isometry. An equivariant (descriptor) is a function f on graphs
G that changes under any isometry T in a controllable way to Tf (f(G)), where the transformation
Tf is expressed via T . For example, if f(G) is any fixed linear combination of vertices of G, e.g. the
center of mass, then Tf is the same linear map f acting on the single point f(G). In the important
special case, if Tf is the identity map not changing any f(G), then f is called an invariant. The
sorted list of m(m−1)

2 pairwise distances between all m unordered vertices is an isometry invariant.

Rigid classes of Euclidean graphs can be distinguished only by invariants that are descriptors pre-
served under any rigid motion. Indeed, only the definition of an invariant (I(G) = I(G′) for any
G ∼ G′) guarantees that if I(G) ̸= I(G′) then G ̸∼ G′ are not equivalent. Hence invariants are
much rarer and more practically useful than equivariants. A complete classification requires the
strongest (complete or injective) invariants that uniquely identify any Euclidean graph up to isome-
try. Such a complete invariant is similar to a DNA code that identifies any human in practice.

2



Under review as a conference paper at ICLR 2024

Figure 4: Non-invariant descriptors (e.g. atomic coordinates) cannot be used for comparison under
isometry. Any rigid motion acting on an object changes its equivariant descriptors (e.g. the center
of mass) by the same linear operation. Only invariants preserved under any equivalence can classify
objects. The most useful invariants satisfy the extra practically important conditions in Problem 1.1.

Since all real measurements are noisy and molecular simulations also output only approximations of
atomic coordinates, the new but practically important requirement for classifying Euclidean graphs
is continuity under perturbations. All the conditions above are formalized in Problem 1.1 below.

Problem 1.1. Find an invariant I : {all Euclidean graphs on m unordered vertices in Rn} → a
simpler space, where invariant values are easier to compare, such that the conditions below hold:

(a) completeness : graphs G,G′ are related by rigid motion in Rn if and only if I(G) = I(G′);

(b) Lipschitz continuity : for a constant λ, if any vertex of G is perturbed within its ε-neighborhood,
then I(G) changes by at most λε for any ε > 0 and a metric d satisfying the metric axioms below:

1) d(I(G), I(G′)) = 0 if and only if the graphs G ∼= G′ are related by rigid motion in Rn,

2) symmetry : d(I(G), I(G′)) = d(I(G′), I(G)) for any Euclidean graphs G,G′ ⊂ Rn,

3) triangle inequality : d(I(G), I(G′)) + d(I(G′), I(G′′)) ≥ d(I(G), I(G′′)) for any G,G′, G′′;

(c) computability : I and d can be computed in polynomial time in m for a fixed dimension n;

(d) reconstructability : any graph G ⊂ Rn can be reconstructed (up to rigid motion) from I(G).

Condition 1.1(a) means that I is a descriptor with (1) no false negatives, which are pairs of G ∼= G′

with I(G) ̸= I(G′), and (2) no false positives, which are pairs of G ̸∼= G′ with I(G) = I(G′). The
axioms in 1.1(b) are the foundations of metric geometry Melter & Tomescu (1984) and accepted in
physical chemistry Weinhold (1975). If the first axiom fails, even the zero distance d ≡ 0 satisfies
two other axioms. The first axiom implies the completeness of I in 1.1(a) but the continuity is much
stronger. Indeed, for any complete invariant I , one can define the discrete metric d(I(G), I(G′)) = 1
for G ̸∼= G′, which unhelpfully treats all different graphs (even near-duplicates) as equally distant.

The Lipschitz continuity in 1.1(b) is much stronger than the classical ε − δ continuity because the
Lipschitz constant λ should be independent of a graph G and ε. Computability 1.1(c) prevents brute-
force attempts, for example, defining I(G) as the infinite set of images of G under all possible rigid
motions or minimizing a distance d between infinitely many alignments of given graphs.

Final condition 1.1(d) requires the invariant I to be not only complete and continuous but also easy
enough to allow an explicit reconstruction of G ⊂ Rn in polynomial time in the number m of
vertices for a fixed dimension n. A human cannot be reconstructed from their DNA code yet.

The key contribution of this paper is a mathematically justified solution to Problem 1.1 for rigid
motion and related equivalences including isometry and their compositions with uniform scaling.
Section 2 will review the closely related past work. Section 3 will define the Simplexwise Distance
Distribution (SDD) invariant for graphs in any metric space. Section 4 will specialize SDD for Rn

to build a final invariant satisfying all the conditions in Problem 1.1 for any Euclidean graphs.

The supplementary materials include proofs of all theorems and C++/Python code for the invariants.

2 PAST WORK ON GEOMETRIC CLASSIFICATIONS OF CLOUDS AND GRAPHS

Problem 1.1 is a key step in understanding the structure-property relationships for many real-life
objects from galaxy formations to molecular graphs. Indeed, the concept of a structure requires a
definition of an equivalence relation before such structures can be called equivalent or different.
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Problem 1.1 is much simpler for a cloud C of m unordered points when a graph has only isolated
vertices and no edges. For a given m × m distance matrix of C, the classical multidimensional
scaling Schoenberg (1935) finds an embedding A ⊂ Rk (if it exists) preserving all distances of M
for a dimension k ≤ m. This embedding C ⊂ Rk uses eigenvectors whose ambiguity up to signs
gives an exponential comparison time that can be close to O(2m), not polynomial in m as in 1.1(c).

The case of ordered points is easy because the matrix of distances dij between indexed points
pi, pj allows us to reconstruct C by using the known distances to the previously constructed points
(Grinberg & Olver, 2019, Theorem 9). For clouds of m ordered points, the difference between
m × m matrices of distances (or Gram matrices of pi · pj) can be converted into a continuous
metric by taking a matrix norm. If given points are unordered, comparing m×m matrices needs an
exponential number m! of permutations, which is impractical, also for graphs in Problem 1.1.

The related problems of matching and finding distances between fixed Euclidean graphs (but not
for their isometry classes) were studied in Nikolentzos et al. (2017); Majhi & Wenk (2022); Buchin
et al. (2023). Equivariant descriptors of graphs Gao et al. (2020); Qi & Luo (2020); Tu et al. (2022);
Batzner et al. (2022), e.g. the center of mass, may not be isometry invariants. Hence all conditions
of Problem 1.1 are much stronger and were not proved for any past invariants of Euclidean graphs.

Geometric Deep Learning in Bronstein et al. (2021) pioneered an axiomatic approach to geometric
classifications and went beyond Euclidean space Rn in Bronstein et al. (2017), so section 3 considers
Problem 1.1 in any metric space. The axioms in 1.1(b) are important not only because they are
basic requirements for any proofs in metric geometry, see Dorst et al. (2010), but also because if
the triangle axiom fails with any additive error or missed as in (Koutra et al., 2013, section 2.4),
classical k-means and DBSCAN clustering are open to adversarial attacks in Rass et al. (2022).

The words “Euclidean graphs” and “graph isomorphisms” are sometimes used Hordan et al. (2023)
for clouds of unordered points without edges: “we discuss geometric graph isomorphism tests,
namely, tests for checking whether two given point clouds X,Y ∈ R3m are related by a permutation,
rotation and translation” (Hordan et al., 2023, section 2). The notation X ∈ R3m implies that all
coordinates (hence, points) of X are ordered, while a cloud of m unordered points lives in a quotient
of R3m by m! permutations. All known descriptors (sometimes called fingerprints) of molecular
graphs Duvenaud et al. (2015); Choo et al. (2023) have no proofs of conditions 1.1(a,b,c,d).

Energy potentials are often claimed to be complete representations of atomic environments, though
this completeness holds only for infinite-size representations Pozdnyakov et al. (2020). The review
in (Kulik et al., 2022, section 1.5.2) highlights that “it is unclear which representation types produce
the most accurate and transferable deep learning models”. The completeness in Rose et al. (2023) for
the Weisfeiler-Lehman test still needs proof of Lipschitz continuity. This paper extends the recent
solution of simplified Problem 1.1 for Euclidean clouds in Widdowson & Kurlin (2023) to graphs.

Structure-property relationship (SPR) hypothesis says that structure determines all properties
Trolier-McKinstry & Newnham (2018). The solution to Problem 1.1 finally settles the concept
of a geometric structure (for molecular graphs) in the sense that properties can now be studied in
terms of the complete invariants instead of incomplete descriptors. Since all real structures differ at
least slightly because of noise, Problem 2.1 below is a more practical continuous version of SPR.
Problem 2.1. For any real-valued property of a molecule, find the upper bounds of ε and λ such
that perturbing any graph G up to ε in a metric d from Problem 1.1 changes the property up to λε.
In the past, many molecular properties were predicted by optimizing millions of parameters through
high-cost training on large datasets with pre-computed properties, see Pinheiro et al. (2020). Since
atomic coordinates have continuous real values, the space RGS(R3;m) of molecular shapes is in-
finitely continuous even for a fixed number m of atoms. Since any finite dataset is a discrete sample
of the continuous space RGS(R3;m), all sample-based predictions are hard to generalize for the full
RGS(R3;m). Hence any new prediction algorithm may incrementally improve the past accuracy
but even error 0 on a fixed dataset will not guarantee approximately corrects output on new data.

The proposed solutions to Problems 1.1 and 2.1 overcome this data limitation challenges by ex-
ploring RGS(R3;m) as a mountainous landscape. A metric d from Problem 1.1 allowed us to find
the previously unknown (hundreds of) duplicates and analyze the nearest neighbors of any molecule
within the QM9 dataset of 130K+ molecules in Ramakrishnan et al. (2014). These nearest neighbors
provided the first-ever bounds for Problem 2.1 and enabled the identification of deep energy minima
(the most stable molecules) surrounded by energy barriers, see the experiments in section 5.
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3 CONTINUOUS ISOMETRY INVARIANTS OF GRAPHS IN ANY METRIC SPACE

Inspired by Rodney Brooks’ message “geometry is your friend” of his plenary lecture at CVPR
2023, this geometric section defines isometry invariants of a graph G in any metric space X with a
distance metric d, see Fig. 5. We assume that G has no loops (edges with a single endpoint) and no
multiple edges. Any vertex p and unordered pair [p, q] of vertices of G can have an attribute a(p)
and a weight w[p, q], which should be respected by any isometry that maps one graph to another.

Figure 5: Left: structure-property relations. Right: connections between invariants in sections 3, 4.

Any metrics on vertex attributes and weights can be incorporated into metrics on the invariants
below. To make the key concepts clearer, the main paper introduces all invariants for unordered
vertices without attributes and only for sign weights: w[p, q] = +1 if the vertices p, q are connected
by an edge of G, otherwise w[p, q] = −1. Let dG(p, q) denote any G-based distance between
p, q ∈ V (G). We can take the signed distance w[p, q]d(p, q) or the shortest path distance in G.

Definition 3.1 (invariants SDV and PDD). Let G ⊂ X be any graph with m vertices p1 . . . , pm,

(a) The Sorted Distance Vector SDV(G) is the list of m(m−1)
2 G-based distances dG(pi, pj) written

in increasing order, hence starting from ‘negative’ values for the signed distance w[p, q]d(p, q).

(b) Let DD(G) be the m × (m − 1)-matrix where the i-th rows consists of G-based distances
dG(pi, pj), j ∈ {1, . . . ,m}−{i}, written in increasing order. If k > 1 rows of DD(G) are identical
to each other, we collapse them into a single row with the weight k/m. Write the weight of any row
in the extra first column and call the resulting matrix the Pointwise Distance Distribution PDD(G).

PDD(G) includes every G-based distance twice, once as dG(p, q) in the row of a vertex p, and as
dG(q, p) in the row of a vertex q. Hence SDV(G) can be obtained from PDD(G) by (1) combining
all distances into one vector, (2) sorting them in increasing order, and (3) keeping only one copy of
every two repeated distances. Example 3.2 shows that PDD(G) is stronger than SDV(G).

Example 3.2 (SDV and PDD with signed distances for tetrahedral graphs in Fig. 1). (a) The ver-
tices of the six tetrahedral graphs Ti ⊂ R3, i = 1, . . . , 6 in Fig. 1 have all pairwise distances
1. All these graphs have the same set of vertices V (Ti) independent of i, hence cannot be dis-
tinguished by isometry invariants of V (Ti). The first graph T1 has two edges contributing +1
and four non-edges (dashed lines) contributing −1 to the Sorted Distance Vector SDV(T1) =
(−1,−1,−1,−1,+1,+1). The graph T2 also has two edges, so SDV(T2) = SDV(T1) doesn’t dis-

tinguish T1 ̸∼= T2 up to isometry. Finally,
SDV(T3) = (−1,−1,−1,+1,+1,+1)
SDV(T4) = (−1,−1,+1,+1,+1,+1) = SDV(T5).
SDV(T6) = (−1,+1,+1,+1,+1,+1)

(b) In T1, every vertex has exactly one edge and two non-edges (dashed lines), hence its signed
distances are −1,−1,+1. The matrix PDD(T1) = (100% | −1,−1,+1) consists of a single row,
where the weight 100% indicates that all vertices of T1 have the same row in PDD. The graph T2

has one vertex (25%) with no edges, two vertices (50%) with one edges, and one vertex (25%) with

two edges, so PDD(T2) =

(
25% −1 −1 −1
50% −1 −1 +1
25% −1 +1 +1

)
̸= PDD(T1), so PDD distinguishes the

non-isometric graphs T1 ̸∼= T2 with SDV(T1) = SDV(T2). The graph T3 has one vertex (25%)

with no edges and three vertices (75%) with two edges, so PDD(T3) =

(
25% −1 −1 −1
75% −1 +1 +1

)
.
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Then PDD(T4) = (100% | −1,+1,+1) ̸= PDD(T5) =

(
25% −1 −1 +1
50% −1 +1 +1
25% +1 +1 +1

)
, so PDD dis-

tinguishes T4 ̸∼= T5 with SDV(T4) = SDV(T5). Finally, PDD(T6) =

(
50% −1 +1 +1
50% +1 +1 +1

)
.

For a graph G with m vertices, the full matrix PDD(G) consists of m− 1 columns but can consider
the reduced version PDD(G; k) including only the first k columns for any 1 ≤ k < m− 1. Though
the matrices PDD(G) can have different sizes, any of them can be continuously compared as dis-
crete probability distributions, for example, by Earth Mover’s Distance EMD, which we remind in
Definition B.5, see Rubner et al. (2000). The rows of PDD(G) are unordered, so EMD is invariant
under their permutation, though we write them in the lexicographic order only for convenience.

The lexicographic order u < v on vectors u = (u1, . . . , uh) and v = (v1, . . . , vh) in Rh means
that if the first i (possibly, i = 0) coordinates of u, v coincide then ui+1 < vi+1. For example,
(1, 2) < (2, 1) < (2, 2). Let Sh denote the permutation group on 1, . . . , h. Definition 3.3 extends
PDD(G) to SDD(G;h) for graphs G in a metric space, where SDD(G; 1) = PDD(G).
Definition 3.3 (Simplexwise Distance Distribution SDD(G;h)). Let G be a graph on m unordered
vertices in a space with a metric d. Let A = (p1, . . . , ph) ⊂ V (G) be an ordered subset of 1 ≤
h < m vertices. Let D(A) be the matrix whose entry D(A)i,j−1 is the distance dG(pi, pj) for
1 ≤ i < j ≤ h, all other entries are filled by zeros. Any permutation ξ ∈ Sh acts on D(A) by
mapping D(A)ij to D(A)kl, where k ≤ l is the pair of indices ξ(i), ξ(j) − 1 written in increasing
order. For any q ∈ V (G)−A, write the G-based distances from q to p1, . . . , ph as a column.

The h× (m−h)-matrix R(G;A) is formed by these m−h lexicographically ordered columns. The
action of ξ on R(G;A) maps any i-th row to the ξ(i)-th row, then all columns can be written in the
lexicographic order. The Relative Distance Distribution RDD(G;A) is the equivalence class of the
pair [D(A), R(G;A)] of matrices up to actions of ξ ∈ Sh. The Simplexwise Distance Distribution
SDD(G;h) is the unordered set of RDD(C;A) for all unordered h-vertex subsets A ⊂ V (G).

For a 1-point subset A = {p1} with h = 1, the matrix D(A) is empty and R(G;A) is one row
of distances (in increasing order) from p1 to all other vertices q ∈ V (G). For a 2-point subset
A = (p1, p2) with h = 2, the matrix D(A) is the single number dG(p1, p2) and R(G;A) consists
of two rows of distances from p1, p2 to all other points q ∈ V (G). Unordered collections of the
same size can be compared by the bottleneck match, which we adapt to the Simplexwise Bottleneck
Metric (SBM) on SDDs, see Definition B.3. If we collapse any l > 1 identical RDDs into a
single RDD with the weight l/

(
m
h

)
, SDD can be considered as a weighted probability distribution

of RDDs. Any finite distributions of different sizes can be compared by the EMD in Definition B.5.

Theorems 3.4 and 4.4 will extend the O(m1.5 logn m) algorithms for fixed clouds of m unordered
points in (Efrat et al., 2001, Theorem 6.5) to the harder case of isometry classes but keep polynomial
time in m for a fixed dimension n. All complexities are for a random-access machine (RAM) model.
Theorem 3.4 (computability and continuity of SDDs). (a) For h ≥ 1 and a graph G on m unordered
vertices, SDD(C;h) is an isometry invariant and can be computed in time O(mh+1/(h− 1)!).

(b) For any graphs G,G′ on m vertices and h ≥ 1, the metric SBM from Definition B.3 satisfies all
metric axioms on SDDs and can be computed in time O

(
(m2.5h +m2h+1.5 logh m)/h!

)
.

(c) For any graphs G,G′ and h ≥ 1, let SDD(G;h) and SDD(G′;h) have a maximum size l ≤(
m
h

)
= O(mh/h!) after collapsing identical RDDs. Then EMD from Definition B.5 satisfies all

metric axioms on SDDs and can be computed in time O(h!(h2 +m1.5 logh m)l2 + l3 log l).

(d) In a metric space, perturbing any vertex of a graph G within its ε-neighborhood changes
SDD(G;h) up to 2ε in the metrics SBM and EMD from Definitions B.3 and B.5, respectively.

Theorem 3.4(d) substantially generalizes the fact that perturbing two points in their ε-neighborhoods
changes the distance between these points by at most 2ε. We conjecture that SDD(G;h) is a com-
plete isometry invariant of all Euclidean graphs G ⊂ Rn for some h ≥ n − 1. If G is a complete
graph on a cloud C, (Kurlin, 2023, section 4) shows that SDD(C; 2) distinguished all infinitely many
known pairs in (Pozdnyakov et al., 2020, Fig. S4) of non-isometric m-point clouds C,C ′ ⊂ R3 that
have the same PDD(C) = SDD(C; 1). Section 4 extends SDD to a complete invariant SCD in Rn.
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4 COMPLETE INVARIANTS OF EUCLIDEAN GRAPHS UNDER RIGID MOTION

The Simplexwise Distance Distribution SDD from section 3 is based only on distances, hence cannot
distinguish mirror images of graphs in Rn. This section adapts SDD to a complete and continuous
invariant of Euclidean graphs under rigid motion in Rn by including signs that can detect orientation.

First, for any Euclidean graph G ⊂ Rn, we translate the center of mass 1
m

∑
p∈V (G) p of the vertex

set V (G) to the origin 0 ∈ Rn. Below we develop metrics on complete invariants of G ⊂ Rn up to
rotations around the origin 0 ∈ Rn. In some applications, molecular graphs can include a specific
heavy atom, which can be more convenient to choose for the origin instead of the center of mass.

For a molecular graph G in Rn, the simplest choice of a G-based distance is w(p, q)|p − q|, where
w(p, q) = 1 for bonded atoms and w(p, q) = −1 for non-bonded atoms p, q. We use inter-atomic
bonds in a smarter way to use the shortest path length dG(p, q) along the centered graph G ∪ {0},
where the center 0 of mass is connected to all atoms, and every edge has the Euclidean distance.

For any ordered sequence A = {p1, . . . , pn−1} ⊂ V (G), the distance matrix D(A∪{0}) in Defini-
tion 3.3 has size (n− 1)× (n− 1) and its last column can be chosen to include the distances from
the origin 0 ∈ Rn to the n− 1 vertices of A. So 0 is treated as an extra isolated vertex of G even if
one pi = 0. Any n vectors v1, . . . , vn ∈ Rn can be written as columns in the n × n matrix whose
determinant has a sign ±1 or 0 if v1, . . . , vn are linearly dependent. Any permutation ξ ∈ Sn on
indices 1, . . . , n is a composition of some t transpositions i ↔ j and has sign(ξ) = (−1)t.
Definition 4.1 (Simplexwise Centered Distribution SCD). Let G ⊂ Rn be any Euclidean graph
on m unordered vertices and center of mass 0 ∈ Rn. For any ordered subset A of vertices
p1, . . . , pn−1 ∈ V (G) and any q ∈ V (G) − A, the matrix R(C;A ∪ {0}) has the column of
the distances dG(q, p1), . . . , dG(q, pn−1), dG(q, 0), where d is the Euclidean distance. At the bot-
tom of this column, insert the sign of the determinant of the n × n matrix whose columns are
q−p1, . . . , q−pn−1, q. The resulting (n+1)×(m−n+1)-matrix is the oriented relative distance ma-
trix M(G;A∪{0}). Any permutation ξ ∈ Sn−1 of n−1 points of A acts on D(A), permutes the first
n−1 rows of M(G;A∪{0}) and multiplies every sign in the (n+1)-st row by sign(ξ). The Oriented
Centered Distribution OCD(G;A) is the equivalence class of pairs [D(A ∪ {0}),M(G;A ∪ {0})]
considered up to permutations ξ ∈ Sn−1 of points of A. The Simplexwise Centered Distribution
SCD(G) is the unordered set of the distributions OCD(G;A) for all

(
m

n−1

)
unordered (n−1)-vertex

subsets A ⊂ V (G). The mirror image SCD(G) is obtained from SCD(G) by reversing all signs.

Definition 4.1 needs no permutations for G ⊂ R2 as n − 1 = 1. Columns of M(G;A ∪ {0}) can
be lexicographically ordered without affecting the metric in Lemma C.4. If we collapse any l > 1
equal OCDs into a single OCD with the weight l/

(
m
h

)
, then SCD can be considered a weighted

probability distribution of several OCDs. To get a continuous metric on OCDs and then define
SBM,EMD on SCDs, we will multiply each sign by a continuous strength function below.
Definition 4.2 (strength σ(A) of a simplex). For a set A of n+1 points q = p0, p1, . . . , pn in Rn, let
p(A) = 1

2

∑
i̸=j |pi − pj | be half of the sum of all pairwise distances. Let V (A) denote the volume

the n-dimensional simplex on the set A. The strength is defined as σ(A) = V 2(A)/p2n−1(A).

For n = 1 and a set A = {p0, p1} ⊂ R, the volume is V (A) = |p0 − p1| = 2p(A), so σ(A) =
2|p0 − p1|. For n = 2 and a triangle A with sides a, b, c in R2, Heron’s formula gives σ(A) =
(p−a)(p−b)(p−c)

p2 , p = a+b+c
2 = p(A) is the half-perimeter of A. The strength σ(A) depends only on

the distance matrix D(A) from Definition 3.3 but we use the notation σ(A) for brevity. In any Rn,
the squared volume V 2(A) is expressed by the Cayley-Menger determinant in distances between
n+ 1 points of a set A. The strength σ(A) vanishes when the simplex on A degenerates.
Example 4.3 (SCD of tetrahedral graphs in Fig. 1). The vertex set V of each tetrahedral graph Ti,
i = 1, . . . , 6, in Fig. 1 are the vertices of a regular tetrahedron T that has six edges of length 1 and
circumradius R =

√
6
4 . Fix the center of mass of T at the origin 0 of R3. Let vT , vL, vB , vR denote

the four vertices of T at the top, left, bottom, and right corners, respectively, in Fig. 1.

By Definition 4.1 for n = 3 we consider 6 unordered subsets A of two vertices p1, p2 ∈ V . For each
A, the distance matrix D(A ∪ {0}) on the triangle p1, p2, 0 has the same distances dG(p1, 0) =
−R = dG(p1, 0), because 0 is considered an extra added vertex disjoint with Ti. The signed
distance dG(p1, p2) equals +1 if Ti includes the edge [p1, p2], otherwise dG(p1, p2) = −1.

7
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Graph T1. Case A = (p1, p2) = (vT , vL). The vertices vT , vL are joined by an edge in T1, so

dG(p1, p2) = +1 and D(A) =

(
+1 −R
∗ −R

)
, where we show only the upper triangle above the

zero diagonal in the full symmetric 3 × 3 matrix. The matrix M(T1;A ∪ {0}) =

 −1 −1
−1 −1
−R −R
+ −


has four rows (one for each of p1, p2, 0 and signs of determinants) and two columns (one for each
of two other vertices vB , vR). For A = (p1, p2) = (vB , vR), we get the same Oriented Centered
Distribution OCD(G;A) represented by the pair [D(A ∪ {0}),M(G;A ∪ {0})] above due to the
symmetry vT ↔ vB , vL ↔ vR in the graph T1. For the other four 2-vertex subsets including

A = (p1, p2) = (vT , vR), we get D(A) =

(
−1 −R
∗ −R

)
and M(T1;A∪{0}) =

 +1 −1
−1 +1
−R −R
+ −

.

An equality SCD(G) = SCD(G′) is interpreted as a bijection between unordered sets SCD(G) →
SCD(G′) matching all OCDs, which is best checked by SBM = 0 or EMD = 0 in Theorem 4.4.

Let a G-based distance dG(p, q) have a Lipschitz constant λ so that perturbing p, q up to ε changes
dG(p, q) up to λε. If dG is the Euclidean or signed distance, then λ = 2. If dG is the shortest path
distance in the centered graph G ∪ {0}, then λ = 4 because any p, q ∈ V (G) are joined via 0.

Theorem 4.4 (completeness and continuity of SCD). (a) The Simplexwise Centered Distribution
SCD(G) is a complete isometry invariant of a Euclidean graph G ⊂ Rn on m unordered vertices
with a center of mass at the origin 0 ∈ Rn, and can be computed in time O(mn/(n − 4)!). So any
Euclidean graphs G,G′ ⊂ Rn are related by rigid motion (isometry, respectively) if and only if
SCD(G) = SCD(G′) (SCD(G) equals SCD(G′) or its mirror image SCD(G′), respectively).

(b) For any graphs G,G′ on m vertices in Rn, the metric SBM(G,G′) from Definition C.5 satisfies
all metric axioms and can be computed in time O

(
(m2.5(n−1) +m2n−0.5 logn m)/(n− 1)!

)
.

(c) Let SCDs have a maximum size l ≤
(

m
n−1

)
after collapsing equal OCDs. Then EMD satisfies

all metric axioms on SCDs and can be computed in time O((n−1)!(n2+m1.5 logn m)l2+ l3 log l).

(d) In Rn, perturbing any vertex of a graph G within its ε-neighborhood changes SCD(G) up to λε
in the metrics SBM and EMD from Definitions C.5 and B.5, respectively.

5 EXPERIMENTS ON MOLECULES AND A DISCUSSION OF SIGNIFICANCE

Isabelle Guyon’s keynote at NeurIPS 2022 highlighted that no papers would be accepted if all error
bars were included. This paper is very different due to complete solutions, not incremental im-
provements. Almost all past work on the QM9 database of 130K+ (130,808) molecules focused
on lowering the errors of property predictions by optimizing millions of parameters, see Pinheiro
et al. (2020); Lim et al. (2022); Stärk et al. (2022). Even if the error becomes 0, this experimental
outcome is restricted to a specific dataset. The real problem is to find new molecules with the best
(not yet known) properties, not to predict the (already known) properties of the existing molecules.

This section describes three advances that were impossible to achieve by any past tools on QM9: (1)
the invariants from Problem 1.1 detected the first (near-)duplicates, (2) the Lipschitz continuity of
properties vs structure is confirmed for Problem 2.1, and (3) the continuous spaces RGS(R3;m) of
m-atom graphs have detectable deepest minima of energy surrounded by high energy barriers.

QM9 has nearly a billion (873,527,974) pairs of molecules with the same number of atoms. We
started all comparisons by computing the simplest L∞ metric (max abs difference of corresponding
coordinates) on SDVs, then computed 8,735,279 EMD distances on PDDs of the 1% closest pairs,
and 10,000 SBM distances on SCDs of the top closest pairs. Table 1 shows many (near-)duplicates
whose invariants differ only by floating-point errors in fractions of 1Å ≈ smallest bond length.

The supplementary materials include readme.txt describing the technical specifications of the ma-
chine, running times, C++/Python code, and tables of distances within the allowed limit of 100MB.
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Table 1: Pairs of near-duplicate molecules in QM9 for different thresholds and distances.

distances/thresholds ≤ 0.1Å ≤ 0.01Å ≤ 10−3Å ≤ 10−4Å ≤ 10−5Å ≤ 10−6Å
L∞ metric on SDVs 1315 235 pairs 177 pairs 106 pairs 53 pairs 11 pairs
EMD on PDDs 239 201 pairs 123 pairs 66 pairs 21 pairs 1 pair
SBM on SCDs 1334 239 pairs 206 pairs 127 pairs 67 pairs 7, SBM = 0

The continuous metrics are compared in Fig. 8 and allowed us to analyse QM9 within the continuous
space ∪29

m=3RGS(R3;m) of m-atom graphs. Fig. 6 and Table 2 quantitatively justify the Lipschitz
continuity of molecular properties, most importantly the free energy G, which characterizes stability.

Figure 6: Continuity of the QM9 free energy vs L∞ SDV, EMD PDD, SBM SCD, see Table 2.

Table 2: The Lipschitz continuity of every QM9 property P is confirmed in Problem 2.1 for each
distance d as |P (G)− P (G′)| ≤ SPF · d(G,G′) for all d ≤ SPD (structure-property deviation).

bounds/properties free energy G enthalpy H energy U energy U0 energy ZPVE
SPD L∞ SDV 0.046 0.046 0.046 0.055 0.074
SPF L∞ SDV 8.96 8.80 8.80 61.54 0.594
SPD EMD PDD 0.48 0.36 0.36 0.484 0.705
SPF EMD PDD 1.29 1.26 1.26 5.64 0.051
SPD SBM SCD 0.056 0.055 0.055 0.055 0.050
SPF SBM SCD 3.33 3.40 3.40 49.63 0.144

Fig. 7 (left) shows the energy landscape of QM9 in two well-defined coordinates x, y expressed via
the minimum, median, and maximum of inter-atomic distances, see other heatmaps in appendix A.

Figure 7: QM9 is projected to x, y expressed via inter-atomic distances. Left: colored by the
free energy G, which determines molecular stability. Middle: colored by the energy barrier (min
difference with 5 neighbors by L∞ SDV), only 43 molecules have high barriers ≥ 5. Right: colored
by the min absolute slope (over 5 neighbors by L∞ SDV), another way to find deep local minima.

Fig. 7 (middle) reveals the landscape of QM9 is mostly flat and only a few molecules (shown in red)
are deep energy minima. We thank all reviewers for their valuable time and helpful suggestions.
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The main contribution is the mathematical proof of Theorems 3.4 and 4.4 establishing the first
full solution to Problem 1.1. All experimental features in Geometric Deep Learning Satorras et al.
(2021); Li et al. (2021); Aronsson (2022); Cohen et al. (2019) guarantee only the simplest condition
(invariance), while Theorem 4.4 satisfies the much stronger and harder conditions in Problem 1.1.

A EXTRA EXPERIMENTS ON MOLECULAR GRAPHS FROM SECTION 5

Fig. 8 shows that the new metric SBM on complete invariants SCD from Theorem 4.4 differs from
the past distances on the weaker invariants SDV and PDD, which are still useful due to their speed.

Figure 8: Distances between weaker invariants vs the complete invariant SCD for QM9 molecules.
Left: Simplexwise Bottleneck Metric SBM SCD vs EMD PDD. Right: L∞ SDV vs SBM SCD.

The size of the invariants SDV,PDD,SCD depends on the number m of vertices in a given graph
G. However, we can compare the stronger invariants PDD and SCD for different values of m.
Indeed, the Earth Mover’s Distance (EMD) and more general Vaserstein metrics Vaserstein (1969)
work for both PDD and SCD as weighted distributions of any finite size. This comparison splits the

12
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vertices from V (G) into parts (subvertices) that are optimally ‘transported’ to a splitting of another
vertex set V (G′). In our main application for molecular graphs, we compare molecules without
subdividing by atoms, hence the number m of atoms will be fixed for each comparison. However,
to visualize all molecules from QM9 in a common space, we can consider two simplest invariants:
x is the average length of all edges in a graph G, while y is the average length of all non-edges in G.

Figure 9: The visualization of all 130K+ molecular graphs in QM9 by continuous isometry invari-
ants.

Fig. 9 shows the heat map of all 130K+ molecular graphs from QM9, where the colour of every
pixel indicates the number of molecules whose invariant values (x, y) fall into this pixel. The units
are Angstroms, where 1Å = 10−10 meter. Fig. 9 is not a dimensionality reduction when coordinates
depend on data, but is a true projection to the space of the well-defined isometry invariants (x, y).
Since this projection from a high-dimensional space loses some data for better visibility, stronger
invariants (such as complete SCD) are needed to further explore hot spots (dark pixels).

Any black pixel in Fig. 9 defines a subgroup of about 50 molecules that have close values of the
distance invariant (x, y), but all these molecules can be still non-isometric and were distinguished
by the SDV. Fig. 12 show the heatmaps for the largest subsets with m = 17, 18, 19 atoms.

B PROOFS OF ALL RESULTS FROM SECTION 3 FOR METRIC GRAPHS

Main classification Theorem 3.4 about the Simplexwise Distance Distributions will use two metrics,
see Definitions B.3 and B.5, which also require a base metric on simpler Relative Distance Dis-
tributions in Lemma B.1 below. The m − h permutable columns of the matrix R(G;A) in RDD
from Definition 3.3 can be interpreted as m − h unordered points in Rh. Since any isometry is bi-
jective, the simplest metric respecting bijections is the bottleneck distance, which is also called the
Wasserstein metric W∞. For any clouds C,C ′ ⊂ Rn of m unordered points, the bottleneck distance
W∞(C,C ′) = inf

g:C→C′
sup
p∈C

||p− g(p)||∞ is minimized over all bijections g : C → C ′.
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Figure 10: The heatmap of all 17394 molecular graphs with 17 atoms in the database QM9.

Lemma B.1 (the max metric M∞ on RDDs). In any metric space, for any graphs on
m vertices and ordered h-vertex subsets A ⊂ V (G) and A′ ⊂ V (G′), set d(ξ) =
max{L∞(ξ(D(A)), D(A′)),W∞(ξ(R(G;A)), R(G′;A′))} for a permutation ξ ∈ Sh on h points.
Then the max metric M∞(RDD(G;A),RDD(G′;A′)) = min

ξ∈Sh

d(ξ) satisfies all metric axioms on

RDDs from Definition 3.3 and can be computed in time O(h!(h2 +m1.5 logh m)).

Proof of Lemma B.1. The first metric axiom says that the Relative Distance Distribu-
tions RDD(G;A) and RDD(G′;A′) are equivalent by Definition 3.3 if and only if
M∞(RDD(G;A),RDD(G′;A′)) = 0 or d(ξ) = 0 for some permutation ξ ∈ Sh. Then d(ξ) = 0 is
equivalent to ξ(D(A)) = D(A′) and ξ(R(G;A)) = R(G′;A′) up to a permutation of columns due
to the first axiom for the bottleneck distance W∞. The last two conclusions mean that the Relative
Distance Distributions RDD(G;A),RDD(G′;A′) are equivalent by Definition 3.3.

The symmetry axiom follows since any permutation ξ is invertible. To prove the triangle inequality

M∞(RDD(G;A),RDD(G′;A′))+
M∞(RDD(G′′;A′′),RDD(G′;A′)) ≥
M∞(RDD(G;A),RDD(G′′;A′′)),

let ξ, ξ′ ∈ Sh be optimal permutations for the M∞ values in the left-hand side above. The triangle
inequality for L∞ says that

L∞(ξ(D(A)), D(A′))+
L∞(ξ′(D(A′′)), D(A′)) ≥
L∞(ξ(D(A)), ξ′(D(A′′))) =
L∞(ξ′−1ξ(D(A)), D(A′′)),

similarly for the bottleneck distance W∞ introduced before Lemma B.1. Taking the maximum of
L∞,W∞ preserves the triangle inequality. Then M∞(RDD(G;A),RDD(G′′;A′′)) = min

ξ∈Sh

d(ξ)
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Figure 11: The heatmap of all 17836 molecular graphs with 18 atoms in the database QM9.

cannot be larger than d(ξ′−1ξ) for the composition of the permutations above, so the triangle in-
equality holds for M∞. For a fixed permutation ξ ∈ Sh, the distance L∞(ξ(D(A)), D(A′)) re-
quires O(h2) time. The bottleneck distance W∞(ξ(R(C;A)), R(C ′;A′)) on the h × (m − h)
matrices ξ(R(G;A)) and R(G′;A′) with permutable columns can be considered as the bottleneck
distance on clouds of (m− h) unlabelled points in Rh, so W∞(ξ(R(G;A)), R(G′;A′)) needs only
O(m1.5 logh m) time by (Efrat et al., 2001, Theorem 6.5). The minimization over all ξ ∈ Sh gives
the final factor h!

For any metric graph G on a fixed number m of vertices, the Simplexwise Distance Distribution
SDD(G;h) is an unordered collection of the same number

(
m
h

)
of simpler distributions RDD.

We can define many metrics on SDDs. The simplest approach for any graphs with the same number
m of vertices is to apply the Simplexwise Bottleneck Metric SBM from Definition B.3.

Alternatively, if our graphs have different numbers of vertices, their SDDs can have different sizes
and can become smaller after collapsing identical RDDs and assigning weights.

Any finite weighted distributions can be continuously compared by the Earth Mover’s Distance
EMD from Definition B.5. Firstly, we introduce the simpler metric on unordered collections of
equal sizes. Definition B.2 recalls the bottleneck match for a weighted bipartite graph.
Definition B.2 (bottleneck match BM(Γ)). Let Γ be a complete bipartite graph with m white ver-
tices and m black vertices so that every white vertex is connected to every black vertex by a single
edge e of a weight w(e) ≥ 0. A vertex matching in Γ is a collection E of m disjoint edges (with
distinct vertices) of Γ. The weight W (E) = max

e∈E
w(e) is the largest weight of an edge in E. The

bottleneck match BM(Γ) = min
E

W (E) is the minimum weight of a vertex matching E in Γ.

Since Γ is bipartite, any edge from a vertex matching E in Γ joins a white vertex with a black vertex.
Then BM(Γ) is minimized over bijections E between all white vertices and all black vertices of G.
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Figure 12: The heatmap of all 18336 molecular graphs with 19 atoms in the database QM9.

Definition B.3 builds a weighted bipartite graph Γ(G,G′) on all Relative Distance Distributions
(RDDs) of given graphs G,G′ and then introduces the Simplexwise Bottleneck Metric on SDDs of
G,G′ as the bottleneck match BM of Γ(G,G′) with weights defined by the metric M∞ on RDDs.

Definition B.3 (SBM : Simplexwise Bottleneck Metric on SDDs). Let h ≥ 1 and G,G′ be any
graphs on m unordered vertices in a metric space. For each graph, consider one of

(
m
h

)
un-

ordered subsets of h vertices in G,G′, which form arbitrarily ordered sequences A,A′, respec-
tively. The complete bipartite graph Γ(G,G′) has

(
m
h

)
white vertices and

(
m
h

)
black vertices. Then

any edge e of Γ(G,G′) has endpoints associated with RDD(G;A) and RDD(G′;A′), and the
weight defined as w(e) = M∞

(
RDD(G;A), RDD(G′;A′)

)
. The Simplexwise Bottleneck Met-

ric SBM(SDD(G;h),SDD(G′;h)) = BM(Γ(G,G′)) is the bottleneck match of Γ(G,G′).

Lemma B.4 (metric axioms for SBM on SDDs). The Simplexwise Bottleneck Metric SBM(S,Q)
from Definition B.3 satisfies all metric axioms on Simplexwise Distance Distributions S,Q.

Proof of Lemma B.4. The coincidence axiom means that SBM(S,Q) = 0 if and only if the un-
ordered distributions S,Q are equal. Indeed, if S,Q can be matched by a permutation, we get a
vertex matching E of Γ(S,Q) whose all edges have weights w(e) = 0 Definitions B.2 and B.3
imply that SBM(S,Q) = BM(Γ(S,Q)) = 0. Conversely, if SBM(S,Q) = BM(Γ(S,Q)) = 0,
there is a vertex matching E in Γ(S,Q) with all w(e) = 0. This matching E defines a required
bijection S → Q. The symmetry axiom SBM(S,Q) = SBM(Q,S) follows from Definition B.3
and the symmetry of M∞ in Lemma B.1.

To prove the triangle inequality SBM(S,Q)+SBM(Q,T ) ≥ SBM(S, T ), let ESQ, EQT be optimal
vertex matchings in the graphs Γ(S,Q),Γ(Q,T ), respectively, such that SBM(S,Q) = W (ESQ)
and SBM(Q,T ) = W (EQT ), see Definition B.2. The composition ESQ ◦EQT is a vertex matching
in Γ(S, T ), so W (ESQ ◦ EQT ) ≥ SBM(S, T ). It suffices to prove that

W (ESQ) +W (EQT ) ≥ W (ESQ ◦ EQT ).

16



Under review as a conference paper at ICLR 2024

Let eST be an edge with a largest weight from ESQ ◦ EQT , so W (ESQ ◦ EQT ) = w(eST ). The
edge eST can be considered the union of edges eSQ ∈ ESQ and eQT ∈ EQT . By the triangle
inequality for M∞ from Lemma B.1: w(eSQ)+w(eQT ) ≥ w(eST ) = W (ESQ ◦EQT ) implies that
W (ESQ) +W (EQT ) ≥ W (ESQ ◦ EQT ) because both terms on the left-hand side are maximized
for all edges (not only eSQ, eQT ) from ESQ, EQT .

Definition B.5 below makes sense for any weighted distributions of the form
{[w1, R1], . . . , [wm, Rm]}, where R1, . . . , Rm are objects with a base metric µ and weights

w1, dots, wm ∈ [0, 1], respectively, satisfying
m∑
i=1

wi = 1. For example, objects Ri can be the rows

of the matrix PDD (Pointwise Distance Distribution) with the base metric L∞(u, v) = |u − v|∞
equal to the maximum absolute difference between corresponding coordinates of vectors u, v.

Definition B.5 (EMD). Let S = {[wi(S), Ri(S)]}m(S)
i=1 and Q = {[wi(Q), Ri(Q)]}m(Q)

i=1 be finite
weighted distributions. A flow from S to Q is an m(S) ×m(Q) matrix whose element fij ∈ [0, 1]
represents a partial flow from Ri(S) to Rj(Q). The Earth Mover’s Distance is the minimum cost

EMD(S,Q) =
m(S)∑
i=1

m(Q)∑
j=1

fijµ(Ri(S), Rj(Q)) for fij ∈ [0, 1] subject to
m(Q)∑
j=1

fij ≤ wi(S) for

i = 1, . . . ,m(S),
m(S)∑
i=1

fij ≤ wj(Q) for j = 1, . . . ,m(Q), and
m(S)∑
i=1

m(Q)∑
j=1

fij = 1.

The first condition
m(Q)∑
j=1

fij ≤ wi(S) means that not more than the weight wi(S) of the component

Ri(S) ‘flows’ into all components Rj(Q) via ‘flows’ fij , j = 1, . . . ,m(Q). Similarly, the second

condition
m(S)∑
i=1

fij = wj(Q) means that all ‘flows’ fij from Ri(S) for i = 1, . . . ,m(S) ‘flow’ into

Rj(Q) up to the maximum weight wj(Q). The last condition
m(S)∑
i=1

m(Q)∑
j=1

fij = 1 forces to ‘flow’ all

rows Ri(S) to all rows Rj(Q). The EMD satisfies all metric axioms, see the appendix in Rubner
et al. (2000), needs O(m3 logm) time for distributions of a maximum size m and is approximated
in O(m) time, see Shirdhonkar & Jacobs (2008); Sato et al. (2020).

We split the proof of Theorem 3.4 into the four shorter parts below:

(a) the invariance and time complexity of the Simpexwise Distance Distribution SDD(G;h);

(b) metric axioms and the time complexity for the Simplexwise Bottleneck Metric (SBM) on SDDs;

(c) metric axioms and the time complexity for the Earth Mover’s Distance (EMD) on SDDs;

(d) the Lipschitz continuity of SDD in SBM and EMD.

Proof of Theorem 3.4(a). Any isometry G → F preserves distances, hence induces a bijection
SDD(G;h) → SDD(F ;h) for h ≥ 1.

By Definition 3.3, for any h ≥ 1 and a graph G on m unlabelled vertices in a metric space, the Sim-
plexwise Distance Distribution SDD(G;h) of consists of

(
m
h

)
= m!

h!(m−h)! = O(mh/h!) Relative
Distance Distributions RDD(G;A) for any unordered subset A ⊂ V (G) of h vertices.

For any order of the vertices in A, every RDD(G;A) consists of the distance matrix D(A), which
needs O(h2) time and h× (m−h) matrix R(G;A), which needs h(m−h) time. Since h ≤ m, the
extra factor O(hm) gives the final time O(mh+1/(h− 1)!) for SDD(G;h).

Proof of Theorem 3.4(b). The complete bipartite graph Γ(G,G′) in Definition B.3 has V = 2
(
m
h

)
=

O

(
mh

h!

)
vertices and E = O

(
m2h

(h!)2

)
edges. The weight w(e) of each edge e equal the met-

ric M∞, which needs time O((h2 + m1.5 logh m)h!) by Lemma B.1. Since h is much smaller
than m, we can assume that h2 ≤ O(m1.5 logh m) and drop h2 in further complexities. So we
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computed the full graph Γ(G,G′) in time O

(
m2h+1.5

h!
logh m

)
. After that, the bottleneck match

BM(Γ(G,G′)) can be computed by Hopcroft & Karp (1973) in time O(E
√
V ) = O

(
m2.5h

(h!)2.5

)
.

The total time for SBM(SDD(G;h),SDD(G′;h)) = BM(Γ(G,G′)) in Definition B.3 has the up-

per bound O

(
m2h+1.5

h!
logh m

)
+O

(
m2.5h

(h!)2.5

)
= O

(
m2.5h +m2h+1.5 logh m

h!

)
.

Proof of Theorem 3.4(c). The metric axioms for the Earth Mover’s Distance (EMD) are proved in
the appendix of Rubner et al. (2000) assuming the metric axioms for the underlying distance d, which
is the metric M∞ from Lemma C.4 in our case. The time O(h!(h2 +m1.5 logh m)l2 + l3 log l) for
EMD of a maximum size l follow from the time O((h2 +m1.5 logh m)h!) for M∞ in Lemma B.1,
after multiplying by a quadratic factor for the size of cost matrices and adding near-cubic time, see
Fredman & Tarjan (1987); Goldberg & Tarjan (1987).

The Lipschitz continuity of SDD in Theorem 3.4(d) needs Lemma B.6 for simpler distributions.
Lemma B.6 (Lipschitz continuity of RDD(G;A)). Let A be an ordered sequence of h ≥ 1 vertices
in a graph G in a metric space. Let A′ and G′ be obtained from A and G, respectively, by perturbing
every vertex in its ε-neighborhood. Then the Relative Distance Distribution changes in the metric
from Lemma B.1 by at most 2ε, so M∞(RDD(G;A),RDD(G′;A′)) ≤ 2ε.

Proof. Order all vertices of the given graphs G,G′ so that every vertex pi ∈ V (G) has the
same index as its perturbation p′i ∈ V (G′). In the given metric space, the G-based distance
dG(pi, pj) between any vertices in V (G) changes under perturbation by at most 2ε so that
|dG(pi, pj) − dG(p

′
i, p

′
j)| ≤ 2ε, which also holds for negative distances of non-edges. The 1-1

correspondence pi ↔ p′i induces the (trivial) permutation ξ on h vertices and another (trivial) per-
mutation on m − h columns of the matrix R(G;A). For these fixed permutations, both distances
L∞(ξ(D(A)), D(A′)) and W∞(ξ(R(G;A)), R(G′, A′)) in Lemma B.1 have the upper bound 2ε
because all corresponding elements in the underlying matrices change by at most 2ε. Taking the
minimum for all permutations in Lemma B.1 gives the required upper bound of 2ε for M∞.

Theorem 3.4(d) substantially generalizes the fact that perturbing two points in their ε-neighborhoods
changes the Euclidean distance between these points by at most 2ε.

Proof of Theorem 3.4(d). The upper bound of Lemma B.6 extends to SBM in Definition B.3 and
EMD in Definition B.5 because all distances change by at 2ε and the total weight of all flows is 1,
so SBM(SDD(G;h),SDD(G′;h)) ≤ 2ε and EMD(SDD(G;h),SDD(G′;h)) ≤ 2ε.

C PROOFS OF ALL RESULTS FROM SECTION 4 FOR EUCLIDEAN GRAPHS

The comprehensive book “Euclidean Distance Geometry” (Liberti & Lavor, 2017, Chapter 3) dis-
cusses realizations in Rn of a complete graph with ordered vertices given by a full distance matrix.

The case of unordered vertices is much harder. Lemma C.2(a) and later results hold for all graphs
including degenerate ones, for example, when three vertices points are in a straight line.

The affine dimension 0 ≤ aff(A) ≤ n of a point cloud A = {p1, . . . , pm} ⊂ Rn is the maximum
dimension of the vector space generated by all inter-point vectors pi − pj , i, j ∈ {1, . . . ,m}. Then
aff(A) is an isometry invariant and is independent of an order of points of A. Any cloud A of 2
distinct points has aff(A) = 1. Any cloud A of 3 points that are not in the same straight line has
aff(A) = 2. Any n − 1 points of A have aff ≤ n − 2. For example, any two distinct points in
A ⊂ R3 generate a straight line.

Lemma C.2(c) proves that OCD(G;A) suffices to reconstruct any Euclidean graph G ⊂ Rn with
the center of mass at the origin 0 ∈ Rn for a suitable ordered subset A ⊂ V (G) of n − 1 vertices.
In R2, any point p1 ̸= O(A) forms a suitable 1-vertex set A. In R3, one can choose any distinct
vertices p1, p2 ∈ V (G) so that the infinite straight line through p1, p2 avoids 0 ∈ Rn. If there are
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no such p1, p2, then G ⊂ R3 is contained in a straight line L, so aff(V (G)) = 1. In this degenerate
case, the stronger condition aff(V (G) ∪ {0}) = aff(V (G)) will help reconstruct G ⊂ L by using
any point p1 ̸= 0.

The first step is to reconstruct any ordered sequence from its square distance matrix in
Lemma C.2(a). Lemma C.1 provides a simple criterion for a matrix to be realizable by squared
distances of a point cloud in Rn.
Lemma C.1 (realization of distances). A symmetric m × m matrix of sij ≥ 0 with sii = 0 is
realizable as a matrix of squared distances between points p0 = 0, p1, . . . , pm−1 ∈ Rn if and only

if the (m − 1) × (m − 1) matrix gij =
s0i + s0j − sij

2
has only non-negative eigenvalues and

k ≤ n of them are positive. If yes, then gij = pi · pj is the Gram matrix of p1, . . . , pm−1, which are
uniquely determined in time O(m3) up to an orthogonal map in Rn.

Proof of Lemma C.1. We extend (Dekster & Wilker, 1987, Theorem 1) to the case m ≥ n + 1 and
give a reference for the time O(m3) to determine the points p1, . . . , pm−1 up to isometry in Rn.

The part only if ⇒. Let a symmetric matrix S consist of squared distances between points p0 =
0, p1, . . . , pm−1 ∈ Rn. For i, j = 1, . . . ,m− 1, the matrix G with the elements

gij =
s0i + s0j − sij

2
=

p2i + p2j − |pi − pj |2

2
= pi · pj

is the Gram matrix, which can be written as G = PTP , where the columns of the n × (m − 1)
matrix P are the vectors p1, . . . , pm−1 . For any vector v ∈ Rm−1, we have

0 ≤ |Pv|2 = (Pv)T (Pv) = vT (PTP )v = vTGv.

Since the quadratic form vTGv ≥ 0 for any v ∈ Rm−1, the matrix G is positive semi-definite
meaning that (Horn & Johnson, 2012, Theorem 7.2.7) G has only non-negative eigenvalues.

The part if ⇐. For any positive semi-definite matrix G, there is an orthogonal matrix Q such that
QTGQ = D is the diagonal matrix, whose m − 1 diagonal elements are non-negative eigenvalues
of G. The diagonal matrix

√
D consists of the square roots of eigenvalues of D on the diagonal. The

number of positive eigenvalues of G equals the dimension k = aff({p0, . . . , pm−1}) of the subspace
in Rn linearly spanned by p1, . . . , pm−1. We may assume that all k ≤ n positive eigenvalues of G
correspond to the first k coordinates of Rn. Since QT = Q−1, the given matrix G = QDQT =
(Q

√
D)(Q

√
D)T becomes the Gram matrix of the columns of Q

√
D. After removing the last

m−n−1 zero coordinates, these columns become vectors p1, . . . , pm−1 ∈ Rn, which are uniquely
determined up to an orthogonal map. Computing p1, . . . , pm−1 requires a diagonalization (Press
et al., 2007, section 11.5) of G in time O(m3).

Lemma C.2 extends (Widdowson & Kurlin, 2023, Lemma E.5) by proving a time for a point cloud
reconstruction based on Lemma C.1.
Lemma C.2 (reconstruction). (a) Any sequence of ordered points A = (p1, . . . , pm) in Rn can be
reconstructed (uniquely up to isometry) from the matrix of the Euclidean distances |pi − pj | in time
O(m3). If all distances are divided by R = max

i=1,...,m
|pi|, the reconstruction of A ⊂ Rn is unique up

to isometry and uniform scaling in Rn.

(b) If m ≤ n, the uniqueness of reconstructions in part (a) remains true if we replace isometry by
rigid motion in Rn.

(c) Any Euclidean graph G ⊂ Rn on m unlabeled vertices whose center of mass is the origin
0 ∈ Rn can be reconstructed (uniquely up to orientation-preserving rotations of Rn around 0) from
the Oriented Centered Distribution OCD(G;A) in time O(m3) for any ordered subset A ⊂ V (G)
of n − 1 vertices with aff(A ∪ {0}) = aff(V (G)). If aff(V (G)) = n, then aff(A ∪ {0}) = n − 1
suffices. The vertex set V (G) has a suitable subset A ⊂ V (G) in all cases.

Proof of Lemma C.2. (a) By translation, we can put the first point p1 at the origin 0 ∈ Rn. Let Γ be

the (m−1)×(m−1) matrix gij =
p2i + p2j − |pi − pj |2

2
= pi·pj constructed from squared distances
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between p1 = 0, . . . , pm for i, j = 2, . . . ,m. By Lemma C.1 if Γ has k ≤ n positive eigenvalues,
then p1 = 0, . . . , pm can be uniquely determined up to isometry in Rk ⊂ Rn in time O(m3). If
all distances are divided by the same radius R, the above construction guarantees uniqueness up to
isometry and uniform scaling.

(b) If m ≤ n, any mirror images of A ⊂ Rn after a suitable rigid motion in Rn can be assumed
to belong to an (n − 1)-dimensional hyperspace H ⊂ Rn, where they are matched by a mirror
reflection H → H with respect to an (n − 2)-dimensional subspace S ⊂ H , which is realized by
the 180◦ orientation-preserving rotation of Rn around S.

(c) We will reconstruct a Euclidean graph G ⊂ Rn from OCD(G;A∪{0}) so that the center of mass
of V (G) is the origin 0 ∈ Rn. If aff(V (G)) = k < n, the vertex set V (G) ⊂ Rn is contained in a k-
dimensional subspace, which can be assumed (up to rotation of Rn) to be the subspace Rk ⊂ Rn for
the first k of n coordinates in Rn. Since aff(A∪{0}) = k, some k vectors from the origin 0 to (say)
the first vertices p1, . . . , pk of A form a linear basis of Rk. The k vertices p1, . . . , pk are uniquely
reconstructed up to rotations around the origin 0 in Rk from D(A ∪ {0}) by part (b). Any other
vertex q ∈ V (G) − {p1, . . . , pk} is uniquely determined by its column the matrix M(G;A ∪ {0})
in Definition 4.1 as a unique intersection of the k+1 spheres S(pi; d(q, pi)) with the centers pi and
radii d(q, pi) for i = 0, . . . , k and p0 = 0,

In the generic case aff(V (G)) = n, the condition aff(A ∪ {0}) = n − 1 means that the vectors
p1, . . . , pn−1 from the origin 0 to the n − 1 vertices of A are linearly independent. The sequence
(p1, . . . , pn−1, 0) of n points including the origin 0 can be uniquely reconstructed from D(A∪{0})
up to rigid motion in Rn by part (b).

Any other vertex q ∈ V (G)−A is uniquely determined by its column in M(G;A∪{0}) as follows.
The n spheres S(pi; d(q, pi)) with the centers pi and radii d(q, pi) for i = 0, . . . , n− 1 and p0 = 0,
contain q and intersect in one or two points. We can uniquely choose q among these two options due
to the sign of the determinant (in the bottom row of OCD(G;A)) of the vectors q−p0, . . . , q−pn−1.

The presence (or absence) of an edge between any p, q ∈ V (G) is determined by the sign +1 (or
−1, respectively) of each distance dG(p, q) in the matrices D(A ∪ {0}) and M(G;A ∪ {0}).

Lemma C.2(b) for m = n = 3 implies that any triangle is determined by its sides up to rigid
motion in R3. For example, the sides 3, 4, 5 define a right-angled triangle whose mirror images are
not related by rigid motion inside a plane H ⊂ R3, but are matched by composing a suitable rigid
motion in H and a 180◦ rotation of R3 around a line in H .

Theorem C.3 says that the strength σ(A) of a simplex is roughly ‘linear’ in point coordinates of A.

Theorem C.3 (Lipschitz continuity of σ, proved in (Widdowson & Kurlin, 2023, Theorem 4.4)). Let
a cloud A′ be obtained from another (n+ 1)-point cloud A ⊂ Rn by perturbing every point within
its ε-neighborhood. Then |σ(A′)− σ(A)| ≤ 2εcn for a constant cn, where c2 = 2

√
3, c3 ≈ 0.43.

The strength σ(A) from Definition 4.2 will take care of extra signs in OCDs and allows us to prove
the analog of Lemma B.1 for a similar time complexity with h = n.

Theorem 4.4 needs the Lipschitz continuity of sσ(A), when a sign s ∈ {±1} from a bottom row
of OCD discontinuously changes while passing through a degenerate set A. The usual volume
of A is not Lipschitz continuous: consider the triangle with two vertices fixed at (±l, 0) and one
moving vertex (0, tε) for t ∈ [−1, 1]. The signed area of the triangle significantly changes from
−lε (unbounded because l can be large for any given small ε) to 0 (when t = 0 and the triangle
degenerates to 3 points in a line), then to lε (when t = 1). The change of the signed area is 2lε
while only one vertex is shifted by 2ε, so the Lipschitz constant in this example can be as large as
half-distance between given points.

Lemma C.4 (metric on OCDs). Using the strength σ from Definition 4.2, we consider the bottleneck
distance W∞ on the set of permutable m−n+1 columns of M(G;A∪{0}) as on the set of m−n+1

unordered points
(
v,

s

cn
σ(A ∪ {0, q})

)
∈ Rn+1. For another OCD′ = [D(A′∪{0});M(G′;A′∪

{0})] and any permutation ξ ∈ Sn−1 of indices 1, . . . , n − 1 acting on D(A ∪ {0}) and the first
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n− 1 rows of M(G;A ∪ {0}), set do(ξ) = max{L,W}, where

L = L∞

(
ξ(D(A ∪ {0})), D(A′ ∪ {0})

)
, W = W∞

(
ξ(M(G;A ∪ {0})),M(G′;A′ ∪ {0})

)
.

Then M∞(OCD,OCD′) = min
ξ∈Sn−1

do(ξ) satisfies all metric axioms on Oriented Centered Distri-

butions (OCDs) and can be computed in time O((n− 1)!(n2 +m1.5 logn m)).

The coefficient
1

cn
in front of σ(A∪{q}) normalizes the Lipschitz constant cn of σ to 1 in line with

changes of distances by at most 2ε when points are perturbed within their ε-neighborhoods.

Proof of Lemma C.4. The first metric axiom says that OCD(G;A),OCD(G′;A′) are equivalent by
Definition 4.1 if and only if M∞(OCD(G;A),OCD(G′;A′)) = 0 or d(ξ) = 0 for some permuta-
tion ξ ∈ Sn. Then d(ξ) = 0 is equivalent to ξ(D(A)) = D(A′) and ξ(M(G;A)) = M(G′;A′) up
to a permutation of columns due to the first axiom for W∞. The last two conclusions mean that the
Oriented Centered Distributions OCD(G;A),OCD(G′;A′) are equivalent by Definition 4.1. The
symmetry axiom follows since any permutation ξ is invertible. To prove the triangle inequality

M∞(OCD(G;A),OCD(G′;A′))+
M∞(OCD(G′′;A′′),OCD(G′;A′)) ≥
M∞(OCD(G;A),OCD(G′′;A′′)),

let ξ, ξ′ ∈ Sh be optimal permutations for the M∞ values in the left-hand side above. The triangle
inequality for L∞ says that

L∞(ξ(D(A)), D(A′))+
L∞(ξ′(D(A′′)), D(A′)) ≥
L∞(ξ(D(A)), ξ′(D(A′′))) =
L∞(ξ′−1ξ(D(A)), D(A′′)),

similarly for the bottleneck distance W∞. Taking the maximum of the metrics L∞,W∞ preserves
the triangle inequality. Then M∞(OCD(C;A),OCD(C ′′;A′′)) = min

ξ∈Sn

d(ξ) cannot be larger than

d(ξ′−1ξ) for the composition of the permutations above, so the triangle inequality holds for M∞.

For a fixed permutation ξ ∈ Sn−1, the distance L∞(ξ(D(A)), D(A′)) requires O(n2) time. The
bottleneck distance W∞(ξ(M(G;A)),M(G′;A′)) on the (n+1)× (m−h) matrices ξ(M(C;A))
and M(C ′;A′) with permutable columns can be considered the bottleneck distance on clouds of
(m − h) unlabeled points in Rh, so W∞(ξ(M(G;A)),M(G′;A′)) needs only O(m1.5 logh m)
time by (Efrat et al., 2001, Theorem 6.5). The minimization over all ξ ∈ Sn gives the factor n!

When computing the metric M∞ on OCDs, each of the m− n signs for a vertex q ∈ V (G)− A is
multiplied by the strength σ(A). The strength σ(A) in Definition 4.2 is computed from all pairwise
distances in D(A) via the Cayley-Menger determinant Sippl & Scheraga (1986).

One (n+2)× (n+2) determinant needs time O(n3) by Gaussian elimination. All m−n strengths
need O(mn3) time, which is smaller than the later time including the factors m1.5 and n! Then
m− n permutable columns of M(G;A) are considered as m− n unlabelled points in Rn+1, which
explains the extra factor logm coming from (Efrat et al., 2001, Theorem 6.5).

For any Euclidean graph G ⊂ Rn on a fixed number m of vertices, the Simplexwise Centered
Distribution SCD(G) is an unordered collection of the same number

(
m

n−1

)
of simpler distributions

OCD. Similarly to SDD of metric graphs, we apply the Simplexwise Bottleneck Metric SBM from
Definition C.5 to SCDs for any graphs with the same number m of vertices. The Earth Mover’s
Distance EMD from Definition B.5 allows us to continuously compare SCDs of different sizes,
which can become smaller after collapsing identical OCDs and assigning weights.

Definition C.5 (SBM : Simplexwise Bottleneck Metric on SCDs). Let G,G′ be any graphs on m
unordered vertices in Rn with centers of mass at the origin. For each graph, consider one of

(
m

n−1

)
unordered subsets of n−1 vertices in G,G′, which form arbitrarily ordered sequences A,A′, respec-
tively. The complete bipartite graph Γ(G,G′) has k =

(
m

n−1

)
white vertices and k black vertices.
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Then any edge e of Γ(G,G′) has endpoints associated with RDD(G;A) and RDD(G′;A′), and
the weight defined as w(e) = M∞

(
OCD(G;A), OCD(G′;A′)

)
. The Simplexwise Bottleneck

Metric SBM(SCD(G),SCD(G′)) = BM(Γ(G,G′)) is the bottleneck match of Γ(G,G′).

Lemma C.6 (metric axioms for SBM on SCDs). The Simplexwise Bottleneck Metric SBM(S,Q)
from Definition C.5 satisfies all metric axioms on Simplexwise Centered Distributions S,Q.

Proof of Lemma C.6. The coincidence axiom means that SBM(S,Q) = 0 if and only if the un-
ordered distributions S,Q are equal. Indeed, if S,Q can be matched by a permutation, we get a
vertex matching E of Γ(S,Q) whose all edges have weights w(e) = 0 Definitions B.2 and C.5
imply that SBM(S,Q) = BM(Γ(S,Q)) = 0. Conversely, if SBM(S,Q) = BM(Γ(S,Q)) = 0,
there is a vertex matching E in Γ(S,Q) with all w(e) = 0. This matching E defines a required
bijection S → Q. The symmetry axiom SBM(S,Q) = SBM(Q,S) follows from Definition C.5
and the symmetry of M∞ in Lemma C.4.

To prove the triangle inequality SBM(S,Q)+SBM(Q,T ) ≥ SBM(S, T ), let ESQ, EQT be optimal
vertex matchings in the graphs Γ(S,Q),Γ(Q,T ), respectively, such that SBM(S,Q) = W (ESQ)
and SBM(Q,T ) = W (EQT ), see Definition B.2. The composition ESQ ◦EQT is a vertex matching
in Γ(S, T ), so W (ESQ ◦ EQT ) ≥ SBM(S, T ). It suffices to prove that

W (ESQ) +W (EQT ) ≥ W (ESQ ◦ EQT ).

Let eST be an edge with a largest weight from ESQ ◦ EQT , so W (ESQ ◦ EQT ) = w(eST ). The
edge eST can be considered the union of edges eSQ ∈ ESQ and eQT ∈ EQT . By the triangle
inequality for M∞ from Lemma C.4: w(eSQ)+w(eQT ) ≥ w(eST ) = W (ESQ ◦EQT ) implies that
W (ESQ) +W (EQT ) ≥ W (ESQ ◦ EQT ) because both terms on the left-hand side are maximized
for all edges (not only eSQ, eQT ) from ESQ, EQT .

We split the proof of Theorem 4.4 into the four shorter parts below:

(a) the completeness and time complexity of the Simpexwise Centered Distribution SCD(G);

(b) the time complexity of the Simplexwise Bottleneck Metric (SBM) on SCDs;

(c) the time complexity of the Earth Mover’s Distance (EMD) on SCDs;

(d) the Lipschitz continuity of SCD in SBM and EMD.

Proof of Theorem 4.4(a). As usual, we assume both vertex sets V (G) and V (G′) have their centers
of mass at the origin 0 ∈ Rn. The proof of invariance and completeness consists of the two parts.

Part only if ⇒ (invariance). Any orientation-preserving rotation f of Rn around the origin 0 bijec-
tively maps the Euclidean graph G to G′ and any subset A ⊆ V (G) to A′ = f(A) ⊆ V (G′) =
f(V (G)). Since all distances and signs of determinants are preserved, f induces a bijection
OCD(G) → OCD(G′). Similarly, any orientation-reversing orthogonal map G → G′ indices a
bijection OSD(G) → OSD(G′) = OSD(Ḡ′).

Part if ⇐ (completeness). Any bijection OCD(G) → OCD(G′) matches OCD(G;A ∪ {0})
with OCD(G′;A′ ∪ {0}) for some subsets A ⊂ V (G) and A′ ⊂ V (G′) of n − 1 vertices.
By Lemma C.2(c) any equality OCD(C;A) = OCD(C ′;A′) for n-vertex subsets A,A′ with
aff = n − 1 guarantees that G,G′ are related by rigid motion in Rn. In the degenerate case,
when all subsets have aff < n − 1, hence the vertex set V (G), V (G)′ belong to a k-dimensional
subspace of Rn for k < n, we apply the reconstruction of Lemma C.2 to Rk instead of Rn. In the
case OSD(C) = OSD(C ′), we get an equality OCD(G;A) = OCD(Ḡ′;A′), where Ḡ′ is a mirror
image of G′. Hence G,G′ are related by an orientation-reversing orthogonal map in Rn.

To compute OCD(C), we consider
(

m
n−1

)
= m!

(n−1)!(m−n+1)! unordered subsets A ⊂ V (G) of n−1

vertices whose order is arbitrarily chosen. For each fixed A, the matrix D(A ∪ {0}) of n(n−1)
2

pairwise distances needs O(n2) time. The Oriented Centered Distribution OCD(G;A) = [D(A ∪
{0});M(C;A∪{0})] includes n(m−n+1) distances, and also m−n signs and strengths that each
requires determinant computations in time O(n3) by Gaussian elimination. So OCD(G;A) can be
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computed in time O(n3m). Multiplying the last time by the number
(

m
n−1

)
=

m!

(n− 1)!(m− n+ 1)!
of (n− 1)-vertex subsets A ⊂ V (G), the final time for the complete invariant SCD(G) is

O

(
m!

(n− 1)!(m− n+ 1)!
n3m

)
= O

(
m2(m− 1) . . . (m− n+ 2)

n3

(n− 1)!

)
= O

(
mn

(n− 4)!

)
as required.

Proof of Theorem 4.4(b). The complete bipartite graph Γ(G,G′) in Definition C.5 has V =

2
(

m
n−1

)
= O

(
mn−1

(n− 1)!

)
vertices and E = O

(
m2(n−1)

((n− 1)!)2

)
edges. The weight w(e) of each

edge e equal the metric M∞, which needs time O((n2 + m1.5 logn m)h!) by Lemma C.4. Since
n is much smaller than m, we can assume that n2 ≤ O(m1.5 logn m) and drop n2 in further

complexities. So we computed the full graph Γ(G,G′) in time O

(
m2n−0.5

(n− 1)!
logn m

)
. After

that, the bottleneck match BM(Γ(G,G′)) can be computed by Hopcroft & Karp (1973) in time

O(E
√
V ) = O

(
m2.5(n−1)

((n− 1)!)2.5

)
. The total time for SBM(SCD(G),SCD(G′)) = BM(Γ(G,G′))

is O
(
m2n−0.5

(n− 1)!
logn m

)
+O

(
m2.5(n−1)

((n− 1)!)2.5

)
= O

(
m2.5(n−1) +m2n−0.5 logn m

(n− 1)!

)
.

Proof of Theorem 4.4(c). The metric axioms for the Earth Mover’s Distance (EMD) are proved in
the appendix of Rubner et al. (2000) assuming the metric axioms for the underlying distance d,
which is the metric M∞ from Lemma C.4 in our case. The time complexity for EMD follows from
the time O(n!(n2 +m1.5 logn m)) for M∞ in Lemma C.4, after multiplying by a quadratic factor
for the size of cost matrices and adding near-cubic time for the exact computation of EMD, see
Fredman & Tarjan (1987); Goldberg & Tarjan (1987).

The Lipschitz continuity of SDD in Theorem 3.4(d) needs Lemma B.6 for simpler distributions.
Lemma C.7 (Lipschitz continuity of OCD(G;A)). Let A be an ordered sequence of n− 1 vertices
in a graph G in Rn. Let A′ and G′ be obtained from A and G, respectively, by perturbing every
vertex in its ε-neighborhood. Then the Oriented Centered Distribution changes in the metric M∞
from Lemma C.4 by at most λε, so M∞(OCD(G;A),OCD(G′;A′)) ≤ λε, where λ is the Lipschitz
constant of the G-based distance dG on vertices of G.

Proof. Order all vertices of the given graphs G,G′ so that every vertex pi ∈ V (G) has the same
index as its perturbation p′i ∈ V (G′). In Rn, the G-based distance dG(pi, pj) between any vertices
in V (G) changes under perturbation by at most λε so that |dG(pi, pj)− dG(p

′
i, p

′
j)| ≤ λε.

The 1-1 correspondence pi ↔ p′i induces the (trivial) permutation ξ on h vertices and another
(trivial) permutation on m− h columns of the matrix M(G;A). For these fixed permutations, both
distances L∞(ξ(D(A)), D(A′)) and W∞(ξ(M(G;A)),M(G′, A′)) in Lemma C.4 have the upper
bound λε because all corresponding elements in the underlying matrices change by at most λε.
Taking the minimum for all permutations in Lemma C.4 gives the required upper bound of λε for
M∞.

Proof of Theorem 4.4(d). The upper bound of Lemma C.7 extends to SBM in Definition B.3 and
EMD in Definition B.5 because all distances change by at λε and the total weight of all flows is 1,
so SBM(SCD(G),SDD(G′)) ≤ λε and EMD(SCD(G),SDD(G′)) ≤ 2ε.

Theorem C.3 was essential to justify a Lipschitz constant cn of the strength σ(A) so that the last
coordinates s

cn
σ(A ∪ {0}) change by at most 2ε when the bottleneck distance W∞ is computed on

columns in Lemma C.4.
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