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Abstract
Machine Unlearning (MU) aims at removing the
influence of specific data points from a trained
model at a fraction of the cost of full model re-
training. In this paper, we analyze the efficiency
of unlearning methods and establish the first up-
per and lower bounds on minimax computation
times for this problem, characterizing the perfor-
mance of the most efficient algorithm against the
most difficult objective function. Specifically, for
strongly convex objective functions and under the
assumption that the forget data is inaccessible
to the unlearning method, we provide a phase
diagram for the unlearning complexity ratio—a
novel metric that compares the computational cost
of the best unlearning method to full model re-
training. The phase diagram shows three regimes:
one where unlearning is too costly, one where
it’s trivial, and one where it outperforms retrain-
ing. These findings highlight the critical role of
factors such as data dimensionality, the number
of samples to forget, and privacy constraints in
determining the practical feasibility of unlearning.

1. Introduction
The growing use of personal data in machine learning raises
privacy concerns under regulations such as GDPR and
CCPA (Mantelero, 2013; Goldman, 2020). The obligation
to allow for individual data erasure may require retraining
models from scratch, which is costly (Cottier et al., 2024).

To mitigate this cost, Machine Unlearning (MU) aims to
remove the influence of specific training data—the “forget
set”— at a fraction of the cost of full retraining (Kong and
Chaudhuri, 2023). However, this “fraction” is not quantified
in the general literature. We thus propose to study the un-
learning complexity ratio: the ratio between the number of
steps needed for unlearning and retraining, denoted TU

e /TS
e

for a target excess risk e. This key measure of unlearning
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Figure 1. Schematic representation of the phase diagram for un-
learning, where e (resp. e0) is the target (resp. initial) excess risk,
and κϵ,δ the strength of the privacy constraint (see Section 4). We
describe the existence of three regimes of unlearning (IR, ER, TR).

efficiency evaluates the ability for unlearning algorithms to
reduce computational cost as compared to retraining. Estab-
lishing general bounds on this ratio is crucial for ensuring
the efficiency of MU, and is the subject of this paper.

Contributions. In this work, we :

• Introduce the unlearning complexity ratio (unlearning
time over retraining time), leveraging minimax opti-
mization complexity in MU for the first time.

• Provide the first lower bound for unlearning complex-
ity, answering an open problem in the literature (Al-
louah et al., 2024) and identifying a regime of ineffi-
ciency for unlearning (IR).

• Derive the first upper and lower bounds for the un-
learning complexity ratio, exhibiting a regime in which
unlearning is provably faster than retraining (ER).

• Identify a last regime where unlearning is trivial (TR).
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2. Related Work
Machine Unlearning (MU) is an emerging research field
focused on removing the influence of specific data from
trained models. A key distinction exists between empirical
methods, which aim for efficiency but offer no guarantees
(Kurmanji et al., 2024), and certified methods, which pro-
vide formal assurances of successful unlearning.

Certified unlearning methods fall into two main categories:
exact and approximate. Exact approaches, while offering
stronger guarantees, often require changes to the training
process, such as sharding (Bourtoule et al., 2021) or tree-
based structures (Ullah and Arora, 2023). In contrast, ap-
proximate methods balance utility and data removal. Many
of these approaches (Neel et al., 2021; Fraboni et al., 2024)
are built on the framework of Differential Privacy (DP)
(Dwork and Roth, 2014), which ensures robustness against
privacy attacks such as membership inference.

Comparisons with retraining from scratch are common in
the literature, as unlearning should be faster. However,
such comparisons are often empirical and lack theoretical
support (Hayes et al., 2024). Some recent studies have
started addressing this gap by analyzing computational costs
and utility trade-offs of different unlearning strategies (Izzo
et al., 2021; Chourasia and Shah, 2023; Allouah et al., 2024),
with differences in assumptions and goals.

3. Problem Setup
3.1. Learning and Unlearning Setups

Consider a supervised learning setting on a dataset D in
which our goal is to minimize the objective function

min
θ∈Rd

L(θ) := E [ℓ(θ, ξ)] , (1)

where ℓ : Rd×Rs → R is a loss function, θ ∈ Rd the vector
of model parameters, and ξ ∼ D the data. For a fraction
rf ∈ [0, 1], we decompose our distribution as follows,

D := rf Df +
(
1− rf

)
Dr , (2)

where Df is the distribution one wishes to remove (i.e., ,
the forget distribution), while Dr is the distribution that is
unaffected by the removal (i.e., , the retain distribution).

Assumption 1 (loss regularity). Let µ,L > 0, and R =
L/2µ. For any ξ ∈ Rs, the loss function ℓ(·, ξ) of Eq. (1) is
L-Lipschitz and µ-strongly convex on B(0, R).

Although not directly applicable to most neural networks,
these assumptions or even stronger counterparts have been
used in the literature (Huang and Canonne, 2023; Allouah
et al., 2024). We denote as Fsc(µ,L) the class of such loss
functions, abbreviated to Fsc when there is no ambiguity.

3.2. Iterative First-Order Algorithms

In this, section, we provide intuitive definitions for learn-
ing and unlearning algorithms. More rigorous definitions
are available in Appendix E. We will consider that both
types of algorithms are non-deterministic, iterative and first-
order. The set of learning (resp. (ϵ, δ)-unlearning, see Def
1) algorithms are referred to as A (resp. Uϵ,δ).

For a learning (resp. unlearning) algorithm A ∈ A
(resp. U ∈ Uϵ,δ), we denote as A(T, ℓ,Dr) (resp.
U(T, ℓ,Dr,Df )) the output of the learning (resp. unlearn-
ing) algorithm iterated T times on the loss ℓ with dataset
Dr. In the case of the learning algorithm, the initialization
is taken at random, whereas for the unlearning algorithm it
is taken as the unique minimizer of the loss ℓ on Dr ∪ Df .

3.3. Unlearning Guarantees

Unlearning aims at removing the impact of the forget set on
the trained model. We use a slightly modified version of the
DP-based definition introduced in Ginart et al. (2019).
Definition 1 ((ϵ, δ)-Unlearning). An unlearning algorithm
U ∈ Uϵ,δ satisfies (ϵ, δ)-Unlearning, if, for any triplet of
distributions (Dr,Df ,D′

f ), loss function ℓ, and for any
subset of outputs S ⊂ Rd, the following holds,

P[U(Dr,Df ) ∈ S] ≤ eϵ · P[U(Dr,D′
f ) ∈ S] + δ.

The values (ϵ, δ) are called the unlearning budget, where
a low budget means harder unlearning. We define κϵ,δ :=

ϵ−1
√

2 ln(1.25/δ) as the strength of the privacy constraint.

3.4. Minimax Computation Times

Let us start by introducing some key elements. First, we
define the time required to re-learn from scratch and to
unlearn. For a given excess risk threshold e, loss ℓ and
algorithms A ∈ A and U ∈ Uϵ,δ, one can define the time
needed to get an excess risk smaller than e as

TS
e (ℓ,A) := min

T∈N
{T ; E[Lr(A(T, ℓ,Dr))− L∗

r ] ≤ e} ,

TU
e (ℓ,U) := min

T∈N
{T ; E[Lr(U(T, ℓ,Dr,Df ))− L∗

r ] ≤ e} .

where Lr(θ) = Eξ∼Dr
[ℓ(θ, ξ)].

When studying the performance of an algorithm over a func-
tion class, one wants to study the worst-case performance
of any algorithm A and to find the algorithm minimizing
this worst case. Therefore, one can define the minimax
retraining time of algorithms in A over the class Fsc as

TS
e := inf

A∈A
sup
ℓ∈Fsc

TS
e (ℓ,A). (3)

In the same way, we define the minimax forget time of
unlearning algorithms in Uϵ,δ over the class Fsc as

TU
e := inf

U∈Uϵ,δ

sup
ℓ∈Fsc

TU
e (ℓ,U). (4)

2



Complexity Trade-offs in Machine Unlearning

4. Regimes of Unlearning Complexity
In this section, we provide lower and upper bounds for
the unlearning complexity ratio TU

e /TS
e . By doing so, we

identify regimes in which first-order unlearning methods
can-or cannot-be significantly faster than retraining.

4.1. Speed of Retraining from Scratch

We start with some preliminary results. In order for our
lower bounds to hold, we need a technical assumption,
which usually holds for continuous distributions, as long as
supp(Dr) and supp(Df ) do not cover the whole space Rs.

Assumption 2. (Flexible distributions) For any p ∈ [0, 1],
∃A ⊂ Rs s.t. P(ξr ∈ A) = p, where ξr ∼ Dr. Moreover,
there exists a distribution D′

f such that supp(Dr), supp(Df )
and supp(D′

f ) are two-by-two disjoint.

Learning is trivial (i.e., TS
e = 0) if e ≥ e0 := L2

8µ , as θ0 = 0
already satisfies the target excess risk. Additionally, when
it is not, learning speed is well-known: under Assumption
2, and if e < e0, we have TS

e = Θ
(
e0
e

)
. To claim that

an unlearning method is efficient will thus require it to
have complexity under O(e0/e). We will show that such
unlearning algorithms do exist in Section 4.4.

4.2. Trivial Unlearning Regime

We now start with the simplest case: for a high target ex-
cess risk e and low privacy constraint κϵ,δ, simply adding
Gaussian noise to the parameters of the model is sufficient.

Theorem 1 (Trivial regime). If the target excess risk verifies
e ∈

[
rf

1−rf

(
rf

1−rf
+
√
dκϵ,δ

)
e0, e0

)
, then

TU
e

TS
e

= 0 . (5)

This first regime corresponds to the blue area in Figure 1,
where unlearning can be performed with 0 gradient access.

4.3. Impossible Unlearning Regime

Conversely, we now show the existence of a regime in which
unlearning cannot asymptotically outperform retraining.

Theorem 2 (Impossible regime). Let δ ∈ [10−8, ϵ]. Under
Assumption 2, there exists a universal constant c > 0 such

that, if e < min

{
1, c

(
rf

1−rf

)2 (
1 + κ2

ϵ,δ

)}
e0, then

TU
e

TS
e

= Ω(1) . (6)

Theorem 2 provides a regime in which first-order unlearn-
ing methods cannot asymptotically outperform retraining.

This regime is delimited by a curve of type κϵ,δ ≥ α
√
e,

with α a constant, explaining our choice of representation
in Fig. 1. For low forget ratios rf ≪ 1, the unlearning
complexity ratio is lower bounded by a constant when e
is below a quantity proportional to r2f (1 + κ2

ϵ,δ)e0. In this
regime, removing even minimal parts of a dataset requires a
non-negligible retraining time. This may be an issue when
numerous small removals must be made to a model, as each
of these removals will incur a cost proportional to that of
its full retraining. Finally, when the target excess risk e
tends to 0, a direct corollary of Theorem 2 is that unlearning
cannot asymptotically outperform retraining, regardless of
the strength of the privacy constraint κϵ,δ .
Corollary 1. Within the hypothesis of Theorem 2, and for
rf ∈ (0, 1) and κϵ,δ ≥ 0 fixed, we have

lim inf
e→0

TU
e

TS
e

> 0 . (7)

In other words, the advantage of starting from θ∗ rather than
a random model reduces as e decreases, and until unlearning
cannot asymptotically outperform retraining .

4.4. Efficient Unlearning Regime

We have now identified that unlearning is trivial on one
end of the spectrum, while it is inefficient on the other.
We now characterize what happens between those two ex-
tremes by showing that a simple unlearning mechanism
achieves a good unlearning complexity ratio in this inter-
mediate regime. To do so, we derive an upper bound on
unlearning time using the unlearning algorithm “noise and
fine-tune” (see Algorithm 2), which is an adapted version
of Neel et al. (2021)’s perturbed gradient descent. Using
known learning convergence speeds, such a bound implies
an upper bound on the unlearning complexity ratio.
Theorem 3 (Efficient regime). For any e < e0, we have

TU
e

TS
e

= O

((
rf

1− rf

)2 (
1 + dκ2

ϵ,δ

) e0
e

)
. (8)

Theorem 3 showcases the possibility of efficient unlearn-
ing, with an unlearning complexity ratio proportional to
r2f . For low forget ratios rf ≪ 1, the “noise and fine-
tune” method outperforms retraining (i.e., TU

e < TS
e ) when

the target excess risk is above a quantity proportional to
r2f

(
1 + dκ2

ϵ,δ

)
e0, and we recover, up to a constant and

for a fixed dimension d, the regime in which unlearning
becomes possible in Theorem 2 (see Section 4.3). The com-
bination of both Theorem 2 and Theorem 3 thus shows that
r2f

(
1 + dκ2

ϵ,δ

)
e0 acts as a threshold for the target excess

risk before which efficient unlearning is impossible, and
above which unlearning becomes efficient (and even trivial
beyond rf (rf +

√
dκϵ,δ)e0).
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Figure 2. Experimental phase diagram of the unlearning complex-
ity ratio. We give estimates for TU

e and TS
e using the “noise and

fine-tune” (Algorithm 2) and SGD algorithms, respectively. We
display the value of their ratio as a function of κϵ,δ and e in log-log
scale. We notice the three regimes described in our theoretical
analysis: impossible (IR), efficient (ER), and trivial (TR).

4.5. Discussion

Overall, our analysis shows that there are three main
regimes—Trivial, Impossible, and Efficient—that describe
how unlearning time compares to retraining time, based
on the target excess risk e, the strength of the privacy con-
straint κϵ,δ and the forget ratio rf . Figure 1 illustrates these
regimes and their boundaries.

Since we rely on noising the model parameters to ensure
unlearning, our bound scales with

√
d, as is common in

differentially-private optimization (Bassily et al., 2014).
While natural, this dependence is not matched by our lower
bound in Theorem 2. We leave the exploration of this dis-
crepancy to future work.

5. Experiments
We experimentally investigate the landscape of the unlearn-
ing complexity ratio as a function of e and κϵ,δ .

5.1. Experimental Setting

In order to give an estimate of the unlearning complexity
ratio, we need to choose specific algorithms to represent
the learning algorithm class A as well as the unlearning
algorithm class Uϵ,δ . For the learning algorithm, we choose

the canonical stochastic gradient descent, as defined in (Gar-
rigos and Gower, 2023). For the unlearning algorithm, we
choose the “noise and fine-tune” algorithm (see Alg. 2)-the
one used to dervie the bound in Theorem 3.

We compare the learning and unlearning algorithms on the
Digit dataset, a subset of Alpaydin and Alimoglu (1996),
across various values of e and κϵ,δ. Using logistic regres-
sion with cross-entropy loss and L2 regularization, we train
until the error threshold e is met, starting from random ini-
tialization (learning) or a noised version of the optimum
(unlearning). We report the ratio of unlearning to retraining
time as a proxy for unlearning complexity.

5.2. Experimental Results

Figure 2 illustrates the empirical unlearning complexity
ratio. It displays the three regimes described in our theoret-
ical analysis. As expected, a high privacy budget coupled
with a permissive e allow for an immediate convergence of
unlearning. Additionally, taking e too small inevitably pre-
vents unlearning from outperforming retraining, regardless
of κϵ,δ .

6. Conclusion
In this paper, we study the efficiency of machine unlearning
through the lens of a novel metric —the unlearning com-
plexity ratio— which compares the worst-case convergence
speeds of the best unlearning and retraining algorithms. Our
analysis reveals three regimes. In one (TR), we show that
unlearning can be done “for free” (Theorem 1). In another
(IR), described by our lower bound on the unlearning com-
plexity ratio (Theorem 2), unlearning cannot asymptotically
beat retraining through gradient-based methods. In the last
regime (ER), our upper bound on the unlearning complexity
ratio shows that unlearning is possible at a small fraction of
the cost of retraining, a cost that scales with the square of
the fraction of forgotten samples (Theorem 3).

Empirical validation confirms these insights, showing the
utility of analysing unlearning through the minimax com-
plexity framework. Beyond unveiling fundamental limits
and opportunities, our results address an open question on
whether unlearning can outperform retraining—and under
what circumstances. We introduce the first bounds on the
unlearning complexity ratio, as well as the first lower bound
on unlearning time.

We hope that the framework and findings presented here
will stimulate further studies on machine unlearning, and
allow further analysis of a wider class of algorithms, objec-
tive functions, and data distributions. Specifically, lower-
bounding the unlearning complexity ratio for methods be-
yond the first order, relying on the forget set, or not verifying
Assumption 2 remains an open challenge.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning and Unlearning. There are many po-
tential societal consequences of our work, none which we
feel must be specifically highlighted here.
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A. Upper bounds

Proof of Theorem 1. Let e ≥ rf
1−rf

(
rf

1−rf
+
√
dκϵ,δ

)
e0.

Let the unlearning algorithm consist in simply adding Gaussian noise to the previous optimum θ∗. By application of the
Gaussian mechanism (Dwork and Roth, 2014), adding i.i.d. Gaussian noise with standard deviation κϵ,δ ∥θ∗

r − θ∗∥ ensure
(ϵ, δ)-Unlearning of the forget set. Using the bound from Lemma C.1, we sample:

g ∼ N (0, (κϵ,δ
rf

1− rf

L

µ
)2Id), (9)

where Id is the identity matrix in Rd.

Let θ̂ := θ∗ + g. We can then bound the expected loss of θ̂:

E
[
Lr(θ̂)− L∗

r

]
≤ E

[
Lr(θ̂)− Lr(θ

∗)
]
+ Lr(θ

∗)− L∗
r (10)

≤
√
dκϵ,δ

(
rf

1− rf

)2
L2

µ
+

rf
1− rf

L2

µ
(11)

≤ rf

(
rf +

√
dκϵ,δ

)
e0 (12)

≤ e . (13)

Proof of Theorem 3. According to Lemma C.1, we have

∥θ∗ − θ∗
r∥ ≤ rf

1− rf

L

µ
=: R1 . (14)

To perform the unlearning, we use the noise + fine-tune method as introduced in Algorithm 2. For the noising part, the
standard deviation of the noise that needs to be added to ensure (ϵ, δ)-Unlearning of Df is κϵ,δ ∥θ∗ − θ∗

r∥. Thus, we set
σ = κϵ,δR1 and define θ̃ := θ∗ + g, where g ∼ N (0, σ2).

Now, one can notice that

E
[∥∥∥θ̃ − θ∗

r

∥∥∥2] = E
[
∥g∥2

]
+ ∥θ∗ − θ∗

r∥
2 ≤ (1 + dκ2

ϵ,δ)R
2
1 . (15)

While we do not know the exact distance
∥∥∥θ̃ − θ∗

r

∥∥∥ our SGD will need to cover, we have its expectation. Thus, we set the

learning rate γ to be optimal for a the expectation of the distance, i.e., : γ =

√
(1+dκ2

ϵ,δ)R
2
1

TUL2 .

Let Aγ be the SSD algorithm with learning rate γ, as defined in Section 3 of Garrigos and Gower (2023). Using Theorem
9.7 from Garrigos and Gower (2023), we get

E
[
Lr(Aγ(θ̃,Dr, T ))− L∗

r

]
≤ E


∥∥∥θ̃ − θ∗

r

∥∥∥2
2γT

+
γL2

2

 (16)

≤
(1 + dκ2

ϵ,δ)R
2
1

2γT
+

γL2

2
(17)

≤ LR1√
T

√
1 + dκ2

ϵ,δ . (18)

For a given excess risk threshold e, the unlearning time can then be upper-bounded as
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TU
e ≤ L2R2

1

e2
(1 + dκ2

ϵ,δ) =

(
rf

1− rf

)2

(1 + dκ2
ϵ,δ)
(e0
e

)2
. (19)

B. Lower bounds
The lower bounds of Section 4 rely on three steps: 1) defining a class of objective functions Lg for g : Rs → {−1, 1} such
that their optimum over D does not provide any information on the dataset Dr, 2) showing that two such functions Lg

and L−g have optimums over Dr distant from one another, and 3) showing that any algorithm’s output will behave nearly
identically on both Lg and L−g , thus leading to the impossibility of having both functions efficiently optimized by the same
algorithm.

In what follows, for any function g : Rs → [−1, 1], we denote as Lg(θ) = E [ℓg(θ, ξ)] where ℓg is a loss function such that

ℓg(θ, ξ) =
µ

2
∥θ∥2 − L

2
g(ξ)θ1 , (20)

where θ1 is the first coordinate of θ in the canonical basis of Rd. By definition, ∇θℓ
g(θ, ξ) = µθ − Lg(ξ)e1/2 where e1 is

the first vector of the canonical basis of Rd, and ℓg is L-Lipschitz and µ-strongly convex. Moreover, the objective function
on Dr is Lg

r(θ) =
µ
2 ∥θ∥

2 − L
2 E [g(ξ′)]θ1, where ξ′ ∼ Dr, and thus the minimizer of Lg

r is θ∗
g,r = L

2µ E [g(ξ′)] e1 (note
that ∥θ∗

g,r∥ = L
2µ |E [g(ξ′)] | ≤ R). We now show that, provided we find two functions g, g′ such that the output of any

algorithm is (statistically) almost indistinguishable, then minimizing both Lg and Lg′
beyond a certain quantity is impossible.

To properly define this indistinguishability, we will use the total variation distance dTV(P,Q) = supA⊂Rs |P (A)−Q(A)|
for two probability distributions P and Q.
Lemma B.1. Let g, g′ : Rs → [−1, 1] two functions, θ0, θ′0 ∈ Rd two initial parameters, and A ∈ A an algorithm. Then

sup
g′′∈{g,g′}

E
[
Lg′′

r (θA
T (θ0, ℓ

g′′
,Dr))− Lg′′

r

∗]
≥ L2(E [g(ξ′)]− E [g′(ξ′)])2

32µ
(1− dTV(Pg, Pg′)) , (21)

where ξ′ ∼ Dr, Lg′′

r

∗
= minθ∈Rd Lg′′

r (θ) and Pg (resp. Pg′) is the probability distribution of θA
T (θ0, ℓ

g,Dr) (resp.
θA
T (θ

′
0, ℓ

g′
,Dr)).

Proof. First, note that θ∗
g,r = L

2µ E [g(ξ′)] e1 and thus Lg
r(θ)−Lg∗

r = µ
2 ∥θ

∗
g,r −θ∥2. Using the optimal transport definition

of total variation (see e.g., Villani et al. 2009), dTV(P,Q) = inf(X,Y ) P(X ̸= Y ) where the infimum is taken over all
couplings of P and Q. As a consequence, there exists two random variables θ1 ∼ Pg and θ2 ∼ Pg′ , and such that
P(θ1 ̸= θ2) = dTV(Pg, Pg′), leading to

supg′′∈{g,g′} E
[∥∥∥θ∗

g′′,r − θA
T (θ0, ℓ

g′′
,Dr)

∥∥∥2] = max
{
E
[∥∥θ∗

g,r − θ1
∥∥2] , E [∥∥θ∗

g′,r − θ2
∥∥2]}

≥ (1− dTV(Pg, Pg′))max

{∥∥∥θ∗
g,r − θ̃

∥∥∥2 , ∥∥∥θ∗
g′,r − θ̃

∥∥∥2}
≥ (1− dTV(Pg, Pg′))

∥θ∗
g,r−θ∗

g′,r∥
2

4 ,

(22)

where θ̃ = E [θ1 | θ1 = θ2] = E [θ2 | θ1 = θ2]. Finally, using the formula for θ∗
g,r = L

2µ E [g(ξ′)] e1 and Lg
r(θ)− Lg∗

r =
µ
2 ∥θ

∗
g,r − θ∥2 gives the desired result.

We now show that a particular choice of functions g, g′ leads to almost indistinguishable outputs.
Lemma B.2. Assume that ∀γ ∈ [0, 1], there exists Aγ ⊂ supp(Dr) such that PDr

(A) = (1 + γ)/2. Let gγ(ξ) = 21{ξ ∈
Aγ} − 1 if ξ ∈ supp(Dr), and gγ(ξ) = −min{1, (1−rf )γ

rf
} otherwise. Then, we have

dTV

(
U(T, ℓg

γ

,Dr,Df ), U(T, ℓg
0

,Dr,Df )
)
≤ πγ

√
T

4
+

((1− rf )γ − rf )+
2rf

(eϵ − 1 + δ) . (23)

7
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Proof. First, note that the minimizer of Lγ is θ∗
γ = L

2µ ((1 − rf )γ − rf )+e1, and we thus have U(T, ℓgγ

,Dr,Df ) =

θA
T (θ

∗
γ , ℓ

gγ

,Dr) and U(T, ℓ−gγ

,Dr,Df ) = θA
T (−θ∗

γ , ℓ
−gγ

,Dr). To ease the notations, we denote by θk,l =

θA
T (

(1−rf )Lγ2k+1

2µ e1, ℓ
gγ2l ,Dr) the output of algorithm A on the function ℓg

γ2l starting at θ0 =
(1−rf )Lγ2k+1

2µ e1, where

γk =
(
γ − krf

1−rf

)
+

. Let K =
⌈
(1−rf )γ

2rf

⌉
, then we have, by triangular inequality,

dTV(θ0,0,θK,K) ≤
K−1∑
k=0

dTV(θk,k,θk,k+1) +

K−1∑
k=0

dTV(θk,k+1,θk+1,k+1) . (24)

By construction, we have θ0,0 = U(T, ℓgγ

,Dr,Df ) and θK,K = U(T, ℓg0

,Dr,Df ). We now show that both sums can be
bounded: the first using the fact that the T gradients gγ(ξt) for t ∈ J0, T − 1K are close in total variation distance (i.e.,
Lemma C.5), and the second using the (ϵ, δ)-Unlearning constraint on U .

By Lemma C.4, there is a measurable function φA such that θk,l = φA

(
(1−rf )Lγ2k+1

2µ , Zl
0, . . . , Z

l
T−1, ω

)
where Zl

t =

(1 + gγ2l(ξt))/2 are i.i.d. Bernoulli random variables of parameter 1+γ2l

2 . As θk,k and θk,k+1 are outputs of the same
algorithm initialized at the same starting position, we have∑K−1

k=0 dTV(θk,k,θk,k+1) =
∑K−1

k=0 dTV

(
(Zk

0 , . . . , Z
k
T−1), (Z

k+1
0 , . . . , Zk+1

T−1)
)

= dTV

(
Bin

(
T, 1+γ2k

2

)
,Bin

(
T, 1+γ2k+2

2

))
=

∑K−1
k=0

√
T
2

∣∣∣∣tan−1

(
γ2k+2√
1−γ2k+2

2

)
− tan−1

(
γ2k√
1−γ2

2k

)∣∣∣∣
=

√
T
2

∣∣∣∣tan−1

(
γ2K√
1−γ2K

2

)
− tan−1

(
γ0√
1−γ2

0

)∣∣∣∣
=

√
T
2 tan−1

(
γ2K√
1−γ2K

2

)
≤ πγ

√
T

4 ,

(25)

using the fact that f : x 7→ tan−1
(

x√
1−x2

)
is increasing and convex on x ∈ [0, 1], and f(0) = 0 and f(1) = π/2.

Finally, let D′
f be a probability distribution on Rs such that supp(D′

f ) ∩ (supp(Dr) ∪ supp(Df )) = ∅, for any γ ∈ [0, 1],
let g̃γ(ξ) = gγ(ξ) if ξ ∈ supp(Dr) ∪ supp(Df ), and g̃γ(ξ) = 1 otherwise. Then, we have U(T, ℓg̃γ2k ,Dr,Df ) = θk,k and
U(T, ℓg̃γ2k ,Dr,D′

f ) = θk−1,k. Thus, we have∑K−1
k=0 dTV(θk,k+1,θk+1,k+1) =

∑K′−1
k=0 dTV

(
U(T, ℓg̃

γ2k+2
,Dr,Df ), U(T, ℓg̃

γ2k+2
,Dr,D′

f )
)

≤
∑K′−1

k=0 (eϵ − 1 + δ)
= K ′(eϵ − 1 + δ) ,

(26)

where K ′ =
⌈
((1−rf )γ−rf )+

2rf

⌉
. Combining the two inequalities concludes the proof.

We are now in position to prove Theorem 2.

Proof of Theorem 2. Combining Lemma B.1 (with g = gγ and g′ = −gγ) and Lemma B.2, we have, for any γ ∈ [0, 1],

min
U∈Uϵ,δ

max
L∈Fsc

E [Lr(U(T, ℓ,Dr,Df ))− L∗
r ] ≥

L2γ2

8µ
(1− dTV(Pgγ , P−gγ )) , (27)

where dTV(Pgγ , P−gγ ) ≤ dTV(Pgγ , Pg0) + dTV(Pg0 , P−gγ ) ≤ πγ
√
T

2 +
((1−rf )γ−rf )+

rf
(eϵ − 1 + δ). Let c1, c2 ∈ [0, 1] and

γ = c1/
√
T . If

(
(1−rf )c1

rf
√
T

− 1
)
+
(eϵ − 1 + δ) ≤ c2, then

min
U∈Uϵ,δ

max
L∈Fsc

E [Lr(U(T, ℓ,Dr,Df ))− L∗
r ] ≥

L2c21
8µT

(1− πc1
2

− c2) , (28)

8
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and thus, if
(

(1−rf )
√
8µe

rfL
√

1−πc1
2 −c2

− 1

)
+

(eϵ − 1 + δ) ≤ c2,

TU
e ≥ L2c21

8µe
(1− πc1

2
− c2) . (29)

Finally, we take c2 = 1/2, c1 such that 1 − πc1
2 − c2 = 1/3, and rewrite the condition as e ≤ r2fL

2

8 (1−rf )2µ
(1 − πc1

2 −

c2)
(
1 + c2

eϵ−1+δ

)2
. A simple functional analysis gives that, for 10−8 ≤ δ ≤ ϵ, we have

1 +
1

2(eϵ − 1 + δ)
≥ 1 +

1

2(eϵ − 1 + ϵ)
≥ c3

(
1 +

√
2 ln(1.25 · 108)

ϵ

)
≥ c3

(
1 +

√
2 ln(1.25/δ)

ϵ

)
, (30)

where c3 = 1/
√
32 ln(1.25 · 108) and the desired result.

Using the same approach, a lower bound on the time complexity of scratch can also be derived.

Lemma B.3. Under Assumption 2, and if e < e0, we have

TS
e = Θ

(e0
e

)
. (31)

Proof of Lemma B.3. First, by strong convexity, we have

Lr(0)− L∗
r ≤ ⟨∇L(0),θ∗

r ⟩ −
µ

2
∥θ∗

r∥
2
. (32)

Moreover, the convexity of θ 7→ Lr(θ)− µ
2 ∥θ∥2 implies that ⟨∇L(−θ∗

r ) + µθ∗
r −∇L(0),−θ∗

r ⟩ ≥ 0 and thus

Lr(0)− L∗
r ≤ ∥∇L(−θ∗

r )∥ ∥θ∗
r∥ −

3µ

2
∥θ∗

r∥
2 ≤ LR− 3µ

2
R2 =

L2

8µ
. (33)

As a consequence, if e ≥ e0, then TS
e = 0 (and TU

e = 0). Let us now assume that e < e0. First, note that this convergence
rate is achieved by stochastic gradient descent. For example, a direct extension of Theorem 6.2 from Bubeck et al. (2015)
gives, after T iterations of (stochastic) gradient descent θt+1 = θt − ηt∇θℓ(θt, ξt) with decreasing step-size ηt =

2
µ(t+2) .

E
[
L
(
θ̃T

)
− min

θ∈Rd
L(θ)

]
≤ 2L2

µ(T + 2)
, (34)

where θ̃T =
∑T−1

t=0
2(1+t)

(T+1)(T+2)θt, and thus

TS
e ≤ 2L2

µe
. (35)

The lower bound is a consequence of Theorem 2 with κϵ,δ = 0, as an algorithm retraining from scratch would not depend
on the forget dataset, and thus have absolute privacy. In particular, if e ≤ L2

8µ (1−
πc1
2 ), we have

TS
e ≥ L2c21

8µe
(1− πc1

2
) , (36)

and as soon as e/e0 ≤ 1− η for η > 0, there exists a constant c2 > 0 such that TS
e ≥ c2e0/e.

C. Useful lemmas
In this section, we provide five lemmas that will be necessary to prove our upper and lower bounds (see sections above), as
well as the proof for unlearning definition equivalence.

9
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Lemma C.1. Let θ∗
r = argminθ Lr(θ). Then, we have:

∥θ∗ − θ∗
r∥ ≤ rf

1− rf
· L
µ
. (37)

Proof. By strong convexity of Lr, we have ∥θ∗ − θ∗
r∥ ≤ ∥∇Lr(θ

∗)∥
µ . Moreover, ∥∇Lr(θ

∗)∥ = ∥E [∇ℓ(θ∗, ξr)]∥ =∥∥∥− rf
1−rf

E [∇ℓ(θ∗, ξr)]
∥∥∥ ≤ rf

1−rf
L where ξr ∼ Dr and ξf ∼ Df , as ∇L(θ∗) = 0. Combining the two inequalities gives

the desired result.

Lemma C.2.

Lr(θ
∗)− L∗

r ≤
(

rf
1− rf

)2
L2

µ
(38)

Proof. Let θ∗
r = argminθ Lr(θ). Then,

EDr (ℓ(θ
∗)− ℓ(θ∗

r )) = ED (ℓ(θ∗)− ℓ(θ∗
r ))−

rf
1− rf

EDf
(ℓ(θ∗)− ℓ(θ∗

r )) (39)

≤ − rf
1− rf

EDf
(ℓ(θ∗)− ℓ(θ∗

r )) (40)

≤ rf
1− rf

L ∥θ∗ − θ∗
r∥ (41)

≤
(

rf
1− rf

)2
L2

µ
, (42)

where the last inequality is given by Lemma C.1.

Lemma C.3. If the unlearning algorithm U verifies (ϵ, δ)-Unlearning, then, for any triplet of distributions (Dr,Df ,D′
f ),

we have
dTV

(
U(Dr,Df ), U(Dr,D′

f )
)
≤ eϵ − 1 + δ . (43)

Proof. By (ϵ, δ)-Unlearning, we have, for any S ⊂ Rs, P[U(Dr,Df ) ∈ S] ≤ eϵ · P[U(Dr,D′
f ) ∈ S] + δ, and thus

P[U(Dr,Df ) ∈ S]− P[U(Dr,D′
f ) ∈ S] ≤ (eϵ − 1) · P[U(Dr,D′

f ) ∈ S] + δ ≤ eϵ − 1 + δ . (44)

The converse relation with Df and D′
f exchanged leads to a bound on the absolute value, and thus the desired result.

Proof of Lemma ??. Let D0 be an arbitrary distribution, e.g., the uniform distribution on the R/2-ball. Let U ∈ Uϵ,δ be
an (ϵ, δ)-Unlearning algorithm. Let U ∈ Uϵ,δ be an (ϵ, δ)-Unlearning algorithm. Then, the algorithm A0 : (T, l,Dr) 7−→
U(T, l,Dr,D0) is such that for any couple of distributions (Dr,Df ) over B(0, R) and subset S ⊂ Rd,

P[U(Dr,Df ) ∈ S] ≤ eϵ · P[U(Dr,D0) ∈ S] + δ = eϵ · P[A0(Dr) ∈ S] + δ,

P[A0(Dr) ∈ S] = P[U(Dr,D0) ∈ S] ≤ eϵ · P[U(Dr,Df ) ∈ S] + δ.

U is thus an (ϵ, δ)-Reference Unlearning algorithm. This proves the first implication.

Let U ∈ Uϵ,δ be an (ϵ, δ)-Reference Unlearning algorithm and A ∈ A its reference algorithm. Let Dr,Df ,D′
f be three

distributions over B(0, R). Then,

P[U(Dr,Df ) ∈ S] ≤ eϵ · P[A(Dr) ∈ S] + δ ≤ eϵ
(
eϵ · P[U(Dr,D′

f ) ∈ S] + δ
)
+ δ (45)

U is thus an (2ϵ, (1 + exp(ϵ))δ)-Reference Unlearning algorithm. This concludes the proof.

Lemma C.4. Let A ∈ A be an iterative algorithm as defined in Algorithm 1. Then, there exists T i.i.d. random variables
ξt ∼ Dr and a measurable function φA such that, for any T > 0, θ0 ∈ Rd and g : Rs → {−1, 1}, we have

θA
T (θ0, ℓ

g,Dr) = φA(θ0, g(ξ0), . . . , g(ξT−1), ω) . (46)

10
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Proof. Let (mt,θt) be the memory state and current parameter of algorithm A at iteration t (see algorithm 1). First, for
T = 0, m0 = ∅ and θ0 are both (trivially) measurable functions of θ0. Then, by recursion, if both mT−1 and θT−1 are
measurable functions of θ0, g(ξ0), . . . , g(ξT−2), ω, then

(mT ,θT ) = A(mt,∇ℓg(θT−1, ξT−1), ω) = A(mT−1, µθT−1 − Lg(ξT−1)e1/2, ω) , (47)

which is a measurable function of θ0, g(ξ0), . . . , g(ξT−1), ω. This concludes the proof.

Lemma C.5. Let T ≥ 0 and γ, γ′ ∈ [−1, 1]. Then, we have

dTV

(
Bin
(
T,

1 + γ

2

)
,Bin

(
T,

1 + γ′

2

))
≤

√
T

2

∣∣∣∣∣tan−1

(
γ′√

1− γ′2

)
− tan−1

(
γ√

1− γ2

)∣∣∣∣∣ . (48)

Proof. Assume that γ′ ≥ γ, and let φ(γ, γ′) = dTV

(
Bin

(
T, 1+γ

2

)
,Bin

(
T, 1+γ′

2

))
. The proof relies on bounding the

derivative of φ with respect to its second variable. Let γ′ = γ + ε where ε > 0, then

φ(γ, γ + ε) = 1
2 E
[∣∣∣1− Pγ+ε(X)

Pγ(X)

∣∣∣]
= 1

2 E
[∣∣∣1− (1+γ+ε)X(1−γ−ε)T−X

(1+γ)X(1−γ)T−X

∣∣∣]
= 1

2 E
[∣∣∣1− (1 +X ε

1+γ )(1− (T −X) ε
1−γ ) +O(ε2)

∣∣∣]
= ε

2(1+γ) E
[∣∣∣X − (T −X) 1+γ

1−γ

∣∣∣]+O(ε2)

≤ ε
(1+γ)

√
Var(X)
(1−γ)2 +O(ε2)

= ε
2

√
T

1−γ2 +O(ε2) ,

(49)

where Pγ is the density of the binomial distribution Bin
(
T, 1+γ

2

)
, and X ∼ Bin

(
T, 1+γ

2

)
. As the total variation distance

verifies the triangular inequality, we have

dTV

(
Bin

(
T,

1 + γ

2

)
,Bin

(
T,

1 + γ′

2

))
≤
∫ γ′

u=γ

φ(u, u+du) ≤
√
T

2

(
tan−1

(
γ′√

1− γ′2

)
− tan−1

(
γ√

1− γ2

))
.

(50)

D. Algorithms

Algorithm 1 Iterative (Un)Learning Algorithm
Require: Update rule A ∈ A, number of iterations T , initial model θ0, loss function ℓ, dataset D.

1: Initialize memory: m0 = ∅
2: for t = 0 to T − 1 do
3: Sample data point: ξt ∼ D
4: Compute gradient: ∇ℓ(θt, ξt)
5: Update: (θt+1,mt+1) = A(θt,∇ℓ(θt, ξt),mt, ω)
6: end for
7: return Final model θT

E. Iterative algorithms based on update rules
In this, section, we provide precise definitions for learning and unlearning algorithms. More precisely, we will consider that
both types of algorithms are non-deterministic, iterative and first-order, i.e., that model parameters are updated through a
stochastic iterative procedure that accesses a stochastic gradient of the loss function at each iteration (see Algorithm 1). This

11
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Algorithm 2 “Noise and Fine-Tune” Unlearning Algorithm
Require: number of iterations T , initial model θ∗, loss function ℓ, dataset Dr.

1: Sample noise g ∼ N
(
0,
(
κϵ,δrf

L
µ

)2
Id

)
2: Initialize model: θ0 = θ∗ + g
3: Initialize memory: m0 = θ0
4: for t = 1 to T do
5: Sample data point: ξt ∼ Dr

6: Compute gradient: ∇ℓ(θt, ξt)
7: Update: θt+1 = θt − 2

µ(t+1)∇ℓ(θt, ξt)

8: Update: mt+1 = mt + (t+ 1)θt+1

9: end for
10: return Final model θ̂ = 2mT

(T+1)(T+2)

class of algorithms, defined by their update rule A ∈ A, is very general and contains most standard optimization algorithms
used in machine learning. More precisely, an update rule is a measurable function

A (θt,∇t,mt, ω) = (θt+1,mt+1) , (51)

where θt ∈ Rd is the current model, ∇t ∈ Rd a stochastic gradient, mt ∈ M a memory state, and ω ∈ Ω a seed used for
adding randomness into the algorithm. The memory serves as a storage mechanism for essential information about past
iterates, enabling the computation of quantities such as momentum, moving averages, or adaptive step-sizes.

For a given update rule A ∈ A, we denote as θA
T (θ0, ℓ,Dr) the output of Algorithm 1, which applies the update rule A

successively T times, starting at θ0 ∈ Rd.

Learning Algorithms. For any update rule A ∈ A, we define the associated learning algorithm as the function A mapping
the number of iterations, loss function, and dataset to the output of A initialized at θ0 = 0, i.e.,

A(T, ℓ,Dr) = θA
T (0, ℓ,Dr) . (52)

In the rest of the paper, we denote by A the class of such learning algorithms, and write A(Dr) when there is no ambiguity
on the values of T and ℓ.

Unlearning Algorithms. While learning algorithms try to estimate the optimum of the objective function Lr from scratch,
unlearning algorithms have the advantage of starting from a pre-trained model with low excess risk (i.e., error of the model
minus error of the optimal model) on the whole dataset. More precisely, we will assume that such model was trained for
a sufficiently large amount of time, and reached the unique minimizer θ∗ of the objective function L. Therefore, for any
update rule A ∈ A, we define the associated unlearning algorithm as the function U mapping the number of iterations, loss
function, retain dataset and forget dataset to the output of A initialized at θ0 = θ∗, i.e.,

U(T, ℓ,Dr,Df ) = θA
T (θ

∗, ℓ,Dr) . (53)

Again, we will denote as U the class of such unlearning algorithms, and simply write U(Dr,Df ) when there is no ambiguity
on the values of T and ℓ. Note that these unlearning algorithms can only sample from the retain set to perform unlearning.
This is relatively common in the literature of DP-based MU (Neel et al., 2021; Fraboni et al., 2024; Huang and Canonne,
2023; Allouah et al., 2024), although more efficient unlearning methods might exist in scenarios in which the forget dataset
is also available during unlearning. Finally, while we allow stateful algorithms in our framework, the algorithm used to
achieve our upper bound in Section 4 only uses the state to remember the weighted average of previous iterations rather than
all iterations, alleviating some privacy issues for adaptive unlearning requests (Izzo et al., 2021).
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