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Abstract

We introduce soft kernel interpolation (SoftKI), a method that combines aspects of Struc-
tured Kernel Interpolation (SKI) and variational inducing point methods, to achieve scal-
able Gaussian Process (GP) regression on high-dimensional datasets. SoftKI approximates
a kernel via softmax interpolation from a smaller number of interpolation points learned by
optimizing a combination of the SoftKI marginal log-likelihood (MLL), and when needed,
an approximate MLL for improved numerical stability. Consequently, it can overcome the
dimensionality scaling challenges that SKI faces when interpolating from a dense and static
lattice while retaining the flexibility of variational methods to adapt inducing points to the
dataset. We demonstrate the effectiveness of SoftKI across various examples and show that
it is competitive with other approximated GP methods when the data dimensionality is
modest (around 10).

1 Introduction

Gaussian processes (GPs) are flexible function approximators based on Bayesian inference. However, there
are scaling concerns. For a dataset comprising n data points, constructing the n × n kernel (covariance)
matrix required for GP inference incurs a space complexity of O(n2). Solving the associated linear system
for exact posterior inference via direct methods requires O(n3) time complexity. These computational costs
render exact GP inference challenging, even for modest n, although efforts have been made to accelerate
exact GP inference (Wang et al., 2019; Gardner et al., 2021).

One approach to scalable GP regression is based in variational inference (Titsias, 2009; Hensman et al., 2013).
These methods build a variational approximation of the posterior GP posterior by learning the locations of
m ≪ n inducing points (Quinonero-Candela & Rasmussen, 2005; Snelson & Ghahramani, 2005). Inducing
points and their corresponding inducing variables introduce latent variables with normal priors that form
a low-rank approximation of the covariance structure in the original dataset. This approach improves the
time complexity of posterior inference to O(m2n) for Sparse Gaussian Process Regression (SGPR) (Titsias,
2009) and O(m3) for Stochastic Variational Gaussian Process Regression (SVGP) (Hensman et al., 2013),
with the latter introducing additional variational parameters.

Another approach is based on Structured Kernel Interpolation (SKI) (Wilson & Nickisch, 2015) and its
variants such as product kernel interpolation (SKIP) (Gardner et al., 2018) and Simplex-SKI (Kapoor et al.,
2021). SKI-based methods achieve scalability by constructing computationally tractable approximate kernels
via interpolation from a pre-computed and dense rectilinear grid of interpolation points. This structure
enables fast matrix-vector multiplications (MVMs), which can be leveraged to scale inference via conjugate
gradient (CG) methods. However, this approach also causes the time complexity of posterior inference to
become explicitly dependent on the dimensionality d of the data (e.g., O(n4d + m log m) for a MVM in SKI
and O(d2(n + m)) for a MVM in Simplex-SKI). Moreover, the static grid does not have the flexibility of a
variational method to adapt to the dataset at hand. This motivates us to search for accurate and scalable
GP regression algorithms that can attain the best of both approaches.

In this paper, we introduce soft kernel interpolation (SoftKI), which combines aspects of inducing points and
SKI to enable scalable GP regression on high-dimensional datasets. Our main observation is that while SKI
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can support large numbers of interpolation points, it uses them in a sparse manner—only a few interpolation
points contribute to the interpolated value of any single data point. Consequently, we should still be able
to interpolate successfully provided that we place enough of them in good locations relative to the dataset,
i.e., learn their locations as in a variational approach. This change removes the explicit dependence of the
cost of the method on the data dimensionality d. It also opens the door to more directly optimize with an
approximate GP marginal log-likelihood (MLL) to learn the locations of interpolations points as opposed to
a variational approximation that introduces latent variables with normal priors over the values observed at
inducing point locations.

Our method approximates a kernel by interpolation from a softmax of m≪ n learned interpolation points,
hence the name soft kernel interpolation (Section 4.1). The interpolation points are learned by optimizing a
combination of the SoftKI MLL, and when needed, an approximate MLL for improved numerical stability in
single-precision floating point arithmetic (Section 4.2). It is able to leverage GPU acceleration and stochastic
optimization for scalability. Since the kernel structure is dynamic, we rely on m≪ n interpolation points to
obtain a time complexity of O(m2n) and space complexity of O(mn) for posterior inference (Section 4.3).
We evaluate SoftKI on a variety of datasets from the UCI repository (Kelly et al., 2017) and demonstrate that
it achieves test root mean square error (RMSE) comparable to other inducing point methods for datasets
with moderate dimensionality (approximately d = 10) (Section 5.1). To further explore the effectiveness
of SoftKI in high dimensions, we apply SoftKI to molecule datasets (d in the hundreds to thousands) and
show that SoftKI is scalable and competitive in these settings as well (Section 5.2). Lastly, we compare the
interpolation points learned by SoftKI to the inducing points learned by SGPR and SVGP, and find that
they are structurally different, suggesting that learned interpolation points provide another promising path
for constructing approximate GPs (Section 5.3).

2 Background

Notation. Matrices will be denoted by upper-case boldface letters (e.g. A ∈ Rn×m). When specifying a
matrix entry-wise we write A = [g(i, j)]i,j , meaning Aij = g(i, j). At times, given points x1, . . . , xn ∈ Rd,
we stack them into x ∈ Rnd by x⊤ = (x⊤

1 , . . . , x⊤
n ), so that entries d(i−1)+1 through di are the components

of xi. Any function f : Rd → R extends column-wise via f(x) = (f(x1), . . . , f(xn))⊤.

2.1 Gaussian Processes

Let k : Rd × Rd → R be a positive semi-definite kernel function. A (centered) Gaussian process (GP) with
kernel k is a distribution over functions f : Rd → R such that for any finite collection of inputs {xi}n

i=1, the
vector of function values f(x) is jointly Gaussian f(x) ∼ N (0, Kxx), where the kernel matrix Kxx ∈ Rd×d

has entries [Kxx]ij = k(xi, xj). Given two collections {xi}n
i=1 and {x′

j}n′

j=1, the cross-covariance matrix
Kxx′ ∈ Rd×nd′ is defined by [Kxx′ ]ij = k(xi, x′

j).

To perform GP regression on the labeled dataset D := {(xi, yi) : xi ∈ Rd, yi ∈ R}n
i=1, we assume the data is

generated as follows:

f(x) ∼ N (0, Kxx) (GP)
y | f(x) ∼ N (f(x), β2I) (likelihood)

where f is a function sampled from a GP and each observation yi is f evaluated at xi perturbed by inde-
pendent and identically distributed (i.i.d.) Gaussian noise with zero mean and variance β2. The posterior
predictive distribution has the following closed-form solution (Rasmussen & Williams, 2005)

p(f(∗) |y) = N (K∗x(Kxx + Λ)−1y, K∗∗ −K∗x(Kxx + Λ)−1Kx∗) (1)

where Λ = β2I. Using direct methods, the time complexity of inference is O(n3) which is the complexity
of solving the system of linear equations in n variables (Kxx + Λ)α = y for α so that the posterior mean
(Equation 1) is K∗xα.
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A GP’s hyperparameters θ include the noise β2 and other parameters such as those involved in the definition
of a kernel such as its lengthscale ℓ and output scale σ. Thus θ = (β, ℓ, σ). The hyperparameters can be
learned by maximizing the MLL of a GP

log p(y |x; θ) = logN (y |0, Kxx(θ) + Λ(θ)) (2)

where N (· |µ, Σ) is notation for the probability density function (PDF) of a Gaussian distribution with mean
µ and covariance Σ and we have explicitly indicated the dependence of Kxx and Λ on θ.

2.2 Sparse Gaussian Process Regression

Many scalable GP methods address the high computational cost of GP inference by approximating the kernel
using a Nyström method (Williams & Seeger, 2000). This approach involves selecting a smaller set of m
inducing points, z ⊂ x, to serve as representatives for the complete dataset. The original n× n kernel Kxx
is then approximated as

Kxx ≈ KxzK−1
zz Kzx (3)

leading to an overall inference complexity of O(m2n).

Variational inducing point methods such as SGPR (Titsias, 2009) combines the Nyström GP kernel ap-
proximation with a variational optimization process so that the positions of the inducing points can be
learned. The variational approximation introduces latent inducing variables u to model the values observed
at inducing points z with joint distribution(

u
f(x)

)
∼ N

((
0
0

)
,

(
Kzz Kzx
Kxz Kxx

))
. (4)

This leads to a posterior predictive distribution q(f(∗)) which has closed form

q(f(∗) |y) = N (f(∗) |K∗zC−1KzxΛ−1y, K∗∗ −K∗z(K−1
zz −C−1)Kz∗) . (5)

The time complexity of posterior inference is O(m2n + m3) since it requires solving Cα = KzxΛ−1y for α
which is dominated by forming C. The inducing points are learned by maximizing the evidence lower bound
(ELBO)

ELBO(q) = logN (y |0, KSGPR
xx + Λ)− 1

2 tr(Kxx −KSGPR
xx ) (6)

where KSGPR
xx = KxzK−1

zz Kzx is a Nyström approximation of Kxx. Since the ELBO is a lower bound on the
MLL log p(y |x; θ), we can maximize the ELBO via gradient-based optimization as a proxy for maximizing
log p(y |x; θ) to learn the location of the inducing points z by treating it as a GP hyperparameter, i.e.,
θ = (β, ℓ, σ, z). The time complexity of computing the ELBO is O(m2n).

2.3 Structured Kernel Interpolation

SKI approaches scalable GP regression by approximating a large covariance matrix Kxx by interpolating
from cleverly chosen interpolation points. In particular, SKI makes the approximation

KSKI
xx′ = WxzKzzWzx′ ≈ Kxx′ (7)

where Wxz is a sparse matrix of interpolation weights, Wzx = W⊤
xz, and z are interpolation points. The

interpolation points can be interpreted as quasi-inducing points since

KSKI
xx′ = (WxzKzz)K−1

zz (KzzWzx′) = K̂xzK−1
zz K̂zx′ (8)

where K̂xz = WxzKzz. However, interpolation points are not associated with inducing variables since they
are used for kernel interpolation rather than defining a variational approximation. The posterior predictive
distribution is then the standard GP posterior predictive

p(f(∗) |y) ≈ N (K∗x(KSKI
xx + Λ)−1y, K∗∗ −K∗x(KSKI

xx + Λ)−1Kx∗) (9)
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where Kxx is replaced with KSKI
xx . SKI uses linear CG to solve the linear system (KSKI

xx + Λ)α = y for α.
Since the time complexity of CG depends on access to fast MVMs, SKI makes two design choices that are
compatible with CG. First, SKI uses cubic interpolation (Keys, 1981) weights so that Wxz has four non-zero
entries in each row, i.e., Wxz is sparse. Second, SKI chooses the interpolation points z to be on a fixed
rectilinear grid in Rd which induces multilevel Toeplitz structure in Kzz if k(x, y) is a stationary kernel.

Putting the two together, the resulting KSKI
xx is a structured kernel which enables fast MVMs. If we wish

to have k distinct interpolation points for each dimension, the grid will contain m = kd interpolation points
leading to a total complexity of GP inference of O(n4d + m log(m)) = O(n4d + dkd log(k)) since there are
O(4d) nonzero entries per row of Wxz and a MVM with a Toeplitz structured kernel like Kzz can be done in
O(m log m) time via a Fast Fourier Transform (FFT) (Wilson, 2014). Thus, for low dimensional problems,
SKI can provide significant speedups compared to vanilla GP inference and supports a larger number of
interpolation points compared to SGPR.

3 Related Work

Beyond SGPR and vanilla SKI, a wide range of approximate GP models and variants have been developed
that align closely with SoftKI.

Additional variational methods. Building on SGPR, SVGP (Hensman et al., 2013) extends the optimiza-
tion process used for SGPR to use stochastic variational inference. This further reduces the computational
cost of GP inference to O(m3) since optimization is now over a variational distribution on z, rather than
the full posterior. Importantly SVGP is highly scalable to GPUs since its optimization strategy is amenable
to minibatch optimization procedures. More recent research has introduced Variational Nearest Neighbor
Gaussian Processes (VNNGP) (Wu et al., 2024), which replace the low-rank prior of SVGP with a sparse
approximation of the precision matrix by retaining only correlations among each point’s K nearest neighbors.
By constructing a sparse Cholesky factor with at most K + 1 nonzeros per row, VNNGP can reduce the
per-iteration cost of evaluating the SVGP objective Equation 6 to O

(
(nb + mb)K3) when minibatching over

nb data points and mb inducing points.

Other variants of Structured Kernel Interpolation. While SKI can provide significant speedups over
vanilla GP inference, its scaling in d restricts its usage to low-dimensional settings where 4d < n. To address
this, Gardner et al. (2018) introduced SKIP, which optimizes SKI by expressing a d-dimensional kernel as
a product of d one-dimensional kernels. This reduces MVM costs from O(dkd log k) to O(dm log m), using
m grid points per component kernel instead of kd. However, SKIP is limited to dimensions roughly in the
range of d = 10–30 for large datasets, as it requires substantial memory and may suffer from low-rank
approximation errors.

Recent work on improving the scaling properties of SKI has been focused on efficient incorporation of sim-
plicial interpolation, which when implemented carefully in the case of Simplex-GP (Kapoor et al., 2021) and
Sparse grid GP (Yadav et al., 2023) can reduce the cost of a single MVM with Wxz down to O

(
nd2). These

methods differ in the grid construction used for interpolation with Simplex-SKI opting for a permutohedral
lattice (Adams et al., 2010), while sparse grid-GP uses sparse grids and a bespoke recursive MVM algorithm,
leading to Kzz MVM costs of O(d2(n + m)) and O

(
m(log m)d

)
respectively. While both of these methods

greatly improve the scaling of SKI, they still feature a problematic dependency on d limiting their extension
to arbitrarily high dimensional datasets.

4 Method

In this section, we introduce SoftKI (Algorithm 1). SoftKI takes the same starting point as SKI, namely that
KSKI

xx = WxzKzzWzx can be used as an approximation of Kxx. However, we will deviate in that we will
abandon the structure given by a lattice and opt to learn the locations of the interpolation points z instead.
This raises several issues. First, we revisit the choice of interpolation scheme since we no longer assume a
static structure (Section 4.1). Second, we require an efficient procedure for learning the interpolation points
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Figure 1: (Structured & Soft Kernel Interpolation): Comparison of interpolation procedure for local
cubic interpolation during SKI and softmax interpolation during SoftKI. Here white points ◦ indicate
interpolation points zi ∈ z and black points • are data points xi ∈ x.

(Section 4.2). Third, we require an alternative route to recover a scalable GP since our approach removes
structure in the kernel that was used in SKI for efficient inference (Section 4.3).

4.1 Soft Kernel Interpolation

Whereas a cubic (or higher-order) interpolation scheme is natural in SKI when using a static lattice structure,
our situation is different since the locations of the interpolation points are now dynamic. In particular, we
would ideally want our interpolation scheme to have the flexibility to adjust the contributions of interpolation
points used to interpolate a kernel value in a data-dependent manner. To accomplish this, we propose softmax
interpolation weights.
Definition 4.1 (Softmax interpolation weights). Define softmax interpolation weights as the following matrix

Σxz =
[

exp (−∥xi − zj∥)∑m
k=1 exp (−∥xi − zk∥)

]
ij

(10)

to create the SoftKI kernel
KSoftKI

xx = ΣxzKzzΣzx . (11)

Since a softmax can be interpreted as a probability distribution, we can view SoftKI as interpolating from
a probabilistic mixture of interpolation points. Each input point xi is interpolated from all points, with
an exponential weighting favoring closer interpolation points (See Figure 1). Each row Σxiz represents the
softmax interpolation weights between a single point xi and all m interpolation points. Note that Σxz is
not strictly sparse since softmax interpolation continuously assigns weights over each interpolation point
for each xi. However, as d increases, the weights for distant points become negligible. This leads to an
effective sparsity, with each xi predominantly influenced only by its nearest interpolation points during the
reconstruction of Kxx.

To add more flexibility to the model, the softmax interpolation scheme can be extended to contain a learnable
temperature parameter T as below

Σxz =
[

exp (−∥xi/T − zj∥)∑m
k=1 exp (−∥xi/T − zk∥)

]
ij

. (12)

This additional hyperparameter is needed because unlike the SGPR kernel KSGPR
xx = KxzK−1

zz Kzx where the
lengthscale influences each term, the lengthscale only affects Kzz in the SoftKI kernel KSoftKI

xx = ΣxzKzzΣzx.
The temperature acts as lengthscale-like hyperparameter on the interpolation scheme that controls the
distance between the datapoints x and the interpolation points z. When T = 1, we obtain the original
scheme give in Equation 10. Analogous to how automatic relevance detection (ARD) (MacKay et al.,

5



Under review as submission to TMLR

Algorithm 1 SoftKI Regression. The procedure kmeans performs k-means clustering, batch splits the
dataset into batches, and softmax_interpolation produces a softmax interpolation matrix (see Section 4.1).
Require: SoftKI GP hyperparameters θ = (β, ℓ, σ, z ∈ R(m×d), T ), kernel function k(x, y).
Require: Dataset D = {x ∈ R(n×d), y ∈ R(n×1)}.
Require: Optimization hyperparameters: batch size b and learning rate η.
Ensure: Learned SoftKI coefficients α.

▷ Model Training
1: z← kmeans(x, m)
2: for i = 1 to epochs do
3: for (xb, yb) in batch(D, b) do
4: Σxbz ← softmax_interpolation(xb, z)
5: Kzz ← [ k(zi, zj) ]ij
6: KSoftKI

xbxb
← ΣxbzKzzΣ⊤

xbz

7: θ ← θ + η∇θ log p̂
(

yb

∣∣xb; KSoftKI
xbxb

+ Λ
)

▷ Stabilized MLL (Section 4.2)
8: end for
9: end for

▷ Stabilized Inference (Section 4.3
10: Σxz ← softmax_interpolation(x, z)
11: U⊤

zzUzz ← cholesky(Kzz)

12: Q, R ← QR

((
Λ−1/2 ΣxzKzz

Uzz

))

13: α← R−1 Q⊤

(
Λ−1/2 y

0

)
14: return α

1994) can be used to set lengthscales for different dimensions, we can also use a different temperature per
dimension. When learning both temperatures and lengthscales, we cap the lengthscale range for more stable
hyperparameter optimization since they have a push-and-pull effect.

4.2 Learning Interpolation Points

Similar to a SGPR, we can treat the interpolation points z as hyperparameters of a GP and learn them by
optimizing an appropriate objective. We propose optimizing the MLL log p(y |x; θ) with a method based on
gradient descent for a SoftKI which for Dθ = KSoftKI

xx (θ) + Λ(θ) has closed the form solution

log p(y | x; θ) = −1
2

[
y⊤D−1

θ y + log det(Dθ) + n log(2π)
]
, (13)

with derivative
∂ log p(y | x; θ)

∂θ
= −1

2

[
y⊤D−1

θ

∂Dθ

∂θ
D−1

θ y + tr
(

D−1
θ

∂Dθ

∂θ

)]
. (14)

Each evaluation of log p(y |x; θ) has time complexity O(m2n) and space complexity O(mn) where m is the
number of interpolation points. This is tractable to compute only when m≪ n because KSoftKI

xx is low-rank.

Hutchinson’s pseudoloss. Occasionally, we observe that the MLL is numerically unstable in single-
precision floating point arithmetic (see Appendix B.1 for further details). To help stabilize the MLL in
these situations, we use an approximate MLL based on work in approximate GP theory (Gardner et al.,
2018; Maddox et al., 2021; Wenger et al., 2023) that identify efficiently computable estimates of the log
determinant (Equation 13) and trace term (Equation 14) in the GP MLL. In more detail, these methods
combine stochastic trace estimation via the Hutchinson’s trace estimator (Girard, 1989; Hutchinson, 1989)
with blocked conjugate gradients so that the overall cost remains quadratic in the size of the kernel. Maddox
et al. (2022) term this approximate MLL the Hutchinson’s pseudoloss and show that it remains stable under
low-precision conditions.
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Figure 2: (Inducing vs. Interpolation Points): Comparison of inducing points learned by SGPR, static
rectilinear lattice points in SKI, and adaptive interpolation points learned by SoftKI on the Ricker wavelet
(Ricker, 1953) after 100 epochs of hyperparameter optimization. Contour plots of the posterior mean are
paired with each method’s absolute-error. Each method achieves comparable accuracy: SGPR’s inducing
points follow the sample distribution, and SoftKI’s interpolation points adapt to the true function’s local
geometry. Additional experiment details can be found in Appendix C.1

Definition 4.2 (Hutchinson Pseudoloss). Let u0, u1, . . . , ul be the solutions obtained by using block con-
jugate gradients for the system Dθ

(
u0 u1 . . . ul

)
=
(
y z1 . . . zl

)
, where each zj is a Gaussian random vector

normalized to unit length. The Hutchinson pseudoloss approximation of the GP marginal log likelihood in
Equation 13 is given as

log p̃(y |x; θ) = −1
2

u⊤
0 Dθu0 + 1

l

l∑
j=1

u⊤
j (Dθzj)

 (15)

with derivative

∂ log p̃(y |x; θ)
∂θ

= −1
2

u⊤
0

∂Dθ

∂θ
u0 + 1

l

l∑
j=1

u⊤
j

∂Dθ

∂θ
zj

 (16)

By computing Equation 15 as described above as opposed to explicitly computing a stochastic Lanczos
quadrature approximation (Ubaru et al., 2017), the gradient can also be efficiently computed using back
propagation.

Stabilized MLL. We combine SoftKI’s MLL with Hutchinson’s pseudoloss to arrive at the objective

log p̂(y | x; θ) =
{

log p(y | x; θ) when stable
log p̃(y | x; θ) otherwise

(17)

for optimizing SoftKI’s hyperparameters. In practice, this means that we default to using SoftKI’s MLL
and fallback to Hutchinson’s pseudoloss when numeric instability is encountered. This enables SoftKI to
accurately recover approximations of the MLL, even when the current positioning of interpolation points
would otherwise make the direct computation of the MLL unstable, while relying on the exact MLL as much
as possible.
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Stochastic optimization. Instead of computing ∇ log p̂(y |x; θ) on the entire dataset x, we can compute
∇ log p̂(y |xb; θ) on a minibatch of data xb of size b to perform stochastic optimization (see line 7 of Algo-
rithm 1). The stochastic estimate provides an unbiased estimator of the gradient. In this way, SoftKI can
leverage powerful stochastic optimization techniques used to train neural networks such as Adam (Kingma
& Ba, 2014) and hardware acceleration such as graphics processing units (GPUs). The time complexity of
evaluating ∇ log p̂(y |xb; θ) is cheap, costing O(b2m) operations with space complexity O(bm). The lower
space complexity makes it easier to use GPUs since they have more memory constraints compared to CPUs.
We emphasize that we are performing stochastic gradient descent and not stochastic variational inference as
in SVGP (Hensman et al., 2013). In particular, we do not define a distribution on the interpolation points
z nor make a variational approximation.

4.3 Posterior Inference

Because KSoftKI
xx is low-rank, we can use the matrix inversion lemma to rewrite the posterior predictive of

SoftKI as

p(f(∗) |y) = N (K̂∗zĈ−1K̂zxΛ−1y, KSoftKI
∗∗ −KSoftKI

∗x (Λ−1 −Λ−1K̂xzĈ−1K̂zxΛ−1)KSoftKI
x∗ ) (18)

where Ĉ = Kzz + K̂zxΛ−1K̂xz (see Appendix A). To perform posterior mean inference, we solve

Ĉα = K̂zxΛ−1y (19)

for weights α. Note that this is the posterior mean of a SGPR with C replaced with Ĉ and Kxz replaced
with K̂xz. Moreover, note that Ĉ is C with Kxz replaced with K̂xz. Since Ĉ is a m×m matrix, the solution
of the system of linear equations has time complexity O(m3). The formation of Ĉ requires the multiplication
of a m× n matrix with a n×m matrix which has time complexity O(m2n). Thus the complexity of SoftKI
posterior mean inference is O(m2n) since it is dominated by the formation of Ĉ. We refer the reader to the
supplementary material for discussion of the posterior covariance (Appendix A).

Solving with QR. Unfortunately, solving Equation 19 for α can be numerically unstable. Foster et al.
(2009) introduce a stable QR solver approach for a Subset of Regressors (SoR) GP (Smola & Bartlett, 2000)
which we adapt to a SoftKI. Define the block matrix

A =
(

Λ−1/2K̂xz
Uzz

)
(20)

where U⊤
zzUzz = Kzz is the upper triangular Cholesky decomposition of Kzz so that

A⊤A = K̂zxΛ−1K̂xz + Kzz = Ĉ . (21)

Let QR = A be the QR decomposition of A so that Q is a (n+m)×m orthonormal matrix and R is m×m
right triangular matrix. Then

Ĉα = K̂zxΛ−1y (⇐⇒ )

(QR)⊤(QR)α = (QR)⊤
(

Λ−1/2y
0

)
(⇐⇒ )

Rα = Q⊤
(

Λ−1/2y
0

)
. (22)

We thus solve Equation 22 for α via a triangular solve in O(m2) time. For additional experiments demon-
strating the inability of other linear solvers to offer comparable accuracy to the QR-stabilized solve detailed
in this section, see Appendix B.2.

5 Experiments

We compare the performance of SoftKIs against popular scalable GPs on selected data sets from the UCI
data set repository (Kelly et al., 2017), a common GP benchmark (Section 5.1). Next, we test SoftKIs on
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n d SoftKI m=512 SGPR m=512 SVGP m=1024
3droad 391386 3 0.583 ± 0.01 - 0.389 ± 0.001
Kin40k 36000 8 0.169 ± 0.008 0.177 ± 0.005 0.165 ± 0.005
Protein 41157 9 0.596 ± 0.016 0.601 ± 0.015 0.607 ± 0.012
Houseelectric 1844352 11 0.047 ± 0.001 - 0.047 ± 0.0
Bike 15641 17 0.062 ± 0.001 0.099 ± 0.003 0.084 ± 0.006
Elevators 14939 18 0.36 ± 0.006 0.393 ± 0.007 0.384 ± 0.008
Keggdirected 43944 20 0.08 ± 0.005 0.251 ± 0.13 0.082 ± 0.004
Pol 13500 26 0.075 ± 0.002 0.108 ± 0.001 0.122 ± 0.002
Keggundirected 57247 27 0.115 ± 0.004 0.132 ± 0.021 0.121 ± 0.007
Buzz 524925 77 0.24 ± 0.001 - 0.25 ± 0.002
Song 270000 90 0.777 ± 0.004 - 0.794 ± 0.006
Slice 48150 385 0.022 ± 0.006 0.435 ± 0.003 0.082 ± 0.001

Table 1: Test RMSE on UCI datasets. Best results are bolded.

n d SoftKI m=512 SGPR m=512 SVGP m=1024
3droad 391386 3 0.953 ± 0.041 - 0.597 ± 0.008
Kin40k 36000 8 0.055 ± 0.043 -0.105 ± 0.01 -0.082 ± 0.007
Protein 41157 9 0.905 ± 0.026 1.029 ± 0.01 1.047 ± 0.009
Houseelectric 1844352 11 1.274 ± 1.425 - -1.492 ± 0.007
Bike 15641 17 -0.379 ± 0.016 -0.322 ± 0.01 -0.68 ± 0.017
Elevators 14939 18 0.406 ± 0.021 0.581 ± 0.008 0.586 ± 0.009
Keggdirected 43944 20 0.421 ± 0.063 2.355 ± 3.875 -0.934 ± 0.017
Pol 13500 26 -0.71 ± 0.028 -0.538 ± 0.003 -0.394 ± 0.012
Keggundirected 57247 27 0.302 ± 0.136 -0.56 ± 0.108 -0.59 ± 0.021
Buzz 524925 77 0.276 ± 0.348 - 0.13 ± 0.008
Song 270000 90 1.179 ± 0.008 - 1.288 ± 0.002
Slice 48150 385 1.258 ± 0.149 1.295 ± 0.003 -0.662 ± 0.002

Table 2: Test NLL on UCI datasets. Best results are bolded.

high-dimensional molecule data sets from the domain of computational chemistry (Section 5.2). Finally, we
explore the interpolation points learned by SoftKI (Section 5.3).

5.1 Benchmark on UCI Regression

We evaluate the efficacy of a SoftKI against other scalable GP methods on data sets of varying size n and
data dimensionality d from the UCI repository (Kelly et al., 2017). We choose SGPR and SVGP as two
scalable GP methods since these methods can be applied in a relatively blackbox fashion, and thus, can be
applied to many data sets. It is not possible to apply SKI to most datasets that we test on due to scalability
issues with data dimensionality, and so we omit it. For additional comparisons to other alternative SKI
architectures, see Appendix C.3.

Experiment details. For this experiment, we split the data set into 0.9 for training and 0.1 for testing. We
standardize the data to have mean 0 and standard deviation 1 using the training data set. We use a Matérn
3/2 kernel and a learnable output scale. We choose m = 512 inducing points for SoftKI. Following Wang
et al. (2019), we use m = 512 for SGPR and m = 1024 for SVGP. We learn model hyperparameters for
SoftKI by maximizing Hutchinson’s pseudoloss, and for SGPR and SVGP by maximizing the ELBO.

We perform 50 epochs of training using the Adam optimizer (Kingma & Ba, 2014) for all methods with a
learning rate of η = 0.01. The learning rate for SGPR is η = 0.1 since we are not performing batching.
We use a default implementation of SGPR and SVGP from GPyTorch. For SoftKI and SVGP, we use a

9
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n d SoftKI m=512 SGPR m=512 SVGP m=1024
Ac-ala3-nhme 76598 126 0.79 ± 0.01 0.847 ± 0.006 0.836 ± 0.005
Dha 62777 168 0.886 ± 0.012 0.897 ± 0.012 0.882 ± 0.01
Stachyose 24544 261 0.363 ± 0.012 0.638 ± 0.003 0.555 ± 0.001
At-at 18000 354 0.528 ± 0.011 0.589 ± 0.008 0.558 ± 0.009
At-at-cg-cg 9137 354 0.502 ± 0.007 0.563 ± 0.024 0.461 ± 0.026
Buckyball-catcher 5491 444 0.153 ± 0.006 0.394 ± 0.011 0.307 ± 0.015
Double-walled-nanotube 4528 1110 0.031 ± 0.001 1.001 ± 0.048 0.045 ± 0.0

Table 3: Test RMSE on MD22 datasets. Best results are bolded.

n d SoftKI m=512 SGPR m=512 SVGP m=1024
Ac-ala3-nhme 76598 126 1.188 ± 0.014 1.364 ± 0.003 1.356 ± 0.002
Dha 62777 168 1.299 ± 0.014 1.418 ± 0.006 1.409 ± 0.007
Stachyose 24544 261 0.522 ± 0.059 1.118 ± 0.003 1.012 ± 0.003
At-at 18000 354 0.795 ± 0.007 1.037 ± 0.004 1.003 ± 0.008
At-at-cg-cg 9137 354 0.742 ± 0.01 0.987 ± 0.017 0.8 ± 0.016
Buckyball-catcher 5491 444 -0.278 ± 0.061 0.69 ± 0.009 0.449 ± 0.015
Double-walled-nanotube 4528 1110 -1.551 ± 0.049 1.52 ± 0.021 -0.954 ± 0.009

Table 4: Test NLL on MD22 datasets. Best results are bolded.

minibatch size of 1024. We report the average test RMSE (Table 1) and NLL (Table 2) for each method
across three seeds. Additional timing information is given in Appendix C.2.

Results. We observe that SoftKI has competitive test RMSE performance compared to SGPR and SVGP,
exceeding them when the dimension is modest (d ≈ 10). For the test NLL, we observe cases where SoftKI’s
test NLL is smaller or larger relative to the test RMSE. As a reminder, the NLL for a GP method consists
of two components: the RMSE and the complexity of the model. Consequently, a small test NLL relative
to the test RMSE indicates a relatively small amount of noise in the dataset. Conversely, a large test NLL
relative to the test RMSE indicates a large amount of noise in the dataset. We can see instances of this in
the bike dataset where SoftKI achieves comparable test RMSE to SGPR and SVGP, but results in larger
NLL. This indicates that SoftKI’s kernel is more complex compared to the variational GP kernels.

5.2 High-Dimensional Molecule Dataset

Since SoftKI’s are performant on large dimensional data sets from the UCI repository, we also test the
performance on molecular potential energy surface data on the MD22 (Chmiela et al., 2023) dataset. These
are high-dimensional datasets that give the geometric coordinates of atomic nuclei in biomolecules and their
respective energies.

Experiment details. For consistency, we keep the experimental setup the same as for UCI regression but
up the number of epochs of training to 200 due to slower convergence on these datasets. We still use the
Matérn kernel and not a molecule-specific kernel that incorporates additional information such as the atomic
number of each atom (e.g., a Hydrogen atom) or invariances (e.g., rotational invariance). We standardize the
data set to have mean 0 and standard deviation 1. We note that in an actual application of GP regression
to this setting, we may only opt to center the targets to be mean 0. This is because energy is a relative
number that can be arbitrarily shifted, whereas scaling the distances between atoms will affect the physics.

Results. Table 3 and Table 4 compares the test RMSE and test NLL of various GP models trained on
MD22. We see that SoftKI is a competitive method on these datasets, especially on the test NLL. GPs that
fit forces have been successfully applied to fit such data sets to chemical accuracy. In our case, we do not
fit derivative information. It would be an interesting direction of future work to extend SoftKI to handle
derivatives.

10
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Figure 3: (Interpolation vs. Inducing points–High Dimensional Setting): In this comparison the
slice (d = 385) dataset’s PCA embedding is presented, along with a kernel density estimate of the embedded
training data to more clearly highlight the placement of the learned interpolation points learned by SoftKI,
and inducing points learned by SGPR and SVGP relative to the distribution of the data. Importantly note
that in this example SVGP is run with twice as many (1024) inducing points compared to the other methods.
Appendix C.4 contains the PCA analysis for the remaining UCI datasets.

5.3 Learned Interpolation Points

Because a SoftKI’s predictive performance is determined by where it places its learned interpolation points,
we examine their arrangement for the slice dataset in Figure 3. We apply a two-component PCA embedding
to both the training dataset and the interpolation/inducing points z learned by SoftKI, SGPR, and SVGP.
To assess how effectively each method captures the overall data distribution, we plot the PCA embeddings
of the inducing points overlaid on the kernel density estimation (KDE) contour levels of the training points
in the PCA space, along with the marginal distributions along each axis.

In general, we see that the interpolation point locations learned by SoftKI are more spread out compared
to the inducing points learned by SGPR and SVGP. We believe that this is because the prior on inducing
variables linking the locations of inducing points to the data in SGPR and SVGP are normally distributed
whereas there are no such assumptions in the case of SoftKI. Moreover, we optimize a stabilized MLL that
is related to an exact GP’s MLL as opposed to an ELBO. Thus, while there are similarities in that both
SoftKI and SGPR begin with a Nyström approximation of the covariance matrix, interpolation points and
inducing points are subtly different. Additional interpolation point analysis, including PCA analysis for
other datasets in the UCI repository, are included in Appendix C.4.

6 Conclusion

In this paper, we introduce SoftKI, an approximate GP designed for regression on large and high-dimensional
datasets. SoftKI combines aspects of SKI and inducing points methods to retain the benefits of kernel
interpolation while also scaling to higher dimensional datasets. We have tested SoftKI on a variety of
datasets and shown that it is possible to perform kernel interpolation in high dimensional spaces in a way
that is competitive with other approximate GP abstractions that leverage inducing points. Moreover, we find
that the interpolation points learned by SoftKI are structurally different from the inducing points learned
in SGRP and SVGP. This suggests that methods that learn interpolation points provide another promising
path for constructing approximate GPs. Additionally, exploring methods to enforce stricter sparsity in the
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interpolation matrices, such as through thresholding, could enable the use of sparse matrix data structures
further improving the cost of inference.
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A SoftKI Posterior Predictive Derivation

As a reminder, the SoftKI posterior predictive is

p(fz(∗) | y) = N (K̂∗zĈ−1K̂zxΛ−1y, KSoftKI
∗∗ −KSoftKI

∗x (Λ−1 −Λ−1K̂xzĈ−1K̂zxΛ−1)KSoftKI
x∗ ) (23)

where Ĉ = Kzz + KzxΛ−1Kxz. To derive this, we first recall how to apply the matrix inversion lemma to
the posterior mean of a SGPR, which as a reminder uses the covariance approximation Kxx ≈ KSGPR

xx =
KxzK−1

zz Kzx

Lemma A.1 (Matrix inversion with GPs).

K∗z(Kzz + KzxΛ−1Kxz)−1KzxΛ−1 = KSGPR
∗x (KSGPR

xx + Λ)−1 (24)
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Proof.

KSGPR
xx + Λ = KSGPR

xx + Λ (identity)
⇐⇒ I = (KSGPR

xx + Λ)−1KSGPR
xx + (KSGPR

xx + Λ)−1Λ (mult by (KSGPR
xx + Λ)−1)

⇐⇒ I− (KSGPR
xx + Λ)−1KSGPR

xx = (KSGPR
xx + Λ)−1Λ (rearrange)

⇐⇒ KSGPR
∗x −KSGPR

∗x (KSGPR
xx + Λ)−1KSGPR

xx = KSGPR
∗x (KSGPR

xx + Λ)−1Λ
(mult both sides by KSGPR

∗x on left)
⇐⇒ K∗zK−1

zz Kzx −K∗zK−1
zz Kzx(KxzK−1

zz Kzx + Λ)−1KxzK−1
zz Kzx = KSGPR

∗x (KSGPR
xx + Λ)−1Λ

(defn KSGPR
xx )

⇐⇒ K∗z(K−1
zz −K−1

zz Kzx(KxzK−1
zz Kzx + Λ)−1KxzK−1

zz )Kzx = KSGPR
∗x (KSGPR

xx + Λ)−1Λ (factor)
⇐⇒ K∗z(Kzz + KzxΛ−1Kxz)−1Kzx = KSGPR

∗x (KSGPR
xx + Λ)−1Λ (matrix inversion lemma)

⇐⇒ K∗z(Kzz + KzxΛ−1Kxz)−1KzxΛ−1 = KSGPR
∗x (KSGPR

xx + Λ)−1 . (mult Λ−1 on right)

Now, we extend the matrix inversion lemma to SoftKI.
Lemma A.2 (Matrix inversion with interpolation).

K̂∗z(Kzz + K̂zxΛ−1K̂xz)−1K̂zxΛ−1 = KSoftKI
∗x (KSoftKI

xx + Λ)−1 (25)

Proof. Recall KSoftKI
∗∗ = ΣxzKzzΣzx = ΣxzKzzK−1

zz KzzΣzx = K̂xzK−1
zz K̂zx. The result follows by applying

Lemma A with Kxz replaced with K̂xz.

The posterior covariance is computed by a simple application of the matrix inversion lemma. To compute
it, observe that the same procedure for solving the posterior mean can also be used for solving the posterior
covariance by replacing y with KSoftKI

x∗ . More concretely,

KSoftKI
∗∗ −KSoftKI

∗x (Λ−1 −Λ−1K̂xzĈ−1K̂zxΛ−1)KSoftKI
x∗ (26)

= KSoftKI
∗∗ −KSoftKI

∗x Λ−1KSoftKI
x∗ + KSoftKI

∗x Λ−1K̂xzĈ−1K̂zxΛ−1KSoftKI
x∗ (27)

= KSoftKI
∗∗ −KSoftKI

∗x Λ−1KSoftKI
x∗ + KSoftKI

∗x Λ−1K̂xzα∗ (28)

where
Ĉα∗ = K̂zxΛ−1KSoftKI

x∗ (29)

can be solved for α∗ in the same way we solved for the posterior mean (with y instead of KSoftKI
x∗ ). Since

this depends on the inference point ∗, we cannot precompute the result ahead of time as we could with
the posterior mean. Nevertheless, the intermediate results of the QR decomposition can be computed once
during posterior mean inference and reused for the covariance prediction. Thus, the time complexity of
posterior covariance inference is O(m2n) per a test point.

B Algorithmic Choices

In this section, we examine various design choices we made for SoftKI. First, we discuss the rationale
behind using a stochastic trace estimation scheme for computing the MLL during stochastic optimization
(Section B.1). Next, we motivate choice of linear solver, comparing the use alternative linear solvers for the
posterior inference procedure described in Section 4.3.
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Figure 4: Comparison of Ricker wavelet surface reconstruction and interpolation points learned using the
SoftKI MLL and Hutchinson’s pseudoloss with varying numbers of probes.

UCI Dataset Test RMSE Test NLL
dataset n d log p̂(y |x; θ) log p̃(y |x; θ) log p̂(y |x; θ) log p̃(y |x; θ)
3droad 391386 3 0.583 ± 0.01 0.541 ± 0.005 0.953 ± 0.041 1.004 ± 0.175
Kin40k 36000 8 0.169 ± 0.008 0.183 ± 0.006 0.055 ± 0.043 0.074 ± 0.026
Protein 41157 9 0.596 ± 0.016 0.602 ± 0.016 0.905 ± 0.026 0.914 ± 0.029
Houseelectric 1844352 11 0.047 ± 0.0 0.049 ± 0.002 0.451 ± 0.029 1.275 ± 1.103
Bike 15641 17 0.062 ± 0.001 0.073 ± 0.005 -0.379 ± 0.016 -0.07 ± 0.216
Elevators 14939 18 0.36 ± 0.006 0.361 ± 0.007 0.406 ± 0.021 0.405 ± 0.024
Keggdirected 43944 20 0.08 ± 0.005 0.082 ± 0.004 0.421 ± 0.063 0.5 ± 0.232
Pol 13500 26 0.075 ± 0.002 0.084 ± 0.001 -0.71 ± 0.028 -0.744 ± 0.07
Keggundirected 57247 27 0.115 ± 0.004 0.118 ± 0.004 0.302 ± 0.136 0.315 ± 0.017
Buzz 524925 77 0.24 ± 0.001 0.24 ± 0.0 0.276 ± 0.348 0.29 ± 0.33
Song 270000 90 0.777 ± 0.004 0.777 ± 0.004 1.179 ± 0.008 1.178 ± 0.007
Slice 48150 385 0.022 ± 0.006 0.045 ± 0.004 1.258 ± 0.149 0.502 ± 0.137

Table 5: Effect on SoftKI RMSE and NLL using log p̂(y |x; θ) vs. log p̃(y |x; θ).

B.1 Effect of Hutchinson’s Pseudoloss

In Section 4.2, we advocated for the use of Hutchinson’s pseudoloss to overcome numerical stability issues
that arise when calculating the exact MLL. This adjustment is specifically to address situations where the
matrix Kzz is not positive semi-definite (PSD) in float32 precision. In other approximate GP model using
gpytorch, this challenge is typically met by performing a Cholesky decomposition followed by an efficient
low-rank computation of the log determinant through the matrix determinant lemma. In our experience
even when using versions of the Cholesky decomposition that add additional jitter along the diagonal there
are still situations where Kzz can be poorly conditioned, particularity when n is large. We conjecture that
this behavior originates from situations arising where the learned interpolation points of a SoftKI coincide at
similar positions driving the effective rank of Kzz down. In these situations, Hutchinson’s pseudoloss offers
a more stable alternative because it does not directly rely on the matrix being invertible.

Figure 4 compares the results obtained with the SoftKI MLL and Hutchinson’s pseudoloss for varying
numbers of probes on the Ricker wavelet surface. In Table 5 we replicate the UCI experiment of Section 5.1
using our stabilized MLL log p̂(y |x; θ) and Hutchinson’s pseudoloss log p̃(y |x; θ). For most situations, the
stabilized MLL and Hutchinson’s pseudoloss give similar results, indicating that the MLL is largely used. The
results differ on some datasets that produce noisy KSoftKI

∗∗ + Λ which can cause the Cholesky decomposition
to fail.

B.2 Alternative Methods for Posterior Inference

Section 4.3 details the adaptation of the QR stabilized linear solve for approximate kernels (Foster et al.,
2009) to the SoftKI setting. In this section, we provide empirical evidence illustrating how other linear
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(a) Protein. (b) Keggdirected.

Figure 5: Test RMSE of SoftKI models trained using different linear solvers on the keggundirected dataset
(left) and the protein dataset (right).

Method Learning rate (η) Kernel Starting noise (β) Inducing points (m) Test RMSE
SGPR 0.1 Matern ν = 1.5 0 128 K-means centroids 6× 10−3

SKI 0.1 Matern ν = 1.5 0.1 20× 20 grid 6× 10−3

SoftKI 0.5 Matern ν = 1.5 0.5 128 K-means centroids 2× 10−3

solvers fail when confronted with datasets that generate noisy kernels. We focus on two datasets, protein
and keggundirected, which have previously caused instability in Hutchinson’s pseudoloss computation.

As a reminder the QR stabilized linear solve is motivated by the challenge of solving the linear system:

Ĉ α = K̂zx Λ−1 y, (30)

where Ĉ is the estimated (potentially noisy) kernel matrix Ĉ = Kzz + K̂zxΛ−1K̂xz, and K̂xz = ΣxzKzz is
the interpolated kernel between interpolations points z and training points x.

In this example we evaluate a direct solver, the Cholesky decomposition method, and CG with convergence
tolerances set to 1 × 10−1, 1 × 10−2, 1 × 10−3, and 1 × 10−4. Despite adjusting the tolerances for the
CG method, our experiments revealed that all solvers—except for the QR-stabilized routine—resulted in
training instability. Figure 5 depicts the test RMSE performance across the different solvers. The direct
and Cholesky solvers, while more stable than the CG solvers, failed to produce reliable solutions. Similarly,
the CG method did not converge to acceptable solutions within the tested tolerance levels. In contrast, the
QR-stabilized solver consistently produced stable and accurate solutions justifying its choice as a correctional
measure that stabilizes a SoftKI on difficult problems.

C Additional Experiments

We provide supplemental data for experiments in the main text (Section C.2). We also report additional
comparisons with SKI-based methods (Section C.3). Finally, we provide additional data regarding SoftKI’s
interpolation points (Section C.4).
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Figure 6: (Absolute Error Surfaces): Comparison of the absolute error on the training set domain from
Figure 2 visualized as surfaces.

dataset n d SoftKI SGPR SVGP
3droad 391386 3 5.586 ± 0.12 - 8.529 ± 0.216
Kin40k 36000 8 0.453 ± 0.012 0.015 ± 0.002 0.823 ± 0.01
Protein 41157 9 0.52 ± 0.006 0.015 ± 0.003 0.904 ± 0.02
Houseelectric 1844352 11 26.066 ± 1.335 - 40.33 ± 1.182
Bike 15641 17 0.227 ± 0.011 0.013 ± 0.002 0.367 ± 0.006
Elevators 14939 18 0.178 ± 0.004 0.013 ± 0.002 0.352 ± 0.046
Keggdirected 43944 20 0.554 ± 0.004 0.016 ± 0.0 0.95 ± 0.011
Pol 13500 26 0.171 ± 0.01 0.013 ± 0.002 0.325 ± 0.017
Keggundirected 57247 27 0.722 ± 0.043 0.018 ± 0.0 1.217 ± 0.047
Buzz 524925 77 7.107 ± 0.053 - 10.974 ± 0.131
Song 270000 90 3.047 ± 0.055 - 5.851 ± 0.185
Slice 48150 385 1.363 ± 0.004 0.019 ± 0.002 1.069 ± 0.014

Table 6: Timing per epoch of hyperparameter optimization in seconds.

C.1 Ricker Wavelet Experiment

In Section 4.2 we present an illustrative comparison of SGPR, SKI and SoftKI on the task of learning the
Ricker wavelet. Figure 6 visualizes the absolute error given as surfaces. Each model was trained for 100
epochs using the Adam optimizer together with a StepLR learning-rate scheduler. The dataset is comprised
of 3, 000 training points and 200 test points. We obtain the initial inducing and interpolation locations for
both SGPR and SoftKI by clustering the training inputs with KMeans.

C.2 Supplemental to Experiments

Hardware details. We run all experiments on a single Nvidia RTX 3090 GPU which has 24Gb of VRAM. A
GPU with more VRAM can support larger datasets. Our machine uses an Intel i9-10900X CPU at 3.70GHz
with 10 cores. This primarily affects the timing of SoftKI and SVGP which use batched hyperparameter
optimization, and thus, move data on and off the GPU more frequently than SGPR.

Timing. Table 6 compares the average training time per epoch in seconds to for hyperparameter optimiza-
tion of SoftKI vs SVGP. We do not include SGPR since it is much faster but does not support batched
stochastic optimization, and thus, is limited to smaller datasets. We observe that SVGP and SoftKI have
similar performance characteristics due to the mini-batch gradient descent approach that both SVGP and
SoftKI employ. SVGP requires slightly more compute since it additionally learns the parameters of a varia-
tional Gaussian distribution.
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dataset n d Exact SoftKI Skip Simplex-SKI
R

M
SE

Protein 41157 9 0.511 ± 0.009 0.652 ± 0.012 0.817 ± 0.012 0.571 ± 0.003
Houseelectric 1844352 11 0.054 ± 0.000 0.052 ± 0.0 - 0.079 ± 0.002
Elevators 14939 18 0.399 ± 0.011 0.423 ± 0.011 0.447 ± 0.037 0.510 ± 0.018
Keggdirected 43944 20 0.083 ± 0.001 0.089 ± 0.001 0.487 ± 0.005 0.095 ± 0.002

N
LL

Protein 41157 9 0.960 ± 0.003 0.992 ± 0.017 1.213 ± 0.020 1.406 ± 0.048
Houseelectric 1844352 11 0.207 ± 0.001 0.251 ± 0.005 - 0.756 ± 0.075
Elevators 14939 18 0.626 ± 0.043 0.372 ± 0.004 0.869 ± 0.074 1.600 ± 0.020
Keggdirected 43944 20 0.838 ± 0.031 0.254 ± 0.156 0.996 ± 0.013 0.797 ± 0.031

Table 7: Comparison with SKI-based methods. Numbers for Exact, Skip and Simplex-SKI are taken
from (Kapoor et al., 2021). Best approximate GP numbers are bolded.

C.3 Comparison with SKI-based Methods

As we mentioned in the main text, it is not possible to apply SKI to a majority of the datasets in our
experiments due to dimensionality scaling issues. Nevertheless, there are some datasets with smaller dimen-
sionality that SKI-variants such as SKIP (Gardner et al., 2018) and Simplex-SKI (Kapoor et al., 2021) can
be applied to.

To compare against these methods, we attempt to replicate the experimental settings reported by (Kapoor
et al., 2021) so that we can directly compare against their reported numbers. The reason for doing so is
because Simplex-SKI relies on custom Cuda kernels for an efficient implementation. Consequently, it is
difficult to replicate on more current hardware and software stack as both the underlying GPU architectures
and PyTorch have evolved. From this perspective, we view the higher-level PyTorch and GPyTorch imple-
mentation of SoftKI as one practical strength since it can rely on these frameworks to abstract away these
details.

In the original Simplex-SKI experiments, the methods are tested on 4/9, 2/9, and 4/9 splits for training,
validation, and testing respectively. For SoftKI, we simply train on 4/9 of the dataset, discard the validation
set, and test on the rest. We report the test RMSE and test NLL achieved in Table 7. We find that SoftKI
is competitive with Simplex-SKI.

C.4 Additional Experiments on Interpolation Points

Figure 7 gives additional results on the PCA analysis for the UCI dataset. We observe the general trend
that the interpolation points learned by SoftKI tend to be more spread out compared to the inducing points
learned by SGRP and SVGP. This highlights that the structure interpolation points and inducing points are
different, although they both have their start in a Nyström approximation.

Figure 8 visualizes the projection of the interpolation/inducing points via UMAP (McInnes et al., 2020)
learned by each GP method on selected UCI datasets. As a reminder, UMAP attempts to preserve the
distances between the points in the higher-dimensional manifold in the 2D plane. We make a couple of
observations. First, the interpolation points learned by SoftKI are more spread out compared to the inducing
points learned by SGPR and SVGP. Second, the patterns in the interpolation points learned by SoftKI
confirm our intuition that high-dimensional spaces can benefit from fewer interpolation points. If a full
lattice were required, then there would be less discernible structure in the projection.

Figure 9 illustrates the effect of the number of interpolation points on the test RMSE of SoftKI. We find
that increasing the number of interpolation points is helpful for improving test RMSE performance on some
datasets (e.g., kin40k and pol) while it is detrimental for other datasets (e.g., elevators and song). In
general, we expect that increasing the number of interpolation points should improve the performance of
SoftKI. Thus, it is somewhat surprising that increasing the number of interpolation points did not help
performance on some datasets. As a reminder, datasets such as elevators and song are challenging in
general for GP models including SoftKI. Thus, we interpret the decrease in performance of SoftKI as
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(a) kin40k

(b) protein

(c) bike

(d) elevators

overfitting, especially since SoftKI explains less of the data as noise compared to another interpolation point
method such as SVGP.
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(e) keggdirected

(f) pol

(g) keggundirected

(h) song

C.5 Lengthscale and Temperature

Figure 10 gives the histograms of the lengthscales learned by various methods in the experimention in
Section 5.1. Figure 11 gives the histogram of the temperatures learned by SoftKI. On datasets such as
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song and slice, we see that the majority of SoftKI’s lengthscales for each dimension reach the maximum
lengthscale of 5. The dimensionality-specific variation is instead captured in the temperature.
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(i) slice

(j) 3droad

(k) buzz

(l) houseelectric

Figure 7: Interpolation and inducing points learned by each method as projected by PCA.
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(a) 3droad (b) kin40k (c) protein

(d) houseelectric (e) bike (f) elevators

(g) keggdirected (h) pol (i) keggundirected

(j) buzz (k) song (l) slice

Figure 8: Interpolation and inducing points learned by each method as projected by UMAP.
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(a) 3droad (b) kin40k (c) protein (d) houseelectric (e) bike

(f) elevators (g) keggdirected (h) pol (i) keggundirected (j) buzz

(k) song (l) slice

Figure 9: Test RMSE performance as a function of the number of interpolation points.

(a) 3droad (b) kin40k (c) protein (d) houseelectric

(e) bike (f) elevators (g) keggdirected (h) pol

(i) keggundirected (j) buzz (k) song (l) slice

Figure 10: Lengthscales.
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(a) 3droad (b) kin40k (c) protein (d) houseelectric

(e) bike (f) elevators (g) keggdirected (h) pol

(i) keggundirected (j) buzz (k) song (l) slice

Figure 11: Temperatures.
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