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Abstract

We study theoretical properties of a broad class of regularized algorithms with
vector-valued output. These spectral algorithms include kernel ridge regression,
kernel principal component regression and various implementations of gradient
descent. Our contributions are twofold. First, we rigorously confirm the so-called
saturation effect for ridge regression with vector-valued output by deriving a
novel lower bound on learning rates; this bound is shown to be suboptimal when
the smoothness of the regression function exceeds a certain level. Second, we
present an upper bound on the finite sample risk for general vector-valued spectral
algorithms, applicable to both well-specified and misspecified scenarios (where the
true regression function lies outside of the hypothesis space), and show that this
bound is minimax optimal in various regimes. All of our results explicitly allow
the case of infinite-dimensional output variables, proving consistency of recent
practical applications.

1 Introduction

We investigate a fundamental topic in modern machine learning—the behavior and efficiency of
learning algorithms for regression in high-dimensional and potentially infinite-dimensional output
spaces Y . Given two random variables X and Y , we seek to empirically minimize the squared
expected risk

E(F ) ∶= E [∥Y − F (X)∥2
Y
] (1)

over functions F in a reproducing kernel Hilbert space consisting of vector-valued functions from a
topological space X to a Hilbert space Y . The study of this setting as an ill-posed statistical inverse
problem is well established: see e.g. 46, 6, 53, 3, 5, 17. In this work, we study the setting when Y
is high- or infinite-dimensional, since it has been less well covered by the literature, yet has many
applications in multitask regression [7, 2] and infinite-dimensional learning problems, including
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the conditional mean embedding [20, 21, 41], structured prediction [11, 12], causal inference [43],
regression with instrumental and proximal variables [42, 35], the estimation of linear operators
and dynamical systems [47, 37, 26, 38, 25], and functional regression [24]. Interestingly, the
aforementioned infinite-dimensional applications typically use the classical ridge regression algorithm.
Our goal is to motivate the use of alternative learning algorithms in these settings, while providing
strong theoretical guarantees.

Classically, the ill-posed problem (1) is solved via regularization strategies, which are often imple-
mented in terms of so-called spectral filter functions in the context of inverse problems in Hilbert
spaces [16]. When applied to the learning problem given by (1), these filter functions correspond to
learning algorithms including ridge regression, a variety of different implementations of gradient
descent, principal component regression, and other related methods (we refer the reader to 19 and 2
for overviews of the real-valued and vector-valued output variable case, respectively). Algorithms
based on spectral filter functions when Y = R are studied extensively, see e.g. [5, 34]. To the best of
our knowledge, the detailed behavior of this general class of algorithms has remained unknown when
Y is a general Hilbert space, with the exception of a few results for special cases in the setting of
ridge regression [6, 31].

Overview of our contributions. In this manuscript, we aim to theoretically understand vector-valued
spectral learning algorithms. The contribution of our work is twofold: (i) we rigorously confirm the
saturation effect of ridge regression for general Hilbert spaces Y (see paragraph below) in the context
of lower bounds on rates for the learning problem (1) and (ii) we cover a gap in the existing literature
by providing upper rates for general spectral algorithms in high- and infinite-dimensional spaces.
Our results explicitly allow the misspecified learning case in which the true regression function is not
contained in the hypothesis space. We base our analysis on the concept of vector-valued interpolation
spaces introduced by [30, 31]. The interpolation space norms measure the smoothness of the true
regression function, replacing typical source conditions found in the literature which only cover the
well-specified case. To the best of our knowledge, these are the first bounds covering this general
setting for vector-valued spectral algorithms.

Saturation effect of ridge regression. The widely-used ridge regression algorithm is known to
exhibit the so-called saturation effect: it fails to exploit additional smoothness in the target function
beyond a certain threshold. This effect has been thoroughly investigated in the context of Tikhonov
regularization in inverse problems [16, Chapter 5], but is generally reflected only in upper rates in
the learning literature, see e.g. [34, 5]. Interestingly, existing lower bounds [6, 5, 31] are usually
formulated in a more general setting and do not reflect this saturation effect, leaving a gap between
upper and lower rates. We leverage the bias-variance decomposition paradigm to lower bound the
learning risk of kernel ridge regression with vector-valued output, in order to close this gap.

Learning rates of vector-valued spectral algorithms. Motivated by the fact that the saturation
effect is technically unavoidable with vector-valued ridge regression, we proceed to study the
generalization error of popular alternative learning algorithms. In particular, we provide upper
rates in the vector-valued setting consistent with the known behavior of spectral algorithms in the
real-valued learning setting, based on their so-called qualification property [5, 34]. In particular, we
confirm that a saturation effect can be bypassed in high and infinite dimensions by algorithms such as
principal component regression and gradient descent, allowing for a better sample complexity for
high-smoothness problems. Furthermore, we study the misspecified setting and show that upper rates
for spectral algorithms match the state-of-the-art upper rates for misspecified vector-valued ridge
regression recently obtained by [31]. Those rates are optimal for a wide variety of settings. Moreover,
we argue that applications of vector-valued spectral algorithms are easy to implement by making use
of an extended representer theorem based on [2], allowing for the numerical evaluation based on
empirical data—even in the infinite-dimensional case.

Related Work. The saturation effect of regularization techniques in deterministic inverse problems
is well-known. For example, [40, 36, 22] study the saturation effect for Tikhonov regularization and
general spectral algorithms. In the kernel statistical learning framework, the general phenomenon
of saturation is discussed by e.g. [3, 19]. Recent work by [29] investigates saturation effect in the
learning context by providing a lower bound on the learning rate. To the best of our knowledge,
however, all studies in the statistical learning context focus on the case when Y is real-valued.
General upper bounds of kernel ridge regression with real-valued or finite-dimensional Y have
been extensively studied in the literature (see e.g., [6, 50, 8, 17]), where minimax optimal learning
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rates are derived. Recent work [30, 31] studies the infinite-dimensional output space setting with
Tikhonov regularization and obtains analogous minimax optimal learning rates. [23] later study a
setting where both the input and output space is the infinite dimensional Sobolev RKHS and establish
the minimax optimal rate. For kernel learning with spectral algorithms, existing work (see e.g.,
[3, 5, 32, 34, 54, 28]) focuses on real-valued output space setting and obtains optimal upper learning
rates depending on the qualification number of the spectral algorithms, where only [54, 28] consider
the misspecified learning scenario where the target regression function does not lie in the hypothesis
space. For vector-valued output spaces, [27] considers learning with vector-valued random features.
However, general investigations of spectral algorithms for vector-valued output spaces are absent in
the literature.

Structure of this paper. This paper is structured as follows. In Section 2, we introduce mathematical
preliminaries related to reproducing kernel Hilbert spaces, vector-valued regression as well as
the concept of vector-valued interpolation spaces. Section 3 contains a brief review the so-called
saturation effect and a corresponding novel lower bound for vector-valued kernel ridge regression.
In Section 4, we investigate general spectral learning algorithms in the context of vector-valued
interpolations spaces and provide our main result: upper learning rates for this setting.

2 Background and Preliminaries

Throughout the paper, we consider a random variable X (the covariate) defined on a second countable
locally compact Hausdorff space2 X endowed with its Borel σ-field FX , and the random variable
Y (the output) defined on a potentially infinite dimensional separable real Hilbert space (Y, ⟨⋅, ⋅⟩Y)
endowed with its Borel σ-field FY . We let (Ω,F ,P) be the underlying probability space with
expectation operator E. Let P be the push-forward of P under (X,Y ) and π and ν be the marginal
distributions on X and Y , respectively; i.e., X ∼ π and Y ∼ ν. We use the Markov kernel p ∶
X ×FY → R+ to express the distribution of Y conditioned on X as

P[Y ∈ A∣X = x] = ∫
A
p(x, dy),

for all x ∈ X and events A ∈ FY , see e.g. [15]. We introduce some notation related to linear operators
on Hilbert spaces and vector-valued integration; formal definitions can be found in Appendix A for
completeness, or we refer the reader to [52, 14]. The spaces of Bochner square-integrable functions
with respect to π and taking values in Y are written as L2(X ,FX , π;Y), abbreviated as L2(π;Y).
We obtain the classical Lebesgue spaces as L2(π) ∶= L2(π;R). Throughout the paper, we write [F ]
or more explicitly [F ]π for the π-equivalence class of (potentially pointwise defined) measurable
functions from X to Y , which we naturally interpret as elements in L2(π;Y) whenever they are
square-integrable. Let H be a separable real Hilbert space with inner product ⟨⋅, ⋅⟩H . We write
L(H,H ′) as the Banach space of bounded linear operators from H to another Hilbert space H ′,
equipped with the operator norm ∥ ⋅ ∥H→H′ . When H =H ′, we simply write L(H) instead. We write
S2(H,H

′) as the Hilbert space of Hilbert-Schmidt operators from H to H ′ and S1(H,H
′) as the

Banach space of trace class operators (see Appendix A for a complete definition). For two Hilbert
spaces H,H ′, we say that H is (continuously) embedded in H ′ and denote it as H ↪H ′ if H can be
interpreted as a vector subspace of H ′ and the inclusion operator i ∶H →H ′ performing the change
of norms with ix = x for x ∈H is continuous; and we say that H is isometrically isomorphic to H ′
and denote it as H ≃H ′ if there is a linear isomorphism between H and H ′ which is an isometry.

Tensor Product of Hilbert Spaces: Denote H ⊗ H ′ the tensor product of Hilbert spaces H ,
H ′. The element x ⊗ x′ ∈ H ⊗ H ′ is treated as the linear rank-one operator x ⊗ x′ ∶ H ′ → H
defined by y′ → ⟨y′, x′⟩H′x for y′ ∈ H ′. Based on this identification, the tensor product space
H ⊗H ′ is isometrically isomorphic to the space of Hilbert-Schmidt operators from H ′ to H , i.e.,
H ⊗H ′ ≃ S2(H

′,H). We will hereafter not make the distinction between these two spaces, and treat
them as being identical.
Remark 1 (1, Theorem 12.6.1). Consider the Bochner space L2(π;H) where H is a separable
Hilbert space. One can show that L2(π;H) is isometrically identified with the tensor product space
H ⊗L2(π), and we denote as Ψ the isometric isomorphism between the two spaces. See Appendix A
for more details on tensor product spaces and the explicit definition of Ψ.

2Under additional technical assumptions, the results in this paper can also be formulated when X is a
more general topological space. However, some properties of kernels defined on X such as the so-called
c0-universality [10] simplify the exposition when X is a second countable locally compact Hausdorff space.
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Scalar-valued Reproducing Kernel Hilbert Space (RKHS). We let k ∶ X ×X → R be a symmetric
and positive definite kernel function andH be a vector space of functions from X to R, endowed with
a Hilbert space structure via an inner product ⟨⋅, ⋅⟩H. We say that k is a reproducing kernel ofH if and
only if for all x ∈ X we have k(⋅, x) ∈H and for all x ∈ X and f ∈H, we have f(x) = ⟨f, k(x, ⋅)⟩

H
.

A spaceH which possesses a reproducing kernel is called a reproducing kernel Hilbert space (RKHS;
see e.g. 4). We denote the canonical feature map ofH as ϕ(x) = k(⋅, x).

We require some technical assumptions on the previously defined RKHS and kernel, which we
assume to be satisfied throughout the text:

1. H is separable: this is satisfied if k is continuous, given that X is separable3;
2. k(⋅, x) is measurable for π-almost all x ∈ X ;
3. k(x,x) ≤ κ2 for π-almost all x ∈ X .

The above assumptions are not restrictive in practice, as well-known kernels such as the Gaussian,
Laplace, and Matérn kernels satisfy them on X ⊆ Rd [48]. We now introduce some facts about the
interplay betweenH and L2(π), which has been extensively studied by [44, 45], [13] and [51]. We
first define the (not necessarily injective) embedding Iπ ∶ H → L2(π), mapping a function f ∈ H
to its π-equivalence class [f]. The embedding is a well-defined compact operator as long as its
Hilbert-Schmidt norm is finite. In fact, this requirement is satisfied since its Hilbert-Schmidt norm
can be computed as [51, Lemma 2.2 & 2.3] ∥Iπ∥S2(H,L2(π))

= ∥k∥L2(π) ≤ κ. The adjoint operator
Sπ ∶= I

∗

π ∶ L2(π) → H is an integral operator with respect to the kernel k, i.e. for f ∈ L2(π) and
x ∈ X we have [49, Theorem 4.27]

(Sπf) (x) = ∫
X

k (x,x′) f (x′)dπ (x′) .

Next, we define the self-adjoint, positive semi-definite and trace class integral operators

LX ∶= IπSπ ∶ L2(π)→ L2(π) and CX ∶= SπIπ ∶H →H.

Vector-valued Reproducing Kernel Hilbert Space (vRKHS). LetK ∶ X×X → L(Y) be an operator
valued positive-semidefinite (psd) kernel. Fix K, x ∈ X , and h ∈ Y , then (Kxh) (⋅) ∶= K(⋅, x)h
defines a function from X to Y . The completion of

Gpre ∶= span{Kxh ∣ x ∈ X , h ∈ Y}

with inner product on Gpre defined on the elementary elements as ⟨Kxh,Kx′h
′⟩
G
∶=

⟨h,K (x,x′)h′⟩
Y

, defines a vRKHS denoted as G. For a more complete overview of the vector-
valued reproducing kernel Hilbert space, we refer the reader to [9], [10] and [31, Section 2]. In the
following, we will denote G as the vRKHS induced by the kernel K ∶ X ×X → L(Y) with

K(x,x′) ∶= k(x,x′) IdY , x, x′ ∈ X . (2)

We emphasize that this family of kernels is the de-facto standard for high- and infinite-dimensional
applications [20, 21, 41, 11, 12, 42, 35, 43, 37, 26, 38, 25, 24] due to the crucial representer theorem
which gives a closed form solution for the ridge regression problem based on the data. We generalize
this representer theorem to cover the general spectral algorithm case in Proposition 1.
Remark 2 (General multiplicative kernel). Without loss of generality, we provide our results for
the vRKHS G induced by the operator-valued kernel given by K(x,x′) = k(x,x′) IdY . However,
with suitably adjusted constants in the assumptions, our results transfer directly to the more general
vRKHS G̃ induced by the more general operator-valued kernel

K̃(x,x′) ∶= k(x,x′)T

where T ∶ Y → Y is any positive-semidefinite self-adjoint operator. The precise characterization of
the adjusted constants is given by [31, Section 4.1].

An important property of G is that it is isometrically isomorphic to the space of Hilbert-Schmidt
operators betweenH and Y [31, Corollary 1]. Similarly to the scalar case we can map every element
in G into its π−equivalence class in L2(π;Y) and we use the shorthand notation [F ] = [F ]π (see
Definition 6 in Appendix A for more details).

3This follows from [49, Lemma 4.33]. Note that the Lemma requires separability of X , which is satisfied
since we assume that X is a second countable locally compact Hausdorff space.
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Theorem 1 (vRKHS isomorphism). For every function F ∈ G there exists a unique operator
C ∈ S2(H,Y) such that F (⋅) = Cϕ(⋅) ∈ Y with ∥C∥S2(H,Y) = ∥F ∥G and vice versa. Hence
G ≃ S2(H,Y) and we denote the isometric isomorphism between S2(H,Y) and G as Ψ̄. It follows
that G can be written as G = {F ∶ X → Y ∣ F = Cϕ(⋅), C ∈ S2(H,Y)}.

2.1 Vector-valued Regression

We briefly recall the basic setup of regularized least-squares regression with Hilbert space-valued
random variables. The squared expected risk for vector-valued regression is

E(F ) ∶= E [∥Y − F (X)∥2
Y
] = ∫

X×Y

∥y − F (x)∥2
Y
p(x, dy)π(dx), (3)

for measurable functions F ∶ X → Y . The analytical minimizer of the risk over measurable functions
is the regression function or the conditional mean function F⋆ ∈ L2(π;Y) given by

F∗(x) ∶= E[Y ∣X = x] = ∫
Y

y p(x, dy), x ∈ X .

Throughout the paper, we assume that E[∥Y ∥2
Y
] < +∞, i.e., the random variable Y is square-

integrable. Note that this implies F⋆ ∈ L2(π;Y). Our focus in this work is to approximate F∗ with
kernel-based regularized least-squares algorithms, where we pay special attention to the case when Y
is of high or infinite dimension. We pick G as a hypothesis space of functions in which to estimate F∗.
Note that by Theorem 1, minimizing the functional E on G is equivalent to minimizing the following
functional on S2(H,Y),

Ē(C) ∶= E [∥Y −Cϕ(X)∥2
Y
] . (4)

It is shown in [38, Proposition 3.5 and Section 3.4] that the optimality condition can be written as

CY X = C∗CX , C∗ ∈ S2(H,Y), (5)

where CY X ∶= E[Y ⊗ ϕ(X)] is the cross-covariance operator. As discussed in full detail by [38],
the problem (5) can be formulated as a potentially ill-posed inverse problem on the space of Hilbert–
Schmidt operators. As such, a regularization is required; we introduce regularized solutions of this
problem in Section 4 through the classical concept of spectral filter functions.

2.2 Vector-valued Interpolation Space and Source Condition

We now introduce the background required in order to characterize the smoothness of the target
function F∗, both in the well-specified setting (F∗ ∈ G) and in the misspecified setting (F∗ ∉ G). We
review the results of [51] and [17] in constructing scalar-valued interpolation spaces, and [30] in
defining vector-valued interpolation spaces.

Real-valued Interpolation Space: By the spectral theorem for self-adjoint compact operators,
there exists an at most countable index set I , a non-increasing sequence (µi)i∈I > 0, and a family
(ei)i∈I ∈H, such that ([ei])i∈I

4 is an orthonormal basis (ONB) of ran Iπ ⊆ L2(π) and (µ1/2
i ei)i∈I

is an ONB of (ker Iπ)
⊥

⊆H, and we have

LX =∑
i∈I

µi⟨⋅, [ei]⟩L2(π)[ei], CX =∑
i∈I

µi⟨⋅, µ
1
2

i ei⟩Hµ
1
2

i ei (6)

For α ≥ 0, the α-interpolation space [51] is defined by

[H]α ∶= {∑
i∈I

aiµ
α/2
i [ei] ∶ (ai)i∈I ∈ ℓ2(I)} ⊆ L2(π),

equipped with the inner product

⟨∑
i∈I

ai(µ
α/2
i [ei]),∑

i∈I

bi(µ
α/2
i [ei])⟩

[H]α

=∑
i∈I

aibi,

4We recall that the bracket [⋅] denotes the embedding that maps f to its equivalence class Iπ(f) ∈ L2(π).
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for (ai)i∈I , (bi)i∈I ∈ ℓ2(I). The α-interpolation space defines a Hilbert space. Moreover,
(µ

α/2
i [ei])

i∈I
forms an ONB of [H]α and consequently [H]α is a separable Hilbert space. In

the following, we use the abbreviation ∥ ⋅ ∥α ∶= ∥ ⋅ ∥[H]α .

Vector-valued Interpolation Space: Introduced in [30], vector-valued interpolation spaces generalize
the notion of scalar-valued interpolation spaces to vRKHS with a kernel of the form (2).
Definition 1 (Vector-valued interpolation space). Let k be a real-valued kernel with associated
RKHSH and let [H]α be the real-valued interpolation space associated toH with some α ≥ 0. The
vector-valued interpolation space [G]α is defined as (refer to Remark 1 for the definition of Ψ)

[G]α ∶= Ψ (S2([H]
α,Y)) = {F ∣ F = Ψ(C), C ∈ S2([H]

α,Y)}.

The space [G]α is a Hilbert space equipped with the inner product

⟨F,G⟩α ∶= ⟨C,L⟩S2([H]
α,Y) (F,G ∈ [G]α),

where C = Ψ−1(F ), L = Ψ−1(G). For α = 0, we retrieve ∥F ∥0 = ∥F ∥L2(π;Y) = ∥C∥S2(L2(π),Y).

Remark 3 (Interpolation space inclusions). Note that we have F∗ ∈ L2(π;Y) since Y ∈ L2(P;Y)
by assumption. Furthermore, for 0 < β < α, [17, Eq. (7)] imply the inclusions

[G]α ↪ [G]β ↪ [G]0 ⊆ L2(π;Y).

Under assumptions 1 to 3 and with X being a second-countable locally compact Hausdorff space,
[G]0 = L2(π;Y) if and only ifH is dense in the space of continuous functions vanishing at infinity,
equipped with the uniform norm [31, Remark 4].
Remark 4 (Well-specified versus misspecified setting). We say that we are in the well-specified
setting if F∗ ∈ [G]1. In this case, there exists F̄ ∈ G such that F∗ = F̄ π−almost surely and
∥F∗∥1 = ∥F̄ ∥G , i.e. F∗ admits a representer in G (see Remark 5 in Appendix A). When F∗ ∈ [G]β for
β < 1, F∗ may not admit such a representation and we are in the misspecified setting, as [G]1 ⊆ [G]β .

Definition 1 and Remarks 3 and 4 motivate the use of following assumption on the smoothness of the
target function: there exists β > 0 and a constant B ≥ 0 such that F∗ ∈ [G]β and

∥F∗∥β ≤ B. (SRC)

We let C∗ ∶= Ψ−1(F∗) ∈ S2([H]
β ,Y). (SRC) directly generalizes the notion of a so-called Hölder-

type source condition in the learning literature [6, 17, 32, 34] and allows to characterize the misspeci-
fied learning scenario.

2.3 Further Assumptions

In addition to (SRC), we require standard assumptions to obtain the precise learning rates for kernel
learning algorithms. We list them below. For constants D2 > 0 and p ∈ (0,1] and for all i ∈ I ,

µi ≤D2i
−1/p. (EVD)

For constants D1,D2 > 0 and p ∈ (0,1) and for all i ∈ I ,

D1i
−

i
p ≤ µi ≤D2i

−1/p. (EVD+)

(EVD) and (EVD+) are standard assumptions on the eigenvalue decay of the integral operator: they
describe the interplay between the marginal distribution π and the RKHSH (see more details in 6, 17).
(EVD+) is needed in order to establish lower bounds on the excess risk. Note that we have excluded
the value p = 1 from (EVD+); indeed, p = 1 is incompatible with the assumption of a bounded kernel,
a fact missed by previous works and of independent interest (see Appendix, Remark 7).

For α ∈ [p,1], the inclusion Iα,∞π ∶ [H]α ↪ L∞(π) is continuous, and ∃A > 0 such that

∥Iα,∞π ∥[H]α→L∞(π) ≤ A. (EMB)

Property (EMB) is referred to as the embedding property in [17]. It can be shown that it holds
if and only if there exists a constant A ≥ 0 with ∑i∈I µ

α
i e

2
i (x) ≤ A

2 for π-almost all x ∈ X [17,
Theorem 9]. Since we assume k to be bounded, the embedding property always hold true when α = 1.
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Furthermore, (EMB) implies a polynomial eigenvalue decay of order 1/α, which is why we take
α ≥ p. (EMB) is not needed when we deal with the well-specified setting, but is crucial to bound the
excess risk in the misspecified setting.

Finally, we assume that there are constants σ,R > 0 such that

∫
Y

∥y − F∗(x)∥
q
Y
p(x, dy) ≤

1

2
q!σ2Rq−2, (MOM)

is satisfied for π-almost all x ∈ X and all q ≥ 2. The (MOM) condition on the Markov kernel p(x, dy)
is a Bernstein moment condition used to control the noise of the observations (see 6, 17 for more
details). If Y is almost surely bounded, for example ∥Y ∥Y ≤ Y∞ almost surely, then (MOM) is
satisfied with σ = R = 2Y∞. It is possible to prove that the Bernstein condition is equivalent to
sub-exponentiality, see [38, Remark 4.9].

3 Saturation Effect of Kernel Ridge Regression

The most established way of learning F∗ is by kernel ridge regression (KRR), which can be formu-
lated as the following optimization problem: given a dataset D = {(xi, yi)}ni=1 independently and
identically sampled from the joint distribution of X and Y ,

F̂λ ∶= argmin
F ∈G

1

n

n

∑
i=1

∥yi − F (xi)∥
2
Y
+ λ∥F ∥2

G
, (7)

where λ > 0 is the regularization parameter. The generalization error of vector-valued KRR is
expressed as F̂λ − F∗, and controlled in different norms: see [31] for an extensive study. We recall
here a simplified special case of the key results obtained in this work. In the next Theorem, ≲,≳ are
inequality up to positive multiplicative constants that are independent of n.

Theorem 2 (Upper and lower bounds for KRR in the well-specified regime). Let F̂λ be the KRR
estimator from (7). Furthermore, let the conditions (EVD+), (SRC) and (MOM) be satisfied for some
0 < p ≤ 1 and β ≥ 1. Then, with high probability we have

∥[F̂λn] − F∗∥
2

L2(π;Y)
≲ n−

min{β,2}
min{β,2}+p for a choice λn = Θ (n

−
1

β+p ) ,

and furthermore for all learning methods (i.e., measurable maps) of the form D → F̂D,

∥[F̂D] − F∗∥
2
L2(π;Y)

≳ n−
β

β+p .

Theorem 2 shows the minimax optimal learning rate for vector-valued KRR for β ∈ [1,2]. However,
when β > 2, the obtained upper bound saturates at n−

2
2+p , creating a gap with the lower bound. This

phenomenon is referred to as the saturation effect of Tikhonov regularization, and has been well
investigated in deterministic inverse problems [40]. In the case where Y is real-valued, [29] prove
that the saturation effect cannot be avoided with Tikhonov regularization. Below, we give a similar
but generalized bound on lower rates for the case that Y is a Hilbert space. For this result only, we
assume that X is a compact subset of Rd. We give the proof in Appendix B.

Theorem 3 (Saturation of KRR). Let X be a compact subset of Rd. Let λ = λ(n) be an arbitrary
choice of regularization parameter satisfying λ(n)→ 0 as n→ +∞ and let F̂λ be the KRR estimator
from (7). We assume that the noise is non-zero and bounded below, i.e. there exists σ > 0, such that

∫
Y

∥y − F∗(x)∥
2
Y
p(x, dy) ≥ σ2,

is satisfied for π-almost all x ∈ X . We assume in addition and for this result only that k is Hölder
continuous (see Definition 11 in the appendix), i.e., k ∈ Cθ(X × X ) for θ ∈ (0,1]. Suppose that
Assumptions (EVD+) and (SRC) hold with p ∈ (0,1) and β ≥ 2. For τ ≥ 0, for sufficiently large
n > 0, where the hidden index bound depends on τ , with probability greater than 1 − e−τ , there exists
some constant cτ > 0 such that

E [∥[F̂λ] − F∗∥
2

L2(π;Y)
∣x1, . . . , xn] ≥ cτn

−
2

2+p .
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The assumption that k is Hölder continuous is crucial in lower bounding the variance with a covering
number argument. Kernels satisfying this assumption include Gaussian kernels, Laplace kernels
and Matérn kernels. Theorem 3 clearly demonstrates that the learning rate from vector-valued KRR
cannot reach the information theoretic lower rate given in Theorem 2.

As discussed above, [29] propose a similar lower bound in the real-valued case, and we now
highlight two fundamental differences with [29] in the proof. First, while both works adopt the
same bias-variance decomposition, we need to lower bound the bias and the variance term with
infinite-dimensional output in our setting. Second, we adopt a different and simpler approach in
proving the lower bound, since there are a number of issues with the proof of [29], both in the
treatment of the bias and of the variance. For a detailed comparison with the earlier work, and an
explanation of the differences in our approach, please refer to Remark 6 in the Appendix.

4 Consistency and optimal rates for general spectral algorithms

Regularized population solution: Our goal is to regularize (5) in such a way that we get a unique
and well-defined solution that provides a good approximation to F∗. We first recall the concept of
a filter function (i.e., a function on an interval which is applied on self-adjoint operators to each
individual eigenvalue via the spectral calculus, see 16), that will allow to define a regularization
strategy. One may think of the following definition as a class of functions approximating the inversion
map x↦ 1/x while still being defined for x = 0 in a reasonable way. We use the definition given by
[34], but equivalent definitions can be found throughout the literature.
Definition 2 (Filter function). Let Λ ⊆ R+. A family of functions gλ ∶ [0,∞) → [0,∞) indexed by
λ ∈ Λ is called a filter with qualification ρ ≥ 0 if it satisfies the following two conditions:

1. There exists a positive constant E such that, for all λ ∈ Λ

sup
α∈[0,1]

sup
x∈[0,κ2]

λ1−αxαgλ(x) ≤ E (8)

2. There exists a positive constant ωρ <∞ such that

sup
α∈[0,ρ]

sup
λ∈Λ

sup
x∈[0,κ2]

∣rλ(x)∣x
αλ−α ≤ ωρ, with rλ(x) ∶= 1 − gλ(x)x. (9)

Below, we give some standard examples which are discussed by e.g. [19, 5] in the context of kernel
regression with scalar output variables, and in [2] for the vector-valued case. A variety of additional
algorithms can be expressed in terms of a filter function.

1. Ridge regression. From the Tikhonov filter function gλ(x) = (x+λ)−1, we obtain the known ridge
regression algorithm. In this case, we have E = ρ = ωρ = 1.

2. Gradient Descent. From the Landweber iteration filter function given by

gk(x) ∶= τ
k−1

∑
i=0

(1 − τx)i for k ∶= 1/λ, k ∈ N

we obtain the gradient descent scheme with constant step size τ > 0, which corresponds to the
population gradient iteration given by Fk+1 ∶= Fk − τ∇E(Fk) for k ∈ N. In this case, we have E = 1
and arbitrary qualification with ωρ = 1 whenever 0 < ρ ≤ 1 and ωρ = ρ

ρ otherwise. Gradient schemes
with more complex update rules can be expressed in terms of filter functions as well [39, 32, 34].

3. Kernel principal component regression. The truncation filter function gλ(x) = x−11[x ≥ λ] yields
kernel principal component regression, corresponding to a hard thresholding of eigenvalues at a
truncation level λ. In this case we have E = ωρ = 1 for arbitrary qualification ρ.

Population solution: Given a filter function gλ, we call gλ(CX)
5 the regularized inverse of CX . We

may think of the regularized inverse as approximating the pseudoinverse of CX (see e.g. [16]) when
λ→ 0. We define the regularized population solution to (4) as

Cλ ∶= CY Xgλ(CX) ∈ S2(H,Y), Fλ(⋅) ∶= Cλϕ(⋅) ∈ G. (10)

5gλ(CX) is defined with the rules of spectral calculus, see Definition 9 in the Appendix.
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The solution arising from standard regularization strategies leads to well-known statistical method-
ologies. We refer to [16] for the background on filter functions in classical regularization theory.

Empirical solution: Given the dataset D = {(xi, yi)}ni=1, the empirical analogue of (10) is

Ĉλ ∶= ĈY Xgλ(ĈX), F̂λ(⋅) ∶= Ĉλϕ(⋅) ∈ G, (11)

where ĈY X , ĈX are empirical covariance operators define as

ĈX ∶=
1

n

n

∑
i=1

ϕ(xi)⊗ ϕ(xi) ĈY X ∶=
1

n

n

∑
i=1

yi ⊗ ϕ(xi).

Note that (11) is the regularized solution of the empirical inverse problem

ĈY X = ĈĈX , Ĉ ∈ S2(H,Y),

which arises as the optimality condition for minimizers on G of the empirical analogue of (3), given by
En(F ) ∶=

1
n ∑

n
i=1 ∥yi−F (xi)∥

2
Y

; see Proposition 2 in the Appendix for a proof. For the vector-valued
kernel given in (2), it is well-known that F̂λ can be computed in closed-form for the ridge regression
estimator—even in infinite dimensions [47]. For general filter functions, an extended representer
theorem is given by [2] in the context of finite-dimensional multitask learning: this approach works
in infinite dimensions as well. We give the closed form solution based on [2] below (we include the
proof in Appendix D.1).

Proposition 1 (Representer theorem for general spectral filter). Let (K)ij = k(xi, xj), 1 ≤ i, j ≤ n
denote the Gram matrix associated to the scalar-valued kernel k. We have

F̂λ(x) =
n

∑
i=1

yiαi(x), α(x) =
1

n
gλ (

K

n
)kx ∈ Rn, (kx)i = k(x,xi), 1 ≤ i ≤ n. (12)

Example 1 (Conditional integration). Consider now a random variable Z taking values in a topolog-
ical space Z on which we define a second RKHSH′ ⊆ RZ with kernel ℓ ∶ Z ×Z → R and canonical
feature map ψ ∶ Z →H′, z ↦ ℓ(z, ⋅). The conditional mean embedding [47, 20] is defined as

F∗(x) ∶= E[ψ(Z) ∣X = x], x ∈ X .

We immediately see the link with vector-valued regression with Y = ψ(Z) and Y = H′. The
conditional mean embedding allows us to compute the conditional expectation of any element ofH′.
Indeed, using the reproducing property, for f ∈H′, we have for all x ∈ X ,

E[f(Z) ∣X = x] = ⟨f,E[ψ(Z) ∣X = x]⟩H′ .

Given a dataset {(xi, zi)}ni=1
6 and an estimate of the conditional mean embedding F∗ with a spectral

algorithm F̂λ as in Eq. (11), and substituting the formula in Eq. (12), we obtain E[f(Z) ∣X = x] ≈
⟨f, F̂λ(x)⟩H′ = ∑

n
i=1⟨f,ψ(zi)⟩H′αi(x) = f

⊺

z α(x), where (fz)i = f(zi), 1 ≤ i ≤ n.

Learning rates: We now give our main result, the learning rates for the difference between
[F̂λ] and F∗ in the interpolation norm, where Fλ and F̂λ are given by (10) and (11) based on a gen-
eral spectral filter satisfying Definition 2. The proof is deferred to Section C in the Appendix.

Theorem 4 (Upper learning rates). Let F̂λ be an estimator based on a general spectral filter with
qualification ρ ≥ 0. Furthermore, let the conditions (EVD), (EMB), (MOM) be satisfied with
0 < p ≤ α ≤ 1. With 0 ≤ γ ≤ 1, if (SRC) is satisfied with γ < β ≤ 2ρ, we have

1. in the case β + p ≤ α, let λn = Θ((n/ log
θ(n))

−
1
α ) for some θ > 1, for all τ > log(6) and

sufficiently large n ≥ 1, there is a constant J > 0 independent of n and τ such that

∥[F̂λn] − F∗∥
2

γ
≤ τ2J (

n

logθ n
)

−
β−γ
α

is satisfied with Pn-probability not less than 1 − 6e−τ .

6Note that this induces a dataset D = {(xi, ψ(zi))}ni=1 where we identify yi = ψ(zi).
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2. in the case β + p > α, let λn = Θ (n
−

1
β+p ), for all τ > log(6) and sufficiently large n ≥ 1,

there is a constant J > 0 independent of n and τ such that

∥[F̂λn] − F∗∥
2

γ
≤ τ2Jn−

β−γ
β+p

is satisfied with Pn-probability not less than 1 − 6e−τ .

Theorem 4 provides the upper rate for vector-valued spectral algorithms. In particular, in combination
with the lower bound in Theorem 2, we see that vector-valued spectral algorithms with qualification
ρ achieve an optimal learning rate when the smoothness β of the regression function is in the range
(α−p,2ρ]. For algorithms with infinite ρ such as gradient descent and principal component regression,
we confirm that they can exploit smoothness of the target function just as in the real-valued setting
[3, 5, 30], while not suffering from saturation. For Tikhonov regularization, where ρ = 1, the rates
recover the state-of-the-art results from [31]. Finally, we point out that obtaining minimax optimal
learning rates for β < α − p still remains challenging even in the real-valued output scenario. Note
however that for a large variety of RKHS, α is arbitrarily close to p and we obtain optimal rates for
the whole range (0,2ρ]: we refer to [31, 54] for a detailed discussion.

We provide a proof sketch for Theorem 4. The key technical challenge in extending the results of
[31] to spectral filter functions lies in the analysis of the estimation error. The estimation error in

γ−norm is bounded as ∥[Ĉλ −Cλ]∥S2([H]
γ ,Y)
≤ 3λ−

γ
2 ∥(Ĉλ −Cλ) Ĉ

1
2

X,λ∥
S2(H,Y)

(see Eq. (37) in

Appendix C.3). We rely on the fact that IdH = ĈXgλ(ĈX) + rλ(ĈX) (see Definition 2), to obtain
the decomposition Ĉλ −Cλ = (ĈY X −CλĈX) gλ(ĈX) −Cλrλ(ĈX), which yields two terms to be
controlled,

∥(Ĉλ −Cλ) Ĉ
1
2

X,λ∥
S2(H,Y)

≤ ∥(ĈY X −CλĈX)gλ(ĈX)Ĉ
1
2

X,λ∥
S2(H,Y)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(I)

+∥Cλrλ(ĈX)Ĉ
1
2

X,λ∥
S2(H,Y)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(II)

To control term (I), we use the definition of the filter function gλ (Definition 2) to obtain that

∥ĈX,λgλ(ĈX)∥
H→H

≲ 1. Thus it suffices to control the term ∥(ĈY X −CλĈX)C
−

1
2

X,λ∥
S2(H,Y)

=

∥ 1
n ∑

n
i=1 ξ(xi, yi)∥S2(H,Y)

, where ξ(x, y) = (y −Cλϕ(x))⊗C
−

1
2

X,λϕ(x). We proceed by bounding
E[∥ξ(X,X)∥mS2(H,Y)] for m ≥ 1, and then use Bernstein’s inequality to derive the upper bound

on ∥(ĈY X −CλĈX)C
−

1
2

X,λ∥
S2(H,Y)

. To control term (II), Lemma 9 in Appendix C.1 shows that

(II) ≲ ∥Ĉ
1
2

X,λrλ(ĈX)gλ(CX)C
β+1
2

X ∥
H→H

. The term on the right side is bounded in prior work on

scalar-valued spectral method, and we refer the reader to [54, Theorem 16]. The results of Theorem 4
are then obtained by choosing regularization parameter λ = λ(n) to optimally trade off approximation
and estimation errors.

5 Conclusion

In this work, we have rigorously explored the theoretical properties of vector-valued spectral learning
algorithms, focusing on their performance in infinite-dimensional output spaces. We first proved
the saturation effect observed in vector-valued kernel ridge regression, highlighting its limitations in
exploiting additional smoothness in regression functions. We then presented upper bounds on the
finite sample risk for a general class of spectral learning algorithms, demonstrating their minimax
optimality across various scenarios, including misspecified learning settings.

Our results open avenues for further research, particularly in developing more efficient implementa-
tions for practical use in high-dimensional machine learning problems such as causal inference and
functional data analysis.

Acknowledgement: Dimitri Meunier, Arthur Gretton and Zhu Li were supported by the Gatsby
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Appendices

The appendix is organized as follows. In Section A, we give additional mathematical background
and notations. In Section B, we give the proof of Theorem 3 and provide a technical comparison of
our proof with [29]. In Section C, we prove Theorem 4. Finally, in Section D, we provide auxiliary
results used in the main proofs.

A Additional Background

A.1 Hilbert spaces and linear operators

Definition 3 (Bochner Lq−spaces, [14]). Let H be a separable Hilbert space and π a probability
measure on X . For 1 ≤ q ≤ ∞, Lq(X ,FX , π;H), abbreviated Lq(π;H), is the space of strongly
FX −FH measurable and Bochner q-integrable functions from X to H , with the norms

∥f∥q
Lq(π;H)

= ∫
X

∥f∥qH dπ, 1 ≤ q <∞, ∥f∥L∞(π;H) = inf {C ≥ 0 ∶ π{∥f∥H > C} = 0} .

Definition 4 (p-Schatten class, e.g. [52]). Let H,H ′ be separable Hilbert spaces. For 1 ≤ q ≤∞,
Sp(H,H

′), abbreviated Sp(H) if H =H ′, is the Banach space of all compact operators C from H
to H ′ such that ∥C∥Sp(H,H′) ∶= ∥(σi(C))i∈I∥ℓp is finite. Here ∥ (σi(C))i∈I ∥ℓp is the ℓp−sequence
space norm of the sequence of the strictly positive singular values of C indexed by the at most
countable set I . For p = 2, we retrieve the space of Hilbert-Schmidt operators, for p = 1 we retrieve
the space of Trace Class operators, and for p = +∞, ∥ ⋅ ∥S∞(H,H′) corresponds to the operator norm
∥ ⋅ ∥H→H′ .

Definition 5 (Tensor Product of Hilbert Spaces, [1]). Let H,H ′ be Hilbert spaces. The Hilbert space
H ⊗H ′ is the completion of the algebraic tensor product with respect to the norm induced by the
inner product ⟨x1⊗x′1, x2⊗x

′

2⟩H⊗H′ = ⟨x1, x2⟩H⟨x
′

1, x
′

2⟩H′ for x1, x2 ∈H and x′1, x
′

2 ∈H
′ defined

on the elementary tensors of H ⊗H ′. This definition extends to span{x ⊗ x′∣x ∈ H,x′ ∈ H ′} and
finally to its completion. The space H ⊗H ′ is separable whenever both H and H ′ are separable. If
{ei}i∈I and {e′j}j∈J are orthonormal basis in H and H ′, {ei ⊗ e′j}i∈I,j∈J is an orthonormal basis in
H ⊗H ′.

Theorem 5 (Isometric Isomorphism between L2(π;Y) and S2(L2(π),Y), Theorem 12.6.1 [1]).
Let H be a separable Hilbert space. The Bochner space L2(π;H) is isometrically isomorphic to
S2(L2(π),Y) and the isometric isomorphism is realized by the map Ψ ∶ S2(L2(π),Y)→ L2(π;H)
acting on elementary tensors as Ψ(f ⊗ y) = (ω → f(ω)y).

A.2 RKHS embbedings into L2 and Well-specifiedness

Recall that Iπ ∶H → L2(π) is the embedding that maps every function inH into its π-equivalence
class in L2(π) and that we used the shorthand notation [f] = Iπ(f) for all f ∈H. We define similarly
Iπ ∶ G → L2(π;Y) as the embedding that maps every function in G into its π-equivalence class in
L2(π;Y).

Definition 6 (Embedding G into L2(π;Y)). Let Iπ ∶= IY ⊗ Iπ be the tensor product of the operator
IdY with the operator Iπ (see [1, Definition 12.4.1.] for the definition of tensor product of operators).
Iπ maps every function in G into its π-equivalence class in L2(π;Y). We then use the shorthand
notation [F ] = Iπ(F ) for all F ∈ G.

Remark 5. Let {dj}j∈J be an orthonormal basis of Y and recall that {
√
µi[ei]}i∈I forms

an orthonormal basis of [H]1. Let F ∈ [G]1. Then F can be represented as the element
C ∶= ∑i∈I,j∈J aijdj ⊗

√
µi[ei] in S2([H]

1,Y) by definition of [G]1 with ∥C∥21 = ∑i,j a
2
ij . Hence

defining C̄ ∶= ∑i∈I,j∈J aijdj ⊗
√
µiei we have C = C̄ π−a.e. and

∥C̄∥2
G
= ∑

i∈I,j∈J

a2i,j = ∥C∥
2
1 < +∞.

Taking the elements identifying C̄ in G gives a representer F̄ of F in G.

14



A.3 Additional Notations

In the following, we fix {dj}j∈J an orthonormal basis of Y , where J is at most countable. Recall
that {µ1/2

i ei}
i∈I

is an ONB of (ker Iπ)
⊥ in H, and {[ei]}i∈I is an ONB of ran Iπ in L2(π). Let

{ẽi}i∈I′ be an ONB of ker Iπ (with I ∩ I ′ = ∅), then {µ1/2
i ei}

i∈I
∪ {ẽi}i∈I′ forms an ONB ofH, and

{dj ⊗ µ
1/2
i ei}

i∈I,j∈J
∪ {dj ⊗ ẽi}i∈I′,j∈J forms an ONB of Y ⊗H ≃ G.

For any Hilbert space H , linear operator T ∶H →H and scalar λ > 0, we define Tλ ∶= T + λIH .

B Saturation Effect with Tikhonov Regularization - Proof of Theorem 3

In the following proofs a quantity hn ≥ 0 depending on n ≥ 1, but independent of τ the confidence
level, is equal to o(1) if hn → 0 when n→ +∞.

We will make extensive use of the following notation in the subsequent analysis.

Definition 7 (Empirical L2(π)−norm). Denoted by ⟨⋅, ⋅⟩2,n, the empirical L2(π)−norm associated
to points {xi}ni=1 independently and identically sampled from the distribution of X , is defined as, for
any f, g ∈H,

⟨f, g⟩2,n ∶= ⟨ĈX , f ⊗ g⟩S2(H)
= ⟨ĈXf, g⟩

H
= ⟨Ĉ

1
2

Xf, Ĉ
1
2

Xg⟩
H

=
1

n

n

∑
i=1

f(xi)g(xi).

This induces an inner product onH, with associated norm,

∥f∥22,n = ⟨f, f⟩2,n =
1

n

n

∑
i=1

f(xi)
2.

Definition 8. Fix x ∈ X and λ > 0. The regularized canonical feature map is defined as

fx,λ(⋅) = C
−1
X,λk(x, ⋅) ∶ X →H.

Recall from Eq. (11) that the ridge estimator F̂λ defined in Eq. (7) can be expressed as

Ĉλ = ĈY Xgλ(ĈX), F̂λ(⋅) = Ĉλϕ(⋅) ∈ G,

where in Theorem 3 we focus on Tikhonov regularization where gλ(x) = (x + λ)−1. In that setting
we have

rλ (x) ∶= 1 −
x

x + λ
= −

λ

x + λ
. (13)

Proof of Theorem 3. Since β ≥ 2, F∗ ∈ [G]β ⊆ [G]1, therefore F∗ has a representer F̄ in G such
that F∗ = F̄ π-a.e. (see Remark 5), and by Theorem 1, F̄ (⋅) = C̄ϕ(⋅), with C̄ ∈ S2(H,Y). Define
the errors ϵi ∶= yi − C̄ϕ(xi), i = 1, . . . , n, that are i.i.d samples with the same distribution as
ϵ ∶= Y − C̄ϕ(X). By assumption E [∥ϵ∥2

Y
∣X] ≥ σ2 and by definition E [ϵ ∣X] = 0. By Eq. (13), we

have

rλ (ĈX) ∶= I − ĈXĈ
−1
X,λ = −λĈ

−1
X,λ.

15



The following bias-variance decomposition is the essence of the proof. In the following derivation
we abbreviate S2(L2(π),Y) to S2 L2(π;Y) to L2 and x1, . . . , xn to xn to save space.

E [∥[F̂λ] − F∗∥
2

L2
∣ xn] = E [∥[ĈY XĈ

−1
X,λ − C̄]∥

2

S2
∣ xn]

= E
⎡
⎢
⎢
⎢
⎢
⎣

∥[(
1

n

n

∑
i=1

yi ⊗ ϕ(xi)) Ĉ
−1
X,λ − C̄]∥

2

S2

∣ xn

⎤
⎥
⎥
⎥
⎥
⎦

= E
⎡
⎢
⎢
⎢
⎢
⎣

∥[
1

n

n

∑
i=1

(C̄ϕ(xi) + ϵi)⊗ ϕ(xi)Ĉ
−1
X,λ − C̄]∥

2

S2

∣ xn

⎤
⎥
⎥
⎥
⎥
⎦

= E
⎡
⎢
⎢
⎢
⎢
⎣

∥[−C̄rλ (ĈX) +
1

n

n

∑
i=1

ϵi ⊗ (Ĉ
−1
X,λϕ(xi))]∥

2

S2

∣ xn

⎤
⎥
⎥
⎥
⎥
⎦

= ∥[C̄rλ (ĈX)]∥
2

S2
+

1

n2

n

∑
i=1

E [∥ϵi∥2Y ∣ xi] ∥[Ĉ
−1
X,λϕ(xi)]∥

2

L2(π)

≥ λ2 ∥[C̄Ĉ−1X,λ]∥
2

S2
+
σ2

n2

n

∑
i=1

∥[Ĉ−1X,λϕ(xi)]∥
2

L2(π)
.

The second term is a lower bound on the variance while the first term is a lower bound on the bias.

Bounding the Bias term. The idea is to first show that the population analogue of
∥[C̄Ĉ−1X,λ]∥

2

S2(L2(π),Y)
can be bounded below by a non-zero constant. We can then bound the

difference between the empirical and population version of ∥[C̄Ĉ−1X,λ]∥
2

S2(L2(π),Y)
using a concen-

tration inequality. By Lemma 1, for λ > 0, there is a constant c > 0 (see Lemma 1 for the exact value
of c) such that

∥[C̄C−1X,λ]∥
2

S2(L2(π),Y)
≥ c > 0.

Furthermore by Lemma 2, there is a constant c0 > 0 (see Lemma 2 for the exact value of c0) such
that for any τ ≥ log(4), with probability at least 1− 4e−τ , for n ≥ (c0τ)

(4+2p) and 1 ≥ λ ≥ n−
1

2+p , we
have

∣∥[C̄C−1X,λ]∥
2

S2(L2(π),Y)
− ∥[C̄Ĉ−1X,λ]∥

2

S2(L2(π),Y)
∣ = τ2o(1).

Therefore, under the same high probability,

∥[C̄Ĉ−1X,λ]∥
2
S2(L2(π),Y)

≥ c − τ2o(1).

It leads to our final bound on the bias term, for a constant ρ2 ≥ 0 and for sufficiently large n ≥ 1,
where the hidden index bound depends on τ , we have

λ2 ∥[C̄Ĉ−1X,λ]∥
2

S2(L2(π),Y)
≥ ρ1λ

2. (14)

Bounding the Variance Term. Using the norm from Definition 7, we have the following chain of
identities.

σ2

n2

n

∑
i=1

∥[Ĉ−1X,λϕ(xi)]∥
2

L2(π)
=
σ2

n2

n

∑
i=1
∫
X

⟨ϕ(X), Ĉ−1X,λϕ(xi)⟩
2

H
dπ(x)

=
σ2

n
∫
X

∥Ĉ−1X,λϕ(X)∥
2
2,ndπ(x).

(15)

Therefore it suffices to consider ∫X ∥Ĉ
−1
X,λk(x, ⋅)∥

2
2,ndπ(x).

Combining the result of Lemma 4 and Lemma 5 we obtain that for 1 ≥ λ ≥ n−
1

2+p with probability at
least 1 − 6e−τ , for n ≥ (c0τ)4+2p, the following bounds hold simultaneously for all x ∈ X :

∥Ĉ
1
2

X (Ĉ
−1
X,λ −C

−1
X,λ)k(x, ⋅)∥

H

≤ τo(1)

∥[C−1X,λk(x, ⋅)]∥
2
2,n −

1

2
∥[C−1X,λk(x, ⋅)]∥

2
L2(π)

≥ −τo(1)

∥[C−1X,λk(x, ⋅)]∥
2
2,n −

3

2
∥[C−1X,λk(x, ⋅)]∥

2
L2(π)

≤ τo(1).
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Fix x ∈ X . Using the algebraic identity a2 − b2 = (a − b)(2b + (a − b)), and recalling that by
Definition 7,

∥f∥22,n = ∥Ĉ
1
2

Xf∥
2

H

,

we deduce

∣∥Ĉ
1
2

XĈ
−1
X,λk(x, ⋅)∥

2

H

− ∥Ĉ
1
2

XC
−1
X,λk(x, ⋅)∥

2

H

∣

≤∥Ĉ
1
2

X (Ĉ
−1
X,λ −C

−1
X,λ)k(x, ⋅)∥

H

⋅ (∥Ĉ
1
2

X (Ĉ
−1
X,λ −C

−1
X,λ)k(x, ⋅)∥

H

+ 2 ∥C−1X,λk(x, ⋅)∥2,n)

≤τo(1) (τo(1) + 2 ∥C−1X,λk(x, ⋅)∥2,n) .

Using Definition 7 again, this reads

∥Ĉ−1X,λk(x, ⋅)∥
2

2,n
≥ ∥C−1X,λk(x, ⋅)∥

2

2,n
− τo(1) (τo(1) + 2 ∥C−1X,λk(x, ⋅)∥2,n) .

We have

∥C−1X,λk(x, ⋅)]∥
2
2,n ≤

3

2
∥[C−1X,λk(x, ⋅)]∥

2
L2(π)

+ τo(1) ≤ (
√
1.5∥[C−1X,λk(x, ⋅)]∥L2(π) +

√
τo(1))

2
.

Hence,

∥Ĉ−1X,λk(x, ⋅)∥
2

2,n
≥ ∥C−1X,λk(x, ⋅)∥

2

2,n
− τo(1) (∥[C−1X,λk(x, ⋅)]∥L2(π) +

√
τo(1) + τo(1))

≥
1

2
∥[C−1X,λk(x, ⋅)]∥

2
L2(π)

− τo(1)

− τo(1) (∥[C−1X,λk(x, ⋅)]∥L2(π) +
√
τo(1) + τo(1))

≥
1

2
∥[C−1X,λk(x, ⋅)]∥

2
L2(π)

− τ2o(1) − τo(1)∥[C−1X,λk(x, ⋅)]∥L2(π).

By Lemma 17,

∫
X

∥[C−1X,λk(x, ⋅)]∥
2

L2(π)
dπ(x) = N2(λ).

Furthermore, by Jensen’s inequality,

∫
X

∥[C−1X,λk(x, ⋅)]∥
2
L2(π)

dπ(x) ≥ (∫
X

∥[C−1X,λk(x, ⋅)]∥L2(π)dπ(x))
2

.

Recall from Lemma 16 that
c1,2λ

−p ≤ N2(λ) ≤ c2,2λ
−p.

Therefore we have

∫
X

∥[C−1X,λk(x, ⋅)]∥L2(π)dπ(x) ≤
√
c2,2λ

−
p
2

∫
X

∥[C−1X,λk(x, ⋅)]∥
2
L2(π)

dπ(x) ≥ c1,2λ
−p.

Hence

∫
X

∥Ĉ−1X,λk(x, ⋅)∥
2
2,ndπ(x) ≥

c1,2

2
λ−p − τ2o(1) − τo(1)

√
c2,2λ

−
p
2

≥ (
c1,2

2
− τo(1)

√
c2,2)λ

−p − τ2o(1)

Combined with Eq. (15), it leads to our final bound on the variance term, for a constant ρ2 ≥ 0 and
for sufficiently large n ≥ 1, where the hidden index bound depends on τ , we have

σ2

n2

n

∑
i=1

∥[Ĉ−1X,λϕ(xi)]∥
2

L2(π)
≥
ρ2
nλp

. (16)

Putting it together. We are now ready to assemble the lower bounds on the variance and on the bias.
For a fixed confidence parameter τ ≥ log(10), for sufficiently large n > 0, where the hidden index
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bound depends on τ , with probability at least 1 − 10e−τ , we have by Eq. (14) and Eq. (16), that for
λ = λ(n) satisfying 1 ≥ λ ≥ n−

1
2+p ,

E [∥[F̂λ] − F∗∥
2

L2(π;Y)
∣ x1, . . . , xn] ≥ ρ1λ

2 + ρ2n
−1λ−p

where ρ1, ρ2 have no dependence on n. Recall Young’s inequality, for r, q > 1 satisfying r−1+q−1 = 1,
we have for all a, b ≥ 0,

a + b ≥ r
1
r q

1
q a

1
r b

1
q .

We apply Young’s inequality with r−1 = p/(2 + p) and q−1 = 2/(2 + p), there exists a constant c1 > 0
such that

ρ1λ
2 + ρ2n

−1λ−p ≥ c1 (λ
2)

p
2+p (λ−pn−1)

2
2+p = c1n

−
2

2+p .

To conclude the proof, let λ = λ(n) be an arbitrary choice of regularization parameter satisfying
λ(n) → 0. We have just covered the case 1 ≥ λ ≥ n−

1
2+p and the case 0 < λ ≤ n−

1
2+p is covered by

[29, Section B.4].

Lemma 1. For any λ ≤ 1 and C ∈ S2(H,Y), with C ⊥̸ S2(ran Sπ,Y)
7, we have

∥[CC−1X,λ]∥
2

S2(L2(π),Y)
≥ ∑

i∈I,j∈J

a2ij
µi

(µi + 1)2
> 0,

with aij ∶= ⟨dj ,C
√
µiei⟩Y , i ∈ I, j ∈ J .

Proof. Recell the notations of Section A.3. Define {aij}i∈I∩I′,j∈J such that aij ∶= ⟨dj ,C
√
µiei⟩Y

for i ∈ I, j ∈ J and aij ∶= ⟨dj ,Cẽi⟩Y for i ∈ I ′, j ∈ J . Then, on one hand, since C ∈ S2(H,Y),

C = ∑
i∈I,j∈J

aijdj ⊗ (
√
µiei) + ∑

i∈I′,j∈J
aijdj ⊗ ẽi.

On the other hand,

C−1X,λ =∑
i∈I

(µi + λ)
−1(
√
µiei)⊗ (

√
µiei) + λ

−1
∑
i∈I′

ẽi ⊗ ẽi.

Therefore, noting that ẽi = 0 π−a.e. for all i ∈ I ′, we have,

[CC−1X,λ] =

⎡
⎢
⎢
⎢
⎢
⎣
∑

i∈I,j∈J

aij(µi + λ)
−1dj ⊗ (

√
µiei) + ∑

i∈I′,j∈J

aij

λ
dj ⊗ ẽi

⎤
⎥
⎥
⎥
⎥
⎦

= ∑
i∈I,j∈J

aij

√
µi

µi + λ
dj ⊗ [ei].

Therefore the S2(L2(π),Y)-norm can be evaluated in closed form using Parseval’s identity,

∥[CC−1X,λ]∥
2

S2(L2(π),Y)
= ∑

i∈I,j∈J

a2ij
µi

(µi + λ)2
≥ ∑

i∈I,j∈J

a2ij
µi

(µi + 1)2
,

where we used that {dj ⊗ [ei]}j∈J,i∈I is orthonormal in Y ⊗L2(π), and λ ≤ 1. The right hand side
has no dependence on λ or n. Furthermore, under assumption (EVD+), µi > 0 for all i ∈ I , therefore
the right hand side term equals zero if and only if aij = 0 for all i ∈ I, j ∈ J . Since by assumption
C ⊥̸ S2(ran Sπ,Y), the right hand side is strictly positive.

Lemma 2. Suppose Assumption (EVD) holds with p ∈ (0,1]. Let C ∈ S2(H,Y) such that [C] ∈
S2([H]

2,Y). There is a constant c0 > 0 such that for any τ ≥ log(4), with probability at least
1 − 4e−τ , for n ≥ (c0τ)

(4+2p) and 1 ≥ λ ≥ n−
1

2+p , we have

∣∥[CC−1Xλ]∥
2

S2(L2(π),Y)
− ∥[CĈ−1Xλ]∥

2

S2(L2(π),Y)
∣ ≤ τ2o(1)

We have c0 ∶= 8κmax{
√
c2,1,1}) where c2,1 is defined in Lemma 16.

7⊥̸ is the notation for “not being orthogonal to”.
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Proof. Using the identity A−1 −B−1 = A−1(B −A)B−1, we obtain

C−1X,λ − Ĉ
−1
X,λ = C

−1
X,λ(ĈX −CX)Ĉ

−1
X,λ

We apply Lemma 22 with γ = 0,

∥[C (C−1X,λ − Ĉ
−1
X,λ)]∥S2(L2(π),Y)

= ∥[CĈ−1X,λ(ĈX −CX)C
−1
X,λ]∥S2(L2(π),Y)

=∥CĈ−1X,λ(ĈX −CX)C
−1
X,λC

1
2

X∥
S2(H,Y)

≤∥CĈ
−

1
2

X,λ∥
S2(H,Y)

∥Ĉ
−

1
2

X,λC
1
2

X,λ∥
H→H

⋅ ∥C
−

1
2

X,λ(ĈX −CX)C
−

1
2

X,λ∥
H→H

∥C
−

1
2

X,λC
1
2

X∥
H→H

(17)

We consider each of the four terms in line (17). The last term is bounded above by 1 and the first term
is bounded above by λ−

1
2 ∥C∥S2(H,Y). By Lemma 20 applied with s = 1/2, we have for the second

term
∥Ĉ
−

1
2

X,λC
1
2

X,λ∥
H→H

≤ ∥Ĉ−1X,λCX,λ∥
1
2

H→H
.

Then, by Lemma 18, for τ ≥ log(2), with probability at least 1 − 2e−τ , for
√
nλ ≥

8τκ
√
max{N (λ),1}, we have

∥Ĉ−1X,λCX,λ∥
H→H

≤ 2.

Since N (λ) ≤ c2,1λ−p by Lemma 16, and λ ≤ 1, it suffices to verify that λ satisfies
√
nλ ≥ 8τκmax{

√
c2,1,1}λ

−
p
2 .

Since λ ≥ n−
1

2+p by assumption, we deduce the sufficient condition n ≥ (τc0)2(2+p), where c0 ∶=
8κmax{

√
c2,1,1}.

We bound the third term using Lemma 16 [33]. For τ ≥ log(2), with probability at least 1 − 2e−τ , we
have

λ−
1
2 ∥C

−
1
2

X,λ(CX − ĈX)C
−

1
2

X,λ∥
H→H

≤
4κ2ξδ

3nλ
3
2

+

√
2κ2ξδ
nλ2

,

where we define

ξδ ∶= log
2κ2(N1(λ) + 1)

e−τ∥CX∥H→H
.

By assumption λ ≥ n−
1

2+p . We thus have

nλ
3
2 ≥ n

1+2p
4+2p and nλ2 ≥ n

p
2+p .

On the other hand, since 1 ≥ λ ≥ n−
1

2+p , using Lemma 16, we have

ξδ ≤ log
82(c2,1λ

−p + 1)

e−τ∥CX∥H→H
≤ log

2(c2,1 + 1)n
p

2+p

e−τ∥CX∥H→H
≤ log

2(c2,l + 1)

e−τ∥CX∥H→H
+

p

2 + p
logn.

The first term does not depend on n, and the second term is logarithmic in n. Putting everything
together with a union bound, we get a bound on (17). With probability at least 1 − 4e−τ , for
n ≥ (c0τ)

(4+2p), we have

∥[C (C−1X,λ − Ĉ
−1
X,λ)]∥S2(L2(π),Y)

≤ ∥C∥S2(H,Y)

√
2
⎛

⎝

4ξδ

3n
0.5+p
2+p
+

√
2ξδ

n
p

2+p

⎞

⎠
= τo(1)

The derivations in the proof of Lemma 1 show that

[CC−1X,λ] = ∑
i∈I,j∈J

aij

√
µi

µi + λ
dj ⊗ [ei],
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with aij ∶= ⟨dj ,C
√
µiei⟩Y , i ∈ I, j ∈ J . Note that since [C] ∈ S2([H]

2,Y), we have

∥[C]∥2S2([H]
2,Y) =

XXXXXXXXXXX
∑

i∈I,j∈J

aijdj ⊗ (
√
µiei)

XXXXXXXXXXX

2

S2([H]
2,Y)

= ∑
i∈I,j∈J

a2ij

µi
< +∞.

Hence,

∥[CC−1X,λ]∥
2

S2(L2(π),Y)
= ∑

i∈I,j∈J

a2ij
µi

(µi + λ)2
≤ ∑

i∈I,j∈J

a2ij

µi
= ∥[C]∥2S2([H]

2,Y) < +∞. (18)

Using the equality a2 − b2 = (a − b)(a + b) and the reverse triangular inequality, we obtain the
following bound, with probability at least 1 − 4e−τ , for n ≥ (c0τ)

(4+2p),

∣∥[CC−1X,λ]∥
2

S2(L2(π),Y)
− ∥[CĈ−1X,λ]∥

2

S2(L2(π),Y)
∣

≤ ∥[C (C−1X,λ − Ĉ
−1
X,λ)]∥S2(L2(π),Y)

(∥[CC−1X,λ]∥S2(L2(π),Y)
+ ∥[CĈ−1X,λ]∥S2(L2(π),Y)

)

≤τo(1) (2 ∥[CC−1X,λ]∥S2(L2(π),Y)
+ ∥[C (C−1X,λ − Ĉ

−1
X,λ)]∥S2(L2(π),Y)

)

≤τo(1) (2∥[C]∥S2([H]
2,Y) + τo(1))

=τ2o(1),

where in the second last line we used Equation (18).

Lemma 3. Fix x ∈ X and fx,λ as in Definition 8. For τ ≥ log(2), with probability at least 1 − 2e−τ
(note that this event depends on x),

∣∥fx,λ∥
2
2,n − ∥[fx,λ]∥

2
L2(π)

∣ ≤
1

2
∥[fx,λ]∥

2
L2(π)

+
5τκ2

3λ2n
.

Proof. We start with

∥fx,λ∥∞ ≤ κ∥fx,λ∥H ≤ κ
2λ−1.

We apply Proposition 3 to f = fx,λ, with M = κ2λ−1. For τ ≥ log(2), with probability at least
1 − 2e−τ ,

∣∥fx,λ∥
2
2,n − ∥[fx,λ]∥

2
L2(π)

∣ ≤
1

2
∥[fx,λ]∥

2
L2(π)

+
5τκ2

3λ2n
.

Lemma 4. Suppose that X is a compact set in Rd and that k ∈ Cθ(X × X ) for θ ∈ (0,1] (Defi-
nition 11). Assume that 1 ≥ λ ≥ n−

1
2+p . With probability at least 1 − 2e−τ , it holds for all x ∈ X

simultaneously that

∥C−1X,λk(x, ⋅)∥
2
2,n ≥

1

2
∥[C−1X,λk(x, ⋅)]∥

2
L2(π)

− τo(1),

∥C−1X,λk(x, ⋅)∥
2
2,n ≤

3

2
∥[C−1X,λk(x, ⋅)]∥

2
L2(π)

+ τo(1).

Proof. The proof follows [29, Lemma C.11]. As we use different notations and tracking of constants,
we provide a similar proof in our setting for completeness. By Lemma 24, there exists an ϵ-net
F ⊆ Kλ ⊆H with respect to ∥ ⋅ ∥∞ such that there exists a positive constant c with

∣F ∣ ≤ c(λϵ)−
2d
θ ,

for ϵ to be determined later. Using Lemma 3 and a union bound over the finite set F , with probability
at least 1 − 2e−τ , it holds simultaneously for all f ∈ F that

∣∥f∥22,n − ∥[f]∥
2
L2(π)

∣ ≤
1

2
∥[f]∥2L2(π)

+
5(τ + log(∣F ∣))κ2

3λ2n
. (19)
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We work in the event where Equation (19) holds for all f ∈ F . By definition of an ϵ-net and Kλ, for
any x ∈ X , there exists some f ∈ F such that

∥C−1X,λk(x, ⋅) − f∥∞ ≤ ϵ,

which in particular implies that

∣∥[C−1X,λk(x, ⋅)]∥L2(π) − ∥[f]∥L2(π)∣ ≤ ϵ

∣∥C−1X,λk(x, ⋅)∥2,n − ∥f∥2,n∣ ≤ ϵ.

Since ∥C−1X,λk(x, ⋅)∥∞ ≤ κ
2λ−1, using the algebraic identity a2−b2 = (a−b)(2b+(a−b)), we obtain

∣∥[C−1X,λk(x, ⋅)]∥
2
L2(π)

− ∥[f]∥2L2(π)
∣ ≤ ϵ(2κ2λ−1 + ϵ)

∣∥C−1X,λk(x, ⋅)∥
2
2,n − ∥f∥

2
2,n∣ ≤ ϵ(2κ

2λ−1 + ϵ).

We therefore have,

∥C−1X,λk(x, ⋅)∥
2
2,n ≤ ∥f∥

2
2,n + ϵ(2κ

2λ−1 + ϵ)

≤
3

2
∥[f]∥2L2(π)

+
5(τ + log(∣F ∣)κ2

3λ2n
+ ϵ(2κ2λ−1 + ϵ)

≤
3

2
∥[C−1X,λk(x, ⋅)]∥

2
L2(π)

+
5(τ + log(∣F ∣)κ2

3λ2n
+ 2ϵ(2κ2λ−1 + ϵ).

We now choose ϵ = 1
n

and bound the error term. Recall that 1 ≥ λ ≥ n−
1

2+p , therefore,

5(τ + log(∣F ∣)κ2

3λ2n
+ 2ϵ(2κ2λ−1 + ϵ) ≤

5(τ + log(∣F ∣)κ2

3
n−

p
2+p + 2(2κ2n

−1−p
2+p +

1

n2
)

≤
5κ2

3
(τ + log(cλ−

2d
θ n

2d
θ ))n−

p
2+p + 2(2κ2n

−1−p
2+p +

1

n2
)

= τo(1).

Lemma 5. For 1 ≥ λ ≥ n−
1

2+p , with probability at least 1 − 4e−τ , for n ≥ (c0τ)4+2p, we have for all
x ∈ X simultaneously

∥Ĉ
1
2

XĈ
−1
X,λ(CX − ĈX)C

−1
X,λk(x, ⋅)∥

H

= τo(1), (20)

where c0 is the same constant as in Lemma 2.

Proof.

∥Ĉ
1
2

XĈ
−1
X,λ(CX − ĈX)C

−1
X,λk(x, ⋅)∥

H

=∥Ĉ
1
2

XĈ
−

1
2

X,λĈ
−

1
2

X,λC
1
2

X,λC
−

1
2

X,λ(CX − ĈX)C
−1
X,λk(x, ⋅)∥

H

≤ ∥Ĉ
1
2

XĈ
−

1
2

X,λ∥
H→H

∥Ĉ
−

1
2

X,λC
1
2

X,λ∥
H→H

⋅ ∥C
−

1
2

X,λ(CX − ĈX)C
−

1
2

X,λ∥
H→H

∥C
−

1
2

X,λk(x, ⋅)∥
H

We already saw in the proof of Lemma 2 that the first term is bounded by 1 and there is a constant
c0 > 0 such that for τ ≥ log(2), with probability at least 1 − 2e−τ , for n ≥ (c0τ)4+2p, the second term
is bounded by

√
2. For the third term we also saw in the proof of Lemma 4 that for τ ≥ log(2), with

probability at least 1 − 2e−τ , we have

λ−
1
2 ∥C

−
1
2

X,λ(CX − ĈX)C
−

1
2

X,λ∥
H→H

≤
4κ2ξδ

3nλ
3
2

+

√
2κ2ξδ
nλ2

,
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where we defined

ξδ = log
2κ2(N1(λ) + 1)

e−τ∥CX∥H→H
.

Finally, the fourth term is bounded above by λ−
1
2κ. Note that the bound on the fourth term is

independent of x, so it holds simultaneously for all x ∈ X . This is in contrast with the setting
of Lemma 4 where for each fixed x ∈ X corresponds an element in the ϵ-net of F for which we
have a high probability bound, and therefore we must use a union bound in order for the bound
to hold simultaneously for all x ∈ X in the proof of Lemma 4. As in the proof of Lemma 4 since
1 ≥ λ ≥ n−

1
2+p , we have

ξδ ≤ log
2(c2,l + 1)

e−τ∥CX∥H→H
+

p

2 + p
logn.

In the bound on ξδ above, the first term does not depend on n, and the second term is logarithmic in
n. Putting everything together by union bound, with probability at least 1 − 4e−τ , for n ≥ (c0τ)4+2p,
we have

∥Ĉ
1
2

XĈ
−1
X,λ(CX − ĈX)C

−1
X,λk(x, ⋅)∥

H

= τo(1).

Remark 6 (Comparison to [29]). We explicit the differences between our proof strategy and the proof
strategy of [29].

• Scalar versus vector-valued: lower bounding the bias in our case require us to accommodate
for the vector-valued setting (see Lemma 1).

• New proof of the bias: we lower bound the bias through Lemma 2, while [29] obtain the
lower bound in Lemma C.7; however the proof of Lemma C.7 implicitly uses the equality
∥A−1∥ = ∥A∥−1, with ∥ ⋅ ∥ the operator norm, see Eq. (69) [29] and the preceding equations.
It holds that ∥A−1∥ ≥ ∥A∥−1, but ∥A−1∥ ≤ ∥A∥−1 may not hold in general. We therefore
develop a new proof for this step, leading to Lemma 2.

• New proof of the variance: we lower bound the variance in Lemma 5, while [29] lower bound
the variance in Lemma C.12; to show Eq. (20), [29] use a covering argument involving
N (Kλ, ∥ ⋅ ∥H, ϵ) (Lemma C.10). However, a close look at the proof of Lemma C.10 (last
inequality of the proof) reveals that λi

λ+λi
was mistaken for λ

λ+λi
and plugging the correct

term in the proof would lead to a vacuous bound. As explained in the proof of Lemma 5, we
therefore develop a proof that is free of a covering number argument for this step.

C Learning rates for spectral algorithms

To upper bound the excess-risk, we use a decomposition involving the approximation error expressed
as Fλ − F∗ and the estimation error expressed as F̂λ − Fλ.

∥[F̂λ] − F∗∥γ ≤ ∥[F̂λ − Fλ]∥γ + ∥[Fλ] − F∗∥γ ,

where F̂λ is the empirical estimator based on general spectral regularization (Eq. (11)) and Fλ is its
counterpart in population (Eq. (10)). Note that this is a different decomposition than the bias-variance
decomposition used in the proof of Theorem 3.

The proof structure is as follows:

1. Fourier expansion C.1.

2. Approximation Error C.2.

3. Estimation error C.3
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C.1 Fourier expansion

Recall the notations defined in Appendix A.3. The family {dj}j∈J is an ONB of Y , the fam-
ily {µ1/2

i ei}i∈I is an ONB of (ker Iπ)⊥ and the family {ẽi}i∈I′ is an ONB of ker Iπ such that
{µ

1/2
i ei}

i∈I
∪ {ẽi}i∈I′ forms an ONB of H. Furthermore, recall that {µβ/2

i [ei]}i∈I is an ONB of

[H]β , β ≥ 0.
Lemma 6 (Fourier expansion). Suppose Assumption (SRC) holds with β ≥ 0. By definition of the
vector-valued interpolation space and by Theorem 5, we have

F∗ = ∑
i∈I,j∈J

aijdj[ei], aij = ⟨F∗, dj[ei]⟩L2(π;Y)
, ∥F∗∥

2
β = ∑

i∈I,j∈J

a2ij

µβ
i

. (21)

Then, we have the following equalities with respect to this Fourier decomposition.

1. The Hilbert-Schmidt operator Cλ ∈ S2(H,Y), Eq. (10), can be written as

Cλ = ∑
i∈I,j∈J

aijgλ(µi)
√
µidj ⊗

√
µiei. (22)

2. The Hilbert-Schmidt operator (CY X −CλCX)C
−

1
2

X,λ ∈ S2(H,Y) can be written as

(CY X −CλCX)C
−

1
2

X,λ = ∑
i∈I,j∈J

aijrλ(µi)(µi + λ)
−

1
2
√
µi (dj ⊗

√
µiei) (23)

3. The Hilbert-Schmidt operator CY X ∈ S2(H,Y) can be written as

CY X =
⎛

⎝
∑

i∈I,j∈J

aijµ
−

β
2

i dj ⊗
√
µiei
⎞

⎠
C

β+1
2

X (24)

Proof. We first derive the Fourier expansion of CY X ,

CY X = EX,Y [Y ⊗ ϕ(X)]

= EX [F∗(X)⊗ ϕ(X)] (25)

= EX

⎡
⎢
⎢
⎢
⎢
⎣
∑

i∈I,j∈J

aijei(X)dj ⊗ ϕ(X)

⎤
⎥
⎥
⎥
⎥
⎦

= EX

⎡
⎢
⎢
⎢
⎢
⎣
∑

i∈I,j∈J

aijdj ⊗ (∑
k∈I

√
µkek(X)

√
µkek) ei(X)

⎤
⎥
⎥
⎥
⎥
⎦

=∑
ijk

aij
√
µk ⋅EX[ek(X)ei(X)] ⋅ dj ⊗ (

√
µkek)

= ∑
i∈I,j∈J

aij
√
µidj ⊗ (

√
µiei), (26)

where in Eq. (25) we used the tower property of conditional expectation and in Eq. (26) we used
the fact that {[ei]}i∈I forms an orthonormal system in L2(π). We can manipulate Eq. (26) to derive
Eq. (24),

CY X = ∑
i∈I,j∈J

aijµ
1
2−

β+1
2

i dj ⊗ (C
β+1
2

X (
√
µiei))

=
⎛

⎝
∑

i∈I,j∈J

aijµ
−

β
2

i dj ⊗
√
µiei
⎞

⎠
C

β+1
2

X .

By the spectral decomposition of CX Eq. (6) and spectral calculus (Definition 9), we have that

gλ(CX) =∑
i∈I

gλ(µi)
√
µiei ⊗

√
µiei + gλ(0)∑

i∈I′
ẽi ⊗ ẽi, (27)

rλ(CX) =∑
i∈I

rλ(µi)
√
µiei ⊗

√
µiei +∑

i∈I′
ẽi ⊗ ẽi. (28)
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where we used rλ(0) = 1.

Proof of Eq. (22). Using Eq. (26) and (27), we have

Cλ =
⎛

⎝
∑

i∈I,j∈J

aij
√
µidj ⊗ (

√
µiei)

⎞

⎠
(∑
k∈I

gλ(µk)(
√
µkek)⊗ (

√
µkek) + gλ(0)∑

l∈I′
ẽl ⊗ ẽl)

=∑
ijk

aij
√
µigλ(µk)δikdj ⊗ (

√
µkek) (29)

= ∑
i∈I,j∈J

aij
√
µigλ(µi)dj ⊗ (

√
µiei),

where in Eq. (29), we recall the fact that {
√
µiei}i∈I forms an ONB of (ker Iπ)⊥ and {ẽi}i∈I′ forms

an ONB of ker Iπ .

Proof of Eq. (23). Using Eq. (26) and (28), we have

(CY X−CλCX)C
−

1
2

X,λ = CY Xrλ(CX)C
−

1
2

X,λ

=
⎛

⎝
∑

i∈I,j∈J

aij
√
µidj ⊗ (

√
µiei)

⎞

⎠
(∑
k∈I

rλ(µk)
√
µkek ⊗

√
µkek +∑

l∈I′
ẽl ⊗ ẽl)C

−
1
2

X,λ

=
⎛

⎝
∑
ijk

aij
√
µirλ(µk)dj ⊗ (

√
µkek)δik

⎞

⎠
C
−

1
2

X,λ

= ∑
i∈I,j∈J

aij
√
µirλ(µi)dj ⊗ (C

−
1
2

X,λ(
√
µiei))

= ∑
i∈I,j∈J

aij
√
µi(µi + λ)

−
1
2 rλ(µi)dj ⊗ (

√
µiei),

Lemma 7. Suppose Assumption (SRC) holds with β ≥ 0, then the following bound is satisfied, for all
λ > 0 and 0 ≤ γ ≤ 1, we have

∥[Fλ]∥
2
γ ≤ E

2∥F∗∥
2
min{γ,β}λ

−(γ−β)+ .

For the definition of E, see Eq. (8).

Proof. We adopt the notations of Lemma 6. By Parseval’s identity and Eq. (22), we have

∥[Fλ]∥
2
γ = ∥Cλ∥

2
S2([H]

γ ,Y)

= ∑
i∈I,j∈J

a2ijgλ(µi)
2µ2−γ

i .

In the case of γ ≤ β, we bound gλ(µi)µi ≤ E using Eq. (8). Then, by Eq. (21),

∥[Fλ]∥
2
γ ≤ E

2
∑

i∈I,j∈J

a2ij

µγ
i

= E2∥F∗∥
2
γ .

In the case of γ > β, we apply Eq. (8) to gλ(µi)µ
1− γ−β

2

i ≤ Eλ−
γ−β
2 to obtain, using Eq. (21) again,

∥[Fλ]∥
2
γ = ∑

i∈I,j∈J

gλ(µi)
2µ

2−(γ−β)
i µ−βi a2ij

≤ E2λ−(γ−β) ∑
i∈I,j∈J

µ−βi a2ij

= E2λ−(γ−β)∥F∗∥
2
β .
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Lemma 8. Suppose Assumption (SRC) holds for 0 ≤ β ≤ 2ρ, with ρ the qualification. Then, the
following bound is satisfied, for all λ > 0, we have

∥(CY X −CλCX)C
−

1
2

X,λ∥
S2(H,Y)

≤ ωρ∥F∗∥βλ
β
2 .

For the definition of ωρ, see Eq. (9).

Proof. Recall that in Lemma 6 we used the decomposition

F∗ = ∑
i∈I,j∈J

aijdj[ei],

where Assumption (SRC) implies that ∥F∗∥
2
β = ∑ij

a2
ij

µβ
i

< ∞. Using Eq. (23) in Lemma 6 and

Parseval’s identity w.r.t. the ONS {dj ⊗ µ
1/2
i ei}i∈I,j∈J in S2(H,Y), we have

∥(CY X −CλCX)C
−

1
2

X,λ∥
S2(H,Y)

=
⎛

⎝
∑

i∈I,j∈J

a2ijr
2
λ(µi)(µi + λ)

−1µi

⎞

⎠

1
2

≤
⎛

⎝
∑

i∈I,j∈J

a2ij

µβ
i

r2λ(µi)µ
β
i

⎞

⎠

1
2

≤ ∥F∗∥β sup
i∈I

rλ(µi)µ
β
2

i

≤ ∥F∗∥βωρλ
β
2 .

Lemma 9. Suppose Assumption (SRC) holds with β ≥ 0, then for all λ > 0, we have

∥Cλrλ (ĈX) Ĉ
1
2

X,λ∥
S2(H,Y)

≤ B ∥Ĉ
1
2

X,λrλ(ĈX)gλ(CX)C
β+1
2

X ∥
H→H

,

where ∥F∗∥β = B <∞.

Proof. Recall that Lemma 6 we used the decomposition

F∗ = ∑
i∈I,j∈j

aijdj[ei],

where ∥F∗∥
2
β = ∑ij

a2
ij

µβ
i

= B2 <∞. Using Eq. (24) in Lemma 6 and Cλ = CY Xgλ(CX), we have

∥Cλrλ (ĈX) Ĉ
1
2

X,λ∥
S2(H,Y)

=

XXXXXXXXXXX

⎛

⎝
∑
ij

aijµ
−

β
2

i dj ⊗
√
µiei
⎞

⎠
C

β+1
2

X gλ(CX)rλ(ĈX)Ĉ
1
2

X,λ

XXXXXXXXXXXS2(H,Y)

≤ B ∥C
β+1
2

X gλ(CX)rλ(ĈX)Ĉ
1
2

X,λ∥
H→H

,

where we notice that the S2(H,Y) norm of the first term is exactly the β norm of F∗, which is given
by B. Recalling that CX , ĈX are self adjoint, we prove the final result by taking the adjoint and
using that an operator has the same operator norm as its adjoint.

C.2 Approximation Error

Lemma 10. Let Fλ be given by Eq. (10) based on a general spectral filter satisfying Definition 2
with qualification ρ ≥ 0. Suppose Assumption (SRC) holds with parameter β ≥ 0 and define
βρ =min{β,2ρ}, then the following bound is satisfied, for all λ > 0 and 0 ≤ γ ≤ βρ,

∥[Fλ] − F∗∥
2
γ ≤ ω

2
ρ ∥F∗∥

2
βρ
λβρ−γ .
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Proof. In Eq. (10), we defined Fλ(⋅) = Cλϕ(⋅). On the other hand, in Lemma 6 we obtained the
Fourier expansion of Cλ leading to Eq. (22). Thus we have for π−almost all x ∈ X ,

Fλ(x) = ∑
i∈I,j∈J

aijµigλ(µi)djei(x).

Therefore,

[Fλ] − F∗ = ∑
i∈I,j∈J

aij(1 − µigλ(µi))dj[ei] = ∑
i∈I,j∈J

aijrλ(µi)dj[ei].

Suppose β ≤ 2ρ, using Parseval’s identity w.r.t. the ONB {djµ
γ/2
i [ei]}i∈I,j∈J of [G]γ , we have

∥[Fλ] − F∗∥
2
γ =

XXXXXXXXXXX
∑

i∈I,j∈J

aij

µ
γ/2
i

rλ(µi)djµ
γ/2
i [ei]

XXXXXXXXXXX

2

γ

= ∑
i∈I,j∈J

a2ij

µγ
i

r2λ(µi)

= ∑
i∈I,j∈J

a2ij

µβ
i

r2λ(µi)µ
β−γ
i

≤ ω2
ρλ

β−γ
∑

i∈I,j∈J

a2ij

µβ
i

= ∥F∗∥
2
βω

2
ρλ

β−γ

where we used Eq. (9) in the definition of a filter function, together with 0 ≤ β ≤ 2ρ and 0 ≤ γ ≤ β,
which taken together implies that 0 ≤ β−γ

2
≤ ρ. Finally, if β ≥ 2ρ, then since [G]β ⊆ [G]2ρ, we can

perform the last derivations again with β = 2ρ to obtain the final result.

C.3 Estimation error

Before proving the main results we recall two embedding properties for the vector-valued interpolation
space [G]β (Definition 1). The first embedding property lifts the property (EMB) defined for the
scalar-valued RKHS [H]α to the vector-valued RKHS [G]α.

Lemma 11 (L∞-embedding property - Lemma 4 [31]). Under (EMB) the inclusion operator Iα,βπ ∶
[G]α ↪ L∞(π;Y) is bounded with operator norm A,
Theorem 6 (Lq-embedding property - Theorem 3 [31]). Let Assumption (EMB) be satisfied with
parameter α ∈ (0,1]. For any β ∈ [0, α), the inclusion map

I
qα,β
π ∶ [G]β ↪ Lqα,β

(π;Y)

is bounded, where qα,β ∶= 2α
α−β

.

The Lq-embedding property was first introduced in the scalar-valued setting in [55] and then lifted
to the vector-valued setting by [31]. Its role is to replace a boundedness condition on the ground
truth function F∗. We now explain how the Lq-embedding property can be combined with Assump-
tion (EMB) and a truncation technique.
Lemma 12. Recall that π is the marginal measure of X on X . For t ≥ 0, define the measurable set
Ωt as follows

Ωt ∶= {x ∈ X ∶ ∥F∗(x)∥Y ≤ t}

Let q > 0. Assume that F∗ ∈ Lq(π;Y). In other words, there exists some constant cq > 0 such that

∥F∗∥Lq(π;Y) = (∫
X

∥F∗(x)∥
q
Y
dπ(x))

1
q

= cq < +∞,

Then we have the following conclusions

1. The π-measure of the complement of Ω can be bounded by

π({x ∉ Ωt}) ≤
cqq

tq
.
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2. Recall that {xi}ni=1 are i.i.d. samples distributed according to π. If t = n
1
q̃ for q̃ < q, then

we can conclude as follows. For a fixed parameter τ > 0, for all sufficiently large n, where
the hidden index bound depends on qq̃−1 and τ , we have

π⊗n (∩ni=1{xi ∈ Ωt}) ≥ 1 − e
−τ .

Proof. The first claim is a straightforward application of Markov’s inequality, as follows

π({x ∉ Ωt}) = π (∥F∗(x)∥Y > t) ≤
Eπ [∥F∗(X)∥

q
Y
]

tq
=
cqq

tq
.

To show the second claim, we first evaluate the probability that there exists some xi’s that lies outside
Ωt,

π⊗n (∪ni=1{xi ∉ Ωt}) = 1 − π
⊗n (∩ni=1{xi ∈ Ωt})

= 1 − π({xi ∈ Ωt})
n

≤ 1 − (1 −
cqq

tq
)

n

≤
cqqn

tq
,

where in the last inequality we used Bernoulli’s inequality, which states that for r ≥ 1 and 0 ≤ x ≤ 1,

(1 − x)r ≥ 1 − rx.

By assumption t = n
1
qt for some fixed q > qt > 0. We thus have

π⊗n (∪ni=1{xi ∉ Ωt}) ≤ c
q
qn

1− q
qt ≤ e−τ ,

for sufficiently large n, where the hidden index bound depends on q
qt

and τ .

We adapt [31, Lemma 5] to the spectral algorithms setting.

Lemma 13. Suppose Assumptions (SRC) and (EMB) hold for some 0 ≤ β ≤ 2ρ, with ρ the qualifica-
tion, then the following bounds are satisfied, for all 0 < λ ≤ 1,

∥[Fλ] − F∗∥
2
L∞ ≤ (∥F∗∥L∞ +Amax{E,ωρ}∥F∗∥β)

2
λβ−α, (30)

∥[Fλ]∥
2
L∞ ≤ A

2E2∥F∗∥
2
min{α,β}λ

−(α−β)+ , (31)

Proof. We use Lemma 11 and Lemma 7 to write:

∥[Fλ]∥
2
∞
≤ A2∥[Fλ]∥

2
α ≤ A

2E2∥F∗∥
2
min{α,β}λ

−(α−β)+ .

This proves Eq. (31). To show Eq. (30), in the case β ≤ α we use the triangle inequality, Eq. (31)
and λ ≤ 1 to obtain

∥[Fλ] − F∗∥∞ ≤ ∥F∗∥∞ + ∥[Fλ]∥∞

≤ (∥F∗∥∞ +AE∥F∗∥β)λ
−

α−β
2 .

In the case β > α, Eq. (30) is a consequence of Lemma 11 and Lemma 10 with γ = α (here we use
the assumption 0 ≤ β ≤ 2ρ),

∥[Fλ] − F∗∥
2
∞
≤ A2∥[Fλ] − F∗∥

2
α ≤ A

2ω2
ρ∥F∗∥

2
βλ

β−α ≤ (∥F∗∥∞ +Aωρ∥F∗∥β)
2λβ−α.

We adapt [54, Theorem 13] to the vector-valued setting.
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Theorem 7. Suppose that Assumptions (EMB), (EVD), (MOM) and (SRC) hold for 0 ≤ β ≤ 2ρ,
where ρ is the qualification, and p ≤ α ≤ 1. Denote, for i = 1, . . . , n,

ξi = ξ(xi, yi) = ((yi −Cλϕ(xi))⊗ ϕ(xi))C
−

1
2

X,λ,

and for t ≥ 0,
Ωt = {x ∈ X ∶ ∥F∗(x)∥Y ≤ t}

Then for all τ ≥ 1, with probability at least 1 − 2e−τ , we have

∥
1

n

n

∑
i=1

ξi1{xi ∈ Ωt} −E[ξ(X,Y )1{X ∈ Ωt}]∥
S2(H,Y)

≤ τ
⎛

⎝
c1λ

β
2 −αn−1 + c2λ

−
α
2 n−1(t +R +A) +

c3
√
N1(λ)
√
n

+
c4

√
nλ

α−β
2

⎞

⎠

where R is the constant from Assumption (MOM), and

c1 = 8
√
2A2max{E,ωρ}∥F∗∥β

c2 = 8
√
2A

c3 = 8
√
2σ

c4 = 8
√
2A∥F∗∥βωρ

whereA is the constant from Assumption (EMB), andE,ωρ are defined in Eq. (8) and (9) respectively.

Proof. We wish to apply vector-valued Bernstein’s inequality, namely Theorem 10. We thus compute,

E [∥ξ(X,Y )1{X ∈ Ωt}∥
m
S2(H,Y)] = E [1{X ∈ Ωt}∥(Y −Cλϕ(X))⊗ (C

−
1
2

X,λϕ(X))∥
m

S2(H,Y)
]

= E [1{X ∈ Ωt} ∥(Y −Cλϕ(X))∥
m
Y
∥C
−

1
2

X,λϕ(X)∥
m

H

]

= ∫
Ωt

∥C
−

1
2

X,λϕ(x)∥
m

H

∫
Y

∥y −Cλϕ(x)∥
m
Y
dp(x,dy)dπ(x).

(32)

First we consider the inner integral, by Assumption (MOM),

∫
Y

∥(y −Cλϕ(x))∥
m
Y
dp(x,dy) ≤ 2m−1 (∫

Y

∥y − F∗(x)∥
m
Y
+ ∥Fλ(x) − F∗(x)∥

m
Y
)dp(x,dy)

=m!σ2(2R)m−2 + 2m−1 ∥Fλ(x) − F∗(x)∥
m
Y
.

Plugging the above inequality into Eq. (32), as well as introducing the shorthand,

hx ∶= C
−

1
2

X,λϕ(x),

we have

E [∥ξ(X,Y )1{X ∈ Ωt}∥
m
S2(H,Y)] ≤m!σ2(2R)m−2 ∫

Ωt

∥hx∥
m
H
dπ(x) (33)

+ 2m−1 ∫
Ωt

∥hx∥
m
H
∥Fλ(x) − F∗(x)∥

m
Y
dπ(x).

We bound term (33) using Lemma 15 and Lemma 17 with l = 1. We have,

∫
Ωt

∥hx∥
m
H
dπ(x) ≤ (Aλ−

α
2 )m−2N1(λ).

Therefore we bound term (33) as follows,

m!σ2(2R)m−2 ∫
Ωt

∥hx∥
m
H
dπ(x) ≤m!σ2 (

2AR

λ
α
2

)
m−2

N1(λ).
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If β ≥ α, by Assumption (EMB),
∥F∗∥∞ ≤ A∥F∗∥α ≤ A∥F∗∥β .

Hence by Lemma 13,

∥[Fλ] − F∗∥∞ ≤ (∥F∗∥∞ +Amax{E,ωρ}∥F∗∥β)λ
β−α
2 ≤ A(1 +max{E,ωρ})∥F∗∥βλ

β−α
2 .

If β < α, by Lemma 13, we have for π-almost all x ∈ Ωt,

∥F∗(x) − Fλ(x)∥Y ≤ t + ∥[Fλ]∥L∞(π;Y) ≤ t +AE∥F∗∥βλ
β−α
2 .

Therefore, for all β ∈ [0,2ρ],

∥(F∗ − [Fλ])1X∈Ωt∥L∞(π;Y) ≤ t +A(1 +max{E,ωρ}∥F∗∥βλ
β−α
2 ) =∶ χ(t, λ).

Using Lemma 17 with l = 1, we have,

2m−1 ∫
Ωt

∥hx∥
m
H
∥F∗(x) − Fλ(x)∥

m
Y
dπ(x)

≤2m−1χ(t, λ)m−2(Aλ−
α
2 )m∥F∗ − [Fλ]∥

2
L2(π;Y)

=(
2χ(t, λ)A

λ
α
2

)

m−2

∥F∗ − [Fλ]∥
2
L2(π;Y)

2A2

λα

≤m!(
2χ(t, λ)A

λ
α
2

)

m−2

∥F∗ − [Fλ]∥
2
L2(π;Y)

2A2

λα
.

Putting everything together,

E [∥ξ(X,Y )1{X ∈ Ωt}∥
m
S2(H,Y)] ≤m!(

2(R + χ(t, λ))A

λ
α
2

)

m−2

(σ2N1(λ) + ∥F∗ − [Fλ]∥
2
L2(π;Y)

2A2

λα
) .

We now apply Theorem 10 with

L←
2(R + χ(t, λ))A

λ
α
2

σ ← 2σ
√
N1(λ) + ∥F∗ − [Fλ]∥L2(π;Y)

2A

λ
α
2

We bound ∥F∗ − [Fλ]∥L2(π;Y) using Lemma 10 with γ = 0,

∥F∗ − [Fλ]∥L2(π;Y) ≤ ωρ∥F∗∥βλ
β
2 .

The conclusion is, for all τ ≥ 1, with probability at least 1 − 2e−τ , we have

∥
1

n

n

∑
i=1

ξi1{xi ∈ Ωt} −E[ξ(X,Y )1{X ∈ Ωt}]∥
S2(H,Y)

≤ 4
√
2τ
⎛
⎜
⎝

2σ
√
N1(λ) + ∥F∗ − [Fλ]∥L2(π;Y)

2A

λ
α
2√

n
+
2(R + χ(t, λ))A

nλ
α
2

⎞
⎟
⎠

≤ 4
√
2τ
⎛

⎝

2σ
√
n

√
N1(λ) +

2A∥F∗∥βωρ
√
nλ

α−β
2

+
2(R + t +A)A

nλ
α
2

+
2A2max{E,ωρ}∥F∗∥β

nλα−
β
2

⎞

⎠
.

Lemma 14. Suppose that the same assumptions and notations listed in Theorem 7 hold.

1. Suppose β + p > α, and λ ≍ n−
1

β+p . For any fixed τ ≥ 1, with probability at least 1 − 2e−τ ,
suppose that the truncation level t satisfies

t ≤ n
1
2 (1+

p−α
p+β ),

then there exists a constant c > 0 such that

∥
1

n

n

∑
i=1

ξi1{xi ∈ Ωt} −E[ξ(X,Y )1{X ∈ Ωt}]∥
S2(H,Y)

≤ cτn−
1
2

β
β+p .
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2. Suppose β +p ≤ α, and λ ≍ ( n
logθ

(n)
)

1
α

for some θ > 1. For any fixed τ ≥ 1, with probability
at least 1 − 2e−τ , suppose that the truncation level t satisfies

t ≤ n
1
2 (1−

β
α ),

then there exists a constant c > 0 such that

∥
1

n

n

∑
i=1

ξi1{xi ∈ Ω} −E[ξ(X,Y )1{X ∈ Ω}]∥
G

≤ cτ (
n

logθ(n)
)

−
β
2α

Proof. Note that Theorem 7 yields the same conclusion as in the scalar-valued case proved in [54,
Theorem 13]. The Lemma then follows from the analysis for the scalar-valued case in the proof of
[54, Theorem 15].

We adapt [55, Theorem 15] to the vector-valued setting.
Theorem 8. Suppose that Assumptions (EMB), (EVD), (MOM) and (SRC) hold for 0 ≤ β ≤ 2ρ,
where ρ is the qualification, and p ≤ α ≤ 1.

1. In the case of β + p > α, choosing λ ≍ n−
1

β+p , for any fixed τ ≥ log(4), when n is sufficiently
large, with probability at least 1 − 4e−τ , we have

∥((ĈY X −CλĈX) − (CY X −CλCX))C
−

1
2

X,λ∥
S2(H,Y)

≤ cτn−
1
2

β
β+p (34)

where c is a constant independent of n, τ, λ.

2. In the case of β + p ≤ α, choosing λ ≍ ( n
logθ

(n)
)
−

1
α

for some θ > 1 . We make the additional
assumption that there exists some α′ < α such that Assumption (MOM) is satisfied for
α′ < α. Then, for any fixed τ ≥ log(4), when n is sufficiently large, where the hidden index
bound depends on α − α′, with probability at least 1 − 4e−τ , we have

∥((ĈY X −CλĈX) − (CY X −CλCX))C
−

1
2

X,λ∥
S2(H,Y)

≤ cτ (
n

logθ(n)
)

−
β
2α

(35)

where c is a constant independent of n, τ, λ.

Proof. By assumption (EMB) and Theorem 6, if β < α, then the inclusion map

I
qα,β
π ∶ [G]β ↪ Lqα,β

(π;Y)

is bounded, where qα,β ∶= 2α
α−β

. If β ≥ α, then by Lemma 11 the inclusion map

I∞π ∶ [G]
β ↪ L∞(π;Y)

is bounded and therefore [G]β is continuously embedded into Lq(π;Y) for any q ≥ 1. In the rest
of the proof, we will use q to denote qα,β , unless otherwise specified. Furthermore, we will use
cq = ∥F∗∥Lq(π;Y).

We first consider the case β +p > α. We can easily verify using β +p > α that the following inequality
holds

1

2
(1 +

p − α

p + β
) >

1

2
(

p

p + β
) >

α − β

2α
=

1

qα,β
.

Choose t = nq̃
−1

, where
1

q̃
=
1

2
(
1

2
(1 +

p − α

p + β
) +

1

q
) .

We thus have
n

1
2 (1+

p−α
p+β ) > t = nq̃

−1
> n

1
qα,β .

Thus the assumptions for both Lemma 12 and Lemma 14 are satisfied.
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We then consider the case β + p ≤ α. We now apply Assumption (EMB) and Theorem 6 to α′ instead
of α. We obtain that the inclusion map I

qα′,β
π is bounded, where we recall that qα′,β is defined to be

2α′
α′−β . Since x↦ 2x

x−β
is monotonically decreasing for x > β, we obtain the inequality

2α′

α′ − β
>

2α

α − β
.

We choose t = n
1

qα,β . By construction, t satisfies the assumptions in Lemma 14. Furthermore, the

assumptions of Lemma 12 are satisfied, with F∗ ∈ Lq′(π,Y), and t = n
1

qα,β .

Having established the applicability of Lemma 14 and Lemma 12, let us turn our attention to proving
the results of the Theorem. Denote

ξ(x, y) = (y −Cλϕ(x))⊗ (C
−

1
2

X,λϕ(x))

We compute
E[ξ(x, y)] = (CY X −CλCX)C

−
1
2

X,λ

1. The β + p > α case. Have

∥
1

n

n

∑
i=1

ξi −E[ξ(x, y)]∥
S2(H,Y)

≤ ∥
1

n

n

∑
i=1

ξi1{xi ∈ Ωt} −E[ξ(x, y)1{x ∈ Ωt}]∥
S2(H,Y)

+∥
1

n

n

∑
i=1

ξi1{xi ∈ Ω
c
t}∥

S2(H,Y)

+∥E[ξ(x, y)1{x ∈ Ωc
t} ∥S2(H,Y)

We can bound the first term with probability at least 1 − 2e−τ by cτ ( n
logθ

(n)
)
−

β
2α , according to

Lemma 14. By Lemma 12, with probability at least 1 − e−τ , for sufficiently large n, xi ∈ Ωt for all
i ∈ [n], whereby the second term is zero. It remains to bound the third term, where our bound will be
deterministic. Using Jensen’s inequality, we have,

∥E[ξ(x, y)1{x ∈ Ωc
t}]∥S2(H,Y) ≤ E [∥ξ(x, y)1{x ∈ Ωc

t}∥S2(H,Y)]

= E [∥(y −Cλϕ(x))1{x ∉ Ωt}∥Y ⋅ ∥C
−

1
2

X,λϕ(x)∥
H

]

≤ Aλ−
α
2 E [∥(y −Cλϕ(x))1{x ∉ Ωt}∥Y]

where in the third line we used Lemma 17. We first split the second term into an approximation error
and a noise term using triangle inequality.

E [∥(y −Cλϕ(x))1{x ∉ Ωt}∥Y] ≤ E [∥(y − F∗(x))1{x ∉ Ωt}∥Y]+E [∥(F∗(x) − Fλ(x))1{x ∉ Ωt}∥Y]

We bound the first term using the tower property of conditional expectation,

E [∥(y −Cλϕ(x))1{x ∉ Ωt}∥Y] ≤ Eπ [E[∥y −Cλϕ(x)∥Y ∣ x]1{x ∉ Ωt}]

≤ Eπ [E[∥y −Cλϕ(x)∥
2
Y
∣ x]

1
21{x ∉ Ωt}]

≤ σπ(x ∉ Ωt)

≤
σcqq

tq
.

where in the third inequality we used Assumption (MOM) with q = 2, and in the fourth inequality we
used Lemma 12. We bound the second term using Cauchy-Schwarz inequality and Lemma 10 with
γ = 0,

E [∥(F∗(x) − Fλ(x))1{x ∉ Ωt}∥Y] ≤ P(x ∉ Ωt)
1
2 ∥F∗∥βωρλ

β
2

Therefore, using Lemma 12, we have,

∥E[ξ(x, y)1{x ∈ Ωc
t} ∥S2(H,Y) ≤ Aλ

−
α
2
⎛

⎝

σcqq

tq
+
c

q
2
q

t
q
2

∥F∗∥βωρλ
β
2
⎞

⎠
. (36)
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We now plug in λ ≍ n−
1

β+p . Recall that by construction t > n
1
q . Thus,

λ−
α
2 t−q ≲ n−1n

α
2(β+p) < n−1n

β+p
2(β+p) = n−

1
2 ≤ n−

1
2

β
β+p

λ
β−α
2 t−

q
2 ≲ n−

1
2n

−(β−α)
2(β+p) < n−

1
2n

p
2(β+p) = n−

1
2

β
β+p

We’ve therefore proved inequality (34).

2. The β + p ≤ α case. We proceed similarly to the β + p > α case. We have,

∥
1

n

n

∑
i=1

ξi −E[ξ(x, y)]∥
S2(H,Y)

≤ ∥
1

n

n

∑
i=1

ξi1{xi ∈ Ωt} −E[ξ(x, y)1{x ∈ Ωt}]∥
S2(H,Y)

+ ∥
1

n

n

∑
i=1

ξi1{xi ∈ Ω
c
t}∥

S2(H,Y)

+ ∥E[ξ(x, y)1{x ∈ Ωc
t}]∥S2(H,Y)

We can bound the first term with probability at least 1 − 2e−τ by cτ ( n
logθ

(n)
)
−

β
2α , according to

Lemma 14. By Lemma 12, with probability at least 1 − e−τ , for sufficiently large n, xi ∈ Ωt for all
i ∈ [n], whereby the second term is zero. We bound the third term by Eq. (36). We now plug in

λ ≍ ( n
logθ

(n)
)
−

1
α . Recall that by construction t > n

1
q . Thus,

λ−
α
2 t−q ≲ n−1 (

n

logθ(n)
)

1
2

< (
n

logθ(n)
)

−
1
2

≤ (
n

logθ(n)
)

−
β
2α

λ
β−α
2 t−

q
2 ≲ n−

1
2 (

n

logθ(n)
)

α−β
2α

< (
n

logθ(n)
)

−β
2α

We have therefore proved inequality (35).

We adapt [54, Theorem 16] to the vector-valued setting.
Theorem 9 (Bound of estimation error). Suppose that assumptions (EMB), (EVD), (MOM) and
(SRC) hold for 0 ≤ β ≤ 2ρ, where ρ is the qualification, and p ≤ α < 1. For 0 ≤ γ ≤ 1, with γ ≤ β,

1. In the case of β + p > α, by choosing λ ≍ n−
1

β+p , for any fixed τ ≥ log(4), when n is
sufficiently large, with probability at least 1 − 4e−τ , we have

∥[Ĉλ −Cλ]∥
2
S2([H]

γ ,Y) ≤ cτ
2n−

β−γ
β+p ,

where c is a constant independent of n, τ .

2. In the case of β + p ≤ α, by choosing λ ≍ ( n
logθ

(n)
)
−

1
α

, for any fixed τ ≥ log(4), when n is
sufficiently large, with probability at least 1 − 4e−τ , we have

∥[Ĉλ −Cλ]∥
2
S2([H]

γ ,Y) ≤ cτ
2 (

n

logθ(n)
)

−
β−γ
α

where c is a constant independent of n, τ .

Proof. Firstly, we establish the applicability of Lemma 19.

1. The β + p > α case. Have λ ≍ n−
1

β+p , hence

nλα ≳ n
β+p−α
β+p

whereas using λ ≤ ∥CX∥H→H for sufficiently large n, as well as Lemma 16,

8A2τ log(2eN (λ)
∥CX∥H→H + λ

∥CX∥H→H
) ≤ 8A2τ log(4ec2,1λ

−p) ≲ 8A2τ (log(4ec2,1) +
p

β + p
log(n))
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Therefore, for a fixed τ > 0, for all sufficiently large n, Eq. (40) in Lemma 19 is satisfied.

2. The β + p ≤ α case. Have λ ≍ ( n
logθ

(n)
)
−

1
α for some θ > 1, hence

nλα ≥ logθ(n)

whereas similar to the β + p > α case, we ahve

8A2τ log(2eN (λ)
∥CX∥H→H + λ

∥CX∥H→H
) ≲ 8A2τ (log(4ec2,1) +

p

α
log(

n

logθ(n)
))

Therefore, for a fixed τ > 0, for all sufficiently large n, Eq. (40) in Lemma 19 is satisfied.

We thus conclude for all α ∈ (0,1], with probability ≥ 1 − 2e−τ , Eq. (41) and (42) are satisfied
simultaneously.

We exploit the following decomposition

∥[Ĉλ −Cλ]∥S2([H]
γ ,Y)
≤ ∥(Ĉλ −Cλ)C

1−γ
2

X ∥
S2(H,Y)

≤ ∥(Ĉλ −Cλ) Ĉ
1
2

X,λ∥
S2(H,Y)

⋅ ∥Ĉ
−

1
2

X,λC
1
2

X,λ∥
H→H

⋅ ∥C
−

1
2

X,λC
1−γ
2

X ∥
H→H

≤ ∥(Ĉλ −Cλ) Ĉ
1
2

X,λ∥
S2(H,Y)

⋅ 3 ⋅ sup
i∈N

µ
1−γ
2

i√
µi + λ

≤ ∥(Ĉλ −Cλ) Ĉ
1
2

X,λ∥
S2(H,Y)

⋅ 3λ−
γ
2 , (37)

where in the first inequality we used Lemma 22, in the third inequality we used Eq. (42) and in the
last inequality we used Lemma 21. We consider the following decomposition

Ĉλ −Cλ = Ĉλ −Cλ (ĈXgλ (ĈX) + rλ (ĈX))

= (ĈY X −CλĈX) gλ (ĈX) −Cλrλ (ĈX) .

Hence
∥[Ĉλ −Cλ]∥

2

S2([H]
γ ,Y)
≤ 18λ−γ ((I)2 + (II)2) ,

where

(I) = ∥(ĈY X −CλĈX) Ĉ
1
2

X,λgλ (ĈX)∥
S2(H,Y)

(II) = ∥Cλrλ (ĈX) Ĉ
1
2

X,λ∥
S2(H,Y)

.

Term (I). The high level idea is to bound (I) by exploiting the first axiom of the filter function (8),
where gλ(ĈX) is intuitively a regularized inverse of ĈX , by grouping it with ĈX,λ.

(I) ≤∥(ĈY X −CλĈX)C
−

1
2

X,λ∥
S2(H,Y)

⋅ ∥C
1
2

XλĈ
−

1
2

X,λ∥
H→H

⋅ ∥ĈX,λgλ (ĈX)∥
H→H

≤∥(ĈY X −CλĈX)C
−

1
2

X,λ∥
S2(H,Y)

⋅
√
3 sup
t∈[0,κ2]

(t + λ)gλ(t)

≤∥(ĈY X −CλĈX)C
−

1
2

X,λ∥
S2(H,Y)

⋅ 2
√
3E.

where the second inequality follows from Eq. (42). We consider the following decomposition

∥(ĈY X −CλĈX)C
−

1
2

X,λ∥
2

S2(H,Y)
≤ 2∥((ĈY X −CλĈX) − (CY X −CλCX))C

−
1
2

X,λ∥
2

S2(H,Y)

+ 2∥(CY X −CλCX)C
−

1
2

X,λ∥
2

S2(H,Y)
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We bound the first term by Theorem 8 and the second term by Lemma 8. This yields, for τ ≥ log(4),
with probability at least 1 − 4e−τ , for some constant c > 0 which does not depend on n, τ, λ,

∥(ĈY X −CλĈX)C
−

1
2

X,λ∥
2

S2(H,Y)
≤ 2ω2

ρ∥F∗∥
2
βλ

β +

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

cτ2n−
β

β+p β + p ≥ α

cτ2 ( n
logθ

(n)
)
−

β
α

β + p < α

≤

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

τ2(c + 2∥F∗∥
2
βω

2
ρλ

β)n−
β

β+p β + p ≥ α

τ2(c + 2∥F∗∥
2
βω

2
ρλ

β) ( n
logθ

(n)
)
−

β
α

β + p < α

where we used that τ > 1. So collecting all the relevant constants together, we can write the upper
bound of term (I) as follows: with probability at least 1 − 4e−τ , for some constant c′ > 0 (different
from the c before) which does not depend on n, τ, λ, we have

(I) ≤ c′τ ⋅

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

n−
1
2

β
β+p β + p ≥ α

( n
logθ

(n)
)
−

β
2α

β + p < α.

Term (II). Using Lemma 9, we have

(II) ≤ B ∥Ĉ
1
2

X,λrλ(ĈX)gλ(CX)C
β+1
2

X ∥
H→H

The second term is the same as the scalar-valued case, which is bounded in Step 3 of the proof of [54,
Theorem 16]. We define

∆1 ∶= 32max{
β − 1

2
,1}Eωρκ

β−1λ
1
2n−

min(β,3)−1
4

By the proof of [54, Theorem 16], we have, with probability at least 1 − 6e−τ

(II) ≤ 6BωρEλ
β
2 +∆1Bτ1{β > 2}.

1. Case β + p > α. In this case λ ≍ n−
1

β+p . We note that for β > 2, ∆1 as a function of n can be
written as

∆1 ≍ n
−

1
2(β+p)−

min(β,3)−1
4

Note that

1

2(β + p)
+
min(β,3) − 1

4
−

β

2(β + p)
=
1

2
(

p

β + p
+
min(β,3) − 1

2
) > 0

Hence
∆1 ≲ n

−
β

2(β+p)

Therefore we have shown that there exists some constant c′′ > 0, independent of n,λ, τ , such that
with probability at least 1 − 6e−τ , for sufficiently large n,

∥[Ĉλ −Cλ]∥S2([H]
γ ,Y)
≤ c′′τn−

1
2

β−γ
β+p .

2. Case β + p ≤ α. In this case β ≤ α ≤ 1, and λ ≍ ( n
logθ

(n)
)
−

1
α . We have also shown that there

exists some constant c′′ > 0, independent of n,λ, τ , such that with probability at least 1 − 6e−τ , for
sufficiently large n,

∥[Ĉλ −Cλ]∥S2([H]
γ ,Y)
≤ c′′τ (

n

logθ(n)
)

−
β−γ
2α

Putting together Lemma 10 and Theorem 9, we have proved Theorem 4.
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D Auxiliary Results

D.1 Spectral Calculus, Proof of Proposition 1 and Empirical Solution

Definition 9 (Spectral Calculus; see 16, Chapter 2.3). Let H be a Hilbert space. Consider g ∶ R→ R
and a self-adjoint compact operator A ∶H →H admitting a spectral decomposition written as

A =∑
i∈I

λihi ⊗ hi.

We then define g(A) ∶H →H as

g(A) ∶=∑
i∈I

g(λi)hi ⊗ hi

whenever this series converges in operator norm.

Proof of Proposition 1. We define the sampling operator S ∶ Rn →H and it dual S∗ ∶H → Rn,

S ∶ Rn →H, S∗ ∶H → Rn,

α ↦
n

∑
i=1

αiϕ(xi) f ↦ (f(xi))
n
i=1

We can verify that ĈX = n
−1SS∗ and K = S∗S. Let Y = (yi)ni=1 ∈ Rn. We have, for all x ∈ X ,

F̂λ(x) = Ĉλϕ(X)

= (
1

n

n

∑
i=1

yi ⊗ ϕ(xi)) gλ(ĈX)ϕ(X)

=
n

∑
i=1

yi ⟨ϕ(xi),
1

n
gλ(n

−1SS∗)ϕ(X)⟩
H

=YTS∗ (
1

n
gλ(n

−1SS∗)ϕ(X)) (38)

=YT 1

n
gλ(n

−1S∗S)S∗ϕ(X) (39)

=YT 1

n
gλ(n

−1K)S∗ϕ(X)

=YT 1

n
gλ(n

−1K)kx.

To go from (38) to (39), we make the following observation. Consider the singular value decomposi-
tion of the compact operator S, there is m ≤ n such that

S =
m

∑
i=1

√
σifi ⊗ ei

where (ei)i, (fi)i are orthonormal sequences in Rn andH respectively. We then have

SS∗ =
m

∑
i=1

σifi ⊗ fi, S∗S =
m

∑
i=1

σiei ⊗ ei.

Therefore, we deduce

S∗gλ (
SS∗

n
) = (∑

i

√
σiei ⊗ fi)

⎛

⎝
∑
j

gλ (
σj

n
) fj ⊗ fj

⎞

⎠

=∑
i,j

gλ (
σj

n
)
√
σiei ⊗ fj⟨fi, fj⟩H

=∑
i

gλ (
σi
n
)
√
σiei ⊗ fi
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Similarly,

gλ (
S∗S

n
)S∗ =

⎛

⎝
∑
j

gλ (
σj

n
) ej ⊗ ej

⎞

⎠
(∑

i

√
σiei ⊗ fi)

=∑
i,j

gλ (
σj

n
)
√
σiej ⊗ fi⟨ei, ej⟩Rn

=∑
i

gλ (
σi
n
)
√
σiei ⊗ fi

Hence we have proved

S∗gλ (
SS∗

n
) = gλ (

S∗S

n
)S∗

as desired.

Proposition 2. Any minimizer F ∈ G of

En(F ) ∶=
1

n

n

∑
i=1

∥yi − F (xi)∥
2
Y

on G must satisfy
ĈY X = ĈĈX , C ∈ S2(H,Y),

where F (⋅) = Cϕ(⋅).

Proof. By Corollary 1, it is equivalent to solve the following optimization problem on S2(H,Y),

min
C∈S2(H,Y)

1

n

n

∑
i=1

∥yi −Cϕ(xi)∥
2
Y
.

Recall for a Hilbert-Schmidt operator L ∈ S2(H,Y), we have

⟨L,a⊗ b⟩S2(H,Y) = ⟨a,Lb⟩Y .

Using this, we re-write the objective as an inner product in S2(H,Y):

1

n

n

∑
i=1

∥yi −Cϕ(xi)∥
2
Y
=
1

n

n

∑
i=1

−2⟨C, yi ⊗ ϕ(xi)⟩S2(H,Y) + ⟨C, (Cϕ(xi))⊗ ϕ(xi)⟩S2(H,Y) + constant

= −2⟨C, ĈY X⟩S2(H,Y) + ⟨C,CĈX⟩S2(H,Y)

Taking the Fréchet derivative with respect to C and setting in to zero, we obtain the following first
order condition

ĈY X = CĈX

D.2 Properties Related to Assumptions (EMB) and (EVD)

Lemma 15 (Lemma 13 [17]). Under (EMB), the following inequality is satisfied, for λ > 0 and
π-almost all x ∈ X ,

∥(CX + λIdH)
−

1
2 k(x, ⋅)∥

H

≤ Aλ−
α
2 .

Definition 10 (l-effective dimension). For l ≥ 1, the l-effective dimension Nl ∶ (0,∞)→ [0,∞) is
defined by

Nl(λ) ∶= Tr [C
l
XC

−l
X,λ] =∑

i≥1

(
µi

µi + λ
)
l

The 1-effective dimension is widely considered in the statistical analysis of kernel ridge regression
(see [6], [5], [32], [34], [17]). The following lemma provides upper and lower bounds for the
l−effective dimension.
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Lemma 16. Suppose Assumption (EVD) holds with parameter p ∈ (0,1], for any λ ∈ (0,1], there
exists a constant c2,l > 0 independent of λ such that

Nl(λ) ≤ c2,lλ
−p.

If furthermore, Assumption (EVD+) holds with parameter p ∈ (0,1), for any λ ∈ (0,1], there exists a
constant c1,l > 0 independent of λ such that

c1,lλ
−p ≤ Nl(λ) ≤ c2,lλ

−p.

The proof can be found in [29] (Proposition D.1), but as the proof is incomplete we provide a full
proof for completeness. This allows us to detect that the value p = 1 in Assumption (EVD+) is not
compatible with the assumption of a bounded kernel (see Remark 7 below).

Proof.

Nl(λ) ≤∑
i≥1

(
D2

D2 + λi
1
p

)

l

(x↦
x

x + λ
is monotonically increasing)

≤ ∫
+∞

0
(

D2

D2 + λx
1
p

)

l

dx (i↦ (
D2

D2 + λi1/p
)
l

is positive and decreasing)

= ∫
+∞

0
(

D2

D2 + y
1
p

)

l
dy

λp
(y1/p = λx1/p)

≤ λ−p
⎛

⎝
1 + ∫

+∞

1
(

D2

D2 + y
1
p

)

l

dy
⎞

⎠

Let us now consider the integral. Let us first consider p ≤ 1 < l,

∫
∞

1
(

D2

D2 + y
1
p

)

l

dy ≤Dl
2 ∫

∞

1
y−

l
p dy

=Dl
2

p

l − p

Therefore, using λ ≤ 1, we can take c2,l = 1 +Dl
2

p
l−p

. The remaining edge case p = 1 = l, is covered
by [17, Lemma 11] with c2,1 = ∥CX∥S1(H)

. For the lower bound, we proceed similarly. For p ∈ (0,1)
(and therefore p < l),

Nl(λ) ≥∑
i≥1

(
D1

D1 + λi
1
p

)

l

(x↦
x

x + λ
is monotonically increasing)

≥ ∫
∞

1
(

D1

D1 + λx
1
p

)

l

dx (i↦ (
D1

D1 + λi1/p
)
l

is positive and decreasing)

= ∫
∞

1
(

D1

D1 + y
1
p

)

l
dy

λp
(y1/p = λx1/p)

≥ λ−p ∫
∞

1
(

D1

D1 + 1
)
l

y−
l
p dy

= λ−p (
D1

D1 + 1
)
l p

l − p
.

Therefore, we can take c1,l = ( D1

D1+1
)
l

p
l−p

.

Remark 7. We note that Assumption (EVD+) with p = 1 is not compatible with the assumption that
k is bounded (Assumption 3). Indeed, suppose that µi ≥ D1i

−1, for all i ≥ 1. Recall that {[ei]}i≥1
forms an orthonormal set in L2(π). By Mercer’s theorem,

κ2 ≥ ∫
X

k(x,x)π(dx) =∑
i≥1

µi ∫
X

ei(x)
2π(dx) =∑

i≥1

µi ≥D1∑
i≥1

i−1 = +∞,

which leads to a contradiction.
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Lemma 17. For any l ∈ [1,2], the following equality holds,

∫
X

∥[C
−

l
2

X,λk(x, ⋅)]∥
2

2−l
dπ(x) = Nl(λ).

In particular for l = 1,

∫
X

∥C
−

1
2

X,λk(x, ⋅)∥
2

H

dπ(x) = N1(λ),

and for l = 2,

∫
X

∥[C−1X,λk(x, ⋅)]∥
2

L2(π)
dπ(x) = N2(λ).

Proof. Fix x ∈ X . Since k(x, ⋅) ∈H, and {µ1/2
i ei}

i∈I
is an ONB of (ker Iπ)

⊥, we have that π−almost
everywhere

k(x, ⋅) =∑
i∈I

⟨k(x, ⋅), µ
1/2
i ei⟩Hµ

1/2
i ei =∑

i∈I

µiei(x)ei.

This is Mercer’s Theorem [51]. On the other hand, π−almost everywhere,

C
−l/2
X,λ =∑

i∈I

(µi + λ)
−l/2(
√
µiei)⊗ (

√
µiei).

Therefore,
[C
−l/2
X,λ k(x, ⋅)] =∑

i∈I

µi

(µi + λ)l/2
ei(x)[ei],

and by Parseval’s identity, using that {µ(2−l)/2i [ei]}i∈I is an ONB of [H]2−l,

∥[C
−l/2
X,λ k(x, ⋅)]∥

2
2−l =∑

i∈I

(
µi

µi + λ
)
l

ei(x)
2

Therefore,

∫
X

∥[C
−l/2
X,λ k(x, ⋅)]∥

2
2−ldπ(x) =∑

i∈I

(
µi

µi + λ
)
l

∫
X

ei(x)
2dπ(x) = Nl(λ),

where we used that ([ei])i∈I forms an orthonormal set in L2(π).

D.3 Concentration Inequalities

The following Theorem is from [17, Theorem 26].
Theorem 10 (Bernstein’s inequality). Let (Ω,B, P ) be a probability space, H be a separable Hilbert
space, and ξ ∶ Ω→H be a random variable with

E[∥ξ∥mH] ≤
1

2
m!σ2Lm−2

for all m ≥ 2. Then, for τ ≥ 1 and n ≥ 1, the following concentration inequality is satisfied

Pn ⎛

⎝
(ω1, . . . , ωn) ∈ Ω

n ∶ ∥
1

n

n

∑
i=1

ξ (ωi) −EP ξ∥

2

H

≥ 32
τ2

n
(σ2 +

L2

n
)
⎞

⎠
≤ 2e−τ .

In particular, for τ ≥ 1 and n ≥ 1,

Pn ((ω1, . . . , ωn) ∈ Ω
n ∶ ∥

1

n

n

∑
i=1

ξ (ωi) −EP ξ∥
H

≥ 4
√
2
τ
√
n
(σ +

L
√
n
)) ≤ 2e−τ .

Lemma 18. Let τ ≥ log(2), with probability at least 1 − 2e−τ , for
√
nλ ≥ 8τκ

√
max{N (λ),1}, we

have
∥Ĉ−1X,λCX,λ∥

H→H
≤ 2.

Proof. The proof is identical to [5, Proposition 5.4] with the only difference that in their setting
κ = 1.
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Proposition 3 (Proposition C.9 29). Let π be a probability measure on X , f ∈ L2(π) and ∥f∥∞ ≤M .
Suppose we have x1, . . . , xn sampled i.i.d. from π. Then, for any τ ≥ log(2), the following holds
with probability at least 1 − 2e−τ :

1

2
∥f∥2L2(π)

−
5τM2

3n
≤ ∥f∥22,n ≤

3

2
∥f∥2L2(π)

+
5τM2

3n
,

where ∥ ⋅ ∥2,n was defined in Definition 7.

Lemma 19 (Lemma 12 54). Let Assumptions (EMB), (SRC) and (MOM) be satisfied. For τ ≥ 1, if
λ and n satisfy that

n ≥ 8A2τλ−α log(2eN (λ)
∥CX∥H→H + λ

∥CX∥H→H
) (40)

then the following operator norm bounds are satisfied with probability not less than 1 − 2e−τ

∥C
−

1
2

X,λĈ
1
2

X,λ∥
2

H→H

≤ 2, (41)

∥C
1
2

X,λĈ
−

1
2

X,λ∥
2

H→H

≤ 3. (42)

D.4 Miscellaneous results

Lemma 20 (Cordes inequality [18]). Let A,B be two positive bounded linear operators on a
separable Hilbert space H and s ∈ [0,1]. Then

∥AsBs∥H→H ≤ ∥A∥
s
H→H∥B∥

s
H→H

Lemma 21 (Lemma 25 [17]). For λ > 0 and s ∈ [0,1], we have

sup
t≥0

ts

t + λ
≤ λs−1

We recall the following basic Lemma from [30, Lemma 2].
Lemma 22. For 0 ≤ γ ≤ 1 and F ∈ G, the inequality

∥[F ]∥γ ≤ ∥CC
1−γ
2

X ∥
S2(H,Y)

holds, where C = Ψ̄−1(F ) ∈ S2(H,Y). If, in addition, γ < 1 or C ⊥ Y ⊗ ker Iπ is satisfied, then the
result is an equality.

Definition 11. Let X ⊆ Rd be a compact set and θ ∈ (0,1]. For a function f ∶ X → R, we introduce
the Hölder semi-norm

[f]θ,X ∶= sup
x,y∈X ,x≠y

∣f(x) − f(y)∣

∥x − y∥θ
,

where ∥ ⋅ ∥ represents the usual Euclidean norm. Then, we define the Hölder space

Cθ(X ) ∶= {f ∶ X → R ∣ [f]θ,X < +∞} ,

which is equipped with the norm

∥f∥Cθ(X) ∶= sup
x∈X
∣f(x)∣ + [f]θ,X .

The next lemma is used to prove Lemma 24 below. It appears in [29, Lemma A.3], albeit the use of
an erroneous equality in their proof: ∥k(x, ⋅) − k(y, ⋅)∥2

H
= k(x,x)k(y, y) − k(x, y)2. We therefore

provide our own proof of this result.
Lemma 23. Assume that H is an RKHS over a compact set X ⊆ Rd associated with a kernel
k ∈ Cθ(X ×X ) for θ ∈ (0,1]. Then, we haveH ⊆ C

θ
2 (X ) and

[f] θ
2 ,X
≤
√
2[k]θ,X×X ∥f∥H
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Proof. For all (x, y) ∈ X and f ∈H, by the reproducing property and Cauchy–Schwarz inequality,

∣f(x) − f(y)∣ = ∣⟨k(x, ⋅) − k(y, ⋅), f⟩H∣ ≤ ∥f∥H∥k(x, ⋅) − k(y, ⋅)∥H.

Then, using k ∈ Cθ(X ×X ), we obtain

∥k(x, ⋅) − k(y, ⋅)∥2
H
= k(x,x) + k(y, y) − 2k(x, y) ≤ 2[k]θ,X×X ∥x − y∥

θ,

which concludes the proof.

We derive as a corollary a quantitative upper bound on the ϵ-covering number of the the set of
(spectral) regularized kernel basis function with respect to the ∥ ⋅ ∥∞ norm.

Lemma 24 (Lemma C.10 by 29). Assume thatH is an RKHS over a compact set X ⊆ Rd associated
with a kernel k ∈ Cθ(X ×X ) for θ ∈ (0,1]. Assume that k(x,x) ≤ κ2 for all x ∈ X . Then, we have
that for all ϵ > 0,

N (Kλ, ∥ ⋅ ∥∞, ϵ) ≤ c(λϵ)
−

2d
θ

where Kλ ∶= {C
−1
X,λk(x, ⋅)}x∈X , and c is a positive constant which does not depend on λ, ϵ and only

depends on κ and [k]θ,X×X . N (Kλ, ∥ ⋅ ∥∞, ϵ) denotes the ϵ−covering number of the set Kλ in the
norm ∥ ⋅ ∥∞ (see [49, Definition 6.19] for the definition of covering numbers).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We specifically point out the settings and detailed contributions of our work in
both abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In describing our assumptions as well as discussing our theoretical results, we
specifically list our limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide our assumptions in Section 2.3. The complete proof of our works
are listed in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: Our paper does not contain experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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