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ABSTRACT

Adversarial training aims to defend against adversaries: malicious opponents
whose sole aim is to harm predictive performance in any way possible. This
presents a rather harsh perspective, which we assert results in unnecessarily con-
servative training. As an alternative, we propose to model opponents as simply
pursuing their own goals—rather than working directly against the classifier. Em-
ploying tools from strategic modeling, our approach enables knowledge or beliefs
regarding the opponent’s possible incentives to be used as inductive bias for learn-
ing. Accordingly, our method of strategic training is designed to defend against all
opponents within an ‘incentive uncertainty set’. This resorts to adversarial learning
when the set is maximal, but offers potential gains when the set can be appropriately
reduced. We conduct a series of experiments that show how even mild knowledge
regarding the opponent’s incentives can be useful, and that the degree of potential
gains depends on how these incentives relate to the structure of the learning task.

1 INTRODUCTION

The goal of adversarial learning is to train classifiers that are robust to adversarial attacks, defined
as small input perturbations crafted to fool the classifier into making erroneous predictions (Szegedy
et al., 2014; Goodfellow et al., 2015). As its name suggests, adversarial learning seeks to defend
against an adversary—an ominous opponent whose actions are intended to induce maximal harm
to the classifier’s performance. Learning in this setting can therefore be modeled as a zero-sum game
between the learner and the adversary, in which each player’s gain translates to an equivalent loss for
the other. This lends to formulating adversarial training as a minimax optimization problem in which
the learner (min) controls model parameters, and the adversary (max) controls bounded-norm additive
noise terms that are applied to inputs in response to the chosen parameters (Madry et al., 2018).

Since learning seeks to obtain correct predictions, adversaries are modeled as gaining from any
erroneous prediction—regardless of its type. This gives the adversary much flexibility: while there is
typically only a single (or perhaps a few) correct labels, most labels are wrong, and each of these
becomes a viable target. Thus, to obtain robustness, learning must defend simultaneously against all
attacks targeting any incorrect label. In principle, this approach is sound—but its implementation
requires placing demanding restrictions on the learning objective, whether explicitly or implicitly
(Roth et al., 2020). These make robustness attainable, but at a cost; for example, it is well-known that
adversarially trained models suffer from deteriorated generalization (Schmidt et al., 2018; Zhai et al.,
2019) and reduced performance on clean (i.e., non-adversarial) data (Tsipras et al., 2019).

In this paper, we argue that such costs can potentially be reduced by injecting into the learning objec-
tive a notion of the opponent’s incentives—i.e., what the opponent wants—which we propose to use
as inductive bias. Notice that while conventional adversarial training considers the prospective harm
of an attack, it lacks to consider the possible motives behind it: the fact that a panda can be turned into
a gibbon does not provide grounds for why (nor whether) an opponent would wish to do so. Alter-
natively, our working assumption is that realistic opponents are much more likely to simply promote
their own self-interests, rather than to always and purposefully counter those of learning—as is the
working assumption of adversarial training. Thus, if we have some knowledge or beliefs regarding the
opponent’s interests, even if quite general, then this can and should be exploited to improve prediction.
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Figure 1: Strategic opponents benefit only from certain types of attacks, such as preserving label
categories (semantic), changing labels drastically (anti-semantic), admitting preferences (preference
order), or mapping each class to a specific target (1-hot). As such, strategic learning offers a flexible
middle ground between fully adversarial and clean settings. Our strategic training approach enables
to encode prior knowledge regarding the opponent’s possible incentives into the learning objective.

Borrowing from the literature on strategic classification (Hardt et al., 2016; Brückner et al., 2012;
Levanon & Rosenfeld, 2021), our approach is to model the opponent as a strategic agent whose
actions are intended to maximize its own utility (rather than to generally minimize accuracy). This
lends to our proposed formulation of learning as a non-zero sum game in which the goal is to defend
against strategic attacks, i.e., those from which the opponent gains. The benefit of defending against
strategic targets (rather than all targets) is that training becomes less constrained, and so robustness
can be obtained with minimal sacrifice to clean accuracy. We propose a learning framework for
training classifiers that are robust to strategic input manipulations, i.e., that attain strategic robustness.

The first step to strategic robustness is to ask: what determines the opponent’s utility? In some cases,
the utility structure is apparent, such as when classes admit an ordering. Consider for example that
sellers in online market platforms will likely try to make their products appear higher quality (and
not lower) or more expensive (and not cheaper). Another example is that spoofing or impersonation
attacks aim for higher clearance levels (and not lower). Other cases can be more nuanced; for example,
an attacker who seeks to disrupt traffic by hampering with road signs will benefit more from some
changes (e.g., ‘stop’ to ‘yield’) than from others (e.g., ‘no turn left’ to ‘right turn only’). Structure
can also derive from the task at hand. For example, risk-averse opponents who fear detection may
prefer milder attacks that preserve class semantics (e.g., one car model to another) since these are
harder to detect. Contrarily, an opponent that aims to cause maximal harm may focus instead on
anti-semantic attacks (e.g., car to toaster oven) if these inflict more damage. A final alternative is
to infer utilities from past attack data, when available; we explore this idea initially in Appendix C.6.
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Fig. 2: Conjectured
outcomes of strategic
training (illustration).

Learning against strategic opponents therefore requires some knowledge
or beliefs regarding possible incentives. Our proposed framework allows to
encode these with an ‘incentive uncertainty set’, and learn classifiers that are
robust to strategic attacks within this set. Our first observation is that when
the uncertainy set is maximal, strategic and adversarial robustness coincide.
Since an empty set reverts to standard (non-robust) training, strategic learn-
ing provides a means to interpolate between clean and adversarial perfor-
mance in an informed manner. Smaller uncertainty sets enable higher clean
accuracy, and improve robustness if they include the true incentives, but risk
misspecification; larger sets reduce this risk, but at the cost of lower clean
accuracy. By providing control over uncertainty, our goal is to allow the
learner to make deliberate and calculated decisions about robustness in order
to balance between potential gains and risks. This idea is illustrated in Fig. 2.

Our approach builds on standard techniques from adversarial training and adapts them to handle
strategic opponents with either known or uncertain utilities. Focusing on a large class of multi-targeted
strategic opponents, we propose an implementation of such attacks that permits efficient training. The
key challenge is that different uncertainty sets require different procedures; here we show that several
natural families of strategic opponents admit simple and effective solutions. These include: (i) oppo-
nents who wish to preserve label semantics; (ii) opponents who benefit only from drastic label changes;
(iii) opponents with a preference order over target classes; and (iv) pre-specified targeted attacks.
These are illustrated in Fig. 1, which shows how such strategic opponents lie between the adversarial
and clean settings. Our broader goal is to initiate the study of robust learning in these more nuanced
cases, and motivate the exploration of others that lie between the two current well-known extremes.
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To demonstrate the effectiveness of our approach, we perform a thorough empirical evaluation using
multiple datasets and architectures and in various strategic settings. We begin by showing that adver-
sarial training is suboptimal against strategic opponents, and analyze its weaknesses. We then show the
merits of strategic training against known opponents, and study the risks of learning under misspecified
incentives. Our main insight here is that the degree to which strategic training is useful depends on the
relation between the structure of the opponent’s incentives and the structure of the learning task. This
motivates our analysis of learning under several natural strategic opponent classes. Results show that
strategic training is much more effective than adversarial training against strategic opponents, while
generally maintaining better clean accuracy. Results also show that the risks of learning under mis-
specified uncertainty sets exist, but are reasonable and often manageable. Together, these suggest that
strategic modeling offers a valuable tool for training more precisely-defined robust classifiers. Code is
available at https://github.com/maayango285/Adversaries-With-Incentives.

2 RELATED WORK

Adversarial learning. Adversarial examples are maliciously crafted inputs designed to make
classifiers err. Amounting evidence suggests that imperceptible (but carefully chosen) noise suffices
to cause misclassification (Szegedy et al., 2014; Goodfellow et al., 2015). The process of constructing
adversarial examples is termed an ‘adversarial attack’, and many such methods have been developed
(Goodfellow et al., 2015; Carlini & Wagner, 2017; Dong et al., 2018b; Madry et al., 2018). Given the
high susceptibility of neural networks to such attacks, there has been much interest in developing learn-
ing methods that provide adversarial robustness. One popular approach, and our focus herein, is adver-
sarial training (Goodfellow et al., 2015; Madry et al., 2018), which modifies the training objective to
include adversarial examples instead of raw ones. Adversarial training has been shown to be effective
in improving adversarial accuracy; however, evidence suggests that a persistent trade off exists be-
tween robustness and accuracy on clean inputs (Tsipras et al., 2019). Despite new insights (Yang et al.,
2020) and recent advances (Zhang et al., 2019; Wang et al., 2019), this remains to be a major weakness.

Strategic classification. Our work draws inspiration from the fast-growing literature on strategic
classification (Hardt et al., 2016; Brückner et al., 2012; Großhans et al., 2013). Works in this field
have studied both theoretical (Sundaram et al., 2023; Zhang & Conitzer, 2021) and practical (Levanon
& Rosenfeld, 2021; 2022) aspects of learning under strategic behavior, as well as broader notions such
as transparency and information asymmetry (Dong et al., 2018a; Ghalme et al., 2021; Bechavod et al.,
2022; Barsotti et al., 2022; Jagadeesan et al., 2021), social implications (Milli et al., 2019; Levanon
& Rosenfeld, 2021; Lechner & Urner, 2022; Zhang et al., 2022; Estornell et al., 2023), and causality
(Miller et al., 2020; Chen et al., 2023; Horowitz & Rosenfeld, 2023; Mendler-Dünner et al., 2022),
among others (see Rosenfeld (2024)). Strategic classification studies learning in a setting where
users can ‘game’ the system by modifying their features, at a cost, to obtain favorable predictions.
Motivated by tasks such as loan approval, job hiring, college admissions, and welfare benefits,
standard strategic classification considers binary tasks in which positive predictions (ŷ = 1) are
globally better for users than negative (ŷ = 0). Hence, since all users wish to obtain ŷ = 1, negative
users (y = 0) act ‘against’ the system, whereas positive users (y = 1) are cooperative. Several works
consider a more generalized setting in which all users can be adversarial-like (Levanon & Rosenfeld,
2022; Sundaram et al., 2023), but are restricted to binary labels. Most works in this space are theory-
oriented, focus on linear classifiers, and support only continuous tabular features. To the best of our
knowledge, our work is the first to consider strategic behavior in a multiclass setting over complex
inputs, which enables us to establish a deeper connection between strategic and adversarial learning.

Types of robustness. Many subfields within machine learning are concerned with providing
worst-case robustness. These include robust statistics (e.g., Bickel (1981)), distributionally robust
optimization (e.g., Duchi & Namkoong (2021)) and adversarial learning—all of which rely heavily
on minimax formulations. In adversarial learning, some efforts have been made to promote the less
restrictive notion of average-case robustness by replacing the max with an expectation over a prior
(Rice et al., 2021; Robey et al., 2022). The idea to replace an adversarial opponent with a strategic (or
rational) one has been considered to some extent in the domain of cryptographic proof systems (Azar
& Micali, 2012). Within learning, the only work we are familiar with which discusses a possible gap
between worst-case and strategic guarantees is Piliouras et al. (2022) who study no-regret learning in
games. Our work proposes a strategic interpretation of worst-case robustness, achieved by modeling
uncertainty as being over a set of strategic opponents.
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3 PRELIMINARIES

Let x ∈ Rd denote inputs and y ∈ [K] denote categorical labels. We follow the conventional setup of
supervised learning and assume input-label pairs (x, y) are sampled i.i.d. from some unknown joint
distribution D. Given a model class F , the standard goal in learning is to find some f ∈ F that max-
imizes expected accuracy. For the 0-1 loss defined as ℓ(y, ŷ) = 1{y ̸= ŷ}, this amounts to solving:

argminf∈F E[ℓ(y, f(x))] (1)

In the adversarial setting, learning must contend with an adversary that can manipulate each input x
by adding a small adversarial ‘noise’ term δ, chosen to maximally degrade accuracy. Given a feasible
attack range ∆ (e.g., some norm ball), the goal in learning becomes to solve the robust objective:

argminf∈F E[max
δ∈∆

ℓ(y, f(x+ δ))] (2)

This models learning as a zero-sum game between the learner, who aims to minimize the loss, and
an adversarial opponent who wishes to maximize it. We will make use of the equivalent formulation:

argminf∈F E[ℓ(y, f(x+ δadv))], δadv = argmaxδ∈∆ ℓ(y, f(x+ δ)) (3)

in which the attack δadv is made explicit. This is the formulation that is typically optimized in
practice (e.g., as in PGD (Madry et al., 2018)), often by replacing ℓ with a differentiable surrogate
loss (e.g., cross-entropy). We refer to the expected error term in Eq. (1) as clean error and in Eq. (2)
as adversarial error, and similarly define clean and adversarial accuracy as one minus error.

3.1 LEARNING AGAINST STRATEGIC OPPONENTS

At the heart of our approach lies the idea that attacks are the product of strategic behavior. We define a
strategic opponent as an agent who attacks inputs in order to maximize its own utility, this given by a
utility function u. To remain consistent with the adversarial setting, we restrict our attention to utilities
that depend on prediction outcomes, i.e., are of the form u(y, ŷ). For convenience, we will sometimes
think of these as matrices of size K ×K with entries uyy′ = u(y, y′). Given a strategic opponent
with utility u, a strategic attack (or response) against the classifier f on input x is defined as:

δu = argmaxδ∈∆ u(y, f(x+ δ)) (4)

Thus, strategic opponents have the same capacity as adversarial opponents, but admit flexible objec-
tives. In Sec. 5 we show how learning can defend against such attacks and attain strategic robustness.

Multi-targeted strategic attacks. The strategic opponents we will focus on in this paper are based
on the common notion of targeted attacks, but considered from a novel utilitarian perspective.1 Given
a target class ȳ ∈ [K], a targeted attack on x is any δ ∈ ∆ that gives f(x+ δ) = ȳ. Define a (multi)-
targeted strategic opponent as one which gains utility from an attack only if it succeeds in flipping
predictions to particular, label-dependent target(s). This captures settings such as our road signs exam-
ple in which for each object of label y, only a subset of the classes 1, . . . ,K are beneficial as targets.
Formally, a targeted strategic opponent is one whose utility is u(y, y′) = 1 if y′ is a valid target for in-
puts with label y, and 0 otherwise (where again we assume uyy = 0). We refer to these as 0-1 utilities.

Throughout the paper we will work with several natural classes of such targeted opponents:

• k-hot: An opponent is k-hot if each class y has exactly k viable targets; i.e.,
∑

y′ u(y, y′) = k ∀ y.
These will serve us as a simple model for interpolating between clean and adversarial settings.

• Semantic: In settings where classes admit a meaningful partitioning (e.g., animals vs. vehicles,
road sign types), we say an opponent is semantic if for all y, all viable targets are of the same seman-
tic type (e.g., dog 7→ cat). Our empirical analysis reveals that adversarial attacks tend to preserve
semantics; thus, semantic opponents typically act ‘as if’ they were adversarial—but are not.

• Anti-semantic: In contrast, we say an opponent is anti-semantic if it benefits from changing label
semantics, i.e., if for all y, all viable targets are of a different semantic type (e.g., dog 7→ truck).
We use these to move away from conventional adversaries and towards more lenient opponent types.

1Targeted attacks are typically employed post-hoc to demonstrate susceptibility to attacks against any arbitrary
target. In contrast, we consider strategic opponents with a-priori preferences regarding the possible targets.
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Figure 3: Utility matrices for different targeted strategic opponents, matching those from Fig. 1.

• Preferences: Finally, an opponent adheres to a preference order if there is some (partial) ordering
over classes such that y ⪯ y′ means y′ is preferable to y, i.e., u(y, y′) = 1{y ⪯ y′}. These are
useful for settings in which classes are associated with price, quality, or popularity, which in turn
effect the opponent’s gains, such as in recommender systems or online market platforms.

These and their relation to uadv are illustrated in Fig. 3 (matching Fig. 1) and formally defined later.

4 DRAWBACKS OF ADVERSARIAL TRAINING IN STRATEGIC ENVIRONMENTS

When facing a targeted strategic opponent, adversarial training is a sound approach, but is likely
to be overly restrictive. How much do we lose by being maximally conservative, and how much can
we gain by appropriately reducing uncertainty? We begin by inspecting adversarial training through
the lens of strategic modelling, and then continue to empirically demonstrate its shortcomings.

4.1 ADVERSARIAL ATTACKS AS WORST-CASE STRATEGIC RESPONSES

In Eq. (3), the form for δadv implies that the adversary benefits from any erroneous prediction; thus, an
adversarial opponent is in fact a strategic opponent with utility u = uadv ≜ ℓ plugged into Eq. (4), and
so we can interchangeably think of an adversary as a particular strategic opponent with utility uadv. In
general, however, strategic opponents can have other, non-adversarial utilities. Assuming utilities are
normalized, let Λ = [0, 1]K×K denote the universal set of all utility functions. Then for an adversary,
since uadv

yŷ = 1 if y ̸= ŷ and 0 otherwise, our first observation is that Eq. (3) can be rewritten as:

argmin
f∈F

max
u∈Λ

E[ℓ(y, f(x+ δu))] (5)

where δu is defined as in Eq. (4). This is since for any u ∈ Λ it holds that u ≤ uadv element-wise,
i.e., u employs weaker attacks that are subsumed by uadv. Eq. (5) therefore suggests that adversarial
training amounts to learning against an opponent whose utility is worst-case with respect to all possible
utility functions taking values in [0, 1]—a rather demanding task, which may be overly restrictive.

4.2 THE PRICE OF ADVERSARIAL ROBUSTNESS AGAINST NON-ADVERSARIAL OPPONENTS

Adversarial training prepares for the worst-case opponent; what happens when it faces one that is not?
Building on the common observation that adversarial training sacrifices clean accuracy for robustness,
here we examine its performance against strategic opponents of varying strengths. For simplicity,
we focus on k-hot opponents; note that k = K − 1 recovers the adversarial utility uadv, and k = 0
reverts to the clean setting. Here we present results for ResNet18 classifiers trained on CIFAR-10
data; additional architectures and datasets are studied in Sec. 6. We use test(ftrain) to denote the
accuracy of a classifier trained in one way and tested in a possibly different setting (e.g., clean(fadv)).

Adversarial vs. clean training. Fig. 4.2 shows the performance of an adversarially trained classifier
(fadv) evaluated against different opponents: adversarial (adv), strategic (1-hot and 3-hot), and no
opponent (clean). Against adv (dark red), for which fadv is consistent in training, accuracy is 45.5.
This increases to 79.8 in clean (green over red). This is an improvement—but in comparison, a model
trained on clean data (fcln) achieves 93.1 clean accuracy (green). The price fadv pays for being
conservative is therefore quite steep (−13.3; red arrow). Under our utilitarian perspective, this large
gap is the result of assuming that all attacks are valuable for the opponent, when in effect none are.

Adversarial vs. strategic evaluation. Next, consider how the same adversarially trained model fairs
against strategic opponents. Fig. 4.2 also shows the distribution of strategic accuracies of fadv against
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Figure 4: Accuracy of an adversarially trained model against varying opponents: adversarial, clean,
and strategic (1-hots and 3-hots), vs. clean accuracy of a clean model. Strategic attacks are harmful,
but less than adversarial—a gap which strategic training aims to capitalize on (dashed).

all k = 1 (light orange) and a large sample of k = 3 (dark orange) row-wise k-hot opponents. Results
show that strategic attacks are indeed generally weaker than adversarial attacks, with average values of
1-hot(fadv) = 69.9 and 3-hot(fadv) = 58.5. These large gaps from adv(fadv) (+24.4 and +13.0,
respectively), together with the fact that adversarial training is overly-conservative here as well (as it
was in clean), give hope that strategic learning will capitalize on its more focused defense (dashed).

While the strength of strategic opponents generally increases with k, there is nonetheless considerable
variation in strength across opponents within each k-class: for example, accuracy against the ‘easiest’
1-hot opponent is very close to clean (77.3, vs. 79.8), whereas for the ‘hardest’ 1-hot opponent it
is midway between adversarial and clean (59.8), and worse than some 3-hots. This suggests there
is value in knowing not only the strength of the opponent (e.g., the number of feasible targets, namely
k), but also more details regarding its incentive structure. We will examine this idea further in Sec. 6.

5 STRATEGIC TRAINING

We now turn to presenting our proposed method for training in strategic environments.

From worst-case to strategic-case. Conventional adversarial learning protects against the worst-
case perturbations within the feasible set. Under Eq. (3), this can be interpreted as seeking robustness
against an opponent whose utility is known to be uadv. Alternatively, Eq. (5) frames adversarial
learning as protecting against an unknown opponent by optimizing against the worst-case utility in
the uncertainty set Λ. Operationally, these are equivalent, since uadv is always the worst-case utility
in Λ—irrespective of the data distribution. The advantage of the utilitarian formulation in Eq. (5) is
that it provides a means to reduce the uncertainty set in a principled manner and according to the
opponent’s incentive structure. This forms the main idea underlying our approach.

Learning objective. If we have good reason to believe that some utilities are more plausible for the
opponent than others, then this can serve as valuable prior knowledge. For example, if we know or are
willing to commit to a particular u (we will later see such examples), then we can work with Eq. (3)
and directly replace uadv with this chosen u. This gives our proposed strategic training objective:

argminf∈F E[ℓ(y, f(x+ δu))], δu = argmaxδ∈∆ u(y, f(x+ δ)) (6)

Conversely, if we do not know the opponent’s utility precisely, but are willing to consider a set of possi-
ble alternatives, then we can adapt Eq. (5) by replacing Λ with a smaller, task-specific set U ⊂ Λ. For
example, this can be the set of all semantic opponents, a particular subset of anti-semantic opponents,
a small hand-crafted set of k-hot opponents, or any other reduced set that captures the opponent’s
possible incentives in the task domain. Given such U , our strategic training objective becomes:

argmin
f∈F

max
u∈U

E[ℓ(y, f(x+ δu))] (7)

which recovers Eq. (6) for U = {u}. If we instead have probabilistic beliefs over the possible utilities
in a form of a distribution pu, then the max can be replaced with an expectation over pu. We refer to
the expected error term in Eq. (7) (including the max) as strategic error w.r.t. U , and to the general
goal of optimizing Eq. (7) as strategic-case robustness (or simply strategic robustness).

Interpretation. Eq. (7) protects against the worst-case strategic opponent having utility u ∈ U .
Note that this includes as special cases both the adversarial setting (for U = Λ) and the clean
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setting (for U = {0} and defining δ0 = 0). Denoting raw predictions as ŷ = f(x) and post-response
predictions as ŷu = f(x+δu), then for any U in which all u ∈ U have uyy = 0, we naturally get that:

min
f∈F

E[ℓ(y, ŷ)]︸ ︷︷ ︸
clean

≤ min
f∈F

max
u∈U

E[ℓ(y, ŷu)]︸ ︷︷ ︸
strategic

≤ min
f∈F

max
u∈Λ

E[ℓ(y, ŷu)]︸ ︷︷ ︸
adversarial

(8)

In this sense, strategic robustness presents a relaxed notion of robustness compared to adversarial. The
key modelling component of Eq. (8) is the uncertainty set U : if we begin by setting U = Λ and grad-
ually reduce it until U = {0}, we obtain a continuum of learning objectives that interpolate between
seeking highly-robust but non-accurate classifiers, and non-robust but highly accurate ones. Hence, by
choosing U , the learner can determine the desired operating point along this tradeoff front—a choice
that should be made deliberately, on the basis of prior knowledge, and by balancing gains and risks.

5.1 OPTIMIZATION

The main challenge in optimizing the strategic objective in Eq. (7) is that it is a minimax objective
(over f and u) with a nested argmax term (δu, see Eq. (4)). Luckily, utilities permit certain structure
that enable efficient training even for some large sets U . Generally our approach is similar to the
one common in adversarial training, namely optimizing an empirical objective with a proxy loss and
alternating gradient steps between f and δu. The main distinction is that to compute gradient steps
for δu we must account for how u is determined by the internal maxu term.

Single utility. Consider first the case of training under a single chosen u (Eq. (6)). Note that since
utility is of the form u(y, y′), for each example (x, y) we need only consider the subset of targets y′ s.t.
u(y, y′) = 1. If there is only a single target, then as a proxy we can maximize the probability to predict
y′: denoting p̂(y′|x) = softmaxy′(f(x)), the strategic response is optimized by maxδ p̂(y

′|x+ δ).
Note this mirrors the popular proxy for adversarial attacks, minδ p̂(y|x+ δ). If instead we have multi-
ple possible targets T ⊆ [K]\y, then since the opponent gains utility from any one of them, we solve:

δ̂u = argmax
δ

max
y′∈T

p̂(y′|x+ δ) (9)

using gradient ascent on δ. For stability, we found it useful to add a small degree of noise: for each
example, with probability ϵ = 0.1 we replace δ̂u with a targeted attack δ̂y′ on a random target y′.

General sets. Next, consider the case of training under an uncertainty set U (Eq. (7)). For general
U , the simplest approach is to in each batch enumerate over all u ∈ U , find the maximizing u, and
update δu as above accordingly. In principle, finding the argmax should increase runtime by a factor
|U |. However, since attacks decouple over y, we can solve maxu independently for each row u(y, ·),
which can significantly reduce computational costs: for example, if U includes all 1-hot utilities, then
despite having |U | = (K − 1)K , the total number of calls to Eq. (9) is O(K).

Structured sets. Recall that adversarial training protects against the universal set Λ, but optimizes
against a single utility, namely uadv. This works because protecting against uadv implicitly provides
protection against all u ≤ uadv. Similarly, if we train against a single u∗, then this protects against
U = {u : u ≤ u∗}. Fortunately, both semantic and anti-semantic opponents (see Fig. 3) admit such
representative utilities. Denote by U sem and Ua-sem the sets of all such opponents, respectively. Let
S(y) ⊂ [K] be the set of classes of the same semantic type as y, and define:

usem(y, y′) = 1 iff y′ ∈ S(y) and ua-sem(y, y′) = 1 iff y′ ̸∈ S(y) (10)

Since any semantic utility u has u ≤ usem, and any anti-semantic utility u has u ≤ ua-sem, each
of the above are the worst-case utility of their respective type. Given this, Eq. (7) reduces to Eq. (6),
and strategic robustness against all semantic or all anti-semantic opponents can be obtained at the
cost of training against a single opponent—i.e., on par with adversarial training.

6 LEARNING UNDER MULTI-TARGETED STRATEGIC ATTACKS

We now proceed to demonstrate the potential benefits of strategic training (see Sec. 5), discussing also
its potential risks and suggesting ways to hedge them. Full experimental details are provided in Ap-
pendix B. Extended results on additional datasets and experimental settings are given in Appendix C.
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Figure 5: (Left:) Improvement of strategic training (for known u)
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gains are larger against ‘easier’ opponents. (Right:) Correlation
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ponent benefits from predictions that change label semantics (e.g.,
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remain significant also for large k.

6.1 THE BENEFITS OF ACCURATE STRATEGIC MODELING

Our next experiment aims to show how strategic training can use knowledge of the opponent’s utility to
improve performance. Focusing on k-hot opponents, here we train ResNet18 classifiers on CIFAR-10
using strategic training with a known u, and compare their strategic accuracy (w.r.t. u) to an adver-
sarially trained classifier. This quantifies the boost in accuracy due to correct incentive modelling.

Results. For k = 1, to capture the breadth of possible outcomes, we partition all 1-hot opponents
into 10 bins by how adversarial training performs against them (as in Fig. 4.2) and then sample 15
opponents uniformly from each bin, this serving as a proxy for opponent ‘strength’. Fig. 5 (left) shows
the gain in strategic accuracy from strategic training across all bins: dots represent single utilities
u, and boxes show quantiles for each bin. As can be seen, accurate strategic training improves perfor-
mance on the entire range by at least +6 accuracy points (on average) across all bins (see inset plot).
As opponents become ‘weaker’, average gains increase by up to +10 points. Fig. 6 shows the relative
gains of strategic learning for k > 1. As expected, gains are large for small k, but vary considerably
by instance. For large k, gains are smaller (and less variable), though still significant (+3).

Strategic vs. semantic structure. Since there is considerable variation across opponents in
the gains of strategic training (even within bins for k = 1), it will be useful to understand what
contributes to gains being large. Intuitively, we expect strategic training to improve upon adversarial
training when the latter unnecessarily defends against a non-target (uyy′ = 0) in a way that makes
it susceptible to attacks on true targets (uyȳ = 1). Given this, we conjecture that strategic opponents
that benefit from hard-to-attack targets will be easier to defend against using strategic training.

But what makes targets ‘easy’ or ‘hard’ to attack? Empirically, we observe that a determining factor
is the semantic similarity of the target ȳ and the true label y. For CIFAR-10, which comprises animal
and vehicle classes, we call a target ȳ semantic if it is of the same category as y (e.g., dog 7→ cat)
and anti-semantic if it is not (e.g., dog 7→ truck). We then measure for each 1-hot u the number
of semantic pairs, namely |{y : ȳ ∈ S(y)}| where ȳ is the target of y in u. Fig. 5 (right) shows
that accuracy and the number of semantic pairs have a strong negative correlation (−0.84). Similar
results hold for GTSRB and CIFAR-100 for appropriately defined semantic structures. As we will
see, semantics will play an important role in our experimental analysis in the following sections.

6.2 THE RISKS OF IMPRECISE STRATEGIC MODELING AND HOW TO MITIGATE THEM

Our previous results suggest that much can be gained from accurate strategic modeling. But what
would happen if at test time we were to face an opponent whose utility is different from the one
we trained on? A simple way to hedge such risks is to assume that we will face the chosen u with
probability 1−ϵ, and any other opponent otherwise. This can be optimized by placing weight 1−ϵ on
u and splitting the remainder ϵ mass uniformly between all other u′ ∈ U (e.g., all 1-hots).2 As ϵ grows,
we can expect that if u is well-specified then our gains will decrease, but if it is misspecified, then our

2In practice this is implemented by sampling at each batch u w.p. 1− ϵ and u′ ∼ uniform(U) w.p. ϵ.
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Figure 7: Strategic accuracy of strategic training with increasing risk mitigation (ϵ), compared to
adversarial training in the same setting. Results are shown for random (mean and std. dev.), easy,
and hard 1-hot opponents. For each, performance is evaluated in (i) a well-specified setting where the
test-time utility matches the utility used in training, and (ii) a misspecified setting in which test-time
utility is set to the worst-case utility (in terms of accuracy) relative to train-time utility. For the latter,
results show performance against the worst-case utilities out of all opponents (orange), and w.r.t.
a relevant subset of similar opponents (green), either semantic (for hard) or anti-semantic (for easy).

losses will be smaller. Note that ϵ = 1 amounts to providing average-case robustness w.r.t. U . We
present results for this approach under both correct and false assumptions on the opponent’s incentives.

Results. Fig. 7 shows results for random 1-hot opponents (left) as well as focused results against the
easiest (center) and hardest (right) opponent, taken from Sec. 4.2. In the well-specified setting where
performance is evaluated on the same u used in training (blue), strategic training improves upon
adversarial training in all cases. As expected, gains decrease as ϵ increases, but remain positive even
against the hardest opponent and at ϵ = 0.8. For the misspecified setting, we show the lowest accuracy
obtained against any 1-hot utility u′ ̸= u (orange). Results show that increasing ϵ provides increased
protection against misspecification, though even for ϵ = 1 it offers less than adversarial training. For
k > 1, results show similar trends but with lower overall accuracy for larger k (see Appendix C.2).

Semantic evaluation. The risks of misspecification were measured above with respect to the worst-
case out of all possible opponents. This considers a demanding setting in which u′ at test time can be
arbitrarily different from the u used for training. A more lenient evaluation would be to consider u′

that is still worst-case, but out of a smaller set that is ‘closer’ to u. Given the relation between attack
strength and semantics, Fig. 7 also shows accuracy under misspecification against the worst-case but
semantically relevant opponent (green): anti-semantic for the easy opponent, and semantic for the
hard opponent. For the latter, note how the effect of misspecification disappears; since adversarial
performance remains the same, this suggests that the hardest opponent is indeed a member of the
semantic set. However, for the easy opponent, not only is there general improvement, but the gap to
adversarial training closes quickly, and at ϵ ≈ 0.7 moderately reverses. Note also how here accuracy
for the adversary is close to that of the correct setting. Together, these suggest that even the mild
knowledge of the adversary’s incentives—e.g., whether it is semantic or anti-semantic—can be useful.

6.3 WORST-CASE STRATEGIC ROBUSTNESS

Motivated by our previous results, in this section we consider strategic learning that seeks robustness
against the worst-case opponent within a set of plausible utilities U . Here we present results for U
that consists of either all semantic or anti-semantic utilities. This means that all we will assume is that
the opponent benefits either from attacks that preserve, or that disrupt, label semantics. Our choice is
based on the observation that adversarial attacks tend to preserve semantics; hence, semantic and anti-
semantic serve us as representative ‘hard’ and ‘easy’ strategic sets, respectively. In Appendix C.4 we
present additional experiments for preference-order utilities, for which results exhibit similar trends.

Experimental setup. In addition to CIFAR-10, here we also experiment with: (i) the GTSRB
road signs dataset (43 classes), in which we partition road sign classes according to their type,
and (ii) CIFAR-100 (100 classes), reported in Appendix C.5. We consider three architectures:
VGG, ResNet18, and vision transformer (ViT). For adversarial training we implement attacks using
PGD (Madry et al., 2018), and for strategic training we use our approach from Sec. 5. Since we
are interested in strategic robustness, we evaluate the performance of each method as its accuracy
against the worst-case strategic opponent in the relevant incentive set. i.e., U sem for semantic and
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CIFAR-10 GTSRB

train
test VGG ResNet18 ViT VGG ResNet18 ViT

clean strat adv clean strat adv clean strat adv clean strat adv clean strat adv clean strat adv

se
m

. clean 89.2 0.1 0.6 93.1 0.0 0.0 77.5 0.1 0.0 95.1 5.8 15.4 96.6 1.8 1.6 90.7 2.8 1.8
strategic 72.2 50.9 33.7 78.9 52.5 40.7 58.1 44.0 23.6 82.4 58.3 47.0 92.0 64.9 61.7 80.2 49.9 42.4
adversarial 67.7 46.4 39.3 79.8 49.6 45.5 53.1 39.8 33.3 80.5 47.2 43.8 90.9 55.4 53.9 79.4 49.6 47.1

a-
se

m
. clean 89.2 0.2 0.6 93.1 0.0 0.0 77.5 0.2 0.0 95.1 14.6 15.4 96.6 4.3 1.6 90.7 6.4 1.8

strategic 80.3 69.8 25.0 85.1 73.4 33.4 65.3 58.7 13.1 88.2 71.2 36.7 92.0 79.1 49.0 83.5 74.0 34.0
adversarial 67.7 56.8 39.3 79.8 67.4 45.5 53.1 45.8 33.3 80.5 63.2 43.8 90.9 73.0 53.9 79.4 64.6 47.1

Table 1: Accuracies of clean, strategic, and adversarial models in semantic and anti-sem. settings.

Ua-sem for anti-semantic. Appendix B includes further details on data, optimization, and evaluation.
Appendix C.3 includes sensitivity tests against a stronger opponent who knows the uncertainty set.

Results. For both semantic and anti-semantic settings, Table 1 compares models trained using clean,
strategic, and adversarial training in terms of their clean, strategic, and adversarial accuracies. As can
be seen, strategic training provides significant gains over adversarial training against worst-case strate-
gic opponents in all cases, with a more pronounced effect in the anti-semantic setting. Strategic train-
ing also exhibits generally improved clean accuracy. Importantly, strategic training also provides a rea-
sonable degree of protection against adversarial attacks, despite its misspecification to such opponents.

To further understand why, Table 2 shows the deflection rates of strategic training, measured as the
percentage of attacks it is able to prevent out of the successful attacks against an adversarial model:

%deflected =
strat(fstr)− strat(fadv)

clean(fcln)− strat(fadv)
(11)

Deflection rates can be as high as 40%; this demonstrates the ability of strategic training to exploit
mild knowledge regarding incentives, as well as the price of adversarial over-conservativeness.
To gain insight as to how adversarial learning over-defends, Fig. 8 (left) illustrates for CIFAR-10
with ResNet18 the distribution of attacks adversarial training anticipates to encounter (i.e., when
assuming an adversarial opponent). In comparison, Fig. 8 (right) shows the distribution of semantic
strategic attacks on a strategically trained model. As can be seen, strategic training anticipates, and
therefore focuses its defenses on, the correct targets. Meanwhile, as Fig. 8 (center) shows, adversarial
training unnecessarily defends against non-targets, and therefore suffers more attacks on true targets.

7 DISCUSSION

This paper studies strategically robust learning—a novel setting in which opponents are strategic,
namely act to maximize their own utility. Given that this is the basic premise underlying all economic
modelling, we believe our work provides a fresh perspective on robust learning having true practical
merit. At its core, strategic learning offers a means to inject inductive bias on the basis of knowledge
regarding the opponent’s likely incentives. As a middle ground between the (optimistic) clean setting
and (pessimistic) adversarial settings, it allows us—and at the same time requires us—to be precise
in our definition of what we seek to be ‘robust’ against. Our work leans on ideas from the literature of
strategic classification, but takes several steps towards making it more realistically applicable. We see
several avenues forward, including better implementations for strategic attacks, improved strategic
training, other modalities (e.g., text), and new incentive structures. We leave these for future work.

% deflected attacks:
sem. a-sem.

C
IF

A
R

-1
0 VGG 10.5% 40.1%

ResNet18 6.7% 23.3%
ViT 11.1% 40.7%

G
T

SR
B VGG 23.2% 25.3%

ResNet18 23.2% 26.0%
ViT 0.6% 36.1%

Table 2: Strategic gains.

plane
ship car

truck
bird

deer
frog cat

dog
horse

plane
ship car

truck
bird

deer
frog cat

dog
horse

plane
ship car

truck
bird

deer
frog cat

dog
horse

plane 56 20 2 4 7 3 3 2 1 1 plane -8 -6 0 -1 6 3 3 2 1 1 plane 66 25 2 6 0.1

ship 15 67 4 4 4 3 1 2 1 1 ship -5 -4 -0 -0 3 2 1 1 1 1 ship 21 69 4 6

car 3 7 66 18 1 1 2 2 1 0 car 0 -1 -3 -3 1 1 2 2 1 0 car 3 8 62 27 0.1

truck 6 11 16 55 2 1 3 2 1 3 truck -3 0 -4 -6 2 1 3 2 1 3 truck 10 10 20 60

bird 9 4 1 2 30 17 20 9 5 5 bird 5 3 1 2 -4 -10 2 -1 -1 2 bird 0.1 0.2 40 22 22 3 7 5

deer 5 4 1 2 15 28 26 5 5 10 deer 4 4 1 2 -10 -1 3 -2 1 -3 deer 23 29 23 2 4 19

frog 3 2 1 2 8 21 53 6 3 3 frog 2 2 1 2 -1 -2 -3 -5 0 2 frog 8 7 79 3 3 1

cat 6 4 2 4 10 15 22 14 15 8 cat 5 4 2 4 1 0 -2 -3 -15 4 cat 0.3 14 13 23 5 37 7

dog 3 3 1 2 9 10 16 15 33 10 dog 3 3 1 2 1 1 5 -14 -5 3 dog 0.1 12 9 12 11 44 12

horse 4 3 1 3 4 13 7 6 6 54 horse 4 3 1 3 0 -7 4 -1 -1 -6 horse 0.1 5 14 2 3 6 71

adv(f adv) adv(f adv) – strat(fadv) strat(f str)

Figure 8: Distribution of attacks for adversarial and strategic models.
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Flavia Barsotti, Rüya Gökhan Koçer, and Fernando P Santos. Transparency, detection and imitation
in strategic classification. In Proceedings of the 31st International Joint Conference on Artificial
Intelligence, IJCAI 2022, 2022.

Yahav Bechavod, Chara Podimata, Steven Wu, and Juba Ziani. Information discrepancy in strategic
learning. In Proceedings of the 39th International Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pp. 1691–1715. PMLR, 17–23 Jul 2022.

Peter J Bickel. Minimax estimation of the mean of a normal distribution when the parameter space is
restricted. The Annals of Statistics, 9(6):1301–1309, 1981.

Michael Brückner, Christian Kanzow, and Tobias Scheffer. Static prediction games for adversarial
learning problems. The Journal of Machine Learning Research, 13(1):2617–2654, 2012.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
Symposium on Security and Privacy (SP), 2017.

Yatong Chen, Jialu Wang, and Yang Liu. Linear classifiers that encourage constructive adaptation.
Transactions on Machine Learning Research, 2023.

Jinshuo Dong, Aaron Roth, Zachary Schutzman, Bo Waggoner, and Zhiwei Steven Wu. Strategic clas-
sification from revealed preferences. In Proceedings of the 2018 ACM Conference on Economics
and Computation (EC), pp. 55–70, 2018a.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting
adversarial attacks with momentum. In Conference on Computer Vision and Pattern Recognition,
CVPR, 2018b.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021, 2021.

John C Duchi and Hongseok Namkoong. Learning models with uniform performance via distribu-
tionally robust optimization. The Annals of Statistics, 49(3):1378–1406, 2021.

Andrew Estornell, Sanmay Das, Yang Liu, and Yevgeniy Vorobeychik. Group-fair classification with
strategic agents. In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and
Transparency, FAccT 2023, Chicago, IL, USA, June 12-15, 2023, pp. 389–399. ACM, 2023.

Ganesh Ghalme, Vineet Nair, Itay Eilat, Inbal Talgam-Cohen, and Nir Rosenfeld. Strategic classi-
fication in the dark. In Proceedings of the 38th International Conference on Machine Learning
(ICML), 2021.

I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing Adversarial Examples. In
International Conference on Learning Representations, ICLR, 2015.

11



Published as a conference paper at ICLR 2025

Michael Großhans, Christoph Sawade, Michael Brückner, and Tobias Scheffer. Bayesian games for
adversarial regression problems. In International Conference on Machine Learning, pp. 55–63,
2013.

Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. Strategic classification.
In Proceedings of the 2016 ACM conference on innovations in theoretical computer science, pp.
111–122, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks, Nicholas Carlini, John Schulman, and Jacob Steinhardt. Unsolved problems in ML
safety. arXiv preprint arXiv:2109.13916, 2021.

Guy Horowitz and Nir Rosenfeld. Causal strategic classification: A tale of two shifts. In International
Conference on Machine Learning, pp. 13233–13253. PMLR, 2023.

Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. Detection of
traffic signs in real-world images: The German Traffic Sign Detection Benchmark. In International
Joint Conference on Neural Networks, number 1288, 2013.

Meena Jagadeesan, Celestine Mendler-Dünner, and Moritz Hardt. Alternative microfoundations for
strategic classification. In International Conference on Machine Learning, pp. 4687–4697. PMLR,
2021.

Alex Krizhevsky, Vinod Nair, Geoffrey Hinton, et al. The CIFAR-10 dataset. online: http://www. cs.
toronto. edu/kriz/cifar. html, 55(5):2, 2014.

Ram Shankar Siva Kumar, Magnus Nyström, John Lambert, Andrew Marshall, Mario Goertzel, Andi
Comissoneru, Matt Swann, and Sharon Xia. Adversarial machine learning-industry perspectives.
In 2020 IEEE security and privacy workshops (SPW), pp. 69–75. IEEE, 2020.

Tosca Lechner and Ruth Urner. Learning losses for strategic classification. In Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI, pp. 7337–7344. AAAI Press, 2022.

Sagi Levanon and Nir Rosenfeld. Strategic classification made practical. In International Conference
on Machine Learning, pp. 6243–6253. PMLR, 2021.

Sagi Levanon and Nir Rosenfeld. Generalized strategic classification and the case of aligned
incentives. In International Conference on Machine Learning, pp. 12593–12618. PMLR, 2022.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, ICLR, 2018.

Celestine Mendler-Dünner, Frances Ding, and Yixin Wang. Anticipating performativity by predicting
from predictions. Advances in Neural Information Processing Systems, 35:31171–31185, 2022.

John Miller, Smitha Milli, and Moritz Hardt. Strategic classification is causal modeling in disguise.
In International Conference on Machine Learning, pp. 6917–6926. PMLR, 2020.

Smitha Milli, John Miller, Anca D Dragan, and Moritz Hardt. The social cost of strategic classification.
In Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 230–239,
2019.

Yichuan Mo, Dongxian Wu, Yifei Wang, Yiwen Guo, and Yisen Wang. When adversarial training
meets vision transformers: Recipes from training to architecture, 2022.

Georgios Piliouras, Ryann Sim, and Stratis Skoulakis. Beyond time-average convergence: Near-
optimal uncoupled online learning via clairvoyant multiplicative weights update. Advances in
Neural Information Processing Systems, 35:22258–22269, 2022.

Leslie Rice, Anna Bair, Huan Zhang, and J Zico Kolter. Robustness between the worst and average
case. Advances in Neural Information Processing Systems, 34:27840–27851, 2021.

12



Published as a conference paper at ICLR 2025

Alexander Robey, Luiz Chamon, George J Pappas, and Hamed Hassani. Probabilistically robust
learning: Balancing average and worst-case performance. In International Conference on Machine
Learning, pp. 18667–18686. PMLR, 2022.

Nir Rosenfeld. Strategic ML: How to learn with data that ‘behaves’. In Proceedings of the 17th ACM
International Conference on Web Search and Data Mining, pp. 1128–1131, 2024.

Kevin Roth, Yannic Kilcher, and Thomas Hofmann. Adversarial training is a form of data-dependent
operator norm regularization. Advances in Neural Information Processing Systems, 33:14973–
14985, 2020.

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry. Ad-
versarially robust generalization requires more data. Advances in neural information processing
systems, 31, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Ravi Sundaram, Anil Vullikanti, Haifeng Xu, and Fan Yao. PAC-learning for strategic classification.
Journal of Machine Learning Research, 24(192):1–38, 2023.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. In International Conference on Learning Representations, ICLR,
2014.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. In 7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
adversarial robustness requires revisiting misclassified examples. In International conference on
learning representations, 2019.

Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Russ R Salakhutdinov, and Kamalika Chaud-
huri. A closer look at accuracy vs. robustness. Advances in neural information processing systems,
33:8588–8601, 2020.

Runtian Zhai, Tianle Cai, Di He, Chen Dan, Kun He, John Hopcroft, and Liwei Wang. Adversarially
robust generalization just requires more unlabeled data. arXiv preprint arXiv:1906.00555, 2019.

Hanrui Zhang and Vincent Conitzer. Incentive-aware PAC learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2021.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International conference on
machine learning, pp. 7472–7482. PMLR, 2019.

Xueru Zhang, Mohammad Mahdi Khalili, Kun Jin, Parinaz Naghizadeh, and Mingyan Liu. Fairness
interventions as (dis) incentives for strategic manipulation. In International Conference on Machine
Learning. PMLR, 2022.

13



Published as a conference paper at ICLR 2025

A BROADER IMPACT

The field of adversarial learning aims to enable safer deployment of learned models and to make the
use of machine learning more secure in real-world applications. The concern regarding attacks on
models is concrete, and the possible risks such attacks entail span many domains (Kumar et al., 2020).
This underlies the many efforts that are and have been put forth, both in research and in industry, to
advance the development of methods for adversarially robust learning.

Our approach to robust learning stems from the observation that in reality, learned models will be
susceptible to the influence of the agents who interact with them; and whereas adversarial learning
prepares to encounter malicious agents—which are likely the exception—our main thesis is that
even non-benign agents are more likely to promote their own interests than to deliberately sabotage
learning efforts. As such, we view our work as contributing an economic perspective to how robust
learning should be designed, this by acknowledging and modeling the possible utilities of the agents
that learning may encounter, and then using this as prior knowledge.

However, as in any domain or task in which agents are modeled, our approach necessitates making
assumptions—even if mild—on the nature of their possible incentives. As these are intended to relax
the demanding restrictions of adversarial learning, the main limitation of our approach is that the
more precisely we model incentives, the more we risk their misspecification. This is an inherent
limitation of any method for robust learning: once we commit to an uncertainty set, all guarantees are
with respect to this set only. In our work we empirically explore (to some extent) the implications
of misspecification (Sec. 6.2). Results are fairly encouraging, and show that quantifying risks can
be used as means for the learner to make informed decisions about what learning should seek to be
robust against. But safe deployment of strategically trained models in general clearly requires much
further investigation of possible failure modes.

Adversarial learning faces similar limitations: it commits to a certain threat model (e.g., L∞ with
a certain budget), and provides robustness only against such attacks—but this protection does not
generalize to others (e.g., L2, or a larger budget) (Hendrycks et al., 2021; Bai et al., 2021). For
example, if we train using some attack radius r, then we obtain robustness to attacks of at most that
strength, and are still susceptible to stronger attacks. One way to think of strategic modeling is in
providing more flexibility in designing the uncertainty set by controlling not only the magnitude
of attacks (i.e., the attack radius), but also their direction (w.r.t. how the model perceives the
‘directionality’ of classes in input space). Thus, specifying robustness in our framework permits not
only attack strength, but also intent.

Nonetheless, in relation to our approach, adversarial learning is indeed ‘safer’, in the sense that for
a fixed radius, it protects against all directions, or in our terminology—because it seeks to defend
against all possible opponents (i.e, ‘everything’). However, our key point in this paper is precisely that
safety that is granted through conservativity comes at a predetermined cost—for example, in reduced
clean performance. If we have established knowledge or strong beliefs regarding the opponent’s
possible incentives, and are willing to make calculated decisions regarding the gains and risks of
making more fine-grained assumptions, then strategic modeling can be highly beneficial as a tool for
providing designated robustness against strategic opponents.

B EXPERIMENTAL DETAILS

B.1 DATA AND PREPROCESSING

We experiment with two datasets:

• CIFAR-103 (Krizhevsky et al., 2014): This dataset includes 60, 000 natural images of size
32× 32× 3. We use the standard split of 50, 000 train and 10, 000 test examples. There are 10
classes, 4 of which encode vehicles, and 6 of which encode animals. We use this partition as our
definition of label semantics.

3https://www.cs.toronto.edu/˜kriz/cifar.html
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• GTSRB4 (Houben et al., 2013): This dataset includes ∼ 50, 000 images of road signs of variable
sizes. We use the standard split of 39, 209 train and 12, 630 test images. For consistency we
resize the images to 32 × 32 × 3. There are 43 classes, which we partition according to the
shape of the sign—either circular or triangular, which roughly corresponds to road sign types:
prohibitory and mandatory signs vs. warning signs.

For both datasets we employ a standard augmentation pipeline, which includes RandomCrop with a
padding of 4 and RandomHorizontalFlip.

B.2 ARCHITECTURES

We experiment with three different model architectures: (i) VGG (Simonyan & Zisserman, 2015), (ii)
ResNet18 (He et al., 2016), and (iii) ViT (Dosovitskiy et al., 2021). The former two are convolution-
based, for which we use standard architectures. The latter is transformer-based, and for this we use
an implementation adjusted to smaller resolution images.5

B.3 THREAT MODEL AND ATTACK IMPLEMENTATION

For the adversarial and strategic settings, we adopt the following standard adversarial configuration.6
We set the threat model ∆ as the L∞ norm-ball with an adversarial budget of 8

255 . For training, we
use a PGD attack using 7 steps with a step size of 0.011. For evaluation, we use 20 steps with a step
size of 0.0039. For both cases, we use the common heuristic of 2.5 ϵ

t , where t is the number of steps.

B.4 TRAINING AND HYPERPARAMETERS

Optimization for all models was done using an SGD optimizer with momentum 0.9 and a base
learning rate of 0.01. Learning rate r was adjusted using a multi-step scheduler, which multiplies r
by 0.1 at two predetermined epochs during training. These hyperparameters remain constant across
experiments, datasets, and architectures. We used 50 epochs of training throughout, except for ViT
on CIFAR-10 which required an additional 50 epochs (used for all methods). For batch size (bs), we
used mostly 64 samples per batch. However, several adaptations were necessary to ensure that all
models in all settings obtained reasonable clean accuracy. These changes are summarized as follows:

architecture dataset batch size epochs

ResNet18 CIFAR-10 128 50
GTSRB 32/64 50

VGG CIFAR-10 64 50
GTSRB 64 50

ViT CIFAR-10 64 100
GTSRB 16 50

The only setting in which we resorted to use different batch sizes for different methods is ResNet18
on GTSRB. Here we found that strategic training works well with bs = 32 (but not with bs = 64),
and that adversarial training works well with bs = 64 (but not with bs = 32), whereas clean
training was mostly agnostic to this choice. Our main results in Table 1 adhere to these choices;
for completeness, we report here accuracies for strategic training with bs = 64 (which matches the
reported bs for adversarial training): in the semantic setting clean(fsem) = 87.6, sem(fsem) = 57.0,
and adv(fsem) = 54.9, and in the anti-semantic setting clean(fa-sem) = 92.2, a-sem(fa-sem) = 78.4,
and adv(fa-sem) = 50.1.

As we discuss in Sec. 5.1, we found that strategic training benefits (mostly in terms of clean accuracy)
from adding subtle noise to the choice of utility at each step. Accordingly, at each batch, for each
class y, with probability 1 − ϵ we use the utility uy· defined in the objective, and with probability
ϵ we draw a target label ȳ ∈ [K] uniformly at random. Throughout all experiments, separate from
Sec. C.4, we use ϵ = 0.1.

4https://benchmark.ini.rub.de
5https://github.com/omihub777/ViT-CIFAR
6https://github.com/imrahulr/adversarial_robustness_pytorch
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Upon publication we will make our code and all checkpoints publicly available to facilitate repro-
ducibility and further research.

B.5 COMPUTE AND RUNTIME

We ran all the experiments on a cluster of NVIDIA RTX A4000 16GB GPU machines, where each run
used between 1-2 GPUs in parallel. A typical epoch for ResNet18 on CIFAR-10 was timed at roughly
17.5 seconds per epoch for clean training, 85 for adversarial training, and 144 for strategic training.
Thus, one experimental instance for each method completes in approximately 15 minutes, 70 minutes,
and 120 minutes, respectively. For the least computationally demanding setup (VGG on CIFAR-10),
an average epoch of clean training takes 18.7 seconds, 76.2 seconds for adversarial training and 61
seconds for strategic. For the most computationally demanding setup (ViT on GTSRB), an average
epoch takes 97, 451 and 444 seconds for clean, strategic and adversarial training, respectively.

C ADDITIONAL EXPERIMENTS

C.1 STRATEGIC LEARNING VS. BENCHMARKS AGAINST 1-HOT OPPONENTS

We compare the performance of strategic training to adversarial training and clean training, and
respectively measure clean accuracy, strategic accuracy, and adversarial accuracy. In this experiment
the strategic opponents are random 1-hot opponents whose utility is known to the learner at test
time. Table 3 shows mean accuracies and standard errors for these settings. Results are reported for
CIFAR-10 and CIFAR-100 using both VGG and ResNet18 models.

As for ViT, here and in other experiments we found it difficult to obtain comparable performance—
even in the clean setting—while remaining within the general regime of the experimental setup of all
other experiments (for similar indications, see Mo et al. (2022)).

Results. As expected, each approach is best on the setting for which it is designed for. In terms of
strategic accuracy, strategic training improves significantly over adversarial training, especially in
CIFAR-100 (+30.2 for VGG, +25.9 for ResNet18) but also in CIFAR-10 (+8.5 and +8). Strategic
training also provides a considerable boost in clean accuracy compared to adversarial training.
Meanwhile, whereas clean training breaks completely under adversarial evaluation, strategic training
still provides some degree of protection against adversarial attacks (between −9.8 and −18.2).

 CIFAR-10 

        test 

train 

VGG  ResNet18 

clean strat adv  clean strat adv 

clean 89.2 0.6±0.1 0.6  93.1 0±0.0 0.0 

strategic 72.3±0.9 67.9±1.7 21.1±0.8  90.6±1.0 76.6±1.5 30.2±0.9 

adversarial 67.7 59.4±0.5 39.3  79.8 68.6±1.0 45.5 

 
 

      

 CIFAR-100 

        test 

train 

VGG  ResNet18 

clean strat adv  clean strat adv 

clean 62.1 0.9±0.1 0.3  74.1 0±0.0 0.0 

strategic 40.7±0.9 61.7±0.8 7.1±0.4  53.9±0.4 76.4±0.7 8.0±0.2 

adversarial 33.3 31.5±0.4 16.9  55.5 50.5±1.4 21.8 

 
Fig 2. Accuracies of clean, strategic, and adversarial 

models for a sample of known 1-hot opponents. Table 3: Accuracies under clean, strategic, and adversarial training for random 1-hot opponents.

C.2 RISKS AND MITIGATION OF IMPRECISE STRATEGIC MODELING FOR k > 1

This experiment complements Sec. 6.2 and measures accuracy for strategic training with increasing
risk mitigation ϵ against k-hot opponents with k > 1 (we show k = 1 here as well for comparison).
As before, results compare performance of strategic training against random opponents (mean and
standard deviation; left) as well as against easy (center) and hard (right) opponents, chosen from a
large random sample of opponents. We consider both the ‘correct’ setting in which the opponent’s
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utility is well-specified in the training objective, and in the ‘wrong’ setting in which the objective is
misspecified, for which we show performance under the worst-case opponent relative to the trained
model. When increasing ϵ, in the well-sepcified setting we expect accuracy to decrease, and in the
misspecified setting we expect accuracy to increase.

Results. Fig. C.2 shows that for k > 1, similar trends are preserved as for k = 1. One difference
is that as k increases, overall performance decreases, as can be expected given that larger k means
generally stronger opponents. In the correct setting, note how for the easy opponent the drop in
accuracy as a result of increasing k is much smaller than for random or for hard. This suggests that
there are inherently ‘easy’ targets that are captured by the easiest (and weakest) opponent having
k = 1. Contrarily, when considering hard opponents, accuracy decreases for k = 1, .., 3 but does not
further deteriorate for k = 4. This suggests that there are inherently ‘hard’ targets, i.e., that the targets
encoded in the hardest 3-hot opponent capture most of the difficulty in protecting against stronger
opponents. such as those with dominating utilities, u′ ≥ u. This implies that defending against these
targets alone—rather than against all targets as in adversarial training—suffices to provide reasonable
protection in this setting even when utilities are inherently misspecified.
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Figure 9: Accuracy for strategic training with increasing risk mitigation (ϵ) for k ≥ 1.

C.3 ROBUSTNESS OF STRATEGIC TRAINING AGAINST AN ALL-KNOWING ADVERSARY

Our results throughout Sec. 6 show that across multiple settings, strategic learning provides reasonable
protection even against adversarial attacks. These results serve to quantify the worst-case risk (in
terms of loss in accuracy) a learner can expect by committing to a certain strategic uncertainty set
that eventually proves to be erroneous. However, one can also consider an even stronger adversarial
model in which the adversary not only attacks the worst-case target, but also knows that the learner is
strategic, and hence exploits this to target classes that are left ‘undefended’ by the uncertainty set.
We refer to this type of opponent as an all-knowing adversary, and here we evaluate the performance
of strategic learning against it.

Setup. In this experiment we use VGG on CIFAR-10, and consider strategic learning in both the
semantic (sem) and anti-semantic (a-sem) settings. In addition to standard measures, here we evaluate
performance also w.r.t. the following opponents:

• avg (a-)sem. 1-hot: an all-knowing adversary that employs a targeted attack on some undefended
target, averaged over all such possible targets.

• min (a-)sem. 1-hot: an all-knowing adversary that employs the worst-case targeted attack of all
undefended targets.

• (a-)sem. multi-target: an all-knowing adversary which attacks all possible undefended targets
simultaneously.

• min 1-hot: the worst-case 1-hot (i.e., targeted) opponent.

Results. Table 4 shows the performance of strategic training for both the semantic and anti-semantic
settings, evaluated against several variations of an all-knowing adversary who knows which targets
are defended in learning, and which are left (in principle) unprotected. For comparison, we also show
the performance of clean and adversarially trained models against the same attack types. Results
show that despite even though strategic training forfeits explicit defense against certain targets, they
are nonetheless not fully susceptible to exploitation, even when the adversary knows the learner’s
assumed utility structure. This suggests that attack ‘directions’ are likely not orthogonal, and that
protecting against some targets indirectly provides protection also against others.
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CIFAR-10 VGG

train
test avg a-sem. 1-hot min a-sem. 1-hot min 1-hot a-sem. multi-target adv sem. multi-target clean

sem. 52.3 49.5 43.7 48.5 33.7 50.9 72.2
adv 61.2 58.5 52 56.8 39.9 46.4 67.7
clean 1 0.4 0.1 0.2 0.6 0.1 89.2

train
test avg sem. 1-hot min sem. 1-hot min 1-hot sem. multi-target adv a-sem. multi-target clean

a-sem. 43.6 32.2 32.2 23.8 25 69.8 80.3
adv 58.3 50.7 52 46.4 39.9 56.8 67.7
clean 0.4 0.2 0.1 0.1 0.6 0.2 89.2

Table 4: Results for strategic learning (semantic and anti-semantic) against an all-knowing adversary.

C.4 WORST-CASE STRATEGIC TRAINING AGAINST OPPONENTS WITH PREFERENCES

Preserving the general setup of Sec. 6.3, here we present results for worst-case strategic learning
against opponents with preference-order utilities. This aims to capture settings in which there is a
natural ordering over classes that determines their value for the opponent. Examples include:

• An online market platform for second-hand items (e.g., eBay), where sellers post pictures of their
items, and the system classifies them based on quality and condition. Here the potential opponent
is the seller, who would like her item to be classified as high quality, and can manipulate the image
to achieve this.

• Similarly, a platform for selling antiques, vintage items, or rarities, in which the system provides
buyers with a recommended price range. Here again the seller would like its item to be classified
as being in a higher price range.

• A face recognition system in a security setting where different employees in a firm have different
clearance levels or permissions. Here a malicious employee will try to impersonate another only if
the other’s security level is higher than his own.

Our main motivation in exploring this setting is to conceptually move further away from the standard
adversarial settings, in which the opponent works ‘against’ the learner, and towards settings in which
the opponent acts simply to promote its own self-interest. This is in contrast to e.g., semantic and
anti-semantic opponents, which still gain from the learner’s losses, though in a structured manner.
Preference-order attacks are in principally different; for example, note that in some cases the opponent
can correct predictive errors: if an example’s true label is y but is wrongly classified as ŷ, and if y is
ranked higher in the opponent’s preference ordering than ŷ, then the attack ŷ 7→ y is both helpful for
the opponent and for the learner.

Preference order utilities. For a given ordering ⪯ over classes, a preference order opponent (or
an opponent with preferences) has utility given by u⪯(y, y

′) = 1{y ⪯ y′}. I.e., if the true class is y,
then the opponent gains by shifting the prediction to any class y′ that is ranked higher. Note that for
any given y, the utility function u⪯ does not prescribe which targets the opponent will necessarily
attack—but rather, only which subset of classes are possible targets. Thus, training under u⪯ provides
protection against all opponents who have more fine-grained preferences about specific mappings,
such as those that could derive from a utility-maximizing opponent having different costs associated
with different targets. One interesting aspect of preference utilities is that the number of possible
targets for a class y decreases as the importance of y increases in the ranking. In particular, the
lowest-ranked class can be mapped to any class (high uncertainty), whereas the highest-ranked class
will not be attacked at all.

From a technical perspective, and relative to all others utilities we have so far considered, the key
distinction of preference utilities is that they do not allow transitivity: if an opponent gains from
y 7→ y′, then we can be certain that instances with y′ will not be attacked to become y. This differs
from conventional attacks in which transitivity typically holds, often in relation to class similarity.
For example, in adversarial attacks, if most dogs are mapped to cats, then we can also expect most
cats to be mapped to dogs. This means that the over-conservativity of adversarial training (as well

18



Published as a conference paper at ICLR 2025

as some forms of strategic training) will manifest in unnecessarily protecting against bi-directional
attacks—which will likely be costly in accuracy.

Setup. In this experiment we focus on CIFAR-10 and use VGG and ResNet18. We report accuracies
(mean and std. dev.) averaged over 10 random instances, where in each instance we randomly draw
a global ⪯ ordering over classes. For implementing preference attacks, we found it beneficial to
optimize a variation of Eq. (9) in which the objective also penalizes non-targets:

δ̂u = argmax
δ

max
y′∈T

p̂(y′|x+ δ)−max
y′ /∈T

p̂(y′|x+ δ) (12)

In terms of training, we found that a higher value of ϵ = 0.5 was more useful for stabilizing training
(see Sec. 5.1). This contributed mostly to improved clean accuracy, while having little impact on
strategic accuracy.

Results. Table 5 presents accuracies under clean training, adversarial training, and strategic training
with an uncertainty set that includes all preference-order utilities. As can be seen, strategic training
improves significantly vs. adversarial training in terms of both strategic accuracy and clean accuracy,
where the former is more significant when using VGG (+4.1) and the latter when using ResNet18
(+2.5). Interestingly, and despite the fact that preference-based strategic training defends only against
non-transitive utilities, it provides reasonable protection against adversarial attacks (which likely
are transitive), where for both models performance drops by roughly −10 accuracy points. This
reduction is not negligible—but is considerably better than under clean training, for which accuracy is
virtually zero. One explanation for this is that while each individual preference utility is non-transitive,
strategic learning considers the set of all preference utilities simultaneously, which together can
provide protection against transitive attack patterns.

 CIFAR-10 

        test 

train 

VGG   ResNet18 

clean strat adv  clean strat adv 

clean 89.2 9.2±0.2 0.6  93.0 9.4±0.1 0.0 

strategic 75.8±0.3 51.0±0.3 29.4±0.3  83.3±0.2 61.0±0.2 37.6±0.3 

adversarial 67.7 47.1±0.2 39.3  81.7 58.5±0.2 48.0 

 
Fig 5. Accuracies of clean, strategic, and adversarial models for a sample of 

known preference-based opponents. Table 5: Accuracies under clean, strategic, and adversarial training for preference-order opponents.

C.5 WORST-CASE STRATEGIC LEARNING ON CIFAR-100

Here we extend our experimental analysis from Sec. 6.3 to include the CIFAR-100 dataset. This
dataset is similar to CIFAR-10, but includes 100 classes (instead of 10) and has fewer training
examples per class (600, rather than 6000). Classes are partitioned into 20 categories (e.g., flowers,
fish, trees), where each category includes 5 relevant classes. These categories provided us with a
natural definition of semantic groups. Note that not only does CIFAR-100 include more classes (and
therefore the size of the utility matrices is much larger), but since there are 20 categories (and therefore
20 semantic groups), in this experiment the anti-semantic uncertainty set is drastically larger than the
semantic uncertainty set. Stated differently, whereas for CIFAR-10 both usem and ua-sem roughly half
of the entries are non-zero, in CIFAR-100, usem has roughly 5% non-zero entries, whereas ua-sem is
roughly 95% positive, and is hence much closer to uadv. Consequently, the improvement of strategic
anti-semantic training over adversarial training is expected to be less significant than for CIFAR-10.

Results. Table 6 presents results for this setting. As can be seen, overall trends are similar to those
in Table 1 for CIFAR-10 and GTSRB, with the exception of VGG in the anti-semantic setting for
which strategic training does not improve over adversarial training.
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  CIFAR-100 

         test 

train 

VGG   ResNet18 

 clean strat adv  clean strat adv 

se
m

. clean 62.1 0.3 0.3  74.1 0.0 0.0 

strategic 46.3 38.4 13.9  59.3 43.5 19.5 

adversarial 33.3 32.0 16.9  55.5 40.1 21.8 

a-
se

m
. clean 62.1 0.1 0.3  74.1 0.0 0.0 

strategic 45.0 20.2 13.1  62.6 26.2 19.9 

adversarial 33.3 20.5 16.9  55.5 25.6 21.8 

Fig 1. Accuracies of clean, strategic, and adversarial 

models in semantic and anti-sem. Settings. Table 6: Results for worst-case strategic learning (semantic and anti-semantic) on CIFAR-100.

C.6 INFERRING UTILITIES

In this experiment we explore the extent to which an opponent’s utility matrix can be inferred from
their previous attack data. Since attacks are made in response to some model, we consider data from
attacks on: (1) a standard model model trained for clean accuracy, and (2) an adversarially-trained
model. For each setting, we evaluate the ability to infer attack targets and reconstruct the utility
matrix using two ‘levels’ of observed data: (1) models predictions y′ alone, and (2) attack vectors δ.

Setup. Here we focus on CIFAR-10 with ResNet18 and consider random k-hot utilities for
k = 1, 2, 3. Previous attacks are implemented as multi-targeted attacks, corresponding to k-hot
utilities. We employ two methods for inferring attacks targets, one per type of observed data:

1. Model predictions. Given access only to the initial model’s ‘dirty’ predictions, f(x+ δ) = y′,
we estimate the target of an attack is precisely the predicted class. This naı̈ve approach will be
correct if the attack succeeded, but may fail if not (and the classifier erred regardless).

2. Attack vectors. With access to the attack vectors, δ, we first simulate targeted attacks δt on the
source image x for each possible target t,and then choose the target t̂ having the most similar δt:

t̂ = argmint∈[K] ||δt − δ||2, δt = maxδ′ ℓ(f(x+ δ′), y, t) (13)

where ℓ(·, ·, ·) is the targeted attack loss.

We report two metrics:

• % Attacks with correct target prediction - The percentage of attacks where the opponent’s target
was correctly inferred (excluding cases where ŷ = y, since uyy = 0 is assumed).

• % Matrix entries recovered - The percentage of the opponent’s matrix entries correctly recovered.
Here we assume that k is known, and for each source class y select the k targets with the highest
frequency as predictions.

Results. Table 7 presents the results for both settings. In the first setting where the initial models
is clean, utilities can be inferred with high accuracy using both methods. In the second setting,
where the initial model is robust, the model’s predictions alone are insufficient for accurate inference.
However, attack vectors enable effective recovery of the opponent’s utility matrix with high accuracy.

 

 

 

 

 

 

 

 

 

  % Attacks with Correct 

Target Prediction 

model 
                          k 

    method 
1 2 3 

 

clean 
model predictions 100 100 100  

attack vectors 98.9 99.4 99.3  

adv. 
model predictions 54.2 71.4 85.8  

attack vectors 100 100 100  

 

 

 

 

 

  % attacks with correct 

target prediction 
 % matrix entries 

recovered (rule-based) 

model 
                          k 

    method 
1 2 3 

 

1 2 3  

clean 
model predictions 100 100 100  100 100 100 

attack vectors 98.9 99.4 99.3  100 100 100 

adv. 
model predictions 54.2 71.4 85.8  90.0 85.0 76.7 

attack vectors 100 100 100  100 100 100 

 

 

 

 

 

 

 

 

  

 
  

% Attacks with Correct 

Target Prediction 
  

model 

             k 

method 
1 2 3   

clean 
model predictions 100.0 100.0 100.0  

attack vectors 98.9 99.4 99.3  

adv. 
model predictions 54.2 71.4 85.8  

attack vectors 100.0 100.0 100.0  

  success rate % 

model method k=1 k=2 k=3 

clean 
model predictions 100.0 100.0 100.0 

attack vectors 98.9 99.4 99.3 

adv. 
model predictions 54.2 71.4 85.8 

attack vectors 100.0 100.0 100.0 

Table 7: Results for utility inference on CIFAR-10.
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Interestingly, larger k enables better target prediction, but worse reconstruction of matrix entries. The
reason for this is twofold. First, in terms of correctly predicted targets, as k increases, it is more likely
that the attack succeeds on one of the relevant targets, and so most predictions match these targets of
attack. Conversely, for small k, there are few viable targets, and predictions tend to be more dispersed
across classes. A second-order effect is that for low k, some targets are “hard”, and so most attacks
fail, the result of which is that predictions become more distributed across classes. However, when k
increases, it is more likely that each class has at least one “easy” target, and so attacks mostly focus
on this class—and succeed, which makes them easier to identify.

Second, in terms of matrix reconstruction, the above works in the other direction: as k increases, the
number of entries with positive utility are likely to include more “hard” targets. Since attacks will
likely succeed for the easy targets, the observed data will include only a small number of attempted
attacks on the hard targets, which in turn makes their estimation more difficult. This is precisely the
challenge of inferring utilities from revealed preferences.

C.7 UTILITIES IN [0, 1]

Although we define the universal set of utilities as Λ = [0, 1]K×K , our experiments so far have in
effect considered 0-1 utilities of the form uyy′ ∈ {0, 1}. One reason is that strategic training with
such u gives also protection against any continuous u′ with u′ ≤ u. However, it is also interesting to
consider outcomes for defending against utilities with entries in [0, 1].

Let u ∈ [0, 1]K×K , and consider an example (x, y). The following procedure implements an attack
that maximizes utility for the opponent, which we refer to as a sequential strategic attack:

1. Sort targets y′ ∈ [K] with strictly positive utility values uyy′ > 0 in decreasing order of utility.

2. Attack all such targets sequentially in this order.
• if an attack succeeds, apply this attack, and break.

If all attack attempts on strictly positive targets fail, we are free to choose how the attack concede.
Here we consider a strategy that defaults to applying the (attempted) attack on the most preferred
target, but note that other alternatives are similarly plausible.

One implication of the above is that at test-time, only the order of targets with strictly positive utility
matters—not their actual value. Furthermore, if we replace a continuous u with a 0-1 utility matrix ū
such that ūyy′ = 1 iff uyy′ > 0, then a sequential attack based on u is equivalent to a multi-targeted
attack based on u′. In this sense, for a fixed model, performance against an opponent with u in [0, 1]
and an opponent with a matching 0-1 utility ū is the same.

Nonetheless, there can be a difference in training with u vs. ū, in the sense that strategic training
can output different models in each case. Intuitively, if attacks against lower-ordered targets never
materialize, then learning might benefit (e.g., in terms of clean accuracy) by reducing the need to
defend against such targets.

Setup. We consider CIFAR-10 with ResNet18, and compare the following training methods:

• Sequential strategic training – The simulated attacker mimics the described [0, 1] attack strategy.

• Sequential strategic training with adversarial fallback – similar to the above, but in case of
failure on all strictly positive targets, applies an adversarial attack. This presents a slightly more
conservative approach using the available degree of freedom.

• Utility-weighted strategic training – a naı̈ve approach which weighs the logits in the attack
objectives according to the utility, namely:

δ = argmaxy′ p(y′ | x+ δ) · uyy′

Although this appears to be a natural generalization of Eq. (9) from 0-1 utilities to [0, 1] utilities,
this attack implementation does not maximize utility, since it considers the model’s internal
scores—not actual prediction outcomes.

• Multi-targeted training – uses the strategic attack in Eq. (9) on the matching 0-1 utility matrix ū.

• Adversarial training as a baseline.
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We evaluate these models against [0, 1] attackers using two types of 2-hot utilities: (1) Aligned - for
each class, the higher-utility target is “easy” to attack, and harder to defend against (e.g., cat → dog)
compared to the lower-utility target (e.g., cat → truck). We refer to this utility as aligned because its
ordering corresponds to attack feasibility, matching the targets a multi-targeted attacker is likely to
attack. (2) Misaligned - using the same set of targets as in (1), but with the ordering reversed.

Results. Table 8 presents results for both aligned and misaligned utilities. In the aligned case,
differences in performance between the various models against the [0, 1] attack are smaller. This
supports our conjecture, that when the attacker’s ordering is aligned with attack feasibility, both
multi-targeted and sequential training protect against the same targets. Conversely, in the misaligned
case, sequential training demonstrates a significant advantage over multi-targeted training, in terms
of both [0, 1] strategic accuracy and clean accuracy.

 aligned  misaligned 

                  test 

    train 
seq. 

multi-

targeted 
adv. clean 

 

seq. 
multi-

targeted 
adv. clean  

weighted targets 62.6 65.5 30.2 71.5  54.7 63.3 30.8 73.6 

sequential 63.1 64.0 30.4 73.7  57.4 58.4 30.5 77.4 

sequential-adv 62.1 62.4 43.2 82.4  60.6 62.2 43.3 82.5 

multi-targeted 64.8 66.0 31.9 74.0  54.7 66.0 31.9 74.0 

adversarial 60.8 61.1 47.9 81.7  59.6 61.1 47.9 81.7 

 

Table 8: Results for [0,1] utilities on CIFAR-10.
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