Under review as a conference paper at ICLR 2026

DEMO: DECOUPLED MOMENTUM OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling neural network training increasingly depends on synchronous data-
parallelism, yet full-precision gradient all-reduce imposes a severe communi-
cation bottleneck. We propose Decoupled Momentum Optimization (DeMo), a
drop-in replacement for any momentum-based optimizers that significantly re-
duces the communication bandwidth while maintaining convergence. DeMo (i)
decouples local momentum updates, (ii) applies a fast orthonormal transform
(e.g., DCT) followed by top-k sparsification, and (iii) reuses the momentum
buffer for error feedback via momentum subtraction. This design reduces per-
step communication by up to two orders of magnitude with minimal computa-
tional overhead. Experiments on 300M- and 1B-parameter DeMo language mod-
els show DeMo transmits up to 85x less data per GPU than AdamW-DDP while
achieving comparable loss and accuracy. DeMo is topology-agnostic and enables
training across multi-datacenter or Ethernet-based setups. Code is available at
https://anonymous.4open.science/r/DeMo—-D3F1l

1 INTRODUCTION

The proliferation of large-scale foundation models, with parameter counts reaching the billions
(Achiam et al., 2023} |Grattafiori et al., [2024; [Liu et al.l [2024a)), has been transformative across nu-
merous domains. Training these massive models within a tractable timeframe necessitates distribut-
ing the heavy computational workload across a large number of accelerators (Duan et al.| [2024).
This is typically managed through a hierarchy of parallelism strategies, such as Distributed Data
Parallelism (DDP), Pipeline Parallelism (PP), and Fully Sharded Data Parallelism (FSDP) (Zhao
et al., [2023).

Among these, distributed data parallelism remains the most widely used strategy but introduces a
major communication bottleneck. In standard DDP, each worker synchronizes its locally computed
gradients with all others before every optimization step—typically via an A11-Reduce operation.
The communication cost is directly proportional to the model’s size, reaching terabytes per step
for state-of-the-art models. This overhead demands expensive, high-bandwidth interconnects (e.g.,
NVLink, InfiniBand) and geographically co-located clusters |[Wei et al.[(2024), driving up costs and
limiting scalability. Alleviating this communication burden is thus critical for enabling more effi-
cient and accessible large-scale training (Cao et al.| (2023)).

In this paper, we show that the gradient information exchanged during distributed training is highly
redundant. Our key insight is that this redundancy can be managed more effectively by communicat-
ing compressed momentum updates in a transformed space rather than transmitting raw gradients.
Prior sparsification approaches directly applied to gradients incur sparse update patterns and of-
ten harm performance |[Lin et al.|(2018b)); [Stich et al.| (2018); |/Aji and Heafield| (2017); in contrast,
our blockwise transform and top-k sparsification preserve accuracy by operating in the transformed
domain. Moreover, the momentum buffer itself naturally serves as an implicit error accumulator,
eliminating the need for explicit error-feedback mechanisms that introduce substantial GPU memory
overhead (Karimireddy et al.,2019). Building on these observations, we propose DeMo (Decoupled
Momentum Optimization), a general-purpose distributed optimization framework compatible with
common momentum-based optimizers, including SGD with momentum (Sutskever et al., |2013),
Lion (Chen et al.| [2023), and Muon (Jordan et al.| [2024). DeMo fundamentally rethinks synchro-
nization: instead of exchanging dense gradients, each worker communicates a compressed version
of its local momentum, subtracts the decoded update from its buffer to track uncommunicated in-
formation, and then applies the aggregated momentum to update the parameters. This simple but


https://anonymous.4open.science/r/DeMo-D3F1

Under review as a conference paper at ICLR 2026

Algorithm 1 DeMo: Decoupled Momentum

Require: learning rate ), momentum coefficient 3, weight decay A, sparsity budget k£, DCT matrices { P; jd-;(}

1: Initialization: parameters X and global momentum Mg < 0

2: fort=1,2,... do

3:  {#oneachworker: € {0,...,N — 1}

4 G{ < VL(X—15&f) # local stochastic gradient
50 M{ <+ B8M{_;+ G} # update local momentum buffer
6:  for each chunk M, of M do

7 QM Top—k(DCT(Mti’[Z]; {P}}), k) # blockwise transform & sparsify in the ¢-th chunk
8: M, A M, o IDCT(Q; 1, {P"}) # in-place residual in momentum buffer
9:  end for

10:  send {Q,”} to server

11:  #onthe parameter server

12:  for each chunk {Q;""} do

13: My] + IDCT (Z QZ’[Z]; {PjT }) # aggregate sparse updates and reconstruct momentum chunk
14:  end for i

15: Xt (—Xt,1 —T)(Sgl’l(Mt) +)\Xt71)

16:  broadcast sgn(M,) to all workers
17: end for

powerful design drastically reduces communication while retaining the benefits of momentum-based
optimization.

This approach drastically reduces the required inter-accelerator communication bandwidth, poten-
tially by several orders of magnitude. Our primary contributions are:

* We identify the momentum term in distributed optimization as a compressible, information-
rich surrogate for raw gradients.

* We propose DeMo, a communication-efficient framework that decouples momentum up-
dates and leverages the momentum itself as a built-in error feedback mechanism.

* We demonstrate that our method significantly relaxes the hardware and co-location con-
straints for large-scale training, paving the way for more flexible, geographically dis-
tributed, and cost-effective training paradigms.

The remainder of this paper is organized as follows. We review related work in Section 2. In Section
3, we present the DeMo algorithm and its theoretical guarantees. Section 4 provides empirical results
demonstrating DeMo’s effectiveness, followed by ablation studies in Section 5. Finally, we conclude
in Section 6.

2 DEMO: DECOUPLED MOMENTUM OPTIMIZATION

Problem setting. We consider the standard stochastic optimization problem

min £(X) = Eep [C(X, €], (1)

where X € X is (possibly a series of) parameter tensors to be optimized, £(X,¢) is a sample
loss function (e.g., cross-entropy), and the expectation is taken over data samples ¢ drawn from
distribution D. The optimal value is denoted by L£* := inf xx £(X), which we assume is finite
and bounded from below. We operate in a distributed data-parallel setting with I workers, each
holding synchronized copies of parameters X. At each step ¢, worker ¢ computes a stochastic

: i 1 Nbatch i : . .
gradient G, = . Dont VL( X, €),) using a per-worker microbatch of size npagch-
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Figure 1: Chunk-wise Discrete Cosine Transform (DCT), top-k coefficient selection, and inverse
DCT reconstruction.

2.1 ALGORITHM

We start to build DeMo from the standard DDP optimization pipeline and common momentum-
based optimizers, such as SGD with momentum (Sutskever et al., 2013), Signum (Bernstein et al.|
2018)), and Muon (Jordan et al., 2024). Our proposed method introduces three key modifications
to reduce communication overhead and improve efficiency: (1) decoupled local momentum updates
to be communicated instead of gradients, (2) structured tensor compression, and (3) momentum
subtraction as error feedback.

Decoupled Local Momentum Updates. Standard DDP pipelines typically synchronize gradients
across workers immediately after every local gradient tensor being computed. In contrast, we re-
move the global all_reduce synchronization of micro-batch gradients G¢, allowing local mo-
mentum buffers M, on each worker to evolve independently:

M; =M, + (1= B)G;. 0
Aggregating gradients or momenta is theoretically equivalent due to linearity; however, directly

synchronizing dense momentum tensors is communication-intensive. Thus, we propose a structured
tensor compression pipeline to significantly reduce this overhead.

Structured Tensor Compression. Our compression pipeline comprises three sequential steps:
tensor chunking, blockwise linear projection, and top-k sparsification.

Tensor Chunking. Given a momentum tensor M € R™0**"d-1 e factorize each dimension as
n; = ¢;8; with chunk number ¢; and size s; to partition M into smaller blocks:

B(M) = {Bx | k € [co] X -+ X [ca-1]},
where each block By € R%0* " *Sd-1,

Blockwise Linear Projection. After chunking, each block By € B(M) undergoes a separable
multilinear transformation:

Qk:T(Bk;POa"WPdfl)? -P’L GRSiXSia (3)

where 7 multiplies block By by projection matrices P, along each tensor dimension. For d = 2,
this reduces to a simple bilinear form of matrix multiplication Qy = POBkPlT .

In practice, we consider two types of projection bases: random orthonormal matrices, sampled
freshly at each step (shared across all workers), and the Discrete Cosine Transform (DCT). Our
experiments in Section |3| demonstrate that projections clearly outperform no projection (P; = I).
While random projections perform marginally better, DCT is computationally more efficient due
to its fast implementation with Fast Fourier Transform and precomputed only once before training.
Thus, we default to DCT in all experiments apart from ablations.

Top-k Sparsification. Following projection, in order to reduce communication, each worker prepares
only the top-k largest-magnitude coefficients per block for communication:

Qx = Top-k(Qy, k) suchthat ||Qyllo = k. (4)
Thereby the uploading bandwidth is reduced by (][, s;)/k times and for small & this can be signif-
icant. These sparse blocks are communicated using an A11_Gather operation and averaged over

all workers to form: . .
Qy = AvgAllGather(Qx). 5
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Momentum Reconstruction and Parameter Update. After communication, each worker recon-
structs the momentum tensor from the aggregated sparse blocks via inverse projection and unchunk-
ing by concatenation:

M; = BT @ Pt PEY), ©®

where PZ._1 denotes inverse projection matrices. To enhance convergence during neural network
training, we apply a transformation ¢(-) to the reconstructed momentum A", chosen according to
the base optimizer: ¢(M) = M for SGD, ¢(M) = sign(M) (elementwise) for Signum, and
H(M) = M(M T M + eI)~'/? for Muon. The final parameter update is given by

Xip1 = X — e (d(M]) + 2 Xy). (7

Algorithm f] summarizes this entire procedure.

Momentum Subtraction as Error Feedback. Inspired by error feedback mechanisms used with
sparsification techniques, we propose updating the decoupled momentum buffer M} via momentum
subtraction: 4 '

M} + M} —aB YT " QuP;',....P;')}. (8)
Unlike traditional error-feedback schemes, which require additional memory storage, our method
naturally reuses the momentum buffer as an accumulator of uncommunicated information. This
subtraction ensures each iteration communicates novel information, accumulating previously omit-
ted updates over subsequent steps and promoting convergence.

Complexity Analysis. Without chunking, projecting a momentum matrix of size N x N requires
O(N?) computation and O(N?) storage. By partitioning the matrix into C2 blocks of size (N/C) x
(N/C), computational complexity reduces linearly to O(N?3/C), and memory usage quadratically
to O(N?/C?). Since all momentum tensors share the same set of projection matrices {P;}%=7,
the additional memory overhead remains constant and negligible compared to the overall memory

requirements.

2.2 THEORETICAL ANALYSIS

To analyze the convergence properties of the DeMo algorithm, we adopt standard assumptions com-
monly used in stochastic optimization Bernstein and Newhouse|(2024)); Défossez et al.| (2022); [Liu
et al.| (2024b).

Assumption 1 (Variance). Let samples & ~ D be i.id., and define the expected gradient as
VL(X) :=E[VL(X,E&)]. The stochastic gradient estimator at each worker is given by

) 1 Mbatch
G'(X) = VL(X, &),
)= 3 VEX6)
and satisfies the bounded variance condition:
; 2 o?
E [HGZ(X) - VE(X)HF} < , Vie[N], X €X,
Nbatch

where o > 0 is a finite constant and Nyatcn is the mini-batch size.

Assumption 2 (L-Smoothness). The objective function L(X) is differentiable and L-smooth; that
is, forall X, Y € X,
IVL(Y) = VL(X)[[p < LY = X[|g-

Equivalently, for all XY € X,
L
L(Y) < L(X) +(VLX),Y = X) + Y - X7

Assumption 3 (Bounded Gradient). For any X € X and & ~ D, the stochastic gradient satisfies
IVL(X; )l < R,

for some constant R > 0.
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We now present the convergence guarantee for the proposed Decoupled Momentum Optimization
(DeMo) algorithm under the above assumptions.

Theorem 1 (Convergence of DeMo). Under Assumpnonsl I andl 3| the sequence { X}, from
Algorithm l satisfies:

E[L(Xo) — L(X
T;E[IIVE(XQIMS EE)ZEEL a1+

g
V Nnbatch

\/ M
+RVD———— ( 842D/ 2T <1+,/k>>,
1-py/1
with the choice of step size n = © (ﬁ) and momentum 5 = O (\%T), the convergence rate is:
1 1
0(Hk)+0(%k)-
3 EXPERIMENTAL RESULTS

We evaluate our proposed Decoupled Momentum Optimization (DeMo) algorithm in the context
of large-scale language model pretraining, where communication efficiency is of uttermost concern.
All experiments are conducted using the OLMo (Groeneveld et al.,2024)) framework, a reproducible
and scalable platform for training open-weight language models. The complete implementation of
DeMo, along with all configuration files necessary to reproduce our results, is available at: https:
//anonymous.4open.science/r/DeMo—-D3F1.

3.1 EXPERIMENTAL SETUP

Models and Baselines. We evaluate DeMo on Transformer-based decoder-only language mod-
els at two scales. OLMo-300M contains 320 million non-embedding parameters, and OLMo-1B
contains 1.18 billion non-embedding parameters Full model specifications are provided in the Ap-
pendix.

We compare DeMo against the standard AdamW optimizer using default hyperparameters recom-
mended by OLMo: 51 = 0.9, B2 = 0.95, and weight decay A = 0.1. The learning rate schedules
use linear warmup followed by cosine decay, scaled proportionally to the total training steps. For all
DeMo experiments presented in the main body of the paper, we default to use chunk size of s = 64
and therefore making 64 x 64 chunks for matrix tensors in the transformers and 64 sized chunks for
vector tensors like layernorms. We found setting a larger coefficient of 5 = 0.999 significantly helps
with convergence comparing to standard value of 0.9 when the momentum subtraction is turned on
and we therefore default to this value over all experiments. We left the momentum coefficient to be
a tunable parameter from the set of {0.2,0.5,1.0}.

Datasets. All models are pretrained on the Dolma v1.5 corpus. To study optimizer behavior near
convergence, we train both OLMo-300M and OLMo-1B on 100 billion tokens—significantly be-
yond the Chinchilla token budget of 20 tokens per parameter, which we found insufficient for draw-
ing reliable convergence comparisons. Due to computational constraints, all ablation studies are
conducted using the 300M model trained under the 20 tokens-per-parameter rule.

Implementation. DeMo integration required minimal changes to the codebase. We implemented
a DeMo optimizer class and disabled default gradient synchronization in PyTorch Distributed Data
Parallelism (L1 et al., 2020). All experiments are conducted on 64 NVIDIA H100 GPUs with a
global batch size of 2048 and a sequence length of 2048 tokens. We use four gradient accumulation
steps, yielding an effective per-GPU batch size of 8.

3.2 PRETRAINING PERFORMANCE

Convergence Behavior. Figure[3.1shows training loss curves comparing DeMo with various spar-
sification levels & to the AdamW optimizer on both the OLMo-300M and OLMo-1B models. As the
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Figure 2: Training loss comparison between 1B and 300M parameter models across different top-k
sparsity levels. The left panel shows the 300M model performance while the right panel shows the
1B model performance. Both models are trained with varying sparsification top k (k=1, 2, 4, 8,
16, 32) compared against the AdamW baseline. The results demonstrate the effectiveness of top-k
sparsification across different model sizes.

figure illustrates, a sparsification of just k& = 2 is sufficient to achieve better training performance
than AdamW. Increasing k further provides marginal gains at a greater communication cost.

Compute Efficiency. DeMo provides a substantial reduction in communication. For instance,
with the tensor chunk size of 64 x 64, selecting the top-k values reduces upload bandwidth at
each step by a factor of roughly 4096/k. Figure plots final model perplexity against the overall
communication cost in MB per step.

3.3 DOWNSTREAM EVALUATION

We assessed the pretrained checkpoints on three widely used zero-shot benchmarks: HellaSwag,
ARC-Easy, and PIQA, and report normalized accuracy (or accuracy for ARC-Easy). Table[I]shows
that DeMo matches or exceeds the AdamW-DDP baseline across all tasks while reducing per-GPU
communication by two to three orders of magnitude.

For the 300M-parameter model, using £ = 8 already cuts data transfer by 85 times (7.5 MB vs.
637 MB) with no loss in accuracy; smaller k£ values offer additional savings with a minor accuracy
trade-off. At the 1B scale, the trend persists: DeMo with & = 16 attains higher HellaSwag and PIQA
scores than AdamW while transmitting only 55 MB per step—an efficiency gain of 44 times. These
results confirm that our proposed decoupled momentum strategy preserves model quality even under
aggressive communication budgets and scales favorably with model size.

3.4 ABLATION STUDIES

To better understand the impact of specific design choices in DeMo, we conducted comprehensive
ablation studies:

Impact of Momentum Subtraction. An essential feature of DeMo is momentum subtraction.
In this experiment, we systematically varied o from O (no subtraction) to 1 (full subtraction of
communicated values). The results are shown in Figure [3.1] Clearly, no subtraction (o = 0) is
detrimental because, with a fixed basis, the top-k elements evolve slowly and the same elements
are repeatedly selected and communicated across steps, resulting in similar consecutive updates
and degraded performance. Given that the momentum buffer also serves as an error accumulator,
subtracting previously communicated values is necessary. However, compared to full subtraction,
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OLMo-300M OLMo-1B
Optimizer/ k | HellaT ARCT PIQAT Tx | Hellaf ARCT PIQAT Tx |
acc_n acc acc_n MB/step | accn acc acc_n MB/step
DeMo k=32 0.37 0.46 0.67 29.9 0.48 0.55 0.70 110.32
DeMo k=16 0.38 0.50 0.67 14.9 0.47 0.53 0.70 55.16
DeMo k=8 0.38 0.47 0.67 7.49 0.47 0.52 0.69 27.58
DeMo k=4 0.37 0.47 0.67 3.74 0.45 0.52 0.70 13.79
DeMo k=2 0.36 0.46 0.65 1.87 0.44 0.51 0.69 6.89
DeMo k=1 0.35 0.45 0.65 0.93 0.41 0.52 0.69 3.44
AdamW-DDP | 0.35 0.46 0.65 6369 | 043 0.51 0.68 2416.6

Table 1: Zero-shot downstream accuracy and per-GPU communication volume (MB per training
step) after 100B-token pretraining. Higher is better for accuracy metrics; lower is better for commu-

nication.
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Figure 4: Training loss curves of
OLMo-300M with DeMo under differ-
ent momentum subtraction magnitudes
a € {0.0,0.1,0.2,0.5,1.0}.

we found that using a smaller value (o = 0.2) to gradually evolve the top-k elements and partially
decay communicated values over time further improves performance.
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Figure 5: Training loss with different linear transformations. The left plot compares the DCT against
the identity mapping, while the right plot compares the DCT with a random orthonormal projection
matrices. Each curve corresponds to a different sparsity level k € {8, 16, 32}.

Choice of Linear Projections. We explored three natural choices for the linear transformations
T. The baseline is the identity mapping P; = I, i.e., no transformation. We compared this with the
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Discrete Cosine Transform (DCT)-based transformation, where P; corresponds to the DCT basis of
dimension 64, and a random projection matrix, where each element of P; is sampled from A/ (0, I)
and orthonormalized using the Gram-Schmidt process. We set the random seed equal to the step
number on each worker, ensuring a unique random projection for every step but consistency across
workers. Since all P; are orthonormal, we have PZ-_1 = PiT. We considered three sparsification
levels: k = 8,16, 32. The results are plotted in Figure[5]

As illustrated in the figure, the DCT-based transformation clearly improves performance over the
identity mapping. This supports the hypothesis from related studies that naively updating param-
eters using sparse patterns can degrade performance, while applying a transformation enables pa-
rameter updates as linear combinations of many non-sparse vectors. Thereby the parameters are
updated more uniformly, especially important when sparsity & is low. Although random projection
is arguably the most intuitive choice, as it continuously rotates and changes the momentum subspace
perspective, we found that a fixed DCT basis yields comparable performance while eliminating the
need to recompute the basis at each step.

4 RELATED WORKS

Training large foundation models presents substantial communication bottlenecks, as synchronizing
gradients across numerous accelerators can dominate training time (Shoeybi et al. [2019; Huang
et al., 2019;|Narayanan et al.,[2021)). To alleviate this, various gradient compression techniques have
been developed (Aji and Heafield, 2017; Wen et al.,2017). Prominent among these are sparsifi-
cation methods, which transmits only the gradients with the largest magnitudes (Lin et al., [2018bj
Stich et al., 2018} |Alistarh et al., 2018)). Another widely used approach is gradient quantization,
which reduces the numerical precision of gradients (Alistarh et al.l 2017;|Sun et al.,[2019). To com-
pensate for information loss introduced by biased compressors, error feedback mechanisms, such
as EF-SGD, locally accumulate the compression error and add it to the gradient in the subsequent
iteration (Seide et al., 2014; |[Karimireddy et al.,|2019). Our work also leverages top-k sparsification
of momentum communication and leverages the error accumulation on momentum itself, thereby
reducing one copy of memory for the accumulator.

Another line of research aims to reduce communication frequency through decoupled optimiza-
tion strategies. Methods like Federated Averaging (FedAvg) (McMahan et al.| 2017) and Local
SGD (Stich, 2018} [Lin et al., |2018a)) allow workers to perform multiple local updates before syn-
chronizing model parameters, thereby reducing the number of communication rounds. However,
these approaches can face challenges such as client drift, especially with non-iid data, which may
impact convergence speed and final model quality (Karimireddy et al., |2020; [Zhao et al., [2018]).
More recently, DiLoCo has emerged as an empirically successful technique for training large lan-
guage models with significantly reduced communication (Douillard et al.,[2023). While effective,
the complex interplay of infrequent synchronization and local optimizer dynamics in such systems
can sometimes lead to less predictable optimization trajectories; our work instead focuses on main-
taining more frequent, albeit significantly compressed, synchronization of a critical optimizer state.

A third strategy seeks to reduce memory and communication via low-rank updates, moving beyond
unstructured compression. This was popularized by Low-Rank Adaptation (LoRA) for parameter-
efficient fine-tuning, which freezes pre-trained weights and learns a low-rank decomposition of the
weight update matrix (Hu et al., 2022). More recently, this principle has been applied directly to the
optimization process to enable training from scratch. For instance, Galore and its variants project
the full gradient onto a low-rank subspace before it is passed to the optimizer, thereby significantly
reducing gradient memory overhead (Zhao et al., 2024; |Hao et al., 2024). In distributed settings,
related techniques communicate low-rank factors of the gradient or model update instead of the full
matrix, directly reducing communication volume (Park and Klabjanl 2024). The top-k sparsification
of DeMo operates in a fixed transformed space, thereby also making the communicated update
matrix of each worker to be rank-k.

5 DISCUSSIONS AND LIMITATIONS

Our experimental findings confirm that DeMo consistently achieves competitive or improved con-
vergence behavior compared to AdamW. Additionally, DeMo demonstrates reduced communication
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overhead and favorable downstream generalization. Our ablation studies further highlight the criti-
cal role of momentum sparsification with DCT, momentum subtraction and chunk-based projection
techniques in balancing optimization performance and computational efficiency.

In our analysis, we primarily focused on the upload bandwidth per step. However, it is important
to note that the download bandwidth scales with the number of workers. This limitation is not
unique to our method but is intrinsic to all top-k sparsification-based approaches, including those
proposed in . DeMo is designed primarily for optimization across a small number of geographically
distributed compute centers, enabling communication between optimization steps over the Internet
rather than relying on specialized high-speed interconnects such as InfiniBand. This relaxes the need
for dedicated long-distance networking infrastructure. Within each data center, standard DDP can
still be employed; each center can be treated as a “large worker”, and DeMo can then be used to
efficiently coordinate communication between these centers.

6 CONCLUSION

In conclusion, we have shown that our proposed DeMo optimization algorithm can act as a drop-in
replacement to AdamW when training LL.Ms, with no noticeable slowdown in convergence while
reducing communication requirements by several orders of magnitude. The signum variant of DeMo
is more memory efficient than AdamW and has negligible compute overhead if we use small pre-
computed DCT transition matrices. Finally, the LLMs pre-trained with DeMo have equivalent or
better scores on multiple standard benchmarks compared to their equivalents trained with AdamW.
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7 USE OF LARGE LANGUAGE MODELS

Regarding paper writing, we used LLM only for text polishing and grammar correction during
manuscript preparation. No LLMs were involved in the conception or design of the method, ex-
periments, or analysis. All technical content, results, and conclusions have been independently
verified and validated by the authors.

8 CONVERGENCE ANALYSIS

In this section, we establish the convergence guarantees of the DeMo algorithm under standard
assumptions: unbiased stochastic gradients with bounded variance (Assumption [), L-smoothness
of the objective (Assumption [5), and bounded gradient norms (Assumption [6). The main result is
Theorem , which proves an O(1/ \/T) convergence rate in terms of the average gradient norm. We
further quantify the bias and approximation error introduced by sparse top-k averaging (Lemmas 2]
and [8.1)), which are crucial in analyzing the impact of sparsified communication.

Starting from SGD with Momentum, we make two key modifications: first, we remove the all-reduce
operation on gradients gy, decoupling momentum m across the accelerators. Second, after updating
the momentum, we extract and remove its fast components g, which can be efficiently synchronized
with minimal communication. Algorithm 4] presents the complete method:

Algorithm 2 Decoupled Momentum Optimization

Input: learning rate 7), decay 8 € (0, 1), parameters x;, momentum m;, hyperparameters s, k
gt + LocalStochasticGradient(x;) {Get Local Gradient g Without All-Reduce}

my¢ < Pmy + g {Accumulate Gradient in Momentum m }

g <+ ExtractFastComponents(my, s, k) {Extract Fast Components ¢ From m}

myt1 < my — ¢ {Remove ¢ From m}

Q@+ + Synchronize(q;) {Synchronize g Across All Accelerators}

Tt41 < @ — nQy {Parameter Update Step}

8.1 PRELIMINARIES
8.1.1 NOTATIONS

We summarize the key notation used throughout the convergence analysis in Table

8.1.2 MULTILINEAR TRANSFORMS AND CHUNK-WISE TENSOR BLOCKING

We begin by introducing the tensorial operations central to our algorithmic design. Specifically, we
define a multilinear product 7 acting on tensors via separable linear transforms, and describe the
blocking operator B used to partition tensors into contiguous chunks. These constructions allow
us to formalize the application of the Discrete Cosine Transform (DCT) and its inverse in a chunk-
wise manner, which underpins the sparsification mechanism employed in the DeMo algorithm. We
also introduce the key intermediate tensors used in the algorithm’s updates, along with relevant
dimensional and notational conventions.

Let X € Rsoxs1X"X3d-1 he g tensor of order d, and let matrices P; € R**%: be given for each
i€ [do={0,1,...,d —1}. We define the multilinear product 7 as follows:

T(X;Po,Pl,...,Pdfl) S RSOXSleXSd*l,

whose entries are explicitly given by

S0 S1 Sd—1 d—1
T(X5 Pos ooy P )iginia s = D, D0 D (H(Pk)ikjk> Xjojr.jar-

Jo=lji=1  ja_1=1 \k=0

In the special case d = 2, this definition reduces to the familiar matrix multiplication form:
T(X; Py, Pr) = Py X P/
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Table 2: Summary of notation used in the convergence analysis.

Notation Definition

X, X Tensor in R™0 % XMd-1
d Tensor order (number of dimensions)
n; Size of tensor along dimension ¢
Si Chunk size along dimension ¢
Ci Number of chunks along dimension ¢, n; = ¢;s;
P; Transformation matrix (e.g., DCT) for dimension 4, P; € R%:**:
T Multilinear tensor product operator
B Blocking operator (tensor partition into chunks)
k Chunk index: k = (ko, ey k}dfl), with k; € [Ci]o
Bk(X) Chunk indexed by k: Bk()() = X[koSo : (k‘o + ].)807 ey kd_1sd_1 : (kd—l + 1)5(1_1}
M§ Local momentum at worker ¢, iteration ¢
M, Global momentum
Gi Stochastic gradient at worker ¢, iteration ¢
Pi Intermediate tensor: Pi = gM!_; + Gi
Pi Chunk-wise DCT of intermediate tensor P
% Perform chunk-wise top-k selection on Pi, followed by chunk-wise inverse DCT
P, Aggregated intermediate tensor: Py = fe; + + >N (Q;+(1—pB)Mi,,)
D, Aggregated tensor after sparse top-k aggregation, iteration ¢
X Model Parameter at iteration ¢
B Momentum decay parameter (0 < 5 < 1)
n Learning rate
A Weight decay parameter
k Sparsity parameter (number of elements retained per chunk)
D Total number of tensor elements: D = H?;OI n;
M Number of elements per chunk: M = Hf;ol Si
L(X) Objective function
L* Optimal objective value
£, & Random samples from data distribution D or D;
o2 Variance bound of stochastic gradients
N Number of distributed workers
D; Dataset at worker ¢

It is evident that the Discrete Cosine Transform (DCT) represents a specific instance of the multi-
linear product, alongside its counterpoint, the Inverse Discrete Cosine Transform (IDCT). Both are
defined as unitary matrices, leading to the equality P,’ = Pi_1 for each i € [d]o.

Consider now a tensor X' € R™oxn1xXni-1_Quppose each dimension n; is divisible by s;, so we
can write n; = ¢;s; for all ¢ € [d]o. We define the blocking operator B acting on X as:

B(X) = {B(X) b e [colox[e1]oxx[ca_1]o>
where each block By (X) € R#o*s1xx$d-1 jg explicitly defined elementwise by:
(Bk(X)>.i = Xk080+j0, kisi+j1, -, ka—18a—1+ja—1
with indices:
* k = (ko, k1, ..., kq_1) specifying the position of the block, where k; € [¢;]o.
* j=(j0,71,-- - Ja—1) indexing within each block, with j; € [s;]o.

Example (Matrix Blocking). Consider a matrix X € R128%512 We partition X into contiguous

submatrices (blocks) of size 16 x 32. Thus, each dimension is factorized as:

ng =128 =8 x 16, mn; =512 =16 x 32.

We define the blocking operator B applied to X as:
B(X) = {Buo.k: (X) }koe[so, ki[16]o-
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where each block By, x, (X) € R16*32 is explicitly given by:

(Brok1 (X)) jo,j1 = Xho 1640, k132451 »

with indices ko € {0,1,...,7}, k1 € {0,1,...,15} denoting the block position, and local indices
within each block given by jo € {0,1,...,15}, 51 € {0,1,...,31}.

For instance, the upper-leftmost block By o(X’) has entries:

Xoo Aoa ... Apai

Xio Xino ... Xz
Bo,o(X) =

Xiso Xisa ... Xisgsi

Let X be a d-dimensional tensor, partitioned into chunks of shape (sg X - -+ X s4—1). We denote an
individual chunk of X by By (X), where k is a multi-index ranging over the set of all chunk indices
K.

We define an intermediate tensor P as
P :=pM;_, + Gj.

Next, we apply a chunk-wise Discrete Cosine Transform (DCT), denoted by 7T, to each chunk of
P, yielding the transformed tensor P. This operation is defined as

Bi(P}) :=T (Bk(P})) forallk € K.

Finally, for notational convenience, we define the total number of elements in the original and chunk

shapes as
d—1 d—1
D=]]n, M=]]s:
i=0 i=0

By default, we let ||-|| denote the £, norm unless otherwise specified. We denote ®; as the aggregated
tensor obtained via a scatter all-reduce operation over the encoded tensors Q} from each worker as
detailed in

8.1.3 PROBLEM SETTINGS

In general, we consider minimizing the following objective function:

min £(X) := Eevp [£(X, €)], ©9)
where X = RnroXmxxnd-1 and £(X, ) is a general loss function, and the expectation is taken
over the data distribution D from which samples £ are drawn. We denote by £* := infxex £(X)
the optimal value of the objective function and assume throughout this paper that £* is finite and
bounded from below. Given a realization £(X, &), the stochastic gradient VL(X, ) is defined as
the gradient of £(X, &) with respect to the parameter vector X.

In the distributed training setting, we aim to solve the optimization problem:

1 N
min £(X) = ;Egmi £(X, &), (10)
where N denotes the number of workers, and {D;}Y ;| represent the datasets available at each
worker Here, X represents the model parameters (e.g., neural network weights). Under this
distributed scenario, each worker ¢ € [N] maintains its own dataset D;, and there is a central-
ized server accessible to all workers for communication. At training step ¢, the stochastic gradient
G! = VL(Xy,£&}) at worker i is computed using a data batch &} sampled from the dataset D;.

!"Throughout this work, we assume datasets {D; }7*; consist of i.i.d. samples, and each sample &; ~ D; is
drawn independently. However, our proposed method can directly extend to non-i.i.d. settings.
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Definition 1 (Variance). The variance of a X-valued random variable X is defined as

Var(X) := E |||X — E[X]||7| .

With the definition of variance, we have the following assumption used for the analysis of stochastic
settings.

Assumption 4. The stochastic samples £ ~ D are independent and identically distributed (i.i.d.).
Additionally, the stochastic gradient V L(X, £) satisfies:

0.2

E[VL(X,&)] =VL(X), and Var(VL(X,¢)) < ,
Nbatch

where o2 is a finite constant and nyac, denotes the batch size.

Assumption [4] ensures that the variance of the stochastic gradient is uniformly bounded. For our
discrete-time analysis, we also utilize the L-smoothness condition stated in Assumption

Assumption 5 (L-smoothness). The objective function L(X) is differentiable, lower-bounded (i.e.,
L* = infxex L(X) > —00), and L-smooth.

We say that a differentiable function £ : X — R is L-smooth if for all X| Y € X
IVL(Y) = VLX) g < LY = X[
If £ is L-smooth, then for all X, Y € X, we have

L(Y) < LX)+ (VL(X),Y - X) + é 1Y — X|12.

Assumption 6 (Bounded Gradient). Forany X € X, and & ~ D, the stochastic gradient satisfies
E[IVF(X; &[] < R with R > 0.

Assumptions ] [5]and [6|are standard in the analysis of stochastic optimization algorithms Bernstein
and Newhouse| (2024)); Défossez et al.| (2022); Liu et al.| (2024b)).

We employ a sparse aggregation protocol as a form of all-reduce. The procedure for calculating the
final aggregated vector is as follows:

Algorithm 3 Sparse Top-k Averaging
Input: A set of tensors {X W} | where XU) € RY; sparsity parameter k € {1,...,d}.
Output: An aggregated tensor X € RY,
Initialize sum S € R and counts n € Z< to zeros.
forj=1,...,Ndo 4

7, + TopKlIndices( | X )|, k)

Sz, + Sz, + XY

ng; < nz; +1
end for
X < S @n, where @ denotes element-wise division with 0/0 = 0.
return X

A A A S ol e

—

With the problem settings and mitigating strategies discussed above, we now proceed to the analysis
of convergence and communication complexity of our proposed Decoupled Momentum Optimiza-
tion (DeMO) algorithm.

8.2 CONVERGENCE ANALYSIS
In this section, we provide the convergence analysis for the proposed Decoupled Momentum Op-

timization (DeMO) algorithm. We make use of the standard smoothness, variance and bounded
gradient assumptions, as stated in Assumptions and [6] in the analysis.
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Algorithm 4 Decoupled Momentum Optimization

1: Given: learning rate ), momentum decay rate 3, weight decay A, chunk sizes (so, ..., Sa—1), sparsity k,
DCT matrices { P; }9=}

2: Initialize: ¢ < 0, parameters X, global momentum My

3: repeat

4 t—t+1

5:  Worker Side (in parallel for each worker 7):

6 Maintain local momentum residual Mj_

7 Compute gradient Gl Vﬁ(Xt L& 1)

8 Update local momentum: M} «+ SM:_, + G

9:  for each sub-chunk By (M) of M do

10: Compute DCT: Qf(’t — T(Bx(M;}), Po,...,Pi1)

11: Threshold thr < k-th largest magnitude in |Qj ,|

12: Sparsify: MASK < |Qj ;| > thr

13: Qi + Qi ®Mask

14: Update residual: By (M?) + By (M}) — T(Qf(’t, Py,...,P )
15:  end for )

16:  Send sparse encode(Qj, ;) to server

17:  Server Side:
18:  for each sub-chunk By (M) of global momentum M; do

19: Aggregate: By (M) < Aggregate{encode(Qj ;) }:
20: Inverse DCT: By (M) < T (Bx(M¢), Py , ..., P/l 1)
21: end for

22:  Update parameters: X¢ < X:—1 — n(sgn(M¢) + AX¢—1)
23:  Broadcast sgn(M;) to workers

24:  Worker Side:

25: Receive and update local parameters with sgn (M)

26: until stopping criterion met

27: return optimized parameters X

Theorem 2 (Convergence of DeMo). Under Assumptions@ and 5| let {X}1_, be the sequence
generated by Algorithm{] Then, the following convergence bound holds:

T

1 E[L(Xo) — £(X

=Y E[IVLX)IL] < [£( O)Tn ( T)]+2LDn+
t=1

N

+R\F1\/ﬁ\/: <B+2D\/7<1+\/f>>.

Remark 1 (Special Cases and Convergence Rates). (i) In the special case where k = M, the last
term vanishes, simplifying the bound to

g
Vv Nnbatch

ﬂ \

T
Z |V£ Xt ” ] ]E[‘COCO)T:7 ‘C(XT)} +2LD7]+

Choosing the step size n = © (ﬁ) we achieve the convergence rate:

1;21[«: [IVLXD)]1] = <\/1?) +O<\/1N)'

16
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(ii) Alternatively, if we choose 8 = \/1/T, the bound becomes

T
1 E[£(Xo) — L(X1)] o

— E[|VL(X < 2LD —_—
T ;:1 (VLX) < w0 + 2D+ e

gV )

With the additional choice of step size n = © (%), the convergence rate is again:

j{éE IVLX)[:] =0 <\/1T) o <\/1N) '

Proof. Let us first decompose the difference in the loss function £ using the L-smoothness property:

L
L(Xpy1) — L(Xy) < VLX), Xpp1 — X)) + EHXtJrl —X,||% (L-smoothness of L)

. L
= —n(VL(Xy),sign(My41)) + §\|Xt+1 - X4ll%

[
|
=
<
B
o

L
), sign(VLX)) + 5 [Xeps — Xl (b
X,),sign(VL(X,)) - sign(My1)

(
< VLX) |1 +2Ln*d
(X¢),sign(VL(Xy)) — sign(Miq1)),

where we used the inequality
1Xi41 = X[ T = 7 sign(My 1) |7 < nd.

Using Lemma|[8.3| with a = 1, we bound the last term as
E [<V£(Xt), &gn(Vﬁ(Xt)) — sign(l\/[t+1)>] < 2]E||V£(Xt) — Mt+1 ||1 (12)

To bound the term E||VL(X;) — M;41]|1, we apply the triangle inequality:

N N
[VL(X,) — My |1 = [|[VL(X,) — Z (BM! + VL(X,£D) Z (BME + VL(Xy,£0)) — Myyy

T T>
< | Ty + T2

We separately bound the terms 73 and 75.
Bounding 7’ : Notice that

N 1 N A
— VL(X,) - Z LXp )~ D AM;.
=1 =1

To bound the first term (*), we recall:

() = VLX)~ 1 3 VEX, &),

i+
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By Assumption the stochastic gradients V£ (X, &) have bounded variance, i.e.,

0.2

E[IIVL(Xe, &) = VLX)|3] <

Nbatch

Thus, applying Jensen’s inequality (from ¢35 to ¢; norms) and independence across %, we have:

Elll(+)[l1] < VDE[|(#)ll2] < VD\/E[l|(+)]|3] = VD %nf:ch - #

For the second term (*x), we have

R
= ¥ 2 M.
i=1
Since the tensors {M:}¥ | are identically distributed, it follows that

N
E[ll(+)[a] < %ZBE[IIMHI ] = BE[IM]1].

Applying Lemma[I] we can further bound this expectation as:
BRVD(1 — k/M)

—By/1—k/M

E[|(++)|11] < VD E[|Mj]l] <

Bounding 75: Using Lemma 2] we have

(since DCT is orthonormal)

E[|T:|l] < VDE[|T2]2] = VDE [‘I%H - *ZP I2

N
| Bic(®11) — Z Pl

<\FZE

keK
/1_ L
§2D3/2R\/2ﬁ7r <1+\/M> (by Lemma[2)
—By/1—

Combining these results, we conclude

BIVEC) Mo ] < -2 4 pvD LA _% <5+2Dﬁ <1 s M)) |

Hence, from equation[TT] we obtain

1 & E[£(Xo) — £(X7)] o
T ;E[”Vﬁ(xt)”l] < Tn +2LDn+ N

V1—k/M 2 M

O

To analyze the convergence of Algorithm [d] we first need a bound on the expected norm of the
momentum tensors Mj. The following lemma provides this bound under Assumptlon@

18



Under review as a conference paper at ICLR 2026

Lemma 1 (Bound on momentum M}). Suppose Assumption|6| holds, and let { M}, be the mo-
mentum tensor generated by Algorithm{d| Then, for all t > 0, we have the following bound on its

expected norm:
B 5] < VL= R
N = 8 /T kM
provided that /1 — k/M < 1.
Proof. Recall from Lemma that the momentum M follows the recursion:
i k i i
th2 = a7 t—1 tli2-
IMifl2 < (/1 - 1I8Mi_, + G
Taking expectations and applying the triangle inequality, we have:
th2] = a7 t—1112 tli2]) -
E[[M;]l2] < 4/1 = 57 (BE[IMi_1[l2] + E[l|G¢[l2])
Iterating this bound recursively, we obtain:
i k i
E[IMill2] < /1 = 37 (BE[IMi_]l2] + R)
k ; k k
(1- M)/D’Q]E[HMt_sz} +Ry/1— i <1 +B8y/1— M)

<..

R P\
<R 1—M;<ﬁ 1—M> .

The geometric series can be bounded as follows:

! K\ RJI=RM
> (W) =

IN

Jj=1

assuming /1 — k/M < 1 for convergence.

Thus, we have the final bound:

. R\/1—k/M
EHlMt”Q] S Wv

completing the proof. O

The analysis of sparse top-k averaging begins with Lemma |2} which provides a bound on the ex-
pected bias discrepancy E[d;], highlighting the trade-offs between sample size, dimension, and spar-
sity. This is complemented by Lemma which establishes a universal bound for the ¢;-norm
approximation error, illustrating vector approximation through top-k component selection.

Furthermore, Lemma [8.3| offers insights into the geometric relationships between vectors and their
sign functions, connecting inner product space and L;-norm differences. This is supported by Lem-
mas|[8.2] which explore sign-based approximation properties and variance.

Lemma 2 (Bias Bound for Sparse Top-k Averaging). Let integers N, M,k satisfy 1 < k < M,
and let random vectors {X ( )}y:l C RM be independent and identically distributed, explicitly
satisfying:

(i) Coordinate independence: For each j € {1,..., N}, the coordinates { X7}, are inde-
pendent and identically distributed random variables:

XD X, and EIX,) = .

19



Under review as a conference paper at ICLR 2026

(ii) Boundedness: There exists a finite constant B > 0 such that, almost surely,

\XD| < B, forallic{l,...,M}, je{l,...,N}.

Consider the estimator X € RM defined by Algorithm 3| (Sparse Top-k Averaging). Define the
standard empirical mean as
full) Z X(]

and the bias discrepancy introduced by sparsity as, for each coordinate i € {1,..., M},

5o = %o = X

Then, under these assumptions, there exists a universal constant C > 0, independent of N, M, k,
and B, such that for every coordinate i € {1,..., M},

E[5;] < CB\/E (1 + ﬁ) .

Proof. Recall that

N
— X _ g j 1 i
& =X - X} ZX — NZXi_”’ =T + To.
JEJ7 j=1
Bounding the first term 77.

The variable n; follows a Binomial(V, p;) distribution with p; = k/M. Conditional on n;, Hoeffd-
ing’s inequality gives

2n,;m?
P(T1277|”i)§2€xp( %;7 >7 ni > 0.

We split the analysis into two cases based on n;:

Case 1: Typical case (n; > Np;/2). Using Hoeffding’s inequality, we bound

1 M
S ) <" _
E[Ty | n; > Np;/2] < C B”Npi C B\/—Nk7

for some absolute constant C”' > 0.

Case 2: Rare case (n; < Np;/2). Chernoff bounds for binomial distributions imply
P(n; < Np;/2) < exp(—cNp;),
for some absolute constant ¢ > 0. Thus, we trivially bound 77 < 2B to obtain
E[Ty | ni < Np;/2] < 2Bexp(—cNp;),
which becomes negligible for large N relative to the polynomial terms.

Combining both cases, we have for large NV,
M 1
ET}] < C"By/ — — .
) <C \/Nk+0< ﬁN>

Since X f are bounded in [— B, B], Hoeffding’s inequality gives, for any n > 0,

Bounding the second term 75.

2Nn?
P(T2Z77)§2€Xp<— BZ >
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Integrating over all ) yields
oo 2Nt2 1
E[TQ} § / 2€Xp <B2> dt = O/ —F,
0
for some absolute constant C’ > 0.
Combining both terms 77 and 75.

Summing the bounds for T} and 75, we obtain for sufficiently large N:

1 M 1
E[§;] < C'B—— + C"By/ — + () .
D= CBUS OB o\ U

Factoring B/ VN explicitly, we conclude

E[6;] < CB\/E <1 + ﬁ) :

for an absolute constant C' large enough (e.g., C = 2max(C’, C")). This completes the proof. [

Remark 2 (Dependence on Parameters). The bound in Lemma |2| clearly illustrates the scaling of
the bias with respect to the number of samples N, dimension M, sparsity level k, and coordinate
magnitude bound B:

* Sample size (N): The bias decreases at a rate of 1 [/ N, consistent with standard statistical
estimation theory.

* Dimension and sparsity (M, k): The bias scales as /M /k, highlighting the bias intro-
duced by aggressive sparsification (small k).

* No sparsification (k = M): In this case, the bias vanishes, as expected.

Here we present and prove a bound concerning the approximation error incurred by approximating
a vector by its top-k largest magnitude components.

Lemma 8.1 (Optimal Universal ¢;-norm Bound). Ler X = (X1, Xo,..., X)) € RM be an arbi-
trary real vector. For a fixed integer k with 1 < k < M, define the vector X* € RM by selecting
the k largest magnitude elements of X and setting all other entries to zero. Then, the approximation
error satisfies the bound

k
e =l < (1= ) 10

Furthermore, this bound is sharp. Equality holds if and only if the magnitudes of all elements of X
are equal.

Proof of Lemma[8.1] Notation and Problem Setup. Consider the vector X € RM . Let us sort the
elements of X in non-increasing order of absolute value:
X1y > [ Xy > -+ > [ X]an)-

We define X* by retaining the k largest magnitude elements and setting the remaining M — k
elements to zero. Thus, the approximation error is explicitly given by:

M
IX* =Xl = Y Xl@,
i=k+1

while the original vector norm is:

M
X[ =Y 1X])-
i=1
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Identifying the Worst-case Scenario. To determine the maximal possible ratio of the approxima-
tion error to the original norm, consider the scenario where all vector entries are equal in magnitude.
Suppose, without loss of generality, that:

X =(a,a,...,a), a#0.

In this case, any selection of k elements yields the same approximation error. Explicitly, we have:
X7 = X[y = (M = K)la,  [|X][lx = Mlal.

Hence, the ratio is exactly:
||X*—X||1_J\/[—I€_1 k
Xl M M

Universality and Optimality of the Bound. We now verify that this equal-magnitude scenario
indeed represents the worst-case for any vector X. For an arbitrary vector X, the approximation

error ratio is: o
Zi:k+1 |X|(i)
M :
21:1 |X|('L)

This ratio is maximized precisely when the magnitudes of vector elements are equal. To see this,
observe that any deviation from equal magnitudes increases the share of the total magnitude held
by the top-k elements, thus reducing the ratio. Hence, the equal magnitude scenario is indeed the
worst-case.

Therefore, the universal bound:
. k
I = xlh < (1 37 ) 11

holds for all vectors X € RM, O

Remark 3. Similailv,for { — 2 nor m, we have
2 = M 2

Remark 4 (Approximation error bound under isometric transformations). Let A : RM — RM pe
an invertible linear operator satisfying the isometric property

IAX)ll2 = 1 Xl2, AT (X)]l2 = [1X ]2, forall X € RM.
Define the vector approximation
X* = A7 (topy (A(X))),
where topy, (Y') retains only the k largest-magnitude entries of Y and sets the others to zero.

Then the approximation error satisfies the bound
X" = XJlo < /1 2 x|
2 < i 2.

This bound is sharp, with equality attained precisely when the entries of A(X) have identical mag-
nitudes. In particular, when k = M, the approximation error is exactly zero, indicating perfect
reconstruction.

Lemma 8.2. Forany xz,y € R, we have

|z| — 2 sign(y) < 2|z — yl.

Proof. If sign(y) = sign(z), we have |z| — zsign(y) = 0 < 2|z — y|.
If sign(y) = —sign(x), we have |z| — z sign(y) = 2|z| < 2|z| 4+ 2|y| = 2|z — y|.
If sign(y) = 0, we have |z| — zsign(y) = |z| = |z — y| < 2|z — y|. O
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Algorithm 5 Decoupled Momentum — High-level Training Loop

Require: learning rate 7, momentum /3, weight decay A, sparsity k, DCT matrices { P, }
1: Initialise parameters X, and global momentum Mg < O
2: fort=1,2,... do

/I executed on every worker i (in parallel)

G/ « VL(X;-1;&)

M/ < BM{_; + G{

Q/ + COMPRESSCHUNKS(M/, k, {P;})

send Q; to server

// parameter server

M, < DECOMPRESS& AGGREGATE ({Q/}i, {7 })

10: X+ Xi1 — n(sign(Mt) + /\Xt_l)

11:  broadcast sign(M;) to all workers

12: end for

R AR A

Algorithm 6 COMPRESSCHUNKS(M, k, { P;}) — run on one worker

Require: local momentum M, sparsity budget k, DCT matrices { P, }
1: Q « 0 {list of sparse coefficients}
2: for each chunk index c do
B < CHUNKEXTRACT(M,, c)
q < DCT(B; {P})
qsp < Top-k(q, k)
Q<_ Q U {(C7 qSP)}
B < B —IDCT(qy; {P,' }) {store residual}
CHUNKINSERT(M, ¢, B)
9: end for
10: return Q {sparse DCT coefficients to transmit}

A A

Lemma 8.3. Let (X,Y) is a joint random variable on R? x R, For any constant a € (0, +0oc), we
have

E[(X,sign(X) — sign(Y))] < 2aVdE| X/a — Y.
Proof. Without loss of generality, set a = 1.
E[(X, sign(X) — sign(Y))] = E[|| X[}y — (X, sign(Y"))]
< 2E[||X = Y]] Lemmal82l
< 2VdE[|X —Y]|] by Cauchy-Schwarz,

where || - ||1 is the ¢; norm and || - || denotes the Euclidean norm. O
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Algorithm 7 DECOMPRESS& AGGREGATE({Q'}, { P, }) — server side

Require: sparse sets {Q'} from all workers, inverse DCT matrices { P, }
1: initialise global momentum M < 0

2: for each chunk index c do
s <— 0 {sum of sparse coeffs}
for each workerido

s + s + Lookupr(Q', ¢)

end for
B« IDCT(s;{P,' })
CHUNKINSERT(M, ¢, B)

9: end for
10: return M {reconstructed global momentum}

A O

Model Final Loss | Hellaswag{ ARC-Easyt PIQA T | DataTx|
acc_norm acc acc_norm MB/step
DeMo 300M | |
s=064, k=32 2.87 0.37 0.46 0.67 29.9
s=064, k=16 2.87 0.38 0.50 0.67 14.9
s=064, k=38 2.88 0.38 0.47 0.67 7.49
s=64, k=4 2.89 0.37 0.47 0.67 3.74
s=064, k=2 2.93 0.36 0.46 0.65 1.87
s=064, k=1 297 0.35 0.45 0.65 0.93
s =128, k = 32 2.88 0.37 0.50 0.66 7.49
s =128,k =16 2.90 0.37 0.47 0.67 3.74
s =128,k =38 2.93 0.36 0.49 0.66 1.87
s=128,k =4 2.98 0.35 0.46 0.64 0.93
s=128, k=2 3.06 0.33 0.45 0.65 0.46
s=128, k=1 3.16 0.31 0.45 0.63 0.23
AdamW-DDP 300M | 2.98 0.35 0.46 0.65 | 636.9
DeMo 1B \ \
s=064, k=232 2.63 0.48 0.55 0.70 110.32
s=064, k=16 2.63 0.47 0.53 0.70 55.16
s=64, k=28 2.64 0.47 0.52 0.69 27.58
s=064, k=4 2.67 0.45 0.52 0.70 13.79
s=064, k=2 2.71 0.44 0.51 0.69 6.89
s=64, k=1 2.76 0.41 0.52 0.69 3.44
s =128, k = 32 2.65 0.46 0.53 0.69 27.58
s =128,k =16 2.67 0.46 0.50 0.70 13.79
s=128,k =38 2.72 0.44 0.52 0.68 6.89
s=128,k =4 2.76 0.41 0.50 0.67 3.44
AdamW-DDP 1B \ 2.73 0.43 0.51 0.68 | 2416.6

Table 3: Results of training loss, downstream evaluation scores, and per-GPU communication re-
quirements of the model sizes and reference trained on 100B tokens
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