
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEMO: DECOUPLED MOMENTUM OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling neural network training increasingly depends on synchronous data-
parallelism, yet full-precision gradient all-reduce imposes a severe communi-
cation bottleneck. We propose Decoupled Momentum Optimization (DeMo), a
drop-in replacement for any momentum-based optimizers that significantly re-
duces the communication bandwidth while maintaining convergence. DeMo (i)
decouples local momentum updates, (ii) applies a fast orthonormal transform
(e.g., DCT) followed by top-k sparsification, and (iii) reuses the momentum
buffer for error feedback via momentum subtraction. This design reduces per-
step communication by up to two orders of magnitude with minimal computa-
tional overhead. Experiments on 300M- and 1B-parameter DeMo language mod-
els show DeMo transmits up to 85× less data per GPU than AdamW-DDP while
achieving comparable loss and accuracy. DeMo is topology-agnostic and enables
training across multi-datacenter or Ethernet-based setups. Code is available at
https://anonymous.4open.science/r/DeMo-D3F1.

1 INTRODUCTION

The proliferation of large-scale foundation models, with parameter counts reaching the billions
(Achiam et al., 2023; Grattafiori et al., 2024; Liu et al., 2024a), has been transformative across nu-
merous domains. Training these massive models within a tractable timeframe necessitates distribut-
ing the heavy computational workload across a large number of accelerators (Duan et al., 2024).
This is typically managed through a hierarchy of parallelism strategies, such as Distributed Data
Parallelism (DDP), Pipeline Parallelism (PP), and Fully Sharded Data Parallelism (FSDP) (Zhao
et al., 2023).

Among these, distributed data parallelism remains the most widely used strategy but introduces a
major communication bottleneck. In standard DDP, each worker synchronizes its locally computed
gradients with all others before every optimization step—typically via an All-Reduce operation.
The communication cost is directly proportional to the model’s size, reaching terabytes per step
for state-of-the-art models. This overhead demands expensive, high-bandwidth interconnects (e.g.,
NVLink, InfiniBand) and geographically co-located clusters Wei et al. (2024), driving up costs and
limiting scalability. Alleviating this communication burden is thus critical for enabling more effi-
cient and accessible large-scale training Cao et al. (2023).

In this paper, we show that the gradient information exchanged during distributed training is highly
redundant. Our key insight is that this redundancy can be managed more effectively by communicat-
ing compressed momentum updates in a transformed space rather than transmitting raw gradients.
Prior sparsification approaches directly applied to gradients incur sparse update patterns and of-
ten harm performance Lin et al. (2018b); Stich et al. (2018); Aji and Heafield (2017); in contrast,
our blockwise transform and top-k sparsification preserve accuracy by operating in the transformed
domain. Moreover, the momentum buffer itself naturally serves as an implicit error accumulator,
eliminating the need for explicit error-feedback mechanisms that introduce substantial GPU memory
overhead (Karimireddy et al., 2019). Building on these observations, we propose DeMo (Decoupled
Momentum Optimization), a general-purpose distributed optimization framework compatible with
common momentum-based optimizers, including SGD with momentum (Sutskever et al., 2013),
Lion (Chen et al., 2023), and Muon (Jordan et al., 2024). DeMo fundamentally rethinks synchro-
nization: instead of exchanging dense gradients, each worker communicates a compressed version
of its local momentum, subtracts the decoded update from its buffer to track uncommunicated in-
formation, and then applies the aggregated momentum to update the parameters. This simple but

1

https://anonymous.4open.science/r/DeMo-D3F1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Algorithm 1 DeMo: Decoupled Momentum
Require: learning rate η, momentum coefficient β, weight decay λ, sparsity budget k, DCT matrices {Pj}d−1

j=0

1: Initialization: parameters X0 and global momentum M0 ← 0
2: for t = 1, 2, . . . do
3: # on each worker i ∈ {0, . . . , N − 1}
4: G i

t ← ∇L(Xt−1; ξ
i
t) # local stochastic gradient

5: M i
t ← βM i

t−1 +G i
t # update local momentum buffer

6: for each chunk M
i,[ℓ]
t of M i

t do
7: Q

i,[ℓ]
t ← Top-k

(
DCT(M

i,[ℓ]
t ; {Pj}), k

)
blockwise transform & sparsify in the ℓ-th chunk

8: M
i,[ℓ]
t ←M

i,[ℓ]
t − IDCT(Q

i,[ℓ]
t ; {P⊤

j }) # in-place residual in momentum buffer
9: end for

10: send {Q i,[ℓ]
t } to server

11: # on the parameter server
12: for each chunk {Q i,[ℓ]

t } do

13: M
[ℓ]
t ← IDCT

(∑
i

Q
i,[ℓ]
t ; {P⊤

j }
)

aggregate sparse updates and reconstruct momentum chunk
14: end for
15: Xt ← Xt−1 − η

(
sgn(Mt) + λXt−1

)
16: broadcast sgn(Mt) to all workers
17: end for

powerful design drastically reduces communication while retaining the benefits of momentum-based
optimization.

This approach drastically reduces the required inter-accelerator communication bandwidth, poten-
tially by several orders of magnitude. Our primary contributions are:

• We identify the momentum term in distributed optimization as a compressible, information-
rich surrogate for raw gradients.

• We propose DeMo, a communication-efficient framework that decouples momentum up-
dates and leverages the momentum itself as a built-in error feedback mechanism.

• We demonstrate that our method significantly relaxes the hardware and co-location con-
straints for large-scale training, paving the way for more flexible, geographically dis-
tributed, and cost-effective training paradigms.

The remainder of this paper is organized as follows. We review related work in Section 2. In Section
3, we present the DeMo algorithm and its theoretical guarantees. Section 4 provides empirical results
demonstrating DeMo’s effectiveness, followed by ablation studies in Section 5. Finally, we conclude
in Section 6.

2 DEMO: DECOUPLED MOMENTUM OPTIMIZATION

Problem setting. We consider the standard stochastic optimization problem

min
X∈X

L(X) := Eξ∼D [L(X, ξ)] , (1)

where X ∈ X is (possibly a series of) parameter tensors to be optimized, L(X, ξ) is a sample
loss function (e.g., cross-entropy), and the expectation is taken over data samples ξ drawn from
distribution D. The optimal value is denoted by L∗ := infX∈X L(X), which we assume is finite
and bounded from below. We operate in a distributed data-parallel setting with I workers, each
holding synchronized copies of parameters X . At each step t, worker i computes a stochastic
gradient Gi

t =
1

nbatch

∑nbatch

n=1 ∇L(Xt, ξ
i
n) using a per-worker microbatch of size nbatch.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

DCT TopK IDCT

Figure 1: Chunk-wise Discrete Cosine Transform (DCT), top-k coefficient selection, and inverse
DCT reconstruction.

2.1 ALGORITHM

We start to build DeMo from the standard DDP optimization pipeline and common momentum-
based optimizers, such as SGD with momentum (Sutskever et al., 2013), Signum (Bernstein et al.,
2018), and Muon (Jordan et al., 2024). Our proposed method introduces three key modifications
to reduce communication overhead and improve efficiency: (1) decoupled local momentum updates
to be communicated instead of gradients, (2) structured tensor compression, and (3) momentum
subtraction as error feedback.

Decoupled Local Momentum Updates. Standard DDP pipelines typically synchronize gradients
across workers immediately after every local gradient tensor being computed. In contrast, we re-
move the global all reduce synchronization of micro-batch gradients Gi

t, allowing local mo-
mentum buffers M i

t on each worker to evolve independently:

M i
t = βM i

t−1 + (1− β)Gi
t. (2)

Aggregating gradients or momenta is theoretically equivalent due to linearity; however, directly
synchronizing dense momentum tensors is communication-intensive. Thus, we propose a structured
tensor compression pipeline to significantly reduce this overhead.

Structured Tensor Compression. Our compression pipeline comprises three sequential steps:
tensor chunking, blockwise linear projection, and top-k sparsification.

Tensor Chunking. Given a momentum tensor M ∈ Rn0×···×nd−1 , we factorize each dimension as
ni = cisi with chunk number ci and size si to partition M into smaller blocks:

B(M) = {Bk | k ∈ [c0]× · · · × [cd−1]},
where each block Bk ∈ Rs0×···×sd−1 .

Blockwise Linear Projection. After chunking, each block Bk ∈ B(M) undergoes a separable
multilinear transformation:

Qk = T (Bk;P0, . . . ,Pd−1), Pi ∈ Rsi×si , (3)
where T multiplies block Bk by projection matrices Pi along each tensor dimension. For d = 2,
this reduces to a simple bilinear form of matrix multiplication Qk = P0BkP

⊤
1 .

In practice, we consider two types of projection bases: random orthonormal matrices, sampled
freshly at each step (shared across all workers), and the Discrete Cosine Transform (DCT). Our
experiments in Section 3 demonstrate that projections clearly outperform no projection (Pi = I).
While random projections perform marginally better, DCT is computationally more efficient due
to its fast implementation with Fast Fourier Transform and precomputed only once before training.
Thus, we default to DCT in all experiments apart from ablations.

Top-k Sparsification. Following projection, in order to reduce communication, each worker prepares
only the top-k largest-magnitude coefficients per block for communication:

Q̂k = Top-k(Qk, k) such that ∥Q̂k∥0 = k. (4)
Thereby the uploading bandwidth is reduced by (

∏
i si)/k times and for small k this can be signif-

icant. These sparse blocks are communicated using an All Gather operation and averaged over
all workers to form:

Qk = AvgAllGather(Q̂k). (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Momentum Reconstruction and Parameter Update. After communication, each worker recon-
structs the momentum tensor from the aggregated sparse blocks via inverse projection and unchunk-
ing by concatenation:

M∗
t = B−1

{
T −1

(
Qk;P

−1
0 , . . . ,P−1

d−1

)}
, (6)

where P−1
i denotes inverse projection matrices. To enhance convergence during neural network

training, we apply a transformation ϕ(·) to the reconstructed momentum M∗
t , chosen according to

the base optimizer: ϕ(M) = M for SGD, ϕ(M) = sign(M) (elementwise) for Signum, and
ϕ(M) = M(M⊤M + ϵI)−1/2 for Muon. The final parameter update is given by

Xt+1 = Xt − ηt(ϕ(M
∗
t) + λXt). (7)

Algorithm 4 summarizes this entire procedure.

Momentum Subtraction as Error Feedback. Inspired by error feedback mechanisms used with
sparsification techniques, we propose updating the decoupled momentum buffer M i

t via momentum
subtraction:

M i
t ←M i

t − αB−1
{
T −1(Qk;P

−1
0 , . . . ,P−1

d−1)
}
. (8)

Unlike traditional error-feedback schemes, which require additional memory storage, our method
naturally reuses the momentum buffer as an accumulator of uncommunicated information. This
subtraction ensures each iteration communicates novel information, accumulating previously omit-
ted updates over subsequent steps and promoting convergence.

Complexity Analysis. Without chunking, projecting a momentum matrix of size N ×N requires
O(N3) computation andO(N2) storage. By partitioning the matrix into C2 blocks of size (N/C)×
(N/C), computational complexity reduces linearly to O(N3/C), and memory usage quadratically
to O(N2/C2). Since all momentum tensors share the same set of projection matrices {Pi}d−1

i=0 ,
the additional memory overhead remains constant and negligible compared to the overall memory
requirements.

2.2 THEORETICAL ANALYSIS

To analyze the convergence properties of the DeMo algorithm, we adopt standard assumptions com-
monly used in stochastic optimization Bernstein and Newhouse (2024); Défossez et al. (2022); Liu
et al. (2024b).
Assumption 1 (Variance). Let samples ξ ∼ D be i.i.d., and define the expected gradient as
∇L(X) := E[∇L(X, ξ)]. The stochastic gradient estimator at each worker is given by

Gi(X) =
1

nbatch

nbatch∑
n=1

∇L(X, ξn),

and satisfies the bounded variance condition:

E
[∥∥Gi(X)−∇L(X)

∥∥2
F

]
≤ σ2

nbatch
, ∀i ∈ [N], X ∈ X,

where σ2 > 0 is a finite constant and nbatch is the mini-batch size.

Assumption 2 (L-Smoothness). The objective function L(X) is differentiable and L-smooth; that
is, for all X,Y ∈ X,

∥∇L(Y)−∇L(X)∥F ≤ L ∥Y −X∥F .

Equivalently, for all X,Y ∈ X,

L(Y) ≤ L(X) + ⟨∇L(X),Y −X⟩+ L

2
∥Y −X∥2F .

Assumption 3 (Bounded Gradient). For any X ∈ X and ξ ∼ D, the stochastic gradient satisfies

∥∇L(X; ξ)∥1 ≤ R,

for some constant R > 0.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We now present the convergence guarantee for the proposed Decoupled Momentum Optimization
(DeMo) algorithm under the above assumptions.
Theorem 1 (Convergence of DeMo). Under Assumptions 1, 2, and 3, the sequence {Xt}Tt=1 from
Algorithm 4 satisfies:

1

T

T∑
t=1

E [∥∇L(Xt)∥1] ≤
E[L(X0)− L(XT)]

Tη
+ 2LDη +

σ√
Nnbatch

+R
√
D

√
1− k

M

1− β
√
1− k

M

(
β + 2D

√
2π

N

(
1 +

√
M

k

))
,

with the choice of step size η = Θ
(

1√
T

)
and momentum β = O

(
1√
T

)
, the convergence rate is:

O
(

1√
T

)
+O

(
1√
N

)
.

3 EXPERIMENTAL RESULTS

We evaluate our proposed Decoupled Momentum Optimization (DeMo) algorithm in the context
of large-scale language model pretraining, where communication efficiency is of uttermost concern.
All experiments are conducted using the OLMo (Groeneveld et al., 2024) framework, a reproducible
and scalable platform for training open-weight language models. The complete implementation of
DeMo, along with all configuration files necessary to reproduce our results, is available at: https:
//anonymous.4open.science/r/DeMo-D3F1.

3.1 EXPERIMENTAL SETUP

Models and Baselines. We evaluate DeMo on Transformer-based decoder-only language mod-
els at two scales. OLMo-300M contains 320 million non-embedding parameters, and OLMo-1B
contains 1.18 billion non-embedding parameters Full model specifications are provided in the Ap-
pendix.

We compare DeMo against the standard AdamW optimizer using default hyperparameters recom-
mended by OLMo: β1 = 0.9, β2 = 0.95, and weight decay λ = 0.1. The learning rate schedules
use linear warmup followed by cosine decay, scaled proportionally to the total training steps. For all
DeMo experiments presented in the main body of the paper, we default to use chunk size of s = 64
and therefore making 64× 64 chunks for matrix tensors in the transformers and 64 sized chunks for
vector tensors like layernorms. We found setting a larger coefficient of β = 0.999 significantly helps
with convergence comparing to standard value of 0.9 when the momentum subtraction is turned on
and we therefore default to this value over all experiments. We left the momentum coefficient to be
a tunable parameter from the set of {0.2, 0.5, 1.0}.

Datasets. All models are pretrained on the Dolma v1.5 corpus. To study optimizer behavior near
convergence, we train both OLMo-300M and OLMo-1B on 100 billion tokens—significantly be-
yond the Chinchilla token budget of 20 tokens per parameter, which we found insufficient for draw-
ing reliable convergence comparisons. Due to computational constraints, all ablation studies are
conducted using the 300M model trained under the 20 tokens-per-parameter rule.

Implementation. DeMo integration required minimal changes to the codebase. We implemented
a DeMo optimizer class and disabled default gradient synchronization in PyTorch Distributed Data
Parallelism (Li et al., 2020). All experiments are conducted on 64 NVIDIA H100 GPUs with a
global batch size of 2048 and a sequence length of 2048 tokens. We use four gradient accumulation
steps, yielding an effective per-GPU batch size of 8.

3.2 PRETRAINING PERFORMANCE

Convergence Behavior. Figure 3.1 shows training loss curves comparing DeMo with various spar-
sification levels k to the AdamW optimizer on both the OLMo-300M and OLMo-1B models. As the

5

https://anonymous.4open.science/r/DeMo-D3F1
https://anonymous.4open.science/r/DeMo-D3F1

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Training loss comparison between 1B and 300M parameter models across different top-k
sparsity levels. The left panel shows the 300M model performance while the right panel shows the
1B model performance. Both models are trained with varying sparsification top k (k=1, 2, 4, 8,
16, 32) compared against the AdamW baseline. The results demonstrate the effectiveness of top-k
sparsification across different model sizes.

figure illustrates, a sparsification of just k = 2 is sufficient to achieve better training performance
than AdamW. Increasing k further provides marginal gains at a greater communication cost.

Compute Efficiency. DeMo provides a substantial reduction in communication. For instance,
with the tensor chunk size of 64 × 64, selecting the top-k values reduces upload bandwidth at
each step by a factor of roughly 4096/k. Figure 3 plots final model perplexity against the overall
communication cost in MB per step.

3.3 DOWNSTREAM EVALUATION

We assessed the pretrained checkpoints on three widely used zero-shot benchmarks: HellaSwag,
ARC-Easy, and PIQA, and report normalized accuracy (or accuracy for ARC-Easy). Table 1 shows
that DeMo matches or exceeds the AdamW-DDP baseline across all tasks while reducing per-GPU
communication by two to three orders of magnitude.

For the 300M-parameter model, using k = 8 already cuts data transfer by 85 times (7.5 MB vs.
637 MB) with no loss in accuracy; smaller k values offer additional savings with a minor accuracy
trade-off. At the 1B scale, the trend persists: DeMo with k = 16 attains higher HellaSwag and PIQA
scores than AdamW while transmitting only 55 MB per step—an efficiency gain of 44 times. These
results confirm that our proposed decoupled momentum strategy preserves model quality even under
aggressive communication budgets and scales favorably with model size.

3.4 ABLATION STUDIES

To better understand the impact of specific design choices in DeMo, we conducted comprehensive
ablation studies:

Impact of Momentum Subtraction. An essential feature of DeMo is momentum subtraction.
In this experiment, we systematically varied α from 0 (no subtraction) to 1 (full subtraction of
communicated values). The results are shown in Figure 3.1. Clearly, no subtraction (α = 0) is
detrimental because, with a fixed basis, the top-k elements evolve slowly and the same elements
are repeatedly selected and communicated across steps, resulting in similar consecutive updates
and degraded performance. Given that the momentum buffer also serves as an error accumulator,
subtracting previously communicated values is necessary. However, compared to full subtraction,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

OLMo-300M OLMo-1B
Optimizer / k Hella ↑ ARC ↑ PIQA ↑ Tx ↓ Hella ↑ ARC ↑ PIQA ↑ Tx ↓

acc n acc acc n MB/step acc n acc acc n MB/step

DeMo k=32 0.37 0.46 0.67 29.9 0.48 0.55 0.70 110.32
DeMo k=16 0.38 0.50 0.67 14.9 0.47 0.53 0.70 55.16
DeMo k=8 0.38 0.47 0.67 7.49 0.47 0.52 0.69 27.58
DeMo k=4 0.37 0.47 0.67 3.74 0.45 0.52 0.70 13.79
DeMo k=2 0.36 0.46 0.65 1.87 0.44 0.51 0.69 6.89
DeMo k=1 0.35 0.45 0.65 0.93 0.41 0.52 0.69 3.44

AdamW-DDP 0.35 0.46 0.65 636.9 0.43 0.51 0.68 2416.6

Table 1: Zero-shot downstream accuracy and per-GPU communication volume (MB per training
step) after 100B-token pretraining. Higher is better for accuracy metrics; lower is better for commu-
nication.

Figure 3: Validation perplexity of OLMo-
300M and OLMo-1B vs. data transmitted per
step (log scale, MB/step). Each DeMo point
is annotated with its sparsification level k.

Figure 4: Training loss curves of
OLMo-300M with DeMo under differ-
ent momentum subtraction magnitudes
α ∈ {0.0, 0.1, 0.2, 0.5, 1.0}.

we found that using a smaller value (α = 0.2) to gradually evolve the top-k elements and partially
decay communicated values over time further improves performance.

Figure 5: Training loss with different linear transformations. The left plot compares the DCT against
the identity mapping, while the right plot compares the DCT with a random orthonormal projection
matrices. Each curve corresponds to a different sparsity level k ∈ {8, 16, 32}.

Choice of Linear Projections. We explored three natural choices for the linear transformations
T . The baseline is the identity mapping Pi = I , i.e., no transformation. We compared this with the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Discrete Cosine Transform (DCT)-based transformation, where Pi corresponds to the DCT basis of
dimension 64, and a random projection matrix, where each element of Pi is sampled from N (0, I)
and orthonormalized using the Gram-Schmidt process. We set the random seed equal to the step
number on each worker, ensuring a unique random projection for every step but consistency across
workers. Since all Pi are orthonormal, we have P−1

i = P⊤
i . We considered three sparsification

levels: k = 8, 16, 32. The results are plotted in Figure 5.

As illustrated in the figure, the DCT-based transformation clearly improves performance over the
identity mapping. This supports the hypothesis from related studies that naively updating param-
eters using sparse patterns can degrade performance, while applying a transformation enables pa-
rameter updates as linear combinations of many non-sparse vectors. Thereby the parameters are
updated more uniformly, especially important when sparsity k is low. Although random projection
is arguably the most intuitive choice, as it continuously rotates and changes the momentum subspace
perspective, we found that a fixed DCT basis yields comparable performance while eliminating the
need to recompute the basis at each step.

4 RELATED WORKS

Training large foundation models presents substantial communication bottlenecks, as synchronizing
gradients across numerous accelerators can dominate training time (Shoeybi et al., 2019; Huang
et al., 2019; Narayanan et al., 2021). To alleviate this, various gradient compression techniques have
been developed (Aji and Heafield, 2017; Wen et al., 2017). Prominent among these are sparsifi-
cation methods, which transmits only the gradients with the largest magnitudes (Lin et al., 2018b;
Stich et al., 2018; Alistarh et al., 2018). Another widely used approach is gradient quantization,
which reduces the numerical precision of gradients (Alistarh et al., 2017; Sun et al., 2019). To com-
pensate for information loss introduced by biased compressors, error feedback mechanisms, such
as EF-SGD, locally accumulate the compression error and add it to the gradient in the subsequent
iteration (Seide et al., 2014; Karimireddy et al., 2019). Our work also leverages top-k sparsification
of momentum communication and leverages the error accumulation on momentum itself, thereby
reducing one copy of memory for the accumulator.

Another line of research aims to reduce communication frequency through decoupled optimiza-
tion strategies. Methods like Federated Averaging (FedAvg) (McMahan et al., 2017) and Local
SGD (Stich, 2018; Lin et al., 2018a) allow workers to perform multiple local updates before syn-
chronizing model parameters, thereby reducing the number of communication rounds. However,
these approaches can face challenges such as client drift, especially with non-iid data, which may
impact convergence speed and final model quality (Karimireddy et al., 2020; Zhao et al., 2018).
More recently, DiLoCo has emerged as an empirically successful technique for training large lan-
guage models with significantly reduced communication (Douillard et al., 2023). While effective,
the complex interplay of infrequent synchronization and local optimizer dynamics in such systems
can sometimes lead to less predictable optimization trajectories; our work instead focuses on main-
taining more frequent, albeit significantly compressed, synchronization of a critical optimizer state.

A third strategy seeks to reduce memory and communication via low-rank updates, moving beyond
unstructured compression. This was popularized by Low-Rank Adaptation (LoRA) for parameter-
efficient fine-tuning, which freezes pre-trained weights and learns a low-rank decomposition of the
weight update matrix (Hu et al., 2022). More recently, this principle has been applied directly to the
optimization process to enable training from scratch. For instance, GaLore and its variants project
the full gradient onto a low-rank subspace before it is passed to the optimizer, thereby significantly
reducing gradient memory overhead (Zhao et al., 2024; Hao et al., 2024). In distributed settings,
related techniques communicate low-rank factors of the gradient or model update instead of the full
matrix, directly reducing communication volume (Park and Klabjan, 2024). The top-k sparsification
of DeMo operates in a fixed transformed space, thereby also making the communicated update
matrix of each worker to be rank-k.

5 DISCUSSIONS AND LIMITATIONS

Our experimental findings confirm that DeMo consistently achieves competitive or improved con-
vergence behavior compared to AdamW. Additionally, DeMo demonstrates reduced communication

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

overhead and favorable downstream generalization. Our ablation studies further highlight the criti-
cal role of momentum sparsification with DCT, momentum subtraction and chunk-based projection
techniques in balancing optimization performance and computational efficiency.

In our analysis, we primarily focused on the upload bandwidth per step. However, it is important
to note that the download bandwidth scales with the number of workers. This limitation is not
unique to our method but is intrinsic to all top-k sparsification-based approaches, including those
proposed in . DeMo is designed primarily for optimization across a small number of geographically
distributed compute centers, enabling communication between optimization steps over the Internet
rather than relying on specialized high-speed interconnects such as InfiniBand. This relaxes the need
for dedicated long-distance networking infrastructure. Within each data center, standard DDP can
still be employed; each center can be treated as a “large worker”, and DeMo can then be used to
efficiently coordinate communication between these centers.

6 CONCLUSION

In conclusion, we have shown that our proposed DeMo optimization algorithm can act as a drop-in
replacement to AdamW when training LLMs, with no noticeable slowdown in convergence while
reducing communication requirements by several orders of magnitude. The signum variant of DeMo
is more memory efficient than AdamW and has negligible compute overhead if we use small pre-
computed DCT transition matrices. Finally, the LLMs pre-trained with DeMo have equivalent or
better scores on multiple standard benchmarks compared to their equivalents trained with AdamW.

REFERENCES

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,
S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

A. F. Aji and K. Heafield. Sparse communication for distributed gradient descent. arXiv preprint
arXiv:1704.05021, 2017.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. Qsgd: Communication-efficient sgd
via gradient quantization and encoding. Advances in neural information processing systems, 30,
2017.

D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and C. Renggli. The convergence
of sparsified gradient methods. Advances in Neural Information Processing Systems, 31, 2018.

J. Bernstein and L. Newhouse. Old optimizer, new norm: An anthology. CoRR, abs/2409.20325,
2024.

J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar. signsgd: compressed optimi-
sation for non-convex problems. In International Conference on Machine Learning, 2018. URL
https://api.semanticscholar.org/CorpusID:7763588.

X. Cao, T. Başar, S. Diggavi, Y. C. Eldar, K. B. Letaief, H. V. Poor, and J. Zhang. Communication-
efficient distributed learning: An overview. IEEE journal on selected areas in communications,
41(4):851–873, 2023.

X. Chen, C. Liang, D. Huang, E. Real, K. Wang, H. Pham, X. Dong, T. Luong, C.-J. Hsieh, Y. Lu,
et al. Symbolic discovery of optimization algorithms. Advances in neural information processing
systems, 36:49205–49233, 2023.

A. Défossez, L. Bottou, F. R. Bach, and N. Usunier. A simple convergence proof of adam and
adagrad. Trans. Mach. Learn. Res., 2022, 2022.

A. Douillard, Q. Feng, A. A. Rusu, R. Chhaparia, Y. Donchev, A. Kuncoro, M. Ranzato, A. Szlam,
and J. Shen. Diloco: Distributed low-communication training of language models. arXiv preprint
arXiv:2311.08105, 2023.

9

https://api.semanticscholar.org/CorpusID:7763588

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

J. Duan, S. Zhang, Z. Wang, L. Jiang, W. Qu, Q. Hu, G. Wang, Q. Weng, H. Yan, X. Zhang, et al.
Efficient training of large language models on distributed infrastructures: a survey. arXiv preprint
arXiv:2407.20018, 2024.

A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Vaughan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024.

D. Groeneveld, I. Beltagy, P. Walsh, A. Bhagia, R. Kinney, O. Tafjord, A. Jha, H. Ivison, I. Magnus-
son, Y. Wang, S. Arora, D. Atkinson, R. Authur, K. R. Chandu, A. Cohan, J. Dumas, Y. Elazar,
Y. Gu, J. Hessel, T. Khot, W. Merrill, J. D. Morrison, N. Muennighoff, A. Naik, C. Nam, M. E.
Peters, V. Pyatkin, A. Ravichander, D. Schwenk, S. Shah, W. Smith, E. Strubell, N. Subramani,
M. Wortsman, P. Dasigi, N. Lambert, K. Richardson, L. Zettlemoyer, J. Dodge, K. Lo, L. Sol-
daini, N. A. Smith, and H. Hajishirzi. Olmo: Accelerating the science of language models. arXiv
preprint, 2024. URL https://api.semanticscholar.org/CorpusID:267365485.

Y. Hao, Y. Cao, and L. Mou. Flora: Low-rank adapters are secretly gradient compressors. arXiv
preprint arXiv:2402.03293, 2024.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, et al. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3, 2022.

Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu, et al.
Gpipe: Efficient training of giant neural networks using pipeline parallelism. Advances in neural
information processing systems, 32, 2019.

K. Jordan, Y. Jin, V. Boza, Y. Jiacheng, F. Cesista, L. Newhouse, and J. Bernstein. Muon: An opti-
mizer for hidden layers in neural networks, 2024. URL https://kellerjordan.github.
io/posts/muon/.

S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi. Error feedback fixes signsgd and other
gradient compression schemes. In International Conference on Machine Learning, pages 3252–
3261. PMLR, 2019.

S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Scaffold: Stochastic
controlled averaging for federated learning. In International conference on machine learning,
pages 5132–5143. PMLR, 2020.

S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke, J. Smith, B. Vaughan, P. Da-
mania, and S. Chintala. Pytorch distributed: experiences on accelerating data parallel training.
Proc. VLDB Endow., 13(12):3005–3018, Aug 2020. ISSN 2150-8097.

T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi. Don’t use large mini-batches, use local sgd. arXiv
preprint arXiv:1808.07217, 2018a.

Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally. Deep gradient compression: Reducing the commu-
nication bandwidth for distributed training. In International Conference on Learning Represen-
tations, 2018b.

A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, et al.
Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024a.

B. Liu, L. Wu, L. Chen, K. Liang, J. Zhu, C. Liang, R. Krishnamoorthi, and Q. Liu. Communication
efficient distributed training with distributed lion. In Advances in Neural Information Processing
Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024,
2024b.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages
1273–1282. PMLR, 2017.

D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia. Memory-efficient pipeline-parallel
dnn training. In International Conference on Machine Learning, pages 7937–7947. PMLR, 2021.

10

https://api.semanticscholar.org/CorpusID:267365485
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

H. Park and D. Klabjan. Communication-efficient federated low-rank update algorithm and its con-
nection to implicit regularization. arXiv preprint arXiv:2409.12371, 2024.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and its application to
data-parallel distributed training of speech dnns. In Interspeech, volume 2014, pages 1058–1062.
Singapore, 2014.

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro. Megatron-lm:
Training multi-billion parameter language models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

S. U. Stich. Local sgd converges fast and communicates little. arXiv preprint arXiv:1805.09767,
2018.

S. U. Stich, J.-B. Cordonnier, and M. Jaggi. Sparsified sgd with memory. Advances in neural
information processing systems, 31, 2018.

J. Sun, T. Chen, G. Giannakis, and Z. Yang. Communication-efficient distributed learning via lazily
aggregated quantized gradients. Advances in Neural Information Processing Systems, 32, 2019.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momentum
in deep learning. In International conference on machine learning, pages 1139–1147. PMLR,
2013.

Y. Wei, T. Hu, C. Liang, and Y. Cui. Communication optimization for distributed training: architec-
ture, advances, and opportunities. IEEE Network, 2024.

W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li. Terngrad: Ternary gradients to reduce
communication in distributed deep learning. Advances in neural information processing systems,
30, 2017.

J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, and Y. Tian. Galore: Memory-efficient llm
training by gradient low-rank projection, 2024.

Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra. Federated learning with non-iid data.
arXiv preprint arXiv:1806.00582, 2018.

Y. Zhao, A. Gu, R. Varma, L. Luo, C.-C. Huang, M. Xu, L. Wright, H. Shojanazeri, M. Ott,
S. Shleifer, A. Desmaison, C. Balioglu, B. Nguyen, G. Chauhan, Y. Hao, and S. Li. PyTorch
FSDP: Experiences on scaling fully sharded data parallel, 2023. arXiv: 2304.11277.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

7 USE OF LARGE LANGUAGE MODELS

Regarding paper writing, we used LLM only for text polishing and grammar correction during
manuscript preparation. No LLMs were involved in the conception or design of the method, ex-
periments, or analysis. All technical content, results, and conclusions have been independently
verified and validated by the authors.

8 CONVERGENCE ANALYSIS

In this section, we establish the convergence guarantees of the DeMo algorithm under standard
assumptions: unbiased stochastic gradients with bounded variance (Assumption 4), L-smoothness
of the objective (Assumption 5), and bounded gradient norms (Assumption 6). The main result is
Theorem 2, which proves an O(1/

√
T) convergence rate in terms of the average gradient norm. We

further quantify the bias and approximation error introduced by sparse top-k averaging (Lemmas 2
and 8.1), which are crucial in analyzing the impact of sparsified communication.

Starting from SGD with Momentum, we make two key modifications: first, we remove the all-reduce
operation on gradients g̃k, decoupling momentum m across the accelerators. Second, after updating
the momentum, we extract and remove its fast components q, which can be efficiently synchronized
with minimal communication. Algorithm 4 presents the complete method:

Algorithm 2 Decoupled Momentum Optimization
Input: learning rate η, decay β ∈ (0, 1), parameters xt, momentum mt, hyperparameters s, k
g̃t ← LocalStochasticGradient(xt) {Get Local Gradient g Without All-Reduce}
mt ← βmt + g̃t {Accumulate Gradient in Momentum m}
qt ← ExtractFastComponents(mt, s, k) {Extract Fast Components q From m}
mt+1 ← mt − qt {Remove q From m}
Qt ← Synchronize(qt) {Synchronize q Across All Accelerators}
xt+1 ← xt − ηQt {Parameter Update Step}

8.1 PRELIMINARIES

8.1.1 NOTATIONS

We summarize the key notation used throughout the convergence analysis in Table 2.

8.1.2 MULTILINEAR TRANSFORMS AND CHUNK-WISE TENSOR BLOCKING

We begin by introducing the tensorial operations central to our algorithmic design. Specifically, we
define a multilinear product T acting on tensors via separable linear transforms, and describe the
blocking operator B used to partition tensors into contiguous chunks. These constructions allow
us to formalize the application of the Discrete Cosine Transform (DCT) and its inverse in a chunk-
wise manner, which underpins the sparsification mechanism employed in the DeMo algorithm. We
also introduce the key intermediate tensors used in the algorithm’s updates, along with relevant
dimensional and notational conventions.

Let X ∈ Rs0×s1×···×sd−1 be a tensor of order d, and let matrices Pi ∈ Rsi×si be given for each
i ∈ [d]0 = {0, 1, . . . , d− 1}. We define the multilinear product T as follows:

T (X ;P0, P1, . . . , Pd−1) ∈ Rs0×s1×···×sd−1 ,

whose entries are explicitly given by

T (X ;P0, . . . , Pd−1)i0i1...id−1
=

s0∑
j0=1

s1∑
j1=1

· · ·
sd−1∑

jd−1=1

(
d−1∏
k=0

(Pk)ikjk

)
Xj0j1...jd−1

.

In the special case d = 2, this definition reduces to the familiar matrix multiplication form:

T (X ;P0, P1) = P0XP⊤
1 .

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 2: Summary of notation used in the convergence analysis.
Notation Definition

X , X Tensor in Rn0×···×nd−1

d Tensor order (number of dimensions)
ni Size of tensor along dimension i
si Chunk size along dimension i
ci Number of chunks along dimension i, ni = cisi
Pi Transformation matrix (e.g., DCT) for dimension i, Pi ∈ Rsi×si

T Multilinear tensor product operator
B Blocking operator (tensor partition into chunks)
k Chunk index: k = (k0, . . . , kd−1), with ki ∈ [ci]0
Bk(X) Chunk indexed by k: Bk(X) = X [k0s0 : (k0 + 1)s0, . . . , kd−1sd−1 : (kd−1 + 1)sd−1]
Mi

t Local momentum at worker i, iteration t
Mt Global momentum
Gi

t Stochastic gradient at worker i, iteration t
Pi

t Intermediate tensor: Pi
t = βMi

t−1 +Gi
t

P̂i
t Chunk-wise DCT of intermediate tensor Pi

t

Qi
t: Perform chunk-wise top-k selection on P̂i

t, followed by chunk-wise inverse DCT
Pt Aggregated intermediate tensor: Pt = βet +

1
N

∑N
i=1

(
Qi

t + (1− β)Mi
t+1

)
Φt Aggregated tensor after sparse top-k aggregation, iteration t
Xt Model Parameter at iteration t
β Momentum decay parameter (0 < β < 1)
η Learning rate
λ Weight decay parameter
k Sparsity parameter (number of elements retained per chunk)
D Total number of tensor elements: D =

∏d−1
i=0 ni

M Number of elements per chunk: M =
∏d−1

i=0 si
L(X) Objective function
L∗ Optimal objective value
ξ, ξi Random samples from data distribution D or Di

σ2 Variance bound of stochastic gradients
N Number of distributed workers
Di Dataset at worker i

It is evident that the Discrete Cosine Transform (DCT) represents a specific instance of the multi-
linear product, alongside its counterpoint, the Inverse Discrete Cosine Transform (IDCT). Both are
defined as unitary matrices, leading to the equality P⊤

i = P−1
i for each i ∈ [d]0.

Consider now a tensor X ∈ Rn0×n1×···×nd−1 . Suppose each dimension ni is divisible by si, so we
can write ni = cisi for all i ∈ [d]0. We define the blocking operator B acting on X as:

B(X) = {Bk(X)}k∈ [c0]0×[c1]0×···×[cd−1]0 ,

where each block Bk(X) ∈ Rs0×s1×···×sd−1 is explicitly defined elementwise by:

(Bk(X))j = Xk0s0+j0, k1s1+j1, ..., kd−1sd−1+jd−1
,

with indices:

• k = (k0, k1, . . . , kd−1) specifying the position of the block, where ki ∈ [ci]0.
• j = (j0, j1, . . . , jd−1) indexing within each block, with ji ∈ [si]0.

Example (Matrix Blocking). Consider a matrix X ∈ R128×512. We partition X into contiguous
submatrices (blocks) of size 16× 32. Thus, each dimension is factorized as:

n0 = 128 = 8× 16, n1 = 512 = 16× 32.

We define the blocking operator B applied to X as:

B(X) = {Bk0,k1
(X)}k0∈[8]0, k1∈[16]0 ,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where each block Bk0,k1
(X) ∈ R16×32 is explicitly given by:

(Bk0,k1
(X))j0,j1 = Xk0·16+j0, k1·32+j1 ,

with indices k0 ∈ {0, 1, . . . , 7}, k1 ∈ {0, 1, . . . , 15} denoting the block position, and local indices
within each block given by j0 ∈ {0, 1, . . . , 15}, j1 ∈ {0, 1, . . . , 31}.
For instance, the upper-leftmost block B0,0(X) has entries:

B0,0(X) =


X0,0 X0,1 . . . X0,31

X1,0 X1,1 . . . X1,31

...
...

. . .
...

X15,0 X15,1 . . . X15,31

 .

Let X be a d-dimensional tensor, partitioned into chunks of shape (s0 × · · · × sd−1). We denote an
individual chunk of X by Bk(X), where k is a multi-index ranging over the set of all chunk indices
K.

We define an intermediate tensor Pi
t as

Pi
t := βMi

t−1 +Gi
t.

Next, we apply a chunk-wise Discrete Cosine Transform (DCT), denoted by T , to each chunk of
Pi

t, yielding the transformed tensor P̂i
t. This operation is defined as

Bk(P̂
i
t) := T

(
Bk(P

i
t)
)

for all k ∈ K.

Finally, for notational convenience, we define the total number of elements in the original and chunk
shapes as

D =

d−1∏
i=0

ni, M =

d−1∏
i=0

si.

By default, we let ∥·∥ denote the ℓ2 norm unless otherwise specified. We denote Φt as the aggregated
tensor obtained via a scatter all-reduce operation over the encoded tensors Qi

t from each worker as
detailed in 3.

8.1.3 PROBLEM SETTINGS

In general, we consider minimizing the following objective function:

min
X∈X

L(X) := Eξ∼D [L(X, ξ)] , (9)

where X = Rn0×n1×···×nd−1 , and L(X, ξ) is a general loss function, and the expectation is taken
over the data distribution D from which samples ξ are drawn. We denote by L∗ := infX∈X L(X)
the optimal value of the objective function and assume throughout this paper that L∗ is finite and
bounded from below. Given a realization L(X, ξ), the stochastic gradient ∇L(X, ξ) is defined as
the gradient of L(X, ξ) with respect to the parameter vector X.

In the distributed training setting, we aim to solve the optimization problem:

min
X∈X

L(X) :=
1

N

N∑
i=1

Eξi∼Di
[L(X, ξi)] , (10)

where N denotes the number of workers, and {Di}Ni=1 represent the datasets available at each
worker.1 Here, X represents the model parameters (e.g., neural network weights). Under this
distributed scenario, each worker i ∈ [N] maintains its own dataset Di, and there is a central-
ized server accessible to all workers for communication. At training step t, the stochastic gradient
Gi

t := ∇L(Xt, ξ
i
t) at worker i is computed using a data batch ξit sampled from the dataset Di.

1Throughout this work, we assume datasets {Di}Ni=1 consist of i.i.d. samples, and each sample ξi ∼ Di is
drawn independently. However, our proposed method can directly extend to non-i.i.d. settings.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Definition 1 (Variance). The variance of a X-valued random variable X is defined as

Var(X) := E
[
∥X− E[X]∥2F

]
.

With the definition of variance, we have the following assumption used for the analysis of stochastic
settings.

Assumption 4. The stochastic samples ξ ∼ D are independent and identically distributed (i.i.d.).
Additionally, the stochastic gradient ∇L(X, ξ) satisfies:

E[∇L(X, ξ)] = ∇L(X), and Var(∇L(X, ξ)) ≤ σ2

nbatch
,

where σ2 is a finite constant and nbatch denotes the batch size.

Assumption 4 ensures that the variance of the stochastic gradient is uniformly bounded. For our
discrete-time analysis, we also utilize the L-smoothness condition stated in Assumption 5.

Assumption 5 (L-smoothness). The objective function L(X) is differentiable, lower-bounded (i.e.,
L∗ = infX∈X L(X) > −∞), and L-smooth.

We say that a differentiable function L : X→ R is L-smooth if for all X,Y ∈ X,

∥∇L(Y)−∇L(X)∥F ≤ L ∥Y −X∥F .

If L is L-smooth, then for all X,Y ∈ X, we have

L(Y) ≤ L(X) + ⟨∇L(X),Y −X⟩+ L

2
∥Y −X∥2F .

Assumption 6 (Bounded Gradient). For any X ∈ X, and ξ ∼ D, the stochastic gradient satisfies
E [∥∇f(X; ξ)∥1] ≤ R with R > 0.

Assumptions 4, 5 and 6 are standard in the analysis of stochastic optimization algorithms Bernstein
and Newhouse (2024); Défossez et al. (2022); Liu et al. (2024b).

We employ a sparse aggregation protocol as a form of all-reduce. The procedure for calculating the
final aggregated vector is as follows:

Algorithm 3 Sparse Top-k Averaging

1: Input: A set of tensors {X(j)}Nj=1, where X(j) ∈ Rd; sparsity parameter k ∈ {1, . . . , d}.
2: Output: An aggregated tensor X̄ ∈ Rd.
3: Initialize sum S ∈ Rd and counts n ∈ Zd to zeros.
4: for j = 1, . . . , N do
5: Ij ← TopKIndices(|X(j)|, k)
6: SIj ← SIj +X

(j)
Ij

7: nIj
← nIj

+ 1
8: end for
9: X̄ ← S ⊘ n, where ⊘ denotes element-wise division with 0/0 = 0.

10: return X̄

With the problem settings and mitigating strategies discussed above, we now proceed to the analysis
of convergence and communication complexity of our proposed Decoupled Momentum Optimiza-
tion (DeMO) algorithm.

8.2 CONVERGENCE ANALYSIS

In this section, we provide the convergence analysis for the proposed Decoupled Momentum Op-
timization (DeMO) algorithm. We make use of the standard smoothness, variance and bounded
gradient assumptions, as stated in Assumptions 4,5, and 6, in the analysis.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 4 Decoupled Momentum Optimization
1: Given: learning rate η, momentum decay rate β, weight decay λ, chunk sizes (s0, . . . , sd−1), sparsity k,

DCT matrices {Pi}d−1
i=0

2: Initialize: t← 0, parameters X0, global momentum M0

3: repeat
4: t← t+ 1
5: Worker Side (in parallel for each worker i):
6: Maintain local momentum residual Mi

t−1

7: Compute gradient Gi
t ← ∇L(Xt−1, ξ

i
t−1)

8: Update local momentum: Mi
t ← βMi

t−1 +Gi
t

9: for each sub-chunk Bk(M
i
t) of Mi

t do
10: Compute DCT: Qi

k,t ← T (Bk(M
i
t), P0, . . . , Pd−1)

11: Threshold thr← k-th largest magnitude in |Qi
k,t|

12: Sparsify: MASK ← |Qi
k,t| ≥ thr

13: Qi
k,t ← Qi

k,t ⊙MASK

14: Update residual: Bk(M
i
t)← Bk(M

i
t)− T (Qi

k,t, P
⊤
0 , . . . , P⊤

d−1)
15: end for
16: Send sparse encode(Qi

k,t) to server
17: Server Side:
18: for each sub-chunk Bk(Mt) of global momentum Mt do
19: Aggregate: Bk(Mt)← Aggregate{encode(Qi

k,t)}i
20: Inverse DCT: Bk(Mt)← T (Bk(Mt), P

⊤
0 , . . . , P⊤

d−1)
21: end for
22: Update parameters: Xt ← Xt−1 − η(sgn(Mt) + λXt−1)
23: Broadcast sgn(Mt) to workers
24: Worker Side:
25: Receive and update local parameters with sgn(Mt)
26: until stopping criterion met
27: return optimized parameters Xt

Theorem 2 (Convergence of DeMo). Under Assumptions 6, 4, and 5, let {Xt}Tt=1 be the sequence
generated by Algorithm 4. Then, the following convergence bound holds:

1

T

T∑
t=1

E [∥∇L(Xt)∥1] ≤
E[L(X0)− L(XT)]

Tη
+ 2LDη +

σ√
Nnbatch

+R
√
D

√
1− k

M

1− β
√
1− k

M

(
β + 2D

√
2π

N

(
1 +

√
M

k

))
.

Remark 1 (Special Cases and Convergence Rates). (i) In the special case where k = M , the last
term vanishes, simplifying the bound to

1

T

T∑
t=1

E [∥∇L(Xt)∥1] ≤
E[L(X0)− L(XT)]

Tη
+ 2LDη +

σ√
Nnbatch

.

Choosing the step size η = Θ
(

1√
T

)
, we achieve the convergence rate:

1

T

T∑
t=1

E [∥∇L(Xt)∥1] = O

(
1√
T

)
+O

(
1√
N

)
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(ii) Alternatively, if we choose β =
√
1/T , the bound becomes

1

T

T∑
t=1

E [∥∇L(Xt)∥1] ≤
E[L(X0)− L(XT)]

Tη
+ 2LDη +

σ√
Nnbatch

+R
√
D

√
1− k

M

1−
√

1
T

(
1− k

M

)
(√

1

T
+ 2D

√
2π

N

(
1 +

√
M

k

))
.

With the additional choice of step size η = Θ
(

1√
T

)
, the convergence rate is again:

1

T

T∑
t=1

E [∥∇L(Xt)∥1] = O

(
1√
T

)
+O

(
1√
N

)
.

Proof. Let us first decompose the difference in the loss function L using the L-smoothness property:

L(Xt+1)− L(Xt) ≤ ⟨∇L(Xt),Xt+1 −Xt⟩+
L

2
∥Xt+1 −Xt∥2F (L-smoothness of L)

= −η⟨∇L(Xt), sign(Mt+1)⟩+
L

2
∥Xt+1 −Xt∥2F

= −η⟨∇L(Xt), sign(∇L(Xt))⟩+
L

2
∥Xt+1 −Xt∥2F

+ η⟨∇L(Xt), sign(∇L(Xt))− sign(Mt+1)⟩

≤ −η∥∇L(Xt)∥1 + 2Lη2d

+ η⟨∇L(Xt), sign(∇L(Xt))− sign(Mt+1)⟩,

(11)

where we used the inequality

∥Xt+1 −Xt∥2F = η2∥ sign(Mt+1)∥2F ≤ η2d.

Using Lemma 8.3 with a = 1, we bound the last term as

E [⟨∇L(Xt), sign(∇L(Xt))− sign(Mt+1)⟩] ≤ 2E∥∇L(Xt)−Mt+1∥1. (12)

To bound the term E∥∇L(Xt)−Mt+1∥1, we apply the triangle inequality:

∥∇L(Xt)−Mt+1∥1 =

∥∥∥∥∥∥∥∥∥∥
∇L(Xt)−

1

N

N∑
i=1

(βMi
t +∇L(Xt, ξ

i
t))︸ ︷︷ ︸

T1

+
1

N

N∑
i=1

(βMi
t +∇L(Xt, ξ

i
t))−Mt+1︸ ︷︷ ︸

T2

∥∥∥∥∥∥∥∥∥∥
1

≤ ∥T1∥1 + ∥T2∥1.

We separately bound the terms T1 and T2.

Bounding T1: Notice that

T1 = ∇L(Xt)−
1

N

N∑
i=1

∇L(Xt, ξ
i
t)︸ ︷︷ ︸

(∗)

− 1

N

N∑
i=1

βMi
t︸ ︷︷ ︸

(∗∗)

.

To bound the first term (∗), we recall:

(∗) = ∇L(Xt)−
1

N

N∑
i=1

∇L(Xt, ξ
i
t).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

By Assumption 4, the stochastic gradients ∇L(Xt, ξ
i
t) have bounded variance, i.e.,

E
[
∥∇L(Xt, ξ

i
t)−∇L(Xt)∥22

]
≤ σ2

nbatch
.

Thus, applying Jensen’s inequality (from ℓ2 to ℓ1 norms) and independence across i, we have:

E[∥(∗)∥1] ≤
√
DE[∥(∗)∥2] ≤

√
D
√

E[∥(∗)∥22] =
√
D

√
1

N

σ2

nbatch
=

σ
√
D√

N nbatch

.

For the second term (∗∗), we have

(∗∗) = 1

N

N∑
i=1

βMi
t.

Since the tensors {Mi
t}Ni=1 are identically distributed, it follows that

E[∥(∗∗)∥1] ≤
1

N

N∑
i=1

β E[∥Mi
t∥1] = β E[∥Mi

t∥1].

Applying Lemma 1, we can further bound this expectation as:

E[∥(∗∗)∥1] ≤ β
√
DE[∥Mi

t∥2] ≤
βR
√

D(1− k/M)

1− β
√
1− k/M

.

Bounding T2: Using Lemma 2, we have

E[∥T2∥1] ≤
√
DE[∥T2∥2] =

√
DE

[
∥Φt+1 −

1

N

N∑
i=1

P̂i
t∥2

]
(since DCT is orthonormal)

≤
√
D
∑
k∈K

E

[
∥Bk(Φt+1)−

1

N

N∑
i=1

Bk(P̂
i
t)∥1

]

≤ 2D3/2R

√
2π

N

(
1 +

√
M

k

) √
1− k

M

1− β
√
1− k

M

, (by Lemma 2)

Combining these results, we conclude

E[∥∇L(Xt)−Mt+1∥1] ≤
σ
√
D√

Nnbatch

+R
√
D

√
1− k/M

1− β
√
1− k/M

(
β + 2D

√
2π

N

(
1 +

√
M

k

))
.

Hence, from equation 11, we obtain

1

T

T∑
t=1

E[∥∇L(Xt)∥1] ≤
E[L(X0)− L(XT)]

Tη
+ 2LDη +

σ√
Nnbatch

+R
√
D

√
1− k/M

1− β
√

1− k/M

(
β + 2D

√
2π

N

(
1 +

√
M

k

))
.

To analyze the convergence of Algorithm 4, we first need a bound on the expected norm of the
momentum tensors Mi

t. The following lemma provides this bound under Assumption 6.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Lemma 1 (Bound on momentum Mi
t). Suppose Assumption 6 holds, and let {Mi

t}Tt=1 be the mo-
mentum tensor generated by Algorithm 4. Then, for all t ≥ 0, we have the following bound on its
expected norm:

E[∥Mi
t∥2] ≤

Rβ
√

1− k/M

1− β
√

1− k/M
,

provided that β
√
1− k/M < 1.

Proof. Recall from Lemma 8.1 that the momentum Mi
t follows the recursion:

∥Mi
t∥2 ≤

√
1− k

M
∥βMi

t−1 +Gi
t∥2.

Taking expectations and applying the triangle inequality, we have:

E[∥Mi
t∥2] ≤

√
1− k

M

(
β E[∥Mi

t−1∥2] + E[∥Gi
t∥2]
)
.

Iterating this bound recursively, we obtain:

E[∥Mi
t∥2] ≤

√
1− k

M

(
β E[∥Mi

t−1∥2] +R
)

≤ (1− k

M
)β2E[∥Mi

t−2∥2] +R

√
1− k

M

(
1 + β

√
1− k

M

)
≤ . . .

≤ R

√
1− k

M

t∑
j=1

(
β

√
1− k

M

)t−j

.

The geometric series can be bounded as follows:

t∑
j=1

(
β

√
1− k

M

)t−j

≤
R
√

1− k/M

1− β
√
1− k/M

,

assuming β
√
1− k/M < 1 for convergence.

Thus, we have the final bound:

E[∥Mi
t∥2] ≤

R
√

1− k/M

1− β
√

1− k/M
,

completing the proof.

The analysis of sparse top-k averaging begins with Lemma 2, which provides a bound on the ex-
pected bias discrepancy E[δi], highlighting the trade-offs between sample size, dimension, and spar-
sity. This is complemented by Lemma 8.1, which establishes a universal bound for the ℓ1-norm
approximation error, illustrating vector approximation through top-k component selection.

Furthermore, Lemma 8.3 offers insights into the geometric relationships between vectors and their
sign functions, connecting inner product space and L1-norm differences. This is supported by Lem-
mas 8.2, which explore sign-based approximation properties and variance.
Lemma 2 (Bias Bound for Sparse Top-k Averaging). Let integers N,M, k satisfy 1 ≤ k ≤ M ,
and let random vectors {X(j)}Nj=1 ⊆ RM be independent and identically distributed, explicitly
satisfying:

(i) Coordinate independence: For each j ∈ {1, . . . , N}, the coordinates {X(j)
i }Mi=1 are inde-

pendent and identically distributed random variables:

X
(j)
i

i.i.d.∼ Xi, and E[Xi] = µi.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(ii) Boundedness: There exists a finite constant B > 0 such that, almost surely,

|X(j)
i | ≤ B, for all i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}.

Consider the estimator X̄ ∈ RM defined by Algorithm 3 (Sparse Top-k Averaging). Define the
standard empirical mean as

X̄(full) :=
1

N

N∑
j=1

X(j),

and the bias discrepancy introduced by sparsity as, for each coordinate i ∈ {1, . . . ,M},

δi := |X̄i − X̄
(full)
i |.

Then, under these assumptions, there exists a universal constant C > 0, independent of N,M, k,
and B, such that for every coordinate i ∈ {1, . . . ,M},

E[δi] ≤ C B

√
1

N

(
1 +

√
M

k

)
.

Proof. Recall that

δi = |X̄(k)
i − X̄

(M)
i | ≤

∣∣∣∣∣∣ 1ni

∑
j∈Ji

Xj
i − µi

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1N

N∑
j=1

Xj
i − µi

∣∣∣∣∣∣ := T1 + T2.

Bounding the first term T1.

The variable ni follows a Binomial(N, pi) distribution with pi = k/M . Conditional on ni, Hoeffd-
ing’s inequality gives

P (T1 ≥ η | ni) ≤ 2 exp

(
−2niη

2

B2

)
, ni > 0.

We split the analysis into two cases based on ni:

Case 1: Typical case (ni ≥ Npi/2). Using Hoeffding’s inequality, we bound

E[T1 | ni ≥ Npi/2] ≤ C ′′B

√
1

Npi
= C ′′B

√
M

Nk
,

for some absolute constant C ′′ > 0.

Case 2: Rare case (ni < Npi/2). Chernoff bounds for binomial distributions imply

P (ni < Npi/2) ≤ exp(−cNpi),

for some absolute constant c > 0. Thus, we trivially bound T1 ≤ 2B to obtain

E[T1 | ni < Npi/2] ≤ 2B exp(−cNpi),

which becomes negligible for large N relative to the polynomial terms.

Combining both cases, we have for large N ,

E[T1] ≤ C ′′B

√
M

Nk
+ o

(
1√
N

)
.

Bounding the second term T2.

Since Xj
i are bounded in [−B,B], Hoeffding’s inequality gives, for any η > 0,

P (T2 ≥ η) ≤ 2 exp

(
−2Nη2

B2

)
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Integrating over all η yields

E[T2] ≤
∫ ∞

0

2 exp

(
−2Nt2

B2

)
dt = C ′B

1√
N

,

for some absolute constant C ′ > 0.

Combining both terms T1 and T2.

Summing the bounds for T1 and T2, we obtain for sufficiently large N :

E[δi] ≤ C ′B
1√
N

+ C ′′B

√
M

Nk
+ o

(
1√
N

)
.

Factoring B/
√
N explicitly, we conclude

E[δi] ≤ CB

√
1

N

(
1 +

√
M

k

)
,

for an absolute constant C large enough (e.g., C = 2max(C ′, C ′′)). This completes the proof.

Remark 2 (Dependence on Parameters). The bound in Lemma 2 clearly illustrates the scaling of
the bias with respect to the number of samples N , dimension M , sparsity level k, and coordinate
magnitude bound B:

• Sample size (N): The bias decreases at a rate of 1/
√
N , consistent with standard statistical

estimation theory.

• Dimension and sparsity (M,k): The bias scales as
√
M/k, highlighting the bias intro-

duced by aggressive sparsification (small k).

• No sparsification (k = M): In this case, the bias vanishes, as expected.

Here we present and prove a bound concerning the approximation error incurred by approximating
a vector by its top-k largest magnitude components.

Lemma 8.1 (Optimal Universal ℓ1-norm Bound). Let X = (X1, X2, . . . , XM) ∈ RM be an arbi-
trary real vector. For a fixed integer k with 1 ≤ k ≤ M , define the vector X∗ ∈ RM by selecting
the k largest magnitude elements of X and setting all other entries to zero. Then, the approximation
error satisfies the bound

∥X∗ −X∥1 ≤
(
1− k

M

)
∥X∥1.

Furthermore, this bound is sharp. Equality holds if and only if the magnitudes of all elements of X
are equal.

Proof of Lemma 8.1. Notation and Problem Setup. Consider the vector X ∈ RM . Let us sort the
elements of X in non-increasing order of absolute value:

|X|(1) ≥ |X|(2) ≥ · · · ≥ |X|(M).

We define X∗ by retaining the k largest magnitude elements and setting the remaining M − k
elements to zero. Thus, the approximation error is explicitly given by:

∥X∗ −X∥1 =

M∑
i=k+1

|X|(i),

while the original vector norm is:

∥X∥1 =

M∑
i=1

|X|(i).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Identifying the Worst-case Scenario. To determine the maximal possible ratio of the approxima-
tion error to the original norm, consider the scenario where all vector entries are equal in magnitude.
Suppose, without loss of generality, that:

X = (a, a, . . . , a), a ̸= 0.

In this case, any selection of k elements yields the same approximation error. Explicitly, we have:

∥X∗ −X∥1 = (M − k)|a|, ∥X∥1 = M |a|.

Hence, the ratio is exactly:
∥X∗ −X∥1
∥X∥1

=
M − k

M
= 1− k

M
.

Universality and Optimality of the Bound. We now verify that this equal-magnitude scenario
indeed represents the worst-case for any vector X . For an arbitrary vector X , the approximation
error ratio is: ∑M

i=k+1 |X|(i)∑M
i=1 |X|(i)

.

This ratio is maximized precisely when the magnitudes of vector elements are equal. To see this,
observe that any deviation from equal magnitudes increases the share of the total magnitude held
by the top-k elements, thus reducing the ratio. Hence, the equal magnitude scenario is indeed the
worst-case.

Therefore, the universal bound:

∥X∗ −X∥1 ≤
(
1− k

M

)
∥X∥1

holds for all vectors X ∈ RM .

Remark 3. Similarly, for ℓ− 2 norm, we have

∥X∗ −X∥2 ≤
√
1− k

M
∥X∥2

Remark 4 (Approximation error bound under isometric transformations). Let A : RM → RM be
an invertible linear operator satisfying the isometric property

∥A(X)∥2 = ∥X∥2, ∥A−1(X)∥2 = ∥X∥2, for all X ∈ RM .

Define the vector approximation

X∗ = A−1
(
topk(A(X))

)
,

where topk(Y) retains only the k largest-magnitude entries of Y and sets the others to zero.

Then the approximation error satisfies the bound

∥X∗ −X∥2 ≤
√

1− k

M
∥X∥2.

This bound is sharp, with equality attained precisely when the entries of A(X) have identical mag-
nitudes. In particular, when k = M , the approximation error is exactly zero, indicating perfect
reconstruction.
Lemma 8.2. For any x, y ∈ R, we have

|x| − x sign(y) ≤ 2|x− y|.

Proof. If sign(y) = sign(x), we have |x| − x sign(y) = 0 ≤ 2|x− y|.
If sign(y) = − sign(x), we have |x| − x sign(y) = 2|x| ≤ 2|x|+ 2|y| = 2|x− y|.
If sign(y) = 0, we have |x| − x sign(y) = |x| = |x− y| ≤ 2|x− y|.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 5 Decoupled Momentum – High-level Training Loop
Require: learning rate η, momentum β, weight decay λ, sparsity k, DCT matrices {Pℓ}
1: Initialise parameters X0 and global momentum M0 ← 0
2: for t = 1, 2, . . . do
3: // executed on every worker i (in parallel)
4: G i

t ← ∇L(Xt−1; ξ
i
t)

5: M i
t ← βM i

t−1 +G i
t

6: Q i
t ← COMPRESSCHUNKS(M i

t , k, {Pℓ})
7: send Q i

t to server
8: // parameter server
9: Mt ← DECOMPRESS&AGGREGATE

(
{Q i

t }i, {P⊤
ℓ }

)
10: Xt ← Xt−1 − η

(
sign(Mt) + λXt−1

)
11: broadcast sign(Mt) to all workers
12: end for

Algorithm 6 COMPRESSCHUNKS(M, k, {Pℓ}) — run on one worker
Require: local momentum M, sparsity budget k, DCT matrices {Pℓ}
1: Q← ∅ {list of sparse coefficients}
2: for each chunk index c do
3: B ← CHUNKEXTRACT(M, c)
4: q← DCT(B; {Pℓ})
5: qsp ← Top-k(q, k)
6: Q← Q ∪ {(c,qsp)}
7: B ← B − IDCT(qsp; {P⊤

ℓ }) {store residual}
8: CHUNKINSERT(M, c, B)
9: end for

10: return Q {sparse DCT coefficients to transmit}

Lemma 8.3. Let (X,Y) is a joint random variable on Rd×Rd. For any constant a ∈ (0,+∞), we
have

E[⟨X, sign(X)− sign(Y)⟩] ≤ 2a
√
dE∥X/a− Y ∥.

Proof. Without loss of generality, set a = 1.

E[⟨X, sign(X)− sign(Y)⟩] = E[∥X∥1 − ⟨X, sign(Y)⟩]
≤ 2E[∥X − Y ∥1] Lemma 8.2

≤ 2
√
dE[∥X − Y ∥] by Cauchy-Schwarz,

where ∥ · ∥1 is the ℓ1 norm and ∥ · ∥ denotes the Euclidean norm.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 7 DECOMPRESS&AGGREGATE({Qi}, {P⊤
ℓ }) — server side

Require: sparse sets {Qi} from all workers, inverse DCT matrices {P⊤
ℓ }

1: initialise global momentum M← 0
2: for each chunk index c do
3: s← 0 {sum of sparse coeffs}
4: for each worker i do
5: s← s+ LOOKUP(Qi, c)
6: end for
7: B ← IDCT(s; {P⊤

ℓ })
8: CHUNKINSERT(M, c, B)
9: end for

10: return M {reconstructed global momentum}

Model Final Loss ↓ Hellaswag ↑ ARC-Easy ↑ PIQA ↑ Data Tx ↓
acc norm acc acc norm MB/step

DeMo 300M
s = 64, k = 32 2.87 0.37 0.46 0.67 29.9
s = 64, k = 16 2.87 0.38 0.50 0.67 14.9
s = 64, k = 8 2.88 0.38 0.47 0.67 7.49
s = 64, k = 4 2.89 0.37 0.47 0.67 3.74
s = 64, k = 2 2.93 0.36 0.46 0.65 1.87
s = 64, k = 1 2.97 0.35 0.45 0.65 0.93

s = 128, k = 32 2.88 0.37 0.50 0.66 7.49
s = 128, k = 16 2.90 0.37 0.47 0.67 3.74
s = 128, k = 8 2.93 0.36 0.49 0.66 1.87
s = 128, k = 4 2.98 0.35 0.46 0.64 0.93
s = 128, k = 2 3.06 0.33 0.45 0.65 0.46
s = 128, k = 1 3.16 0.31 0.45 0.63 0.23

AdamW-DDP 300M 2.98 0.35 0.46 0.65 636.9

DeMo 1B
s = 64, k = 32 2.63 0.48 0.55 0.70 110.32
s = 64, k = 16 2.63 0.47 0.53 0.70 55.16
s = 64, k = 8 2.64 0.47 0.52 0.69 27.58
s = 64, k = 4 2.67 0.45 0.52 0.70 13.79
s = 64, k = 2 2.71 0.44 0.51 0.69 6.89
s = 64, k = 1 2.76 0.41 0.52 0.69 3.44

s = 128, k = 32 2.65 0.46 0.53 0.69 27.58
s = 128, k = 16 2.67 0.46 0.50 0.70 13.79
s = 128, k = 8 2.72 0.44 0.52 0.68 6.89
s = 128, k = 4 2.76 0.41 0.50 0.67 3.44

AdamW-DDP 1B 2.73 0.43 0.51 0.68 2416.6

Table 3: Results of training loss, downstream evaluation scores, and per-GPU communication re-
quirements of the model sizes and reference trained on 100B tokens

24

	Introduction
	DeMo: Decoupled Momentum Optimization
	Algorithm
	Theoretical Analysis

	Experimental Results
	Experimental Setup
	Pretraining Performance
	Downstream Evaluation
	Ablation Studies

	Related Works
	Discussions and Limitations
	Conclusion
	Use of Large Language Models
	Convergence Analysis
	Preliminaries
	Notations
	Multilinear Transforms and Chunk-wise Tensor Blocking
	Problem Settings

	Convergence Analysis

