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ABSTRACT

Lifelong learning, pivotal in the incremental improvement of decision-making
functions, can be ill-conditioned when dealing with one or several upcoming
tasks that insinuate spurious correlations between target labels and sensitive de-
mographic attributes. This often results in biased decisions, disproportionately
favoring certain demographic groups. Prior studies to de-bias such learners by
fostering fairness-aware, intermediate representations often overlook the inherent
diversity of task distributions, thereby faltering in ensuring fairness in a lifelong
fashion. This challenge intensifies in the context of unlabeled tasks, where dis-
cerning distributional shifts for the adaptation of learned fair representations is
notably intricate. Motivated by this, we propose Sustaining Fair Representations
in Unsupervised Lifelong Learning (FaRULi), a new paradigm inspired by human
instinctive learning behavior. Like human who tends to prioritize simpler tasks
over more challenging ones that significantly outstrip one’s current knowledge
scope, FaRULi reschedules a buffer of tasks based on the proximity of their fair
representations. The learner starts from tasks that share similar fair representa-
tions, accumulating essential de-biasing knowledge from them. Once the learner
revisits a previously postponed task with more disparate demographic distribu-
tions, it is more likely to increment a fair representation from it, as the learner
is now provided a larger rehearsal dataset enriched from the learned tasks with
diverse demographic patterns. FaRULi showcases promising capability in mak-
ing fair yet accurate decisions in a sequence of tasks without supervision labels,
backed by both theoretical results and empirical evaluation on benchmark datasets.
Code is available at: anonymous.4open.science/r/FaRULi/.

1 INTRODUCTION

Organizational decision-making pipelines are increasingly integrating machine learning (ML), with
applications ranging from pre-screening eligible engineers among hundreds of thousands of re-
sumes (Dastin, 2018; Bogen & Rieke, 2018), to predicting criminal recidivism (Chouldechova,
2017) or forecasting educational successes (Holstein et al., 2018), to name a few. Yet, the ML
algorithms are prone to forming shortcut decision paths (Mehrabi et al., 2021), which spuriously
correlate the target variables with the protected features of users, such as gender, age, and ethnicity.
This could lead to predictive results that are biased against certain demographic groups.

For algorithmic group fairness, previous studies propose to eradicate such spurious correlations
through fair representation learning (FRL) (Zemel et al., 2013; Zhang et al., 2018; Chowdhury &
Chaturvedi, 2022), de-biasing resultant ML models via learning latent representation that wipes out
protected feature information from input. However, the FRL methods mostly focus on mitigating
in-domain bias and fail to generalize well to new tasks with data distributional shifts (Barrett et al.,
2019). To wit, whereas a FRL-powered resume screening system can make fair decision for similar
occupations (e.g., web developer, software engineer, or data scientist), its fairness may wane while
screening for very different roles like sales or marketing. Note that in practice hiring tasks are not
always predefined and can emerge unexpectedly, e.g., for arising roles during a pandemic break. It
is computationally and economically extensive to re-train the FRL model for every new task.

To generalize group fairness across a sequence of diverse tasks, recent advances leverage incremental
learning under covariate drift (Zhang & Ntoutsi, 2019; Rezaei et al., 2021; Singh et al., 2021),
enabling dynamic model adaptation to evolving data distribution without the necessity of retraining
on the entirety of previously seen tasks. Alas, these methods still present two major challenges:
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i) They suffer from catastrophic forgetting (Fatemi et al., 2023), failing to sustain the learned fair
representation when adapting to new distributions. For example, then model trained to ensure fair
hiring decisions for marketing roles may not maintain its fairness efficacy when applied to engineer
hiring scenarios. ii) These methods postulate a fully supervised setup and cannot work in label
scarce environments, which are a norm in real-world application. In particular, without label in a
given task, they cannot gauge the disparity between incoming and previously learned data (Corbett-
Davies & Goel, 2018), compromising their capability to discern whether to reuse the existing model
or expand it to adapt to new data distributions. Negative model reuse (Chen et al., 2019; He et al.,
2021) could occur, if the distributions of the incoming and learned tasks substantially differ.

To overcome the two challenges, we propose a novel learning paradigm, named Sustaining Fair
Representations in Unsupervised Lifelong Learning (FaRULi). Inspired by human learning in-
stinct (Elman, 1993), our FaRULi approach schedules tasks based on the proximity of their fair
representations, allowing the learner to start with tasks that share more similar demographic dis-
tribution with the initial task and accumulate de-biasing knowledge of learning fair representations
from them. This strategy ensures that when the learner revisits a previously postponed task, it is
more likely to sustain the fairness in representation learning because it now has enriched de-biasing
knowledge extracted from other prioritized tasks. To realize this intuition, FaRULi leverages an
elastic fair representation learning (EFRL) network to map data from the learned and incoming
tasks into a shared representation space, in which the task-invariant and label information is pre-
served while the protected feature information is obfuscated. A key trait of EFRL lies in its adaptive
network capacity, which is learned per each incoming task. The larger the distance between a new
and the previously learned tasks, the more challenging the extraction of a shared space between them
becomes, and consequently, the larger the learning capacity of EFRL is required. As such, EFRL
suggests a distance metric capable of assessing task-wise disparity, devoid of assumptions on data
distribution or label availability, thereby making FaRULi adaptable over long time spans.

Specific contributions of this paper are as follows:
i) This is the first study to explore fair representation learning from an unsupervised and

lifelong perspective, where the learner must induce a shared representation space across a
sequence of unlabeled tasks, each characterized by a distinct demographic pattern.

ii) A novel FaRULi approach is proposed to tackle the problem, anchored in its strategy to
reschedule the learning order, prioritizing tasks that exhibit similarities with previously
learned tasks, while deferring those that are markedly disparate. FaRULi accumulating
knowledge in such order can de-bias the originally diverse demographic distributions with-
out negative model reuse. We detail the technical specifics in Section 2.

iii) A theoretical analysis on the proposed FaRULi approach is carried out, establishing empir-
ical risk bounds associated with employing a capacity-adaptive learner and optimized task
ordering. Findings of this analysis are delineated in Section 3.

iv) Extensive experiments are conducted to substantiate the viability and effectiveness of our
proposal. On average, our model outperforms three state-of-the-art competitors by 12.7%
and 42.8% in terms of prediction accuracy and statistical parity, respectively. Detailed
results are documented in Section 4.

2 THE FARULI APPROACH

Problem Statement. We consider a sequence of tasks Ti : i = 0, 1, . . . , N , where only the first
task T0 has labeled data, and the other tasks {Ti}N1 remain unlabeled. Define T0 = (X0, Y0, P0)
and Ti = (Xi, Pi), ∀i > 0, where Xi ∈ R|Ti|×d represents the d-dimensional data instances
of the i-th task, Y0 ∈ {0, 1}|T0| the true labels of task T0. Denoted by Pi ∈ {0, 1}|Ti| the random
variable representing a protected feature in each task. Without loss of generality, we let the marginals
P(Xi, Pi) ̸= P(Xj , Pj) for any i ̸= j, indicating the task disparities. For simplicity, we consider
binary Y and P , thereby dividing the predicted results into four groups, shown in the figure below.

Our goal is to train a predictive model f : X 7→
Y across all tasks. At each round, our model
learns task Ti and returns its predicted labels Ŷi

before moving to the next task. After N rounds, the true labels of all tasks are revealed Ŷ1, . . . , ŶN ,
and the model needs to minimize the empirical risk w.r.t. the fairness constraint, defined as:

min E[Ŷi ̸= f(Xi)], subject to |DG/(DG+DR)− FG/(FG+ FR)| ≤ ϵ, (1)

2



Under review as a conference paper at ICLR 2024

where the constraint term coined as statistical parity (SP) (Verma & Rubin, 2018) enforces the level
of discrimination presented in the model predictions is below threshold ϵ. Note, this constraint can
be implemented with various fairness metrics such as equal opportunity (Kallus & Zhou, 2018) or
equalized odds (EO) (Hardt et al., 2016; Alghamdi et al., 2022). Specifically, EO = max{|P(Ŷi =

1 | P = 0, Y ) − P(Ŷi = 1 | P = 1, Y )|,∀Y } requires the predicted positives (Ŷi = 1) to
be independent of the protected feature P and conditioned on true labels Y , which eliminates the
negative affect of large number of FR in the dataset. In practice, one can implement the fairness
constraint in Eq. (1) differently to better accommodate the application requirements. In this study,
both SP and EO are implemented in training and evaluation phases in our experiments.

An overview of the objective function empowering our FaRULi approach takes the following form:

LEFRL = max
g,D

min
ϕ,f

L∑
l

α
(l)
i (L(l)

Pred(ϕ, f)− L(l)
Obfs(ϕ, g)− L(l)

Disc(ϕ,D)), (2)

In Section 2.1, we elucidate how to map data from learned and incoming tasks into a shared latent
space to achieve similar data representations by maximizing LDisc. Fair data representations con-
taining label information are obtained by maximizing LObfs and minimizing LPred, respectively. In
Section 2.2, we give details on how to build an elastic network such that fair representation learning
is conducted in each layer, with weight parameters being updated based on cumulative loss of its cor-
responding layer. A large distance between the incoming and learned tasks will yield a deep network
model, indicating the occurrence of negative model reuse. In Section 2.3, a distance-measurement
metric which considers both the depth of model and weight parameters α is introduced to optimize
the learning order to avoid negative model reuse. Generating high-confidence pseudo-labels for
instances replayed in the following learnings to against catastrophic forgetting is also introduced.

2.1 SUSTAINING FAIR REPRESENTATION VIA ADVERSARIAL LEARNING

Traditional fair representation learning approaches (Beutel et al., 2017; Madras et al., 2018) only
learned fair data representations which contain label information while eliminating biases arising
from the protected feature on one specific task. Our method could learn fair representations from
the labeled task, and be reused for incoming tasks by mapping instances from both learned tasks
and incoming tasks into a shared latent space. While fair data representations are learned from
the labeled task, representations of incoming tasks are approximated to those labeled ones, thus
the model presents comparable performance on new tasks. Specifically, given the first labeled task
T0 and any incoming non-labeled task Ti, we start with the initialization of a retained dataset R(i)

to include all instances with labels, thus R(0) := T0 = (X0, Y0, P0). For an instance x, its task
membership is denoted as m, indicating whether x is from R(0) (i.e., m = 0 if x ∈ X0), or from
Ti (i.e., m = 1 if x ∈ Xi). For any instance x, if x ∈ R(0), the instance is accompanied with a
protected feature p ∈ P0 and true label y ∈ Y0; otherwise, it conveys the protected feature p ∈ Pi

only. A mapping ϕ is learned to project instances from both incoming and learned tasks into a
shared z-dimensional latent space and generate representations z = ϕ(x) ∈ Rz . Given R(0) and
Ti, a classifier group is learned, which includes three functions. Namely, 1) f(·) that predicts the
label of each instance x, denoted as ŷ = f(z), 2) g(·) that infers the demographic group (favored
or deprived) that x belongs to, denoted as p̂ = g(z), and 3) D(·) that discriminates x by its task
membership, denoted as m̂ = D(z). The fair representation learning loss function is defined as
follows:

LFRL = max
h,D

min
ϕ,f

[LPred(f(ϕ(x)), y)− λ1LObfs(g(ϕ(x)), p)− λ2LDisc(D(ϕ(x)),m)] , (3)

where λ1 and λ2 are positive weight parameters to balance the three terms. Defined by ℓ(·, ·) gaug-
ing the loss between the true and predicted variables. Specifically, the first prediction loss term
LPred(ϕ, f) = E(x,y)∈R(0) [ℓ (y, ŷ)] is minimized to enhance the capability of f(·) in predicting the
label, thus retaining label information in data representations from R(0). The second obfuscation
loss term LObfs(ϕ, g) = E(x,p)∈R(0)∪Ti

[ℓ (p, p̂)] is maximized to make g(·) fail to infer the demo-
graphic group, thus obfuscate protected information from data representations from both tasks. The
third task discrimination loss term LDisc(ϕ,D) = E(x,m)∈R(0)∪Ti

[ℓ (m, m̂)] is also maximized to
lower the ability of D(·) to determine whether an instance x originates from R(0) or Ti. As a result,
the learned representations of data are shared by R(0) and Ti, enabling unsupervised model trans-
fer (Bengio, 2012; Long et al., 2016), such that if the learner can make accurate and fair predictions
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Figure 1: The workflow of our method. R(0) is initialized as the labeled task, and its distances from
T1 and T2 are gauged by the depths of the learned EFRL networks. T2 is selected as the candidate
because extracting shared representation from R(0) and T2 requires a shallower network. Instances
belonging to T2 but wrongly classified as part of R(0) by D(·) and their high confidence pseudo-
labels generated by f(·) are incorporated into the retained dataset: R(0) → R(1), being replayed in
the next learning process with T1 and T3. Instances with labels are represented by blue points; those
without labels are represented by yellow; and those with pseudo-labels are represented by pink.

on the data representations from R(0), comparable performance on those from Ti can be envisioned.

2.2 ELASTIC FAIR REPRESENTATION LEARNING NETWORK

While constructing shared representations for sustaining fairness in two tasks, the fact that any
incomming task Ti has no labeled data make an early-stop of training impossible, increasing the
likelihood of overfitting on the labeled R(0), thereby incurring negative knowledge transfer (Wang
et al., 2019). This issue cannot be observed by evaluating the prediction performance on incoming
tasks because of the unavailability of label information. Instead of relying on labels, we propose an
EFRL network that enables gauging task-wise distances using its adaptive learning capacity (Ganin
& Lempitsky, 2015; Long et al., 2015). The depth of EFRL is deemed as a learnable parameter, and
the deeper the model, the farther the distribution of the incoming task is from that of learned tasks.
Hence, upon activation of a deep network, we can discern the emergence of negative model reuse.

Specifically, we build an over-complete neural network consisting of L layers and for any l-th layer,
it is assigned with a weight parameter α(l) and linked with an independent classifier group. Every
layer establishes and generates its unique latent space and fair data representations. After every
batch training, the losses for each layer are updated via Hedge BackPropagation (HBP) (Freund &
Schapire, 1997; Sahoo et al., 2018). The losses and predictions of the EFRL network are determined
by a weighted sum of all layers, defined as:

LEFRL =min
ϕ,f

max
h,D

L∑
l=1

α(l)
[
L(l)

Pred(ϕ, f)− λ1L(l)
Obfs(ϕ, g)− λ2L(l)

Disc(ϕ,D)
]
,

ŷ =

L∑
l

α(l)ŷ(l), p̂ =

L∑
l

α(l)p̂(l), m̂ =

L∑
l

α(l)m̂(l),

(4)

where the superscript l indicates that the loss terms are taken over the l-th layer. Besides, the
loss of each layer is accumulated after T batch trainings to update weight parameters as: α(l) =

α(l)β
∑T

t=1 LEFRL/
∑L

l=1 α
(l)β

∑T
t=1 LEFRL , which guarantees ∀α(l) ∈ (0, 1). Denoted by β is the dis-

count rate parameter. The greater the loss suffered by a layer, the smaller its corresponding weight.
Hence, the layer with the largest weight value is considered as the largest depth of the model.

The intuitions behind the design of our EFRL network are as follows. First, because of the phe-
nomenon coined diminishing feature reuse (Huang et al., 2016; Larsson et al., 2017), where deep
representations tend to wash out the semantic meanings of raw feature inputs due to random initial-
ization, the deeper layers converge more slowly than shallower layers. Thus, the weight parameters
α(l) associating with shallow layers (i.e., with small l) will dominate during the early training phases.
Second, as the adversarial training proceeds, deep layers start to take over by gradually increasing

the values of their associated weights α(l). This is because that a deep layer l with large learning
capacity is likely to yield representation that better obfuscates protected feature information (i.e., en-
larging L(l)

Obfs(ϕ, g)) and extracts shared inter-task distributions (i.e., enlarging L(l)
Disc(ϕ,D)), thereby

minimizing the loss L(l)
EFRL at its corresponding depth l, as defined in Eq. (4). Third, the weights
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(a) R(0) → T1 (b) R(0) → T2 (c) R(1) → T2

Figure 2: Trends of weight coefficients at various network depths w.r.t. the number of training
epochs. Deeper layers tend to dominate if the incoming task is more distant from the retained data.

α(l) of very deep layers (i.e., very large l) will remain small after convergence, because such layers
have accumulated large loss

∑T
t=1 LEFRL during the previous T training iterations, which lowers the

value of α(l) experientially after applying the discount β ∈ (0, 1).

We carry out both theoretical and empirical studies to rationale our design intuition. Specifically,
we derive Theorem 1 in Section 3, which suggests the existence of an optimal, intermediate layer
l⋆ ∈ [1, L], and that our EFRL network can approximate a network trained with fixed-depth l⋆, while
knowing the exact value of l⋆ across all tasks is impossible in practice. In terms of experiment, we
follow the study by He et al. (2021) to visualize the dynamics of layer weights during training, as
shown in Figure 2. We reduce the experiments on the Bias-MNIST dataset for visualization, where
the updating trends of weights with respect to the number of training epochs are presented. The third
task T2 is deemed as the most faraway task, in which the distribution of background colors over digit
types is very different from other four tasks; the details of Bias-MNIST are presented in Section 4.1.
We make three observations. First, while the incoming task T1 is close to the retained dataset R(0),
only shallower layers are enough to approximate the latent space and deeper layers are not activated.
Second, negative model reuse is incurred if we enforce learning T2 from R(0) immediately. As
shown in Figure 2b, even the weights of shallow layers are the same as that of deeper layers at
initial iteration, our EFRL network ends up with assigning large weights on deep layers. Third, if
we prioritize other tasks by postponing T2, the shallow layers in our EFRL network would suffice to
approximate such a mapping ϕ that satisfies Eq. (4), of which the weights remains large as training
proceeds, as illustrated in Figure 2c. These observations coincide with our intuition, rationalizing
the use of learned weight coefficients in EFRL network to quantify the distance between tasks.

2.3 OPTIMIZING LEARNING ORDER AND DATA REHEARSAL

To avoid negative model reuse, the fair representation learning is not conducted as soon as observ-
ing a new incoming task. Instead, we select the task which presents the most similar distribution
to learned tasks from a set of tasks as the candidate for following learning. The more distant the
incoming task from the learned tasks, the deeper the resultant EFRL network. We introduce a
similarity-measurement metric which considers both the model depth and weight parameters, de-
fined as Q = −

∑L
l=1 l ·α(l) logα(l). The larger value it returns, the further the distribution distance

of the incoming task is from learned tasks. As shown in Figure 1, the retained dataset R(0) is initial-
ized, while two tasks T1 and T2 arrives in. The fairness representation learning is conducted for T1
and T2 respectively, each alongside R(0) to obtain a latent space where: 1) data representations of
R(0) are fair; 2) representations of new tasks are similar to those of R(0). Because T1 shows a more
distinct distribution with R(0) than T2, its learning process is at the expense of invoking a deeper
model and returns a larger Q value. Hence, T2 is selected and T1 remains for the next learning
process with a new incoming task T3.

Identifying the closest task also helps address the catastrophic forgetting in lifelong learning. Be-
cause, except for the first task T0, all incoming tasks are devoid of labels under unsupervised, we
use pseudo-labels (predictions made by the predictor f(·)) as the replacements of true labels, to
replay them alongside with corresponding data during following learning processes. Without opti-
mizing the learning sequence, when the distribution of the incoming task deviates highly from that
of learned tasks, the data representation of the new task cannot approximate that of the existing
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tasks. This discrepancy will render the predictor f(·) incapable of producing accurate predictions.
Therefore, after task re-ordering, we assign pseudo labels to data instances that can be predicted by
f(·) with high confidence. We leverage the likelihood of task discrimination as the measurement
of prediction confidence. The less likely that the task discriminator D can differentite whether the
instance is originally from R(0) or T2 after representation, the higher the confidence level of making
prediction on this instance. The retained dataset is updated to R(1) by integrating such instances. A
new learning process between R(1) and two tasks, T1 and T3, will be repeated with knowledge from
T2 replayed in the form of pseudo-labeled instances.

3 THEORETICAL ANALYSIS

In this section, we investigate the risk bounds of the EFRL network model and the optimized learning
order. First, in EFRL, we observe that the prediction is based on the outputs of all hidden layers in
weighted combination, where several layers may yield less expressive latent representations (e.g.,
the too shallow or too deep layers) to negativly affect learning performance. Suppose there exists an
oracle knowing the optimal depth of the adversarial network for each task beforehand, resulting in
global optimum. We firstly investigate the performance gap between EFRL that learns the optimal
model depth from data and the oracle-powered model that is always initialized with optimal depth.
Theorem 1. Over T rounds of batch training, our FaRULi suffers cumulative loss:

LFaRULi ≤ Cβ ·min
l⋆

{ T∑
t=1

L(l),t
EFRL

}L

l=1
+

lnL

1− β
, (5)

where Cβ = ln(1/β)/(1− β) > 0 is a monotonically decreasing scalar.

Remark 1. A hindsight optimal model of which the optimal depth l⋆ that yields the least learning
loss over T rounds, presented as the above equation, provides a natural upper bound of our FaRULi
model. Theorem 1 suggests that our model is comparable to this optimal model (cf. limβ→1 Cβ =
1, lnL/(1−β) < 0). As in practice the optimal l⋆ is unknown and can vary according to datasets, it
is not realistic to conduct a set of experiments to decide the optimal depth for each dataset. Instead,
our method can help the model automatically learn the optimal depth at each round and achieve the
comparable cumulative loss. Hence, our FaRULi learner strictly enjoys a lower learning loss than
any neural network models with their depth fixed in ad-hoc.

Second, our FaRULi reschedules the order of learning tasks based on the distance metric suggested
by the EFRL model. The theoretical performance of this task order optimization is bounded by:

Theorem 2. Denoted by ϵR(i)(ĥ) and ϵTi(ĥ) the empirical risks suffered by using ĥ to predict data
in R(i) and Ti, respectively. Let H be a hypothesis space on X with VC dimension d. |R(i)| and |Ti|
are samples of size n from two domains R(i) and Ti respectively. For any δ ∈ (0, 1), with probability
at least 1− δ,

ϵTi
(ĥ) ≤ ϵR(i)(ĥ) +

1

2
d̂H∆H

(
|R(i)|, |Ti|

)
+ 4

√
d log (2n) + log

(
2
δ

)
4n

+ γ. (6)

In Theorem 2, we let h(·) denote the EFRL model learned from the hypothesis space H. The
empirical risk for any model can be defined as: ϵRz (h, f) = Ez∼Rz [|h(z)− f(z)|], where the error
difference between h(·) and any other predictor f(·) is calculated. When f(·) indicates the real data-
label distribution, the risk can be abbreviated as ϵRz (h). In addition, an ideal joint hypothesis h∗

from the hypothesis space is the hypothesis which minimizes the combined errors on both retained
dataset and candidate task: h∗ = argminh∈H ϵR(i)(h) + ϵTi

(h) . The combined error of the ideal
hypothesis is defined as: γ = ϵR(i)(h∗) + ϵTi(h

∗). Note, no such h∗ can be obtained in practice, as
Ti has no label unless i = 0. As such, we can remark:

Remark. The bound suggested by Theorem 2 establishes a relationship between the empirical risks
and the H-divergence of retained dataset and the candidate task. It indicates that the additional risks
associated with the elastic model are solely influenced by the distance between the retained dataset
and the incoming task. The closer distance between two tasks, the fewer prediction errors the elastic
model will incur. This is in accordance with our design that we introduce the task membership
discrimination loss LDisc which always approximates retained dataset and every incoming task in
a shared latent space. Especially for the candidate task, it has the closet distance to the retained
dataset, so the least prediction errors will be made while adapting knowledge to it. We deduce
that if the distance between distributions of the retained dataset and the candidate task is less than
1
2dH∆H

(
R(i), Ti

)
, the empirical risk of the model will be minimized.
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4 EXPERIMENTS

4.1 EVALUATION SETUP

Empirical results are presented to verify the viability and effectiveness of our FaRULi. Detailed ex-
perimental setups are elaborated in Section 4.1. Results and findings are extrapolated in Section 4.2.

No. Dataset # Samples # Features # Tasks Rejected / Granted Deprived / Favored

1 Adult 30 010 15 12 75:25 32:68
2 KDD Census-Income 199 523 41 9 94:6 52:48
3 Bank marketing 31 647 17 12 88:12 40:60
4 Dutch census 42 125 12 10 52:48 50:50
5 Diabetes 71 236 50 9 54:46 46:54
6 Law School 14 298 23 6 5:95 16:84
7 Bias-MNIST 60 000 28× 28× 3 5 10: . . . :10 68:32

4.1.1 Dataset Preparation
Our FaRULi methodology is evaluated on seven real-world datasets across four fields, demonstrating
its broad applicability. Descriptive statistics related to the datasets under study are provided in
above Table. Because propagating knowledge across multiple disparate datasets is a much different
research question, we conduct the incremental learning setting within datasets where the features
selected for splitting sub-tasks have both direct and indirect correlations with the label and protected
feature, respectively, inspired by Le Quy et al. (2022)

• Financial Datasets (Entries 1-4): The Adult dataset comprises demographic information uti-
lized to predict if an individual has high income. Gender is recognized as a protected feature, and
the dataset is segmented into 12 occupation-based tasks. KDD Census-Income dataset shares
the same prediction task and protected attribute as Adult, and is partitioned into 9 tasks accord-
ing to work-class. Bank marketing dataset involves the prediction task forecasting whether a
client will subscribe to a deposit scheme. The protected attribute is marital status, and the dataset is
divided into 12 occupation-based tasks. The Dutch census dataset aims to predict whether an
individual is engaged in a high-level occupation. Gender is treated as the protected attribute, and
the dataset is partitioned into 10 age-based tasks. • Healthcare Dataset (Entry 5): The Diabetes
dataset aims to predict the likelihood of a patient being readmitted within 30 days. Gender is treated
as the protected attribute, and it is split into 9 age-based tasks. • Educational Dataset (Entry 6):
The Law school dataset is to anticipate whether a candidate would pass the bar exam. Ethnicity
is considered as the protected feature, where white demographic is recognized as favored and other
five ethnic groups are classified as deprived. The dataset is divided into six tasks based on Tier.
• Vision Dataset (Entry 7): We follow (Bahng et al., 2020) to construct a Bias-MNIST dataset
consisting of 28 × 28 × 3 hand-writing digits, with background color of each image defining the
protected feature. We divide the dataset into five tasks, with each task containing ten digits from
0 to 9. The tasks differ in two aspects: 1) the class distribution P(Y ), e.g., T3 contains the largest
number of digit 7 and while T5 has the least, and 2) the conditional distribution P(Y |P ), e.g., T1 has
more than 80% images of digits 1, 2, and 3 in red, while T3 has more than 80% of them in green.

4.1.2 Compared Methods

Five rival models are employed for comparative study. • Fair Adversarial Multi Task Learning
(FaMTL): jointly learns all tasks with full label information, rather than employing incremental
learning. • ULLC (He et al., 2021): is a lifelong method which only focuses on maximizing accu-
racy without considering fairness concerns. • Fair Adversarial Debiasing Learning (FaDL) (Zhang
et al., 2018): employs a fair adversarial network framework to increase the prediction capability of
target labels while reducing the influence of protected feature in the predictions. • FaIRL (Chowd-
hury & Chaturvedi, 2023): tackles the challenge of incremental learning by incorporating a replay
strategy. Parts of samples from previous tasks are randomly sampled for all following trainings to
preserve performance across all tasks. It relies on access to complete label information. • UnFaIRL:
is a variant of our method. It learns upon the observation of new task instead of re-ordering tasks
as FaIRL did, but under unsupervised settings. ULLC and FaDL are designed for one task, and
extended to an incremental model with the re-play mechanism for fair comparisons. In this setup,
the first task is provided with full label information, while subsequent tasks utilize pseudo-labels
as replacements for ULLC, FaDL and FaIRL. The changes in the demographic distribution of each
dataset across different tasks can be observed in Figure 3.
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(a) Adult (b) KDD Census-Income (c) Bank marketing

(d) Dutch census (e) Diabetes (f) Law School

Figure 3: Barchart illustration of the different demographic distributions P(Y = 1|P = 1) and
P(Y = 1|P = 0) across all tasks in six studied datasets.

Table 1: Comparative results on 6 datasets with 3 metrics.

No. Dataset FaMTL ULLC FaDL FaIRL UnFaIRL FaRULi

Evaluation Metric = Accuracy

1 Adult .799± .000 .780± .006 .757± .000 .651± .082 .728± .007 .733± .013
2 KDD Census-Income .944± .000 .792± .013 .678± .000 .605± .133 .714± .006 .722± .006
3 Bank marketing .891± .000 .839± .012 .684± .000 .580± .072 .722± .006 .730± .006
4 Dutch census .789± .000 .784± .002 .526± .000 .472± .116 .747± .001 .752± .001
5 Diabetes .618± .000 .565± .005 .459± .002 .501± .030 .584± .001 .590± .001
6 Law School .936± .000 .924± .006 .905± .000 .640± .088 .933± .001 .939± .002

Evaluation Metric = Statistical Parity

1 Adult .032± .000 .127± .038 .027± .000 .160± .095 .122± .023 .042± .007
2 KDD Census-Income .003± .000 .170± .016 .067± .000 .122± .093 .041± .011 .020± .003
3 Bank marketing .016± .000 .022± .043 .032± .000 .138± .127 .022± .004 .046± .005
4 Dutch census .049± .000 .378± .024 .011± .001 .266± .246 .099± .002 .107± .005
5 Diabetes .043± .000 .042± .034 .037± .012 .137± .106 .047± .004 .004± .001
6 Law School .016± .000 .149± .018 .071± .000 .225± .153 .034± .001 .002± .000

Evaluation Metric = Equalized Odds

1 Adult .163± .000 .214± .018 .150± .000 .196± .082 .210± .014 .178± .005
2 KDD Census-Income .220± .000 .256± .021 .087± .000 .168± .101 .163± .011 .077± .003
3 Bank marketing .209± .000 .071± .040 .131± .000 .122± .094 .143± .005 .123± .008
4 Dutch census .362± .000 .228± .011 .009± .000 .167± .155 .136± .001 .115± .007
5 Diabetes .038± .000 .078± .029 .027± .001 .073± .032 .060± .001 .022± .002
6 Law School .366± .000 .514± .025 .285± .000 .228± .133 .168± .002 .096± .001

4.1.3 Evaluation Metrics
To evaluate model performance on all tasks, we extend the metric introduced in Section 2 to the
accumulative version. The accumulative accuracy refers to the average accuracy (Lopez-Paz &
Ranzato, 2017) of the model across all tasks up to and including the current task TN , defined as
Accuracy = 1/N

∑N
i Acc(Ti), where Acc(Ti) returns the accuracy on Ti. Similarly, accumula-

tive weighted statistical parity and equalized odds are defined as SP =
∑N

i |ωiSP (Ti)|, EO =∑N
i |ωiEO(Ti)|, ωi =

|Ti|∑N
i |Ti|

, where SP (Ti) and EO(Ti) return the statistical parity and equal-
ized odds on the predicted Ti, respectively, and |Ti| denotes the number of instances in Ti. For
Bias-MNIST that has multiple classes, we follow (Hardt et al., 2016) to take the class that maxi-
mizes EO as the calculated EO value. The weight parameters ωi represent the proportion of each
task’s sample size in the entire dataset. Therefore, this weighted sum can prevent the phenomenon
where the model performs poorly on tasks with large sample sizes, yet still achieves a fair overall
result. The higher the accuracy, the lower the statistical parity, the better the model performs.

4.2 RESULTS AND FINDINGS

In an endeavor to mitigate the potential error, each experiment was replicated ten times to present its
average value and standard deviation. The collective performance of the algorithm across all datasets
is presented in Table 1, whereas performance on every task is delineated in Figure 4, Figure 5 and
Figure 6. We present these experimental results to answer two research questions (Q1 – Q5).
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Figure 4: The trends of Accuracy of our FaRULi approach and its 5 competitors on 4 datasets.
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Figure 5: The trends of Statistical Parity of our FaRULi approach and its 5 competitors on 4 datasets.
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Figure 6: The trends of Equalized Odds of our FaRULi approach and its 5 competitors on 4 datasets.

Q1. How does our FaRULi compare to the state-of-the-art rival models? We will address this
question from two perspectives. First, we compare our FaRULi with two upper bound baselines. For
FaMTL, it trains all tasks together under full supervision conditions. Hence, it should outperform
our algorithm in terms of accuracy and fairness across all datasets. However, as shown in Table 1,
Figure 4, and Figure 6 our FaRULi has higher accuracy and lower statistical parity and equalized
odds on the Law School dataset. In addition, apart from the KDD Census-income and Bank
marketing datasets, the average performance of FaMTL is only 3.2% higher than ours on the re-
maining four datasets. When comparing statistical parity, we can observe that FaRULi yields smaller
values on two of the six datasets: Diabetes, and Law School. Its average performance is 1.0%
higher than FaMTL among all datasets. ULLC has labels only for the first task but does not con-
sider the bias resulting from protected information, so it is also a accuracy upper bound approach.
However, it only outperforms FaRULi in accuracy on four datasets. While considering statistical
parity and equalized odds, the values of FaRULi are on average 14.5% and 0.125 lower than that of
ULLC, respectively. This is particularly evident in the Dutch dataset, where the statistical parity
of ULLC is 37.8% nearly four times the value obtained by ours. Therefore, our algorithm achieves
comparable results in terms of both accuracy and fairness with two upper bound baselines. Second,
we compare our FaRULi with two rival models, FaDL and FaIRL. To ensure fair comparative study,
pseudo-labeled instances are replayed in both our approach and its competitors in the lifelong learn-
ing process. For FaDL, FaRULi demonstrates superior accuracy on 5 out of 6 datasets, exceeding
FaDL by over 10% on the KDD Census-income, Dutch, and Diabetes datasets. In terms
of statistical parity and equalized odds, FaRULi also obtains better values on 3 and 4 datasets, re-
spectively. FaDL achieves a much smaller statistical parity than ours on the Dutch dataset, but it
only achieves the accuracy of 52.6% on Dutch, and is over 20% lower than ours’ 75.2%. We can
also observe from Figure 4c, Figure 5c and Figure 6c, FaDL only propagated knowledge related to
fairness to the next task but ignored label information. This is because the performance of FaDL is
influenced by T1 and T2, which are next to R(0). Without the assistance of shared latent space and
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Figure 7: Results of single-task supervised learning with and w/o fairness constraint on Adult and
Dutch datasets.

re-ordering, the forced reuse of the model leads to the bias towards these two tasks, which in turn
results in poor performance on the other tasks. Therefore, FaRULi performs better than FaDL in
terms of prediction accuracy and fairness. Compared with FaIRL, FaRULi achieves superior perfor-
mance on 17 out of 18 results. Particular for statistical parity, where values of FaIRL are similar to
that of ULLC, which does not exclude protected information. This is due to the instability of this
algorithm, a fact confirmed by its high standard deviation.

Q2. Does lifelong learning with re-ordering lead to performance improvement? We answer
this question by comparing our FaRULi with two rival models, FaDL and FaIRL, and the variant
version of our method UnFaIRL. First, although none of the three competitor models possess re-
ordering, FaIRL is the worst one, providing high statistical parity and standard deviations on each
dataset, observed from Table 1. This instability suggests that, after observing multiple tasks, FaIRL
is either unable to stably propagate fair knowledge when encountering new tasks, or it fails to gen-
erate accurate pseudo-labels for the new tasks, without re-ordering the learning sequence. Second,
FaDL performs better than FaIRL, but still falls short of FaRULi. Our approach outperforms FaDL
in five out of the six datasets among both metrics. Particularly for the Dutch census dataset,
the accuracy of FaDL is only 52.6% while that of FaRULi is 75.2%. We can observe from Fig-
ure 4c that the performance of FaDL on each task presents a trend opposite to our method. When
observing tasks T1 and T2, which show distributions different from other tasks, our method re-orders
the learning sequence to learn T1 and T2 until the end, while FaDL forces itself to learn these two
tasks because they are adjacent to T0. Although FaDL performs better accuracy on the first four
tasks of Bank marketing, its result declines after undergoing the learning of T4, and becomes
worse than ours in Figure 4b. Without re-ordering, their learning process cannot avoid the negative
reuse cause by T4. As a result, although our method makes more mistakes during T1 and T2, these
mistakes do not impact the model’s performance on other tasks. In contrast, FaDL’s bias towards
these two tasks results in poor performance on all other tasks. Final, we employed ablation study
to compare FaRULi with its variant UnFaIRL. As evidenced in Table 1, FaRULi outperforms Un-
FaIRL in terms of two evaluation metrics among most datasets. Specifically, the accuracy achieved
by FaRULi is greater than that of UnFaIRL in all datasets, while FaRULi shows smaller statisti-
cal parity than UnFaIRL in 4 out of 6 datasets. This difference was especially pronounced within
the Diabetes and Law School datasets, with FaRULi presenting values of 0.4% and 0.2% re-
spectively, as opposed to the 4.7% and 3.4% demonstrated by UnFaIRL. Hence, we can conclude
that FaRULi achieves better performance in terms of both accuracy and fairness with the help of
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Table 2: Comparative results on Bias-MNIST with 2 metrics.

Model T0 T1 T2 T3 T4 Avg.

Evaluation Metric = Accuracy

FaMTL .969± .100 .966± .090 .971± .092 .975± .136 .983± .094 .973± .087
ULLC .929± .057 .904± .082 .887± .124 .925± .070 .920± .073 .913± .062
FaDL .939± .089 .911± .078 .855± .085 .851± .089 .886± .065 .888± .066
UnFaIRL .933± .062 .888± .107 .889± .072 .896± .087 .869± .066 .895± .078
FaRULi .952± .125 .929± .096 .887± .100 .946± .110 .933± .079 .929± .088

Evaluation Metric = Equalized Odds

FaMTL .041± .087 .094± .104 .488± .076 .043± .087 .029± .083 .139± .043
ULLC .212± .081 .361± .079 .489± .107 .247± .069 .243± .051 .310± .110
FaDL .267± .073 .217± .121 .396± .065 .379± .064 .334± .120 .319± .092
UnFaIRL .177± .070 .381± .109 .496± .130 .237± .094 .374± .095 .333± .098
FaRULi .093± .116 .164± .091 .218± .144 .099± .076 .130± .066 .141± .100

re-ordering the learning sequence than three rival models in general. The analysis about under what
circumstances re-ordering will lead to substantial improvements is illustrated in the supplementary.

Q3. What is the upper performance bounds for single-task supervised unconstrained and
fairness-constrained baselines? To better observe the upper bound of the model’s ability in pre-
diction and ensuring fairness in our problem, we conducted a set of experiments under full supervi-
sion. Specifically, the model is required to perform single-task learning on each task of every dataset,
under two conditions: with and without fairness constraints. The results of the experiments on the
Adult and Dutch datasets are presented in the form of barchart in Figure 7. In general, across
all tasks in the Adult dataset, except for T8, the model unconstrained by fairness outperforms in
terms of accuracy, showing an average improvement of 6.2%. On the Dutch dataset, this model
achieves superior accuracy on every task, with an average enhancement of 7.9%. Conversely, the
model constrained by fairness shows superior performance in fairness metrics EO. It achieves an
average improvement of 0.115 and 0.116 on the Adult and Dutch datasets, respectively. Espe-
cially for T4 and T5 of the Adult dataset, it improves by 0.604 and 0.521, respectively.Besides, for
single-task supervised learning without fairness constraints, we can observe that although tasks all
originate from the same dataset, their respective prediction accuracies vary largely. For example, in
the Adult dataset, the highest accuracy is found in T7, as high as 95.1%, but in T10, the accuracy
drops by more than twenty percent to 72.6%. These results substantiate the variation of conditional
probability P(Y |X) across different tasks.For single-task supervised learning with fairness con-
straints, we can observe the large variations in terms of both accuracy and fairness performances.
For example, in the Adult dataset, we can observe predictions being both fair and accurate (e.g.,
T0, acc=81.7% and EO=0.082), fair yet inaccurate (e.g., T9, acc=58.9%, EO=0.088), accurate yet
unfair (T7, acc=93.2%, EO=0.24), and unfair and inaccurate (e.g., T3, acc=56.6%, EO=0.22). These
results demonstrate the variations of both conditionals inP(Y |X) and P(Y |P ), highlighting the per-
formance bound in each single task and calling for lifelong learners that can respect the different
variation patterns of P(Y |X) and P(Y |P ) across tasks.

Q4. Can our proposed method be generalized to non-linear high-dimensional datasets? We
leverage the results from Bias-MNIST to answer this question, documented in Table 2 reduced
from Table 1 because FaIRL is tailored for binary problem. We present the performance of five
models on each task and their average values. The average result is equivalent to the accumulative
result, as each task in the Bias-MNIST dataset is of the same scale. From Table 2, we can have two
observations. First, our proposed FaRULi is effective on non-linear high-dimensional image datasets
as well, as our model achieved comparable performance to FaMTL with fully supervision, evidenced
by average accuracy of 92.9% and EO value of 0.141. Compared to the other three algorithms, our
method showed an average improvement of 3.3% percent in accuracy and 0.179 in EO.
Second, we observe that all models perform the worst on T2. Notably, FaMTL achieves EO values
below 0.1 in all tasks except for T2, where the value is 0.488. This is because, here, we intentionally
appoint T2 as the most faraway task, in which its conditional P(Y|P) largely differs from all other
four tasks. Therefore, both FaDL and UnFaIRL that learn tasks based on the order of observation
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Table 3: Impact of the fairness regularization constants λ1 on two datasets.

Dataset Metric λ1=0.01 λ1=0.03 λ1=0.05 λ1=0.1 λ1=0.5 λ1=1

Law School
Acc .916± .001 .939± .002 .899± .002 .941± .001 .047± .000 .047± .000
SP .162± .003 .002± .003 .054± .001 .012± .000 .000± .000 .000± .000
EO .269± .004 .087± .001 .107± .002 .050± .001 .000± .000 .000± .000

– – λ1=0.01 λ1=0.03 λ1=0.05 λ1=0.07 λ1=0.09 λ1=1

Bank marketing
Acc .742± .004 .740± .009 .730± .006 .727± .008 .714± .005 .661± .012
SP .071± .004 .010± .002 .046± .005 .118± .004 .167± .004 .575± .026
EO .053± .006 .038± .005 .064± .002 .142± .008 .189± .005 .650± .053

experience a sharp decline in performance after T2. For example, FaDL works better in the first two
tasks T0 and T1 (average accuracy = 92.5%, average EO = 0.242), but cannot generalize to other
tasks. In contrast, our model maintains good performance on T0, T1, T3, and T4, all of which have
different conditionals P(Y|P), outperforming FaDL and UnFaIRL by 3.8% and 0.185 in Accuracy
and EO on average, respectively. Only on the most faraway T2, our model arrives at the comparable
accuracy performance as them. This aligns with our assumption that the model cannot generalize to
a highly disparate task, and our model resolves the negative transfer issue by prioritizing T1, T3, and
T4 and achieving significantly better EO performance on them over FaDL and UnFaIRL.

Q5. What is the impact of the fairness regularization constants λ1? We have conducted the
experiments and presented results from two datasets Bank marketing and Law School in
Table 3 for demonstration. For the Law School dataset, we observed that as the fairness regular-
ization coefficient λ1 increased, SP and EO values appropriately decreased from 0.071 and 0.053
to 0. However, this was accompanied by a decline in accuracy, f rom 91.6% to 4.7%. This pattern
highlights the trade-off between accuracy and fairness in lifelong learning settings, suggesting that
imposing stringent fairness constraints on the learner might lead to a significant drop in classifica-
tion accuracy. In such cases, the learner tends to rejects all instances into Y=0, effectively ceasing
to make predictions to avoid unfair outcomes.
Another negative trend is evident in the Bank marketing dataset. Initially, similar to Law
School, an increase in λ1 from 0.01 to 0.03 causes both SP and EO to decrease, at the expense
of reduced accuracy, from 0.071 and 0.053 to 0.010 and 0.038, respectively. However, as the fair-
ness requirement is further heightened, the learner’s performance deteriorates in both accuracy and
fairness metrics. A distinct increase in SP and EO is observed as λ1 rises from 0.05 to 0.09, with
values escalating more than threefold, from 0.046 to 0.167 and 0.064 to 0.189, respectively. When
λ1 finally reaches 1, unlike in the Law School dataset, the fairness metrics do not drop to zero.
Instead, they continue to increase, surpassing 0.5. These findings suggest that increasing the fairness
demands placed on the model can lead to its failure. The model not only shows poor performance by
rejecting all points but also becomes ineffective in terms of both prediction accuracy and fairness.

5 RELATED WORK

Fair Representation Learning (FRL). Whereas bias in learning systems may exsit in various
forms and stages, including data, algorithm, and user interaction, FRL methods mainly focus on
building fair predictive models from datasets with inherent bias Mehrabi et al. (2021). Prepro-
cessing techniques, e.g., removing protected features, cannot directly eliminate bias from training
data (Pedreshi et al., 2008), as the protected feature information could be recovered from other
non-sensitive proxy features (Barocas & Selbst, 2016). FRL resolves this issue by learning a latent
representation from input data that reduces its statistical parity, firstly introduced by Zemel et al.
(2013). Later study explores variational autoencoder (VAE) with a Maximum Mean Discrepancy
penalty by deeming protected information as nuisance features (Louizos et al., 2015), which moti-
vates a flurry of VAE variants for FRL (Moyer et al., 2018; Jaiswal et al., 2018; Amini et al., 2019).
Paralleling the research effort, Beutel et al. (2017); Madras et al. (2018); Xu et al. (2018); Li et al.
(2018); Zhang et al. (2018); Elazar & Goldberg (2018) and Basu Roy Chowdhury et al. (2021) lever-
age generative adversarial network (GAN) to obfuscate the protected features while maintaining the
prediction accuracy on labels. Alongside the group fairness, another research thrust strives to en-
sure that similar individuals are treated similarly, even if their protected attributes differ, striving to
realize counterfactual fairness (Kusner et al., 2017; Dixon et al., 2018; Cheng et al., 2021). While
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the FRL frameworks for group fairness demonstrate promising results in a specific domain, they
fall short in maintaining fairness when applied to out-of-distribution data (Barrett et al., 2019). As
a result, the prior FRL studies mostly cannot work well in a lifelong manner, where a sequence of
tasks with highly disparate data distributions are presented.
Lifelong and Continual Learning. Lifelong learning aims to build ML systems that can learn a
task sequence incrementally (Kirkpatrick et al., 2017; Li & Hoiem, 2017; Rolnick et al., 2019; Hao
et al., 2013; Mitchell et al., 2018; Abujabal et al., 2018). The challenge is to overcome catastrophic
forgetting, which occurs when new knowledge disrupts previous learned information. In general,
existing methods fall into two categories that reuse the model and expand the model. First, there
are two main ideas on reusing the model: 1) regularization-based methods, where the model param-
eters are regularized to avoid drastic updates by limiting the learning rate on important parameters
for previous tasks, striving to search a Pareto-effective solution that performs satisfactorily for all
seen tasks, relaxing catastrophic forgetting (Kirkpatrick et al., 2017; Aljundi et al., 2017; Shmelkov
et al., 2017; Li & Hoiem, 2017; Aljundi et al., 2018). 2) rehearsal-based methods, where parts of
instances from previous tasks are stored in an external memory (i.e.,the retained dataset) and will be
jointly trained along with instances in the current task (Gepperth & Karaoguz, 2016; Schaul et al.,
2016; Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017; Rolnick et al., 2019; Hayes et al., 2019).
Second, architecture-based methods are designed to expand the model by either expanding the size
of networks (Li et al., 2019; Rao et al., 2019; Zhao et al., 2022), or designing sub-networks for
each specific task (Ke et al., 2020; Mallya & Lazebnik, 2018; Serra et al., 2018; Wang et al., 2020).
Unfortunately, current methods for lifelong learning focus on the performance of label predictions
without considering the model fairness. We note a recent study by Chowdhury & Chaturvedi (2023)
that strived to deal with both issues using data rehearsal. However, it postulates a supervised setup
where all tasks come with fully labeled instances. Our FaRULi lifts this assumption by requiring
label from one initial task only, making the learning scenario less costly and more widely applicable.

6 CONCLUSION

This paper presents FaRULi, a novel approach for unsupervised lifelong learning that consistently
maintains fair representation across a task sequence. FaRULi overcomes the dual challenges of in-
crementally adapting fair representations to new tasks and circumventing negative model reuse dur-
ing distribution shifts in scenarios lacking labels. The crux of our approach lies in a strategic task
re-ordering approach, powered by an over-complete elastic model. This model adeptly prevents neg-
ative reuse to divergent distributions by implicitly computing task distribution distance without full
supervision. We employ an adversarial network framework to create a robust retained dataset of fair
data representations, effectively eradicating biases from protected features while preserving label
information. The learning task sequence is optimized to re-order based on the calculated distance,
selecting the task with minimal deviation from the current retained dataset as the candidate. These
tasks are mapped into a shared latent space to generate analogous data representations, with samples
from the candidate task supplemented to the retained dataset using high-confidence pseudo-labels.
This process ensures efficient subsequent adaptations in a replay manner and sustains the model’s
overall performance across all tasks. Both theoretical analysis and empirical results from seven
real-world datasets substantiate the effectiveness and viability of FaRULi, affirming its potential in
fostering fair representations in unsupervised lifelong learning.
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