
Explaining the Space of SSP Policies via Policy-Property Dependencies:
Complexity, Algorithms, and Relation to Multi-Objective Planning

Primary Keywords: None

Abstract

Stochastic shortest path (SSP) problems are a common frame-
work for planning under uncertainty. However, the reactive
structure of their solution policies is typically not easily com-
prehensible by an end-user, while planners neither justify
the reasons behind their choice of a particular policy over5

others. To strengthen confidence in the planner’s decision-
making, recent work in classical planning has introduced a
framework for explaining to the user the possible solution
space in terms of necessary trade-offs between user-provided
plan properties. Here, we extend this framework to SSPs. We10

introduce a notion of policy properties taking into account
action-outcome uncertainty. We analyze formally the compu-
tational problem of identifying the exclusion relationships be-
tween policy properties, showing that this problem is in fact
harder than SSP planning in a complexity theoretical sense.15

We show that all the relationships can be identified through a
series of heuristic searches, which, if ordered in a clever way,
yields an anytime algorithm. Further, we introduce an alterna-
tive method, which leverages a connection to multi-objective
probabilistic planning to move all the computational burden20

to a pre-process. Finally, we explore empirically the feasibil-
ity of the proposed explanation methodology on a range of
adapted IPPC benchmarks.

1 Introduction
Stochastic shortest path (SSP) problems (Bertsekas and Tsit-25

siklis 1991) are a common framework for planning under
action-outcome uncertainty. SSP solutions take into account
arising contingencies by means of policies deciding what
action to take next as a function of what happened in the
past. This complex structure, however, leads to an astro-30

nomically large space Π of different possible solutions, a
direct overview of which is beyond the capability of actual
end-users of planning technology. At the same time, current
SSP solution methods lack functionality for providing rea-
sons behind the choice of a particular policy over others.35

Krarup et al.’s (2021) introduced a generic iterative plan-
ning framework aiming at helping a user to interactively ex-
plore and comprehend the solution space Π. The goal of the
user-planner interactions is to arrive at a solution that is in
line with the user’s preferences. Eifler et al. (2020a,b) pro-40

posed an instantiation of this framework for classical plan-
ning. The user-planner interactions are based on a set of
user-provided plan properties Ω, i.e. Boolean functions on

plans. The plan space is explained by identifying trade-offs
between the given properties, i.e., the relationships between 45

property subsets Φ and Ψ that are not simultaneously achiev-
able. This gives rise to a contrastive question-answer kind
of dialog (Miller 2019), where the user specifies preferences
Φ ⊆ Ω and is then confronted with the implied exclusion
of other property subsets Ψ. This has proved highly benefi- 50

cial in strengthening the user’s understanding of the solution
space (Eifler et al. 2022).

While explaining solutions to probabilistic planning mod-
els is by no means a novel topic, most prior work deals with
the explanation of individual solutions. With the recognition 55

of the importance of explainable AI, the sub-field of explain-
able reinforcement learning is increasingly gaining atten-
tion, yet its primary focus lies in tracing a policy’s decision
back to input features (Milani et al. 2023). Topin and Veloso
(2019) attempted to summarize a single policy via state ab- 60

straction. Juozapaitis et al. (2019) and Khan, Poupart, and
Black (2009) explain single action-decisions of a given pol-
icy by contrasting them to all available options by exposing
trade-offs between different reward or cost objectives.

Building on Eifler et al.’s (2020a) explanation methodol- 65

ogy, we propose a novel approach to explaining the global
space of all SSP policies, or a local user-chosen subset.
We introduce a notion of policy properties, taking into ac-
count action-outcome uncertainty, and formally study the
computational problem of identifying their exclusion re- 70

lationships. In order to compute the explanations, we de-
vise two approaches that relate to constrained SSPs (Alt-
man 1999) and multi-objective SSPs (Chen, Trevizan, and
Thiébaux 2023), respectively. We show that both approaches
can be efficiently realized by adapting the heuristic search 75

algorithm I-DUAL (Trevizan et al. 2016), which embeds
occupation-measure heuristics for effective guidance (Tre-
vizan, Thiébaux, and Haslum 2017). Finally, we explore the
feasibility of the proposed explanation methodology empir-
ically on a range of adapted IPPC and new benchmarks. 80

2 Background

For a finite set X , we refer with ∆(X) to the set of all prob-
ability distributions over X . For δ ∈ ∆(X), supp(δ) :=
{x ∈ X | δ(x) > 0} gives the support of δ.

2.1 Probabilistic Planning85

We consider probabilistic planning tasks in a SAS+-like no-
tation (Bäckström and Nebel 1995). A planning task is
given by a tuple τ = 〈V,A, s0,G, c〉, where V is a finite
set of state variables, each v ∈ V having a finite domain
Dv; A is a finite set of actions; s0 is the initial state (a90

complete variable assignment); G is a conjunctive goal (a
variable assignment); and c : A 7→ R+

0 is the cost function.
Pairs 〈v, d〉 of variables v ∈ V and values d ∈ Dv are called
facts. The set of all facts is denoted with F . The states of τ
are the complete variable assignments. The set of all states95

is denoted with S. For a (partial) variable assignment G, we
denote with SG := {s ∈ S | G ⊆ s} the subset of states
satisfying G. Each action a is associated with a precondi-
tion prea (a variable assignment) and a probability distri-
bution Outa over probabilistic outcomes (variable assign-100

ments). An action a is applicable in a state s if s ∈ Sprea .
The set of all actions applicable in s is denoted with A(s).
The state resulting from an action outcome o ∈ supp(Outa)
is sJoK[v] = o[v] if o[v] is defined, else sJoK[v] = s[v].

A task τ induces the stochastic shortest path (SSP)105

problem Θτ = 〈S,A, T , s0,SG , c〉 with same states, ac-
tions, initial state, goal states, and cost function, and the
transition probability function T : S×A 7→ ∆(S). Unless
important, we treat τ and Θτ interchangeably.

We are interested in deterministic policies (policies for110

short), which are (partial) functions π : S ⇀ A such that
π(s) ∈ A(s) if π(s) is defined. For a policy π, we write
π(s) = ⊥ if π(s) is not defined. The terminal states
Sπ⊥ ⊆ S under π are those s where π(s) = ⊥. A state s′ is
reachable from a state s via π if there are states s1, . . . , sn115

with π(si−1) 6= ⊥ and T (si−1, π(si−1), si) > 0, for all
1 < i ≤ n, such that s1 = s and sn = s′. The set of
all states reachable from s via π is denoted with Sπ(s); the
reachable terminal states with Sπ⊥(s).

Let G be a variable assignment. The G-reachability120

probabilities of a policy π is denoted with PG,π The G-
reachability probabilities are also called goal probabilities.
We say that a policy π is s-proper if PG,π(s) = 1. We
denote the set of all s-proper policies with Π(s). The ex-
pected cost of a policy π under the cost function c is de-125

noted Jc,π , where Jc,π(s) = ∞ iff π is not s-proper. The
optimal value for a state s under c is given by Jc,∗(s) :=
infπ∈Π(s) J

c,π(s). An s-proper policy π is optimal for s un-
der c if Jc,π(s) = Jc,∗(s). When c is omitted, we refer to
the task’s cost function.130

2.2 Classical Planning & Plan-Space Explanations
Classical planning is special case of probabilistic plan-
ning where all actions have a single outcome. For brevity,
we denote the unique resulting state of applying a in a
state s by sJaK, and extend this to action sequences in135

the obvious manner. Given a state s, an action sequence
a1, . . . , an is called an s-plan if it is applicable in s and
G ⊆ sJa1, . . . , anK. The set of all s0-plans, also called plan
space, is denoted Π(s0).

A plan property (Eifler et al. 2020a) φ can be any pred-140

icate on plans representing some abstract behavior inter-

pretable by the user. Eifler et al.’s (2020a) methods consider
specifically properties φ expressible as facts 〈vφ, tφ〉 such
that π satisfies φ iff s0JπK[vφ] = tφ. Richer properties, such
as ones formalized via LTLf (Giacomo and Vardi 2013), can 145

be compiled into this format (Eifler et al. 2020b).
Let Ω ⊆ F be a set of user-provided plan properties. Let

Φ ⊆ Ω be a subset of properties. Φ is solvable if there is a
plan π ∈ Π(s0) such that Φ ⊆ s0JπK. In this case, we also
say π satisfies Φ. Φ is unsolvable if it is not satisfied by 150

any plan. Φ is a minimal unsolvable subset (MUS) if Φ is
unsolvable but every Φ′ ⊂ Φ is solvable. Φ excludes another
Ψ ⊆ Ω, denoted with Φ ⇒Π ¬Ψ, if all plans π ∈ Π(s0)
that satisfy Φ violate Ψ. An exclusion Φ ⇒Π ¬Ψ is non-
dominated if there is no exclusion Φ′ ⇒Π ¬Ψ′ such that 155

Φ′ ⊆ Φ and Ψ′ ⊆ Ψ while one of the subset relations is
proper. Φ ⇒Π ¬Ψ is non-rhs-dominated if no Ψ′ ⊂ Ψ
is excluded by Φ. Observe that Φ ⇒Π ¬Ψ iff Φ ∪ Ψ is
unsolvable, and it is non-dominated iff Φ ∪Ψ is a MUS.

Eifler et al. (2020a) distinguish local and global expla- 160

nations. The former assume a given subset of properties
Φ ⊆ Ω, and aim at explaining the subspace of plans which
satisfy Φ. The Φ-explanation gives the consequences of
this plan-space restriction in terms of the set {Ψ ⊆ Ω |
Φ ⇒Π ¬Ψ is a non-rhs-dominated exclusion}. In contrast, 165

the global explanation provides a view on the entire plan
space by means of a directed graph over property sets with
an arc from Φ to Ψ if Φ ⇒Π ¬Ψ is a non-dominated exclu-
sion relation. Computing either type of explanations boils
down to solving AllMUSes, i.e., computing the set of all 170

MUSes. For global explanations, this is inherent from the
definition. For local explanations, this follows from the fact
that the non-rhs-dominated exclusions of any Φ correspond
exactly to AllMUSes in the task with goal G′ := G ∪ Φ.

3 Exclusion-Based Explanations for SSPs 175

3.1 Policy Properties
We generalize Eifler et al.’s (2020a) concept of plan proper-
ties to SSPs. The exclusion-based explanation framework re-
quires properties to be Boolean predicates. In classical plan-
ning, each plan π uniquely determines an execution trace 180

along with the resulting outcome state s0JπK. This makes
the evaluation of every condition on π’s execution inher-
ently Boolean: either the condition is satisfied by π (e.g.,
s0JπK[vφ] = tφ for the plan property φ) or it is violated
(s0JπK[vφ] 6= tφ). One of the two cases definitely applies. 185

In the probabilistic setting, this is more complicated given
that policies no longer induce a unique outcome but instead
give rise to probability distributions over potentially even
infinitely many possible executions, while conditions on in-
dividual executions may be satisfied in some but not all the 190

possible executions. Properties expressing characteristics of
policies need to take into account this uncertainty, and there-
with need to reason over the expectation of the properties’
objectives. In the remainder of this paper, we will specif-
ically consider two classes of such policy properties, one 195

based on state reachability and one based on cost.
Reachability policy properties extend Eifler

et al.’s (2020a) plan properties as introduced above.

Definition 1 (Policy Reachability Property). A policy reach-
ability property φ consists of a variable assignment Gφ200

and a lower bound αφ ∈ (0, 1]. A policy π satisfies φ iff
PGφ,π(s0) ≥ αφ.

Cost properties allow the user to explore trade-offs be-
tween different cost functions and reachability properties:
Definition 2 (Policy Cost Properties). A policy cost property205

φ consists of a cost function cφ and an upper bound βφ ∈
R+

0 . A policy π satisfies φ iff Jcφ,π(s0) ≤ βφ.
As in Eifler et al.’s (2020a) framework, we assume the

user specifies the relevant policy properties Ω, where Ω =
ΩR] ΩC is partitioned into reachability ΩR and cost prop-210

erties ΩC . For a policy-property subset Φ ⊆ Ω, we simi-
larly use Φ = ΦR] ΦC . We explain Π(s0) via the induced
property-subset exclusion relationships. To this end, the con-
cepts of solvable and unsolvable property subsets, property-
subset exclusions, and local and global explanations are ac-215

cordingly extended to policy properties. We slightly adapt
the conditions of minimal unsolvable subset and exclusion
dominance, taking into account the policy properties’ flex-
ibility in the threshold choice. In general, it can be desir-
able to have in Ω multiple policy properties φ1, . . . , φk with220

the same base objective (i.e., same reachability objective
Gφi = Gφj , respectively same cost function cφi = cφj)
but different threshold values. This is useful, in particular,
for exploring the effect of different property relaxations on
the solvability of other properties.225

We say that a reachability property φ ∈ ΩR is a relax-
ation of another reachability property ψ ∈ ΩR, denoted
φ v ψ, if Gφ = Gψ and αφ ≤ αψ; and, similarly, a cost
property φ ∈ ΩC is a relaxation of another cost property
ψ ∈ ΩC (φ v ψ) if cφ = cψ and βφ ≥ βψ . A relaxation230

φ v ψ with φ 6= ψ is called strict (denoted φ @ ψ). A
property subset Φ is a relaxation of another property subset
Ψ, written Φ v Ψ if every φ ∈ Φ relaxes some ψ ∈ Ψ. Φ is
a strict relaxation of Ψ (Φ @ Ψ), if Φ v Ψ and Φ 6= Ψ. To
define MUSes and policy-property subset exclusion domi-235

nance, we substitute the subset relation by relaxation:
Definition 3 (Minimal unsolvable policy-property subset).
Φ ⊆ Ω is a MUS if it is unsolvable but each of its strict
relaxations Φ′ ⊆ Ω, i.e., Φ′ @ Φ, is solvable.
Definition 4 (Policy-property exclusion dominance). A240

policy-property subset exclusion Φ ⇒Π ¬Ψ is non-
dominated if there is no other exclusion Φ′ ⇒Π ¬Ψ′ such
that Φ′ v Φ and Ψ′ v Ψ and at least one of the relaxations
is strict. Similarly, Φ⇒Π ¬Ψ is non-rhs-dominated if there
is no Ψ′ ⊆ Ω such that Ψ′ @ Ψ and Φ⇒Π ¬Ψ′.245

Note that both definitions subsume their original coun-
terparts. This follows directly from the observation that if
Φ′ ⊆ Φ for any two policy-property subsets, then it also
holds that Φ′ v Φ. Vice versa, however, there can be non-
minimal unsolvable policy-property subsets Φ (respectively,250

dominated exclusions Φ′ ⇒Π ¬Ψ′), although every sub-
set of Φ is solvable (respectively, no exclusion satisfies the
subset-based dominance criterion). Also note that it is still
the case that an exclusion Φ ⇒Π ¬Ψ is non-dominated
iff the combined property set Φ ∪ Ψ is a MUS, and that255

Φ⇒Π ¬Ψ is non-rhs-dominated iff every relaxation Φ′ ⊆ Ω
of Φ ∪ Ψ with Φ ⊆ Φ′ is solvable. Finally, observe that for
every non-dominated exclusion Φ ⇒Π ¬Ψ, both Φ and Ψ
must be unambiguous in that neither of them can contain
two properties φ and φ′ such that φ @ φ′. 260

3.2 Exclusion-Explanation Computation
With the ability to express the satisfaction of plan proper-
ties as properties on states, the computation of AllMUSes in
classical planning degenerates to standard goal reachability
questions for different goal sets. Eifler et al. (2020b) showed 265

that these different questions can be solved even with just a
single state-space search, resulting in a method offering sim-
ilar scalability than that of optimal classical planners. Unfor-
tunately, conditions on the expected behavior of policies can
no longer be expressed as properties on states. This has two 270

consequences. First, AllMUSes can no longer be computed
via methods similar to the algorithm just sketched. Second,
whereas in classical planning, a local Φ-explanation could
be computed by solving AllMUSes for a goal-extended task,
this is no longer possible for SSPs. 275

Property-Subset Lattice Exploration Algorithm 1 de-
picts our general algorithm for computing local Φ-
explanations, and closely resembles previous algorithms for
computing minimal unsolvable goal/constraint subsets (Ei-
fler et al. 2020a; Liffiton et al. 2016) with the difference of 280

using property-subset relaxation in place of the subset rela-
tion. At its core, Algorithm 1 conducts an exhaustive ex-
ploration of the space of all property subsets, testing the
solvability of the combined set Φ ∪ Ψ for each visited Ψ.
As Φ ⇒Π ¬Ψ holds iff Φ ∪ Ψ is unsolvable, Φ’s non-rhs- 285

dominated exclusions are given exactly by the non-relaxable
Ψ for which the combined set was found unsolvable (line 6).
To avoid the complete enumeration of all the property sub-
sets, Algorithm 1 utilizes the relaxation relationships with
already tested property subsets. The specific choice of Ψ is 290

not important for correctness. In our implementation, we use
MARCO (Liffiton et al. 2016), which chooses Ψ in a way
guaranteeing that each Ψ added to Unsolvable yields a non-
rhs-dominated exclusion. Finally, note that by setting Φ = ∅,
minv Unsolvable will be exactly the set of all MUSes. 295

Theorem 1. Algorithm 1 terminates with the Φ-explanation.
If Φ = ∅ it returns all MUSes.

The Property-Subset Solvability Problem Algorithm 1
relies on a sub-procedure deciding the property subsets’
solvability. Before discussing possible implementations of 300

this sub-procedure, here we define and analyze this problem
formally.
Definition 5 (PSS). The property-subset solvability prob-
lem (PSS) is that of deciding, given a probabilistic planning
task τ and a non-empty set of policy properties Φ, whether 305

there exists an s0-proper policy π that satisfies Φ.
To analyze its complexity, we distinguish decision prob-

lems along three lines: (1) classical and probabilistic plan-
ning, (2) whether considering the factored planning task
description or the flat state space as input, and (3) in the 310

probabilistic case, whether to allow stochastic policies or

Algorithm 1: Generic property-subset lattice exploration for
computing the Φ-explanation for a given property subset Φ.
Input: Probabilistic planning task τ , set of policy properties Ω,

property subset Φ ⊆ Ω
Output: All non-rhs-dominated exclusions of Φ
1: Solvable← ∅;
2: Unsolvable← ∅;
3: while true do
4: Pick some Ψ ⊆ Ω \ Φ such that

(i) ∀Ψ′ ∈ Solvable : Ψ 6v Ψ′, and
(ii) ∀Ψ′ ∈ Unsolvable : Ψ′ 6v Ψ, and
(iii) Ψ is unambiguous

5: if such a Ψ does not exist then
6: return minv Unsolvable
7: end if
8: if Φ ∪Ψ is solvable then
9: Solvable← Solvable ∪ {Ψ};

10: else
11: Unsolvable← Unsolvable ∪ {Ψ};
12: end if
13: end while

whether to constrain the solution space to the determinis-
tic policies. It is well-known that with flat representations,
the standard plan/policy existence problems can be decided
in polynomial time (e.g., Puterman 1994). The policy type315

does not make a difference. For factored representations,
classical planning becomes PSPACE-COMPLETE (By-
lander 1994) and probabilistic-planning EXP-COMPLETE
(Littman, Goldsmith, and Mundhenk 1998).

Moving to PSS, the additional constraints imposed by320

the properties have an impact on the complexity in some
but not all cases. PSS for the classical-planning flat case
is already NP-COMPLETE, being a generalization of the
weight-limited shortest-path problem (Garey and Johnson
1979). For the factored representation, PSS stays in the same325

complexity class of classical planning due to the ability of
compiling the properties into facts. PSS for flat SSPs with
stochastic policies can still be solved in time polynomial in
the size of the SSP via an extension of the standard SSP lin-
ear program (as we will see in the next section). For deter-330

ministic policies, however, PSS becomes NP-COMPLETE,
given the classical planning result. That PSS for factored
SSPs is in EXP follows via the approach for the flat variant.
Given that standard SSP policy existence is a special case
of PSS, the latter therefore remains EXP-COMPLETE when335

stochastic policies are allowed. However, as in the flat case,
the restriction to deterministic policies again raises the com-
plexity by the “non-deterministic” factor. Therefore, and this
is in contrast to classical planning, generating explanations
for SSPs becomes computationally more demanding than340

solving the planning task itself (unless NEXP = EXP).
Theorem 2. For singleton property sets Φ, |Φ| = 1, PSS is
EXP-COMPLETE. For two properties or more, |Φ| ≥ 2, PSS
is NEXP-COMPLETE.

4 Solving PSS by Search in the Dual Space345

Finding a policy that satisfies a given property subset Φ boils
down to solving the SSP under additional policy constraints.

This relates to the class of constrained SSPs (CSSPs) (Alt-
man 1999). This section develops an extension of I-DUAL
(Trevizan et al. 2016) – the so far only known heuristic- 350

search algorithm for solving CSSPs– to solving PSS. To this
end, we start with a brief recap of the CSSPs and I-DUAL,
then introduce a mixed-integer linear program (MIP) char-
acterization of PSS, and finally show how to adapt I-DUAL
to solve this integer program efficiently. 355

4.1 Background: CSSPs and I-DUAL

CSSPs extend SSPs with a list of additional cost functions
c1, . . . , ck and accompanying bounds β1, . . . , βk on the poli-
cies’ corresponding expected costs. Unlike in the uncon-
strained version, optimally solving CSSPs in general re- 360

quires stochastic policies, i.e., ones mapping states to prob-
ability distributions over actions. The optimal solutions are
characterized exactly by the linear program (LP) depicted in
Figure 1 (cf., e.g., Altman 1999).

The basis of the encoding are the occupation-measure 365

(OM) variables Xs,a which represent the expected number
of times action a is to be executed in state s. The expected
cost of the policy represented by the OM variables is given
by the linear combination with the cost function (cf. def.
of cost[c′]). The objective function (C1) asks for minimiz- 370

ing the expected cost under the SSP’s primary cost function.
The bounds on secondary cost functions map into additional
constraints (C3). (C4) bounds the states’ flow, asserting that
the expected numbers of times a non-goal state is entered
(the in-flow) and exited (the out-flow) to be the same. A flow 375

surplus of 1 is inserted at the initial state. (C5) implements
the s0-proper policy requirement by asserting that the entire
inserted flow sinks at the SSP’s goal states eventually.

The LP necessitates building the entire state space Θτ .
I-DUAL (Trevizan et al. 2016) aims to avoid this by 380

iteratively solving progressively larger sub-SSPs Θ̂ =

〈Ŝ,A, T̂ , s0, ŜG〉 of Θτ . One iteration of I-DUAL consists
of solving the CSSP LP for the current sub-SSP and subse-
quently expanding Θ̂ at the fringe states visited by the found
solution, where Θ̂’s fringe F ⊆ Ŝ is the set of non-goal 385

states whose transitions from Θτ are not present in Θ̂ yet.
An optimal CSSP solution is found when all flow is sink-
ing at goal states. To guide the exploration, I-DUAL lever-
ages heuristics to estimate the expected remaining cost-to-
goal, for each cost function, depending on the reached fringe 390

states. The estimates become additional summands in the
objective respectively the cost constraints. Solution optimal-
ity is preserved if the heuristics provide are admissible.

Trevizan, Thiébaux, and Haslum (2017) presented an
extension of I-DUAL, baptized I2-DUAL, which integrates 395

the computation of a particular heuristic, the projection
occupation-measure (POM) heuristic hpom, directly in I-
DUAL’s LP. This has the advantage over using cost-function
individual heuristics in being able to jointly consider all
CSSP’s cost constraints inside the heuristic computation. 400

The blue parts in Figure 1 summarize the integration. In
brief, hpom is based on the projections of τ onto the indi-
vidual state variables V , where the v-projection is the sim-
plified task obtained from τ by discarding all other variables.

Minimize cost[c]+ costv̂[c] (C1)
Subject to
Xs,a ≥ 0, s ∈ S \ SG , a ∈ A(s) (C2)
cost[ci]+ costv̂[ci] ≤ βi, 1 ≤ i ≤ k (C3)
out[s]− in[s] = [s = s0], s ∈ S \ SG (C4)∑
s∈SG

in[s] = 1 (C5)
cost[c′] :=

∑
s∈S,a∈A(s) Xs,ac

′(a), c′ ∈ {c, c1, . . . , cn}
out[s] :=

∑
a∈A(s) Xs,a, s ∈ S

in[s] :=
∑
s′∈S,a∈A(s′) Xs′,aT (s′, a, s), s ∈ S

Xvd,a ≥ 0, v ∈ V, d ∈ Dv, a ∈ A (C6)
v-projection OM constraints, v ∈ V (C7)
constraints tying Xv·,a with Xv̂·,a, v ∈ V \ {v̂}, a ∈ A (C8)

Figure 1: LP encoding of a CSSP. [ϕ] denotes the Iverson
bracket and evaluates to 1 iff ϕ is satisfied and 0 otherwise.
cost[c′] is a shorthand for the OM variables’ induced ex-
pected cost under c′; out[s] and in[s] for the flow leaving
respectively entering state s. It is assumed that s0 /∈ SG .
Parts in blue are I2-DUAL extensions; v̂ ∈ V is arbitrary.

hpom combines in a single LP (represented by (C6) – (C8))405

the OM-based representation of the projections’ SSPs, ty-
ing together the OM variables between the projections by
enforcing that each projection executes every action overall
exactly the same number of times. By inserting flow into the
projections according to the probabilities of reaching fron-410

tier states, the projections’ OM variables yield the heuristic
summands for (C1) and (C3).

4.2 Characterizing PSS as a MIP
Figure 2 builds on Figure 1, modeling PSS as a MIP.
CSSPs differ from PSS in two regards: CSSPs (1) consider415

solely constraints on secondary cost functions; and (2) as-
sume stochastic policies. In the presence of a single goal-
reachability objective, i.e., assumption (1), one can assume
w.l.o.g. that goal states are absorbing, forcing policies to
immediately terminate once reaching those states. This as-420

sumption allows to exclude in the LP (a) the trivial special
case s0 ∈ SG , (b) omit goal-state leaving transitions, setting
out[sG] = 0 implicitly for all goal states sG , and (c) ignore
flow constraints for the goal states.

In contrast, in the presence of multiple reachability con-425

straints, continuing the execution in the SSP’s goal states
might be necessary for achieving the other reachability ob-
jectives. Figure 2 accounts for additional reachability ob-
jectives by introducing occupation-measure variables also
for goal-leaving transitions. Thus, the flow constraints (C11)430

need to be defined for all states, while to allow flow sinking
at some states, the equality needs to be changed to an upper-
bound constraint. As flow may now escape from goal states,
(C5) is no longer a sufficient proper policy condition. (C12)
in Figure 2 instead ensures that all the flow enters and re-435

sides in the SSP’s goal states eventually. Furthermore, (C12)
handles the case s0 ∈ SG by taking into account the initial
flow inserted at s0 if s0 is a goal state. Reachability property
can now be encoded as flow-residual constraints (C13).

The second source of complication arises from the fact440

Minimize (C1)
Subject to
(C2) for all s ∈ S, a ∈ A(s) (C9)
(C3) for each φ ∈ ΦC (C10)
out[s]− in[s] ≤ [s = s0], s ∈ S (C11)
res[SG]+PG = 1− [s0 ∈ SG] (C12)
res[SGφ]+PGφ ≥ αφ − [s0 ∈ SGφ], φ ∈ ΦR (C13)
Ds,aK − Xs,a ≥ 0, s ∈ S, a ∈ A(s) (C14)∑
a∈A(s) Da,s + Ts ≤ 1, s ∈ S (C15)

out[s]− in[s] + Ts ≥ [s = s0], s ∈ S (C16)
Ds,a ∈ {0, 1}, s ∈ S, a ∈ A(s) (C17)
Ts ∈ {0, 1}, s ∈ S (C18)
res[S] :=

∑
s∈S (in[s]− out[s]), S ⊆ S

POM extensions (C6) – (C8) with adaptations as discussed
in the text,

(C19)

PG ≥ 0, G ∈ {Gφ | φ ∈ ΦR} ∪ {G} (C20)
PG ≤ resv[G[v]], v ∈ V s.t. G[v] is defined (C21)

Figure 2: MIP encoding of PSS for property subset Φ =
ΦR] ΦC . Extends the CSSP encoding from Figure 1; ob-
jective and constraints are extended to also take into ac-
count occupation-measure variables of goal states. res[S] is
a shorthand for the flow residing in the state set S. K ∈ R+

0

is a large constant. Parts in blue are I2-DUAL extensions.

that PSS talks about deterministic policies, which in the
presence of additional policy constraints are no longer
equally expressive than stochastic policies, as previously
mentioned. We implement that requirement by binary inte-
ger decision variables Ds,a for each state-action pair. (C14) 445

ensures that Ds,a is set if the corresponding transition is as-
signed a positive occupation measure, while (C15) insists
on setting at most one Ds,a per state. The additional binary
integer variables Ts are explicit indicators of the policy ter-
minating in s. These are necessary because with the policy’s 450

termination being no longer determined by the satisfaction
of the SSP’s goal, termination becomes a deliberative policy
choice. (C15) makes sure that this choice remains determin-
istic. (C16) ensures that the termination indicator Ts is set
whenever some flow is sinking in state s. 455

Putting everything together, we conclude:

Theorem 3. Figure 2 is feasible iff Φ is solvable.

4.3 Solving PSS with Heuristic Search
The principles of I-DUAL can be applied directly to solving
PSS. The main change required is, obviously, the substitu- 460

tion of the CSSP LP by the MIP from Figure 2. Some care
must be taken to correctly handle the subtle differences be-
tween PSS and CSSPs. First, given that goal states can no
longer be assumed to be absorbing, goal states must now be
included in I-DUAL’s fringe (and thus possibly expanded). 465

Second, given that goal states may now be contained in the
fringe, we must extend I-DUAL’s termination condition test-
ing explicitly that no flow is sinking in the fringe. Lastly,
the fringe states must be handled appropriately in PSS’s

reachability constraints. This is, we must make sure to op-470

timistically (hence upper) bound the expected achievement
of the individual reachability properties given the fringe
states reached. This can be done, in the same vein as for the
cost constraints, with the help of admissible goal-probability
heuristics. After these changes, I-DUAL’s original correct-475

ness arguments can be carried over to show that our adapted
variant correctly solves PSS.

To complete the adaptation of I2-DUAL, it only remains
to extend the hpom part to deliver the necessary opti-
mistic reachability-probability bounds. The blue parts in480

Figure 2 highlight the main changes. In summary, we dis-
card hpom’s proper policy constraint. hpom’s reachability-
probability bounds are represented through additional vari-
ables PG for each relevant G, cf. (C20), which become
additional summands in the proper-policy (C12) and the485

reachability-property constraints (C13) of the overall MIP.
The constraints (C21) synchronize the values of those reach-
ability variables with the actual probability of residing in
the projections’ G-achieving states. That this indeed yields
an upper bound on the probability of achieving G from the490

fringe states follows similarly to the cost bounds from the
fact that projections are solution preserving.

Theorem 4. Run I2-DUAL or I-DUAL with admissible
heuristics. If at any point in time, the MIP for one of the
sub-SSPs Θ̂ becomes infeasible, then Φ is unsolvable. If they495

return π, then π is s0-proper and π satisfies Φ.

Note that the hpom modifications sketched so far do not
ensure that the projection’s OM variables resemble a deter-
ministic policy. One might be tempted to enforce determin-
ism within every projection via additional integer variables.500

This however breaks hpom’s admissibility property, because
due to the tying of the projections, different actions might
need to be applied in a single projection state.

5 AllMUSes via MO Optimization
Ignoring the properties’ thresholds, one is left with a set of505

policy metrics whose simultaneous optimization becomes a
variant of multi-objective (MO) SSPs (Chen, Trevizan, and
Thiébaux 2023). In the following, we leverage this connec-
tion, showing that the solution to this MOSSP variant con-
tains all the relevant information to decide any PSS.510

5.1 Background: MOSSPs
Multi-objective SSPs (Roijers and Whiteson 2017; Chen,
Trevizan, and Thiébaux 2023) differ from regular SSPs in
optimizing a cost-function vector ~c = (c1 ... cn)T rather
than a single cost function. Optimality in the MO setting is515

defined via a dominance order between real vectors, where
for two real vectors ~x = (x1 ... xn)T and ~y = (y1 ... yn)T ,
~x weakly dominates ~y (~x � ~y) if xi ≤ yi holds for all i.
~x dominates ~y (~x ≺ ~y) if ~x � ~y and ~x 6= ~y. Associat-
ing each policy π with the vector of expected-cost functions520

~J~c,π := (Jc1,π ... Jcn,π)T , the optimal MOSSP policies are
those s0-proper policies π where ~J~c,π(s0) is not dominated
by ~J~c,π

′
(s0) for any other π′. Since� is no longer a total or-

der, different optimal policies can in general have different

value vectors. The optimal MO-value function J∗ assigns 525

every state to the set of all these optimal cost vectors. Like
constrained SSPs, MOSSPs assume stochastic policies, and
there can exist ~J∗ ∈ J∗(s) that are not achievable by any
deterministic policy. |J∗(s)| is in general infinite but can be
represented as the convex hull of a finite coverage set (Roi- 530

jers and Whiteson 2017).

5.2 MOSSPs with Deterministic Policies, and
Connection to PSS

To be able to translate the policy property set Ω into a multi-
objective optimization problem, we introduce a slight varia- 535

tion of MOSSPs that supports multiple cost as well as goal
objectives. Concretely, let~c = (c1 ... cn)T be a cost-function
vector, as before, and let ~G = (G1 ... Gm)T be a vector
of variable assignments. For simplicity’s sake, we denote
for every policy π the combined policy value vector with 540

~V π = (Jc1,π ... Jcn,π −PG1,π ... −PG2,π)T (note the nega-
tion of the reachability probabilities). A deterministic policy
π ∈ Π(s0) is deterministic optimal if ~V π is not dominated
by ~V π

′
of any π′ ∈ Π(s0). The deterministic-optimal MO-

value function is given by V∗d(s) := min�{~V π(s) | π ∈ 545

Π(s)}. Note that |V∗d(s)| is always guaranteed to be finite.
Let ~c = (c0 ... cn)T and ~G = (G1 ... Gm)T where

c0 denotes the SSP’s main cost function, c1, . . . , cn are
the cost functions underlying the cost properties ΩC , and
G1, . . . , Gm are the goal sets underlying ΩR. Let Φ ⊆ 550

Ω be an unambiguous property subset. We associate with
βΦ(ci) := βφ the cost threshold assigned by the property
φ ∈ ΦC with cφ = ci if it exists, and define βΦ(ci) := ∞
otherwise. αΦ(Gi) is defined accordingly. Suppose we are
given V∗d(s0) for these objectives. Then 555

Theorem 5. Let Φ ⊆ Ω be an unambiguous property subset.
Let ~vΦ := (∞ βΦ(c1) ... βΦ(cn) −αΦ(G1) ... −αΦ(Gm))T . ~vΦ

is dominated by one of the vectors in V∗d(s0) iff Φ is solvable.

Plugged into Algorithm 1, this yields an alternative ap- 560

proach to computing the exclusions, where all property-
subset solvability tests boil down to lookups; in particular
no additional MIPs need to be solved. For any Φ, the dom-
ination condition on ~vΦ can obviously be checked in time
linear in the number of entries in V∗d(s0). Therefore, if the 565

size of V∗d(s0) is small compared to the number of possible
property subsets, then this approach can be expected to be
more effective than solving the requested property subsets
via individual planner calls – provided that the overhead of
the V∗d(s0) precomputation does not outweigh this benefit. 570

The decision-problem formulation asking whether ~V π ∈
V∗d(s0), for a given ~V π , is equivalent to the definition of
PSS (Definition 5). Hence, as a corollary from Theorem 2,
this decision problem is NEXP-COMPLETE, which, unfor-
tunately, excludes the use of existing MOSSP techniques. 575

5.3 Enumerating Non-Dominated Solutions
Let ~c = (c1 ... cn)T be the cost-function and ~G =
(G1 ... Gm)T be the goal vector. The non-dominated solu-

Minimize∑n
i=0 ωci cost[ci]−

∑m
j=1 ωGj res[SGj]

+
∑n
i=1 ωci cost

v̂[ci]−
∑m
j=1 ωGjPGj

(C22)

Subject to
MIP from Figure 2 without (C10) and (C13) (C23)
cost[ci]+ costv̂[ci]−Wπ

ciK ≤ J
ci,π(s0)− ε,

π ∈ Incumbent, i ∈ {1, . . . , n}
res[SGj]+PGj + Wπ

Gj
K ≥ PGj ,π(s0) + ε,
π ∈ Incumbent, j ∈ {1, . . . ,m},

(C24)

∑n
i=1 W

π
ci +

∑m
i=1 W

π
Gi
≤ n+m− 1, π ∈ Incumbent (C25)

Wπ
ci ∈ {0, 1}, π ∈ Incumbent, i ∈ {1, . . . , n}

Wπ
Gj
∈ {0, 1}, π ∈ Incumbent, j ∈ {1, . . . ,m}

(C26)

Figure 3: MIP for enumerating the non-dominated solution
vectors V∗d(s0). Incumbent denotes the set of policies ex-
tracted thus far. ω is a predefined convex combination of all
objectives. ε ∈ (0,∞] is the precision parameter. Blue parts
show I2-DUAL modifications.

tion vectors V∗d(s0) can be enumerated by solving |V∗d(s0)|
MIPs. Figure 3 depicts the encoding for finding a single580

new non-dominated solution. The MIP is iteratively refined
taking into account the set Incumbent of policies computed
so far. During the course of all iterations, it is guaranteed
that (1) only deterministic-optimal policies are ever added
to Incumbent, and (2) that for each value vector ~V ∗ ∈585

V∗d(s0), there is at most one policy π ∈ Incumbent such
that ~V π(s0) = ~V ∗. V∗d(s0) is found when the MIP becomes
infeasible. Since the number of policies satisfying (1) and
(2) is exactly |V∗d(s0)|, termination must happen after the
claimed number of iterations.590

The encoding is based on Figure 2, dropping the policy-
property constraints. The optimization function is a linear
scalarization of all objectives, i.e., any choice of weights
ω > 0 such that

∑n
i=1 ωci +

∑m
j=1 ωGj = 1. This suf-

fices to guarantee (1), which can be shown straightforwardly595

by contraposition. The bulk of the MIP deals with ensuring
progress in the sense of forbidding finding the same solu-
tions again. This is accomplished through constraints (C24),
which require improving over the previously computed pol-
icy in at least one objective. The selection of this improving600

objective is implemented via binary integer wildcard vari-
ables Wπ

O, for each policy π ∈ Incumbent and objective O.
When set, Wπ

O = 1, the MIP solution may perform worse
than π wrt. O. However, due to (C25), it is not possible to
wildcard all objectives. In other words, each iteration finds605

a non-dominated π̂ whose value vector ~V π̂(s0) differs from
all the previous ones; yielding property (2). There is a little
caveat, however. To model strict inequality constraints, en-
forcing strict improvement in at least one objective, (C24)
has to include a non-zero ε summand. Nevertheless:610

Theorem 6. There always exists ε ∈ (0,∞] such that the
sketched algorithm terminates with V∗d(s0).

In practice, the exact value of ε is task specific and may
be difficult to find. The ε parameter can be used to control
the precision, and therewith size of the computed solution615

set, at the cost of losing the formal correctness guarantee.

As before, it is possible to leverage the principles of I-
DUAL, solving each MIP in multiple iterations, while ex-
panding the state space incrementally. Along the lines, and
in addition to our adaptations from the previous section, 620

this requires taking into account the fringe states’ optimistic
heuristic estimates in the ensure-progress constraints (C24);
and, to foster finding non-dominated solutions, in the op-
timization function (C22). Figure 3 illustrates the changes
for I2-DUAL’s hpom representation. Correctness follows with 625

similar arguments as before.

6 Experimental Evaluation
The focus of our experiments is evaluating the feasibility of
the proposed explanation architecture. Our implementation
is based on Probabilistic Fast Downward (Helmert 2006; 630

Steinmetz, Hoffmann, and Buffet 2016). Code and bench-
marks will be made publicly available. All experiments were
run on a cluster with Intel Xeon E5-2695v4 CPUs, using
runtime and memory limits of 30 minutes and 4 GB.

Setup We implemented Algorithm 1 via MARCO (Lif- 635

fiton et al. 2016), using MiniSAT 2.2 (Eén and Sörensson
2003) as the SAT solver. The LPs/MIPs were solved using
CPLEX 22.11. We compare 6 PSS methods: PSS-MIP via
the MIP encoding of PSS, either (F) building and solving
the MIP over the full (reachable) state space directly, or (I) 640

solving the MIP incrementally via our I-DUAL variant us-
ing as heuristic the state-of-the-art canonical PPDB heuris-
tic over all patterns of size 2 (Klößner and Hoffmann 2021;
Klößner et al. 2021), or (I2) solving the MIP with our I2-
DUAL variant. The other three configurations (MO) compute 645

up front the optimal MO value function, using either F, I, or
I2 for enumerating the non-dominated solution vectors. We
set ε = 0.05. As a reference, we also experimented with
LP relaxations of the PSS-MIP methods, which compute the
non-dominated exclusions for the space of stochastic poli- 650

cies. This is not possible for the MO methods as the size
of the stochastic MO value function might not be finite. We
cannot compare to other MOSSP solvers (e.g., Chen, Tre-
vizan, and Thiébaux 2023) due to the lack of support of goal
reachability objectives. As an additional reference, we ex- 655

periment with a state-of-the-art MaxProb heuristic search
configuration using iLAO* (Hansen and Zilberstein 2001)
and FRET-π (Steinmetz, Hoffmann, and Buffet 2016).

Benchmarks Our benchmark set is based on existing and
new PPDDL benchmarks. A benchmark instance here con- 660

sists of a PPDDL task τ , a set of properties Ω, and a property
subset Φ ⊂ Ω for computing local explanations. The bench-
mark set is composed of three parts. We leave Φ empty ex-
cept in the first part:

• OSP Following Eifler et al. (2020a), we generate “OSP” 665

variants of existing benchmarks from the IPPCs and
other sources (Steinmetz, Hoffmann, and Buffet 2016;
Klößner et al. 2021) that have more than one goal fact.
We use Ω as the representation of “soft goals” and Φ
to enforce the cost bound. Specifically, for each PPDDL 670

base task τ , we generate for each combination of p ∈
{0.6, 0.75, 0.9} and c ∈ {0.25, 0.5, 0.75} a benchmark

instance (1) making the goal of the task empty, (2) each
original goal fact g becomes a reachability property φg
with Gφg = {g} and αφg = p · PG∗ where PG∗ is the675

MaxProb of τ ; (3) Φ = {φ} where φ is the cost prop-
erty enforcing as bound βφ = c · h∗ on τ ’s cost function,
where h∗ is the minimal path cost required to reach τ ’s
goal (J∗ cannot be used as some benchmarks have no
proper policy).680

• Search and Rescue An adaptation of Trevizan,
Thiébaux, and Haslum’s (2017) CSSP benchmark. m
cells of an n-by-n grid can possibly hold a victim. The
agent must navigate through the grid in order to find, and
as necessary, rescue the victims, while there are bounds685

on the total time and fuel consumption. We created 75 in-
stances, randomly generating 5 instances for each com-
bination of n ∈ {5, . . . , 10} and m ∈ {2, 3, 4}. Ω in-
cludes the reachability properties φx requiring the vic-
tim from cell x being rescued with probability of 1; and690

for the time and fuel cost functions, the cost proper-
ties φc,c with βφc,c = c · Jc,∗, where Jc,∗ is the min-
imal expected cost under c of rescuing all victims, and
c ∈ {0.5, 0.75, 1.0, 1.25, 1.5}. Note that c > 1 makes
sense, because being optimal wrt. one cost function does695

not mean being optimal wrt. the other cost function.
• Factory A use-case of an actual company. Incoming

product components must be stashed in first-in-first-out
storage racks, and taken out of the racks as requested
by the production lines. There is uncertainty about the700

component requested next. Components can be moved
between racks. Ideally, all production lines should be
served while using as few racks as possible and moving
as few components between the racks as possible. We
generated 90 random instances with {3, 4, 5, 6} incom-705

ing components, {2, 3} available racks, and {2, 3} pro-
duction lines. We encode the three different preferences
as properties: the probability p of successfully serving all
production lines, considering p ∈ {0.5, 0.6, . . . , 1.0}; a
reachability property φn whereGφn encodes that n racks710

have not been used and αGφn = 1; and bounds on com-
ponent movements between racks, modeled as the cost
property φm where βφm = m and m ∈ {1, . . . , 5}.

Results The left-hand side of Table 1 displays the cov-
erage results. Comparing the three MIP solving strategies,715

I2 has a clear advantage in both PSS-MIP and MO algo-
rithm variants. Although constructing the full MIP was ac-
tually often possible, F can solve only the very smallest in-
stances, and typically timed out already during the first PSS
call. The comparison between I and I2 shows the advantage720

of I2-DUAL’s heuristic being able to simultaneously reason
across all the property objectives. I2 considered on average
only half as many states than I. Exceptions are Elevators and
Factory where I2-DUAL’s heuristic caused a runtime over-
head overshadowing that advantage. The PSS-MIP and MO725

methods perform overall similarly. However, in some do-
mains (notably Se&Re and Factory) the enumeration of ~V ∗
turned out infeasible due to too many non-dominated but
almost indistinguishable value vectors. Comparing the run-
time of PSS-MIP and MO using I2-DUAL, MO is consid-730

Coverage Time (s)
Reference PSS-MIP MO MIP MO
PG∗ LP F I I2 F I I2 I2 I2

Blocksw (135) 108 66 26 46 50 25 31 49 14.7 86.8
Elevators (135) 135 82 48 72 69 43 46 47 2.9 46.5
ExpBlock (126) 126 63 2 40 50 4 36 41 17.6 11.4
NoMyst (45) 36 19 0 18 18 0 13 13 2.1 12.5
Random (108) 72 68 0 46 56 3 52 60 33.5 20.7
Rovers (90) 90 74 22 63 63 26 40 44 30.0 46.0
Schedule (90) 45 53 18 27 51 18 27 54 8.6 2.6
TPP (90) 90 35 0 26 26 0 8 12 13.0 58.0
Zenotrav (63) 54 28 0 27 28 0 25 25 3.2 16.0
Se&Re (75) 75 67 30 33 36 0 0 0
Factory (90) 90 54 24 55 50 26 16 10 42.1 773.4

Table 1: Number of instances where the explanation was
computed within the limits. Abbreviations as described in
the text; reference values for solving MaxProb PG∗ for the
original goal G, and the LP relaxation of PSS-MIP via I2-
DUAL. Time averaged over commonly solved instances.

erably slower almost throughout. It should be noted, how-
ever, that MO spends all this time on the computation of ~V ∗.
Once computed, the generation of the explanation only takes
a split second. This can become an advantage for comput-
ing multiple local explanations in a row, which we did not 735

evaluate here. Compared to the references, the theoretical
complexity results are partially reflected in the data. Overall,
explanations could be computed in only a fraction of the in-
stances feasible for MaxProb. However, PSS-MIP I2’s close
performance to its LP-relaxed counterpart suggests that the 740

reason of this discrepancy already lies in the secondary con-
straints and objectives rather than the original source of the
complexity increase (deterministic policies).

7 Conclusion

In the presence of action-outcome uncertainty, characteris- 745

tics of solution policies are defined by the expectation over
the policies’ executions. We introduced accordingly pol-
icy reachability and cost variants of Eifler et al.’s (2020a)
plan properties. The analysis of mutual relationships be-
tween user-provided properties can comprehensibly summa- 750

rize trade-offs in the infeasibly large space of all (global)
or selected (local) policies. We showed that under the re-
striction to deterministic policies, this analysis is however
computationally more difficult than the computation of a sin-
gle solution policy. Our empirical results reflected to an ex- 755

tent this complexity, but also showed that proposed explana-
tion methodology can be feasible. We introduced two algo-
rithm variants identifying the properties’ exclusion relation-
ships. While analyzing property combinations individually
tends to be more efficient in computing a single explana- 760

tion, taking the detour via multi-objective optimization can
have strengths in an interactive setting where a user might re-
quest a series of local explanations. The adaptation of multi-
objective heuristics (Geißer et al. 2022) is a promising direc-
tion to improve scalability of the proposed methods. 765

References
Altman, E. 1999. Constrained Markov Decision Processes.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Comput. Intell., 11: 625–656.
Bertsekas, D. P.; and Tsitsiklis, J. N. 1991. An Analysis of770

Stochastic Shortest Path Problems. Math. Oper. Res., 16(3):
580–595.
Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. Artif. Intell., 69(1-2): 165–
204.775

Chen, D. Z.; Trevizan, F. W.; and Thiébaux, S. 2023. Heuris-
tic Search for Multi-Objective Probabilistic Planning. In In
Proceedings of the Thirty-Seventh AAAI Conference on Ar-
tificial Intelligence, AAAI 2023, 11945–11954.
Eén, N.; and Sörensson, N. 2003. An Extensible SAT-solver.780

In Proceedings of the 6th International Conference on the
Theory and Applications of Satisfiability Testing, SAT 2003,
volume 2919, 502–518.
Eifler, R.; Brandao, M.; Coles, A. J.; Frank, J.; and Hoff-
mann, J. 2022. Evaluating Plan-Property Dependencies: A785

Web-Based Platform and User Study. In Proceedings of
the Thirty-Second International Conference on Automated
Planning and Scheduling, ICAPS 2022, 687–691.
Eifler, R.; Cashmore, M.; Hoffmann, J.; Magazzeni, D.; and
Steinmetz, M. 2020a. A New Approach to Plan-Space Ex-790

planation: Analyzing Plan-Property Dependencies in Over-
subscription Planning. In Proceedings of the Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020,
9818–9826.
Eifler, R.; Steinmetz, M.; Torralba, Á.; and Hoffmann, J.795

2020b. Plan-Space Explanation via Plan-Property Depen-
dencies: Faster Algorithms & More Powerful Properties. In
Proceedings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2020, 4091–4097.
Garey, M. R.; and Johnson, D. S. 1979. Computers and In-800

tractability: A Guide to the Theory of NP-Completeness. W.
H. Freeman. ISBN 0-7167-1044-7.
Geißer, F.; Haslum, P.; Thiébaux, S.; and Trevizan, F. W.
2022. Admissible Heuristics for Multi-Objective Planning.
In Proceedings of the Thirty-Second International Confer-805

ence on Automated Planning and Scheduling, ICAPS 2022,
100–109.
Giacomo, G. D.; and Vardi, M. Y. 2013. Linear Tempo-
ral Logic and Linear Dynamic Logic on Finite Traces. In
Proceedings of the 23rd International Joint Conference on810

Artificial Intelligence, IJCAI 2013, 854–860.

Hansen, E. A.; and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artif. Intell.,
129(1-2): 35–62.
Helmert, M. 2006. The Fast Downward Planning System. J.815

Artif. Intell. Res., 26: 191–246.
Juozapaitis, Z.; Koul, A.; Fern, A.; Erwig, M.; and Doshi-
Velez, F. 2019. Explainable Reinforcement Learning via
Reward Decomposition.

Khan, O. Z.; Poupart, P.; and Black, J. P. 2009. Minimal 820

Sufficient Explanations for Factored Markov Decision Pro-
cesses. In Proceedings of the 19th International Conference
on Automated Planning and Scheduling, ICAPS 2009, 194 –
200.
Klößner, T.; and Hoffmann, J. 2021. Pattern Databases 825

for Stochastic Shortest Path Problems. In Proceedings of
the Fourteenth International Symposium on Combinatorial
Search, SOCS 2021, 131–135.
Klößner, T.; Hoffmann, J.; Steinmetz, M.; and Torralba, Á.
2021. Pattern Databases for Goal-Probability Maximiza- 830

tion in Probabilistic Planning. In Proceedings of the Thirty-
First International Conference on Automated Planning and
Scheduling, ICAPS 2021, 201–209.
Krarup, B.; Krivic, S.; Magazzeni, D.; Long, D.; Cashmore,
M.; and Smith, D. E. 2021. Contrastive Explanations of 835

Plans through Model Restrictions. J. Artif. Intell. Res., 72:
533–612.
Liffiton, M. H.; Previti, A.; Malik, A.; and Marques-Silva, J.
2016. Fast, flexible MUS enumeration. Constraints An Int.
J., 21(2): 223–250. 840

Littman, M. L.; Goldsmith, J.; and Mundhenk, M. 1998. The
Computational Complexity of Probabilistic Planning. J. Ar-
tif. Intell. Res., 9: 1–36.
Milani, S.; Topin, N.; Veloso, M.; and Fang, F. 2023. Ex-
plainable Reinforcement Learning: A Survey and Compara- 845

tive Review. ACM Comput. Surv.
Miller, T. 2019. Explanation in artificial intelligence: In-
sights from the social sciences. Artif. Intell., 267: 1–38.
Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley Series in 850

Probability and Statistics. Wiley. ISBN 978-0-47161977-2.
Roijers, D. M.; and Whiteson, S. 2017. Multi-Objective De-
cision Making. Synthesis Lectures on Artificial Intelligence
and Machine Learning.
Steinmetz, M.; Hoffmann, J.; and Buffet, O. 2016. Goal 855

Probability Analysis in Probabilistic Planning: Exploring
and Enhancing the State of the Art. J. Artif. Intell. Res.,
57: 229–271.
Topin, N.; and Veloso, M. 2019. Generation of Policy-Level
Explanations for Reinforcement Learning. In In Proceed- 860

ings of the Thirty-Third AAAI Conference on Artificial Intel-
ligence, AAAI 2019, 2514–2521.
Trevizan, F. W.; Thiébaux, S.; and Haslum, P. 2017. Oc-
cupation Measure Heuristics for Probabilistic Planning. In
Proceedings of the Twenty-Seventh International Confer- 865

ence on Automated Planning and Scheduling, ICAPS 2017,
306–315.
Trevizan, F. W.; Thiébaux, S.; Santana, P. H.; and Williams,
B. C. 2016. Heuristic Search in Dual Space for Constrained
Stochastic Shortest Path Problems. In Proceedings of the 870

Twenty-Sixth International Conference on Automated Plan-
ning and Scheduling, ICAPS 2016, 326–334.

