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ABSTRACT

Transformers have showcased superior performance across a variety of real-world
scenarios, marking the advent of a period dominated by large language models.
However, with the escalating complexity of these models and the continuous en-
largement of training datasets, efficiency-related challenges have become more
pronounced. In this study, we investigate the influence of the rank of attention
matrices on the training and performance of these models. We first gain insight by
benchmark tasks such as BERT and GPT-2. Our findings underscore that (i) the
mean rank of attention matrices is stable throughout the training, and the initial
rank is a dependable indicator of the final rank; (ii) a distinct positive relationship
exists between the attention rank and the effectiveness of the model, where ele-
vated ranks correlate with diminished loss and expedited convergence. These in-
sights reveal a relationship between initial attention matrix rank and performance.
We proceed to investigate the impact of hyperparameters on the initial rank. The
study unveils that modifying the softmax temperature or the head dimension can
amplify the ranks, with the former exerting a more significant effect. Notably,
we theoretically identify the characterization in the attention matrix rank at low
temperatures, and we demonstrate the existence of an upper bound of attention
matrix rank with respect to the head dimension. These observations are validated
through trials on a high-rank target, underscoring instances where traditional se-
tups fall short.

1 INTRODUCTION

In recent years, Transformer-based neural network models have reshaped the landscape of machine
learning, demonstrating unparalleled success across a myriad of applications including natural lan-
guage processing (NLP) Vaswani et al. (2017); Devlin et al. (2019); Raffel et al. (2020); Radford
et al. (2018); Rae et al. (2021); Dehghani et al. (2023); Touvron et al. (2023); Liu et al. (2019); Hao
et al. (2020); Liu et al. (2021); Yuan et al. (2022), computer vision (CV) Chen et al. (2021b); Wang
et al. (2022); Liang et al. (2021); Lu et al. (2022); Zhu et al. (2021); Wang et al. (2021), audios Sung
et al. (2022); Tsimpoukelli et al. (2021); Li et al. (2022), interdisciplinary sciences Jumper et al.
(2021), and so on. Their core architecture module, anchored by the so-called attention mechanism,
has been proved to be a cornerstone particularly in capturing linguistic relationships with intrica-
cies and nuances, thereby driving the current NLP renaissance and leading to the new era of large
foundation models represented by ChatGPT and GPT-4. However, in the meantime, with this rise in
prominence comes pressing challenges. As model architectures burgeon in complexity and training
data swells in volume, the looming issue of efficiency becomes highly inescapable Shen et al. (2023).

In this study, we carry out a thorough investigation on the rank properties of the Transformer model.
Mathematically, the central attention mechanism is designed to weigh the significance and correla-
tions of input tokens via, e.g., inner products between trainable transformations on inputs, which
is often formulated as attention matrices. As a fundamental concept in algebra, the matrix rank
is supposed to impact the capacity (expressive ability) and learning performance of the attention
mechanism and hence Transformer models. However, although there are findings on the low-rank
bottleneck Kanai et al. (2018); Bhojanapalli et al. (2020); Dong et al. (2021); Lin et al. (2022), and
several Transformer-based variants to reduce the computational and memory bottlenecks of model-
ing long sequences from the perspective of attention rank Chen et al. (2021a); Wang et al. (2020); Hu
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et al. (2022); Guo et al. (2019); Lin et al. (2022), the effect of attention ranks has been overshadowed
by other model intricacies to a large extent.

In this regard, one may pose the following fundamental questions:

1. Intuitively, both the attention rank and model performance vary during the training process.
How do they affect and evolve with each other?

2. What is the influence of hyperparameters configuration in attention matrices on the atten-
tion rank, and hence the model performance and parameter efficiency?

3. Can these findings and insights provide tutorial guidance in practical applications?

We develop principled results on the first and second questions via systematic experiments and rig-
orous mathematical analysis and make further steps on the third question by numerical verifications
under toy but representative scenarios. The primary contributions can be summarized as follows:

1. Stability of attention rank: We present empirical evidence on real-world NLP bench-
marks showcasing that the rank of attention matrices remains almost constant during the
training process. This makes the initial attention rank an applicable and convenient measure
of the attention rank along with training.

2. Connections between attention rank and performance: Our findings illuminate a direct
and positive correlation between the attention rank and model performance. Specifically,
a higher rank usually leads to expedited convergence and decreased loss, especially when
learning high-rank targets. Combined with Point 1, this emphasizes the importance of the
initial rank. Consequently, these insights not only streamline the model design process as
well as the hyperparameter selection but also contribute to conserving valuable computa-
tional resources.

3. Effect of softmax temperature and head dimension on attention rank: We provide a
fine-grained analysis of factors affecting the (initial) attention rank. Notably, it is shown
that while both the softmax temperature and head dimension play a role, the impact of
temperature is much more pronounced.

4. Theoretical demonstration: Under the setting of reduced temperatures, we perform rig-
orous mathematical analysis on the rank of attention matrices. The results (i) establish an
upper bound on the (initial) attention rank, suggesting the existence of low-rank limits;
(ii) imply a model reduction effect corresponding to parameter efficiency. That is, it is
sufficient for the attention rank to reach saturation given a relatively small head dimension.

5. Validations: We numerically verify the results under a controlled but representative setting,
where challenges that may be encountered in real-world tasks are mainly emphasized via
target ranks. This validation underscores the applicability and robustness of our findings
and insights.

The rest of this paper is organized as follows. In Section 2, we discuss the related work centering
around the attention rank. Section 3 provides pivotal findings in real-world applications (BERT and
GPT-2 on benchmark datasets). Section 4 includes the fine-grained mathematical analysis on the
attention rank. In Section 5, we perform numerical verifications to validate our results and insights.
All the details of proofs can be found in the appendix.

Notations. Throughout this paper, we use normal letters to denote scalars, particularly the letters
n, d, dh, i, j, k to represent positive integers. Boldface lower-case/capital letters are reserved for
vectors/matrices. Let ∥x∥p := (

∑n
i=1 x

p
i )

1/p be the ℓp-norm for any x ∈ Rn and p ∈ [1,∞].
Denote the standard basis of Rn by {ei}ni=1, where ei is the vector of all zeros except that the i-th
position is 1. Let 0n ∈ Rn be the vector of all zeros. Let [n] := {1, 2, . . . , n}, n ∈ N+. For
a probability space (Ω,F ,P), denote the probability of a measurable event E ∈ F by P(E). Let
N (µ,Σ) be the multivariate normal distribution defined on Rn, where µ ∈ Rn is the expectation
and Σ ∈ Rn×n is the covariance. We use the big Omega notation f(n) = Ω(g(n)) to represent that
f is bounded below by g asymptotically, i.e., there exists c > 0, n0 ∈ N+ such that f(n) ≥ cg(n)
for any n ≥ n0.
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2 RELATED WORK

The exploration of the rank of the Transformer attention matrix has been a focus in previous research
(Kanai et al. (2018); Bhojanapalli et al. (2020); Dong et al. (2021); Lin et al. (2022)). Bhojanapalli
et al. (2020) unveiled a restriction associated with the low-rank bottleneck in attention heads, at-
tributed to the proportional relationship between the number of heads and the size of each head in
prevailing architectures. Dong et al. (2021) introduced an innovative perspective of interpreting self-
attention networks. Their study elucidated that the networks’ output is an amalgamation of lesser
components, or pathways. In the absence of skip connections and multi-layer perceptrons (MLPs),
they established that the output gravitates towards a rank-1 matrix at a doubly exponential rate.

On the other hand, a suite of Transformer-based adaptations (Chen et al. (2021a); Wang et al. (2020);
Hu et al. (2022); Guo et al. (2019); Lin et al. (2022)) has emerged to mitigate the inherent bottle-
necks, notably computational and memory constraints. For instance, Wang et al. (2020) ascertained
that the self-attention mechanism’s complexity is reducible, attributing this to its low-rank matrix
approximation. The innovative self-attention mechanism they introduced marked a reduction in
complexity. Meanwhile, Guo et al. (2019) incorporated low-rank constraints, a modification that
manifested improvements in specific tasks. In a parallel vein, Chen et al. (2021a) noted the prowess
of sparse and low-rank approximations in distinct scenarios. Their efficacy was found to be con-
tingent on the softmax temperature in attention, with a combined sparse and low-rank approach
superseding individual performances.

In the context of our research, a meticulous analysis of attention matrices’ rank and its bearing on
model efficiency and performance is conducted. We establish that the mean rank remains consis-
tent throughout the training, positioning the initial rank as an accurate predictor of the end rank.
Furthermore, a clear linkage is discerned between increased attention ranks and a reduction in loss
and accelerated convergence, especially for high-rank targets. Delving into the impact of different
configurations on the initial rank, we observe that both the softmax temperature and head dimension
(dh) adjustments lead to augmented ranks. The softmax temperature adjustments are particularly
prominent. At lower temperatures, a unique attention matrix rank pattern emerges. Our theoretical
insights, corroborated by experimental assessments on an optimized model, accentuate the limita-
tions inherent in traditional configurations, underscoring the pivotal role of these parameters.

3 ATTENTION RANK IN BERT AND GPT-2

In the realm of Natural Language Processing (NLP), transformer-based models have risen to promi-
nence, with the self-attention mechanism being instrumental in their ascendancy by offering en-
hanced handling of sequential data. We first delve into an analytical comparison of two renowned
models, BERT and GPT-2, with a particular focus on attention matrix rank. The rank of a matrix,
a concept central to linear algebra, serves as a critical element in our analysis, offering insights into
the amount of distinct information encapsulated within the matrix. In the context of transformer
models, understanding the rank of the attention matrix is crucial, as it potentially correlates with the
model’s performance.

3.1 FORMULATIONS

To delve deeper into the intricacies of this mechanism, we commence with its mathematical for-
mulations. A transformer consists of several interconnected transformer blocks. For each head
h ∈ {1, 2, · · · , H} in each block, we have

Vh = XWh
v , Kh = XWh

k , Qh = XWh
q , (1)

where Wh
v ,W

h
k ,W

h
q ∈ Rd×dh , and dh is the head dimension with dh = d/H . We denote the input

by X ∈ Rn×d. The attention (score) matrix is formulated as

Attnh = softmax

(
Qh(Kh)

⊤

T

)
, (2)
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where T > 0 is the temperature, and is typically assigned the value
√
dh in most applications. The

subsequent output is

Oattn = LN(Concatenate[H](AttnhVh)Wo +X) (3)

with Wo ∈ Rd×d and LN as the layer normalization. This yields the final output

Ooutput = FFN(Oattn), (4)

where FFN is the feedforward neural network.

From the formulation, we find that the head dimension dh and the temperature T largely dictate the
rank of attention matrices. We will show that these hyperparameters play a vital role in determining
both the representational prowess and efficiency of the attention mechanism and transformer model
later.

3.2 EXPERIMENTS

Task. Our experiments were initiated with a focus on the key parameters dh and T , owing to their
critical role in the rank of the attention matrix. We employed BERT and GPT-2 models for this
purpose. The core aim was to investigate how alterations to dh and T would influence the rank in
training dynamics and, subsequently, on the overall performance of these BERT and GPT-2 models.
The IMDB and Wiki datasets served as the data for our training processes.

Model and hyper-parameters. We utilized transformer models composed of 6 layers, with an
embedding size of 256. Training batches were made up of 8 samples and employed a learning rate
of 5×10−5. In order to evaluate the rank, we chose four random samples each from the training and
testing datasets and computed the average attention rank across all transformer blocks and heads.
We also monitored the variance between head and data samples to gain insights into the attention
mechanism’s stability and consistency.1

Visual representations of our experimental outcomes are delineated in Figures 1 - 4, offering an
illustrative analysis that aids in comprehensively understanding the effects of variations in dh and T
on the rank in the training dynamics and final performance.

Figure 1: BERT on IMDB. From left to right: training rank, validation rank, and validation loss.

Figure 2: BERT on Wiki. From left to right: training rank, validation rank, and validation loss.

1It should be noted that the training of GPT-2 necessitated the masking of attention matrices to preclude the
model from accessing future data. However, this mask was not applied during the rank evaluation.
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Figure 3: GPT-2 on IMDB. From left to right: training rank, validation rank, and validation loss.

Figure 4: GPT-2 on Wiki. From left to right: training rank, validation rank, and validation loss.

3.3 DISCUSSIONS

The graphical representations and data derived from our experiments yield several key insights into
the behavior of the attention matrix rank. We distill our primary observations as follows:

1. Rank Stability Throughout Training: One salient observation is the stable nature of the
attention matrix rank during the training process. Across diverse experiments, the rank
exhibits minimal fluctuations, underscoring that the initial rank profoundly impacts subse-
quent training phases. This stability in both the training and validation phases accentuates
the critical role of model initialization.

2. Role of Temperature (T ): Alterations in T markedly impact the initial rank of the attention
matrix. Across all values of dh, an increase in T correlates with a higher rank. A distinct
divergence is observed between the rank curves corresponding to T = 0.001 and T = 1,
highlighting the pivotal role of temperature in shaping the matrix’s initial structure and, by
extension, its representational capabilities. This underscores the imperative of judiciously
choosing the T value.

3. Effect of Head Dimension (dh): In contrast to T , variations in dh exert a less pronounced
impact on the attention matrix rank. A slight elevation in rank is observed when dh ascends
from 32 to 64. However, this elevation becomes marginal when dh escalates from 64 to
128, despite the absolute increment in dh being larger, especially when T is larger. This
implies a diminishing return in rank enhancement as dh increases and underscores that the
influence of dh is comparatively subdued relative to T variations.

4. Association with Model Performance: A higher attention matrix rank correlates with en-
hanced model efficacy, as manifested by reduced validation loss. Models conditioned with
T = 1 consistently eclipse those conditioned with T = 0.001, registering lower validation
losses. Interestingly, the disparity in attention matrix ranks for different dh values (32, 64,
128) is negligible, and the performance of the corresponding models is almost analogous.

These observations are invariant across multiple experiments, lending credence to the universality
of these insights.
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4 FINE-GRAINED THEORETICAL ANALYSIS

As is shown in Figures 1 - 4 and discussed in Section 3.3, the attention rank largely determines the
overall model performance, with a higher initial rank leading to reduced loss and faster convergence.
In addition, compared to the head dimension, the softmax temperature has a much more pronounced
impact on the (initial) attention rank. This section provides a fine-grained analysis of the low-
temperature case associated with the “hardmax” activation,2 illustrating the existence of the low-
rank barrier and model reduction effect.

Formulations. Let X := [x1,x2, . . . ,xn]
⊤ ∈ Rn×d be the input data, where n denotes the

sequence length and d is the input dimension. Let (K,Q) = (XWk,XWq) be the key-query
pair with trainable parameters θ := (Wk,Wq) ∈ Rd×dh × Rd×dh (dh is the head dimension),
i.e., K := [k1,k2, . . . ,kn]

⊤ ∈ Rn×dh , Q := [q1,q2, . . . ,qn]
⊤ ∈ Rn×dh with k⊤

i = x⊤
i Wk,

q⊤
i = x⊤

i Wq , i = 1, 2, . . . , n. The basic form of the self-attention (score) matrix is defined as

Attn(X;θ) := softmax
(
QK⊤/T

)
= softmax

(
XWqW

⊤
k X

⊤/T
)
, (5)

where T := T (n, d, dh) > 0 is the temperature. By convention, for any A = [aij ] ∈ Rn×n,
e⊤i softmax(A)ej :=

exp(aij)∑n
j=1 exp(aij)

with {ei}ni=1 as the standard basis of Rn.

For the low-temperature case (0 < T ≪ 1), (5) is approximately

hardmax
(
XWqW

⊤
k X

⊤) . (6)

See Lemma 1 in the appendix for further details. Here, the maximum is taken in a row-wise sense:
for a matrix A = [aij ] ∈ Rn×n, e⊤i hardmax(A) := eki

with ki := argmaxj∈[n] aij .

We have the following estimate on the rank of (6).

Theorem 1. Let the parameters Wq,Wk be Gaussian random matrices, i.e., the entries of Wq,Wk

are independent N (0, 1) random variables. Assume that the input data X satisfies XX⊤ = In.3
Then for any n ∈ N+ appropriately large, we have

EWq

[
rank

(
hardmax

(
XWqW

⊤
k X

⊤))] ≤ (1− exp(−1))n+ 1 ≈ 0.63n. (7)

Proof sketch. The theorem is proved via the following procedure:

1. The orthonormal input yields the independence across different rows of XWqW
⊤
k X

⊤

(Lemma 4 in the appendix), further implying that these rows are i.i.d. as N (0n,QK⊤) for
any fixed (Gaussian random) Wk.

2. The hardmax calculation within respective rows is reduced to an elementary birthday prob-
lem (Lemma 3 in the appendix), which gives the estimate on the number of columns with
all zeros;

3. The estimate is further analyzed via the infinitesimal order estimation (Lemma 2 in the
appendix) and the AM-GM inequality (suggesting that “=” holds if and only if all proba-
bilities are equal).

Remark 1. The assumption on input data seems strong at first glance. However, this assumption
is approximately reasonable in applications where different xi’s (corresponding to different tokens,
for example) are often embedded with independent (and isotropic) Gaussian vectors. According
to Vershynin (2018) (Lemma 3.2.4 and Remark 3.2.5), xi’s tend to be almost orthogonal in high
dimensions (d ≫ 1) after proper scaling (e.g., normalization).

Remark 2. Notice that the hardmax(·) operator is scaling-invariant w.r.t. positive constants, i.e.,
hardmax(cA) = hardmax(A) for any c > 0. Theorem 1 also holds when the input sequences are
not normalized.

2The hardmax activation is occasionally used in applications for computational efficiency. See CV examples
in Elsayed et al. (2019); Papadopoulos et al. (2021) for more details.

3That is, the input sequence is orthonormal across time steps.
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The model reduction effect. In fact, the above rank (LHS of (7)) reaches saturation when increas-
ing the head dimension dh, provided an appropriate scaling (e.g., 1/

√
dh). Informally, recall that

the rows of XWqW
⊤
k X⊤ are independent and identically distributed as N (0n,KK⊤), according

to the Johnson–Lindenstrauss lemma (Johnson & Lindenstrauss (1984)). We have

e⊤i KK⊤ej = k⊤
i kj = x⊤

i WkW
⊤
k xj

≈ x⊤
i xj ⇒ KK⊤ ≈ XX⊤, when dh = Ω(log n). (8)

That is, further increasing the head dimension after dh = Ω(log n) has limited effect on the
rows’ distribution (always approximately N (0n,XX⊤) only depending on n, d), and hence on
the rank of hardmax attention. This is the model reduction effect: selecting the critical configuration
dh = Ω(log n) achieves optimal efficiency, since further increasing parameters leads to diminishing
marginal utility.

5 NUMERICAL VERIFICATIONS

Building on the insights from our previous experiments and theoretical results, we established that
the rank of the attention matrix is crucial in determining the model’s overall performance. Notably,
the initial rank predominantly governs the rank throughout the training process, underscoring the
significance of model initialization. Now, we aspire to validate our theoretical analysis results and
verify the impact of attention rank on model performance in a more controlled data environment.

5.1 INITIAL ATTENTION RANK

Task. We first focus on the attention matrix at initialization. Recall that

Attn = softmax

(
XWq(XWk)

⊤

T

)
, (9)

where X ∈ Rn×d and the elements of X, Wq , and Wk are drawn from a N (0, 1) distribution. Our
aim is to explore and understand the behavior of the attention matrix’s rank at different values of the
temperature parameter T and the dimensionality dh.

Model and Hyperparameters. For our assessment, we set n = 100 and d = 256. We test dh at
values {8, 16, 32, 64, 128} and T across a logarithmic scale from 10−4 to 103. Employing singular
value decomposition, we ascertain the matrix rank, treating near-zero singular values as zero with a
threshold of 10−8.

In order to bolster the reliability of our findings, we calculate the matrix rank for each dh and
T combination over three trials, and compute the mean and standard deviation. This systematic
approach ensures a comprehensive analysis, providing insights that are both robust and replicable.
Results are presented in Figure 5.

Figure 5 reveals salient trends concerning the matrix rank, temperature parameter T , and diverse dh
values. Significantly, the matrix rank demonstrates acute sensitivity to temperature T . For all dh
values, an increase in T leads to a marked rise in matrix rank, eventually achieving full rank. This
pattern suggests that matrices at higher temperatures generally maintain a superior effective rank,
emphasizing the pivotal role of T in the attention mechanism. Elevated temperatures result in a wider
attention distribution, potentially amplifying the attention matrix’s rank. For temperatures below 10,
the matrix primarily manifests a low-rank property, implying limited expressiveness. Intriguingly,
for all dh values, minimal rank variance is observed in the attention matrix around T = 10 and at
particularly low T values (around 10−4). At these exceedingly low T values, the behavior resembles
hardmax. Hence, from a rank perspective, conditions with T < 10 mirror the hardmax scenario.
Beyond T = 10, the rank rapidly surges with increasing T , ultimately reaching full rank.

In contrast, although dh determines the maximum achievable rank for the Wq and Wk matrices,
and it indirectly regulates the overall rank of the attention matrix, the impact of dh on rank is far
less significant than that of T . Observing settings with very low temperatures, we find that (i)
there exists an upper bound for the attention rank, which is consistent with our theoretical estimate
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Figure 5: The variation of (initial) attention rank for different dh, T values, where error bars repre-
sent the standard deviation.

(approximately 0.63n); and (ii) when the head dimension dh is not too large (much smaller than n),
the attention rank has reached saturation, aligning with our theoretical predictions as well.

The error bars, symbolizing the standard deviation, convey inherent variations. Yet, these variations
are eclipsed by the predominant patterns. In most instances, the standard deviation is trivial, signify-
ing a consistent trend. This consistency emphasizes the dependability of the identified patterns and
trends. Our findings elucidate the intricate interplay between temperature T and dh in determining
the attention matrix’s effective rank. Such insights could offer invaluable guidance for model ar-
chitecture design, guiding choices about the optimal temperature and number of attention heads to
enhance performance for particular tasks or datasets.

Remark 3. It is noteworthy that while the trend of rank variation with T concurs with earlier
observations in GPT-2 and BERT, where the rank ascends with increasing T , in our simplified
setting, the maximum rank can achieve full rank. In contrast, in GPT-2 and BERT experiments, full
rank is never attained. This discrepancy arises from the inherently low-rank characteristic of real
text data, marked by frequent appearances of common words like ”a” and ”the.” Additionally, the
T scale observed in our experiments differs from that in GPT-2 and BERT, as these models’ actual
training employed Kaiming initialization instead of the standard N (0, 1) initialization.

5.2 EXPERIMENTS ON HIGH-RANK DATA

Task. In our pursuit to delve deeper into the effects of the attention matrix’s rank on the model’s
expressive capability, a simplified experiment was conducted in a more controlled data environment,
emphasizing the influence of its initial rank on the model’s performance on high-rank signals. We
constructed a high-rank dataset that closely mirrors our conditions of interest. The sequence X is
consistently composed of 100 characters. Characters were randomly and uniformly selected from
a predefined set to ensure a diverse array of sequences. The sequence Y is formulated using the
equation Y = XP, where P is a 100 × 100 matrix, and each row in P contains a single ’1’, with
all other elements set to ’0’. We fixed the rank of P at 80 to simulate a high-rank target, yielding a
dataset comprising 5000 data pairs (X,Y).

Model and Hyperparameters. Our model begins with an embedding layer that transposes the
input into a dense vector space, followed by a transformer block that encapsulates key elements like
multi-head self-attention, position-wise feed-forward networks, skip connections, and layer nor-
malization. We set n = 100 and d = 256. We test dh at values {32, 64, 128} and T at values
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Table 1: Performance across different hyperparameter configurations and varied attention ranks.

T dh Final Loss Initial Rank Final Rank Accuracy

1 32 0.52 54.29± 0.44 52.25± 0.44 0.94
1 64 0.72 57.70± 0.40 56.88± 0.40 0.93
1 128 0.91 59.90± 0.61 59.05± 0.61 0.92

100 32 0.00 95.62± 0.06 95.38± 0.06 1.00
100 64 0.00 91.40± 0.29 90.17± 0.29 1.00
100 128 0.06 85.35± 2.05 78.25± 2.05 0.99

1000 32 0.00 100.00± 0.00 100.00± 0.00 1.00
1000 64 0.00 100.00± 0.00 100.00± 0.00 1.00
1000 128 0.00 100.00± 0.00 100.00± 0.00 1.00

{1, 100, 1000}. According to Figure 5, different values of T result in different initial attention ma-
trix ranks. Specifically, with T = 1 (the usual setting), the initial attention matrix rank is less than
the data’s rank (80), while with T = 100 and T = 1000, the initial attention matrix rank exceeds
the data’s rank (80).

The forward pass of the model culminates in a linear layer that delivers the final predictions, en-
suring that the output is aligned with the expected results. Optimization is facilitated by the Adam
optimizer, with a learning rate of 0.003. We gauge the model’s evolution through the cross-entropy
loss, a conventional metric for classification tasks. The experiment is characterized by an embed-
ding size of 256, a total of 50 training epochs, and a batch size of 200. The findings are illustrated
in Table 1.

5.3 DISCUSSIONS

Our refined model unveiled insights that affirm our experimental discoveries. First, the influence of
T and dh on the final rank is consistent with their impact on the initial rank, as observed in Figure
5. This consistency further illustrates the stable rank of the attention matrix throughout training.
For example, at T = 1 and dh = 32, the rank slightly adjusts from 54.29 ± 0.44 to 52.25 ± 0.44.
A similar steadiness is reflected in other settings, consistent with our experimental observations on
GPT-2 and BERT.

Further, we find a discernible correlation between the attention matrix rank and the model’s overall
performance. Setups where the rank exceeds the target rank (80) witness a significant enhancement
in model efficacy. Specifically, setups with T = 100 and T = 1000 achieve an accuracy approaching
1.00, markedly superior to those at T = 1. Interestingly, variations in dh yield almost impercepti-
ble performance differences, highlighting the attention matrix rank’s potential as a powerful early
indicator for assessing model efficacy.

6 CONCLUSION

This study examined the stability of attention rank and its association with model performance and
efficiency. Our empirical results are bolstered by comprehensive mathematical analysis and numeri-
cal validation. Initially, we emphasized the consistent behavior of attention rank throughout training.
Additionally, we found that the initial attention rank plays a pivotal role in determining the ultimate
performance of the model.

Moreover, we identified the substantial impact of softmax temperature and head dimension on at-
tention rank, with temperature having a more dominant effect. These observations are crucial for
enhancing model performance and efficiency. Future research will expand on these insights, delving
further into the intricacies of attention mechanisms and revealing potential avenues for advanced
applications.
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A APPENDIX

We begin with a lemma characterizing the gap between the softmax function and its “hard” version.
Lemma 1. Let a = [a1, a2, · · · , an]⊤ ∈ Rn with i∗ := argmax

i∈[n]
ai and i′∗ := arg max

i∈[n],i̸=i∗
ai, and

hardmax(a) := ei∗ . Assume that δ := ai∗ − ai′∗ > 0 (i.e., the maximum is unique). Then for any
T > 0, we have

∆n,δ(T ) := ∥softmax(a/T )− hardmax(a)∥1 ≤ 2(n− 1) exp(−δ/T ). (10)

That is, ∆n,δ(T ) converges to 0 exponentially fast as T → 0+.

Proof. It is straightforward to have

∆n,δ(T ) =
∑

i∈[n],i̸=i∗

exp(ai/T )∑n
j=1 exp(aj/T )

+ 1− exp(ai∗/T )∑n
j=1 exp(aj/T )

= 2

∑
i∈[n],i̸=i∗ exp(ai/T )∑

i∈[n],i̸=i∗ exp(ai/T ) + exp(ai∗/T )

≤ 2
∑

i∈[n],i̸=i∗

exp((ai − ai∗)/T )

≤ 2(n− 1) exp((ai′∗ − ai∗)/T )

= 2(n− 1) exp(−δ/T ).

This gives limT→0+ ∆n,δ(T ) = 0, and the rate is exponentially fast. The proof is completed.
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According to Lemma 1, for the low-temperature case where T ≪ 1, one can approximately consider
the hard version

hardmax
(
XWqW

⊤
k X⊤) , (11)

where the maximum is taken row-wisely. That is, for any A = [aij ] ∈ Rn×n, e⊤i hardmax(A) :=
eki

with ki := argmax
j∈[n]

aij . Note that the hardmax(·) operator is (positively) scaling-invariant, i.e.

hardmax(cA) = hardmax(A) for any c > 0.

Before we prove the low-rank property of (11), the following elementary lemmas are useful.
Lemma 2. For any c > 0, we have

lim
y→0

(1− cy)
1
y − exp (−c)

y
= −c2

2
exp (−c). (12)

Proof. By L’Hôpital’s rule, we have

lim
y→0

(1− cy)
1
y − exp (−c)

y
= lim

y→0
(1− cy)

1
y ·

− log(1− cy)− cy
1−cy

y2

= − exp (−c) · lim
y→0

log(1− cy) + cy
1−cy

y2

= −c exp (−c) · lim
y→0

−1
1−cy + 1

(1−cy)2

2y

= −c exp (−c) · lim
y→0

−c
(1−cy)2 + 2c

(1−cy)3

2

= −c2

2
exp (−c), (13)

which gives the desired result.

Lemma 3. For a random matrix A = [aij ] ∈ Rn×n with independent rows, let pij := P({aij =
maxj′∈[n] aij′}). Then the expectation number of columns with all zeros in hardmax(A) is

n∑
j=1

n∏
i=1

(1− pij). (14)

Proof. Define the random variable

Xj =

{
1, hardmax(A)ej = 0n,

0, hardmax(A)ej ̸= 0n,
j = 1, 2, . . . , n. (15)

Then, by independence,

P({Xj = 1}) = P

(
n⋂

i=1

{
e⊤i hardmax(A)ej = 0

})

=

n∏
i=1

P
({

e⊤i hardmax(A)ej = 0
})

=

n∏
i=1

(1− pij). (16)

Therefore, the expectation number of columns with all zeros is

E

 n∑
j=1

Xj

 =

n∑
j=1

E [Xj ] =

n∑
j=1

P({Xj = 1}) =
n∑

j=1

n∏
i=1

(1− pij), (17)

which completes the proof.
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The required independence is provided by the following lemma.

Lemma 4. [Vershynin (2018), Exercise 3.3.6] Let G ∈ Rm×n be a Gaussian random matrix, i.e.
the entries of G are independent N (0, 1) random variables. Let u,v ∈ Rn be unit orthogonal
vectors. Then, Gu and Gv are independent N (0m, Im) random vectors.

Proof. First, we show that Gu,Gv are both N (0m, Im) random vectors. This is straightforward
since Gej ∼ N (0m, Im) gives ujGej ∼ N (0m, u2

jIm), and {ujGej}nj=1 is a collection of
independent Gaussian vectors. Hence Gu =

∑n
j=1 ujGej ∼ N (0m, ∥u∥22Im).

Next, we show the independence of Gu and Gv. Equivalently, we are supposed to prove that e⊤i Gu
and e⊤i′Gv are independent random variables for any i, i′ ∈ [n]. For i ̸= i′, (e⊤i G)u and (e⊤i′G)v
are independent random variables since G has independent rows. Therefore, the problem is reduced
as the independence of g⊤u and g⊤v for g ∼ N (0n, In). Notice that

[u,v]⊤g ∼ N (02, [u,v]
⊤In[u,v]) = N (02, I2), (18)

which completes the proof.

Now we are ready to prove the main theorem.

Proof of Theorem 1. According to Lemma 4, since x⊤
i xj = δij (Kronecker symbol), i, j =

1, 2, · · · , n, one can deduce that {qi}ni=1 = {W⊤
q xi}ni=1 is a collection of independent N (0dh

, Idh
)

random vectors. For any fixed Gaussian random matrix Wk,

(e⊤i XWqW
⊤
k X⊤)⊤ = Kqi ∼ N (0n,KK⊤), (19)

which is also independent across different i’s. That is to say, the rows of XWqW
⊤
k X⊤ are in-

dependent and identically distributed as N (0n,KK⊤). Therefore, according to Lemma 3, the
expectation number of columns with all zeros in hardmax(XWqW

⊤
k X⊤) is

n∑
j=1

n∏
i=1

(1− pij) =

n∑
j=1

n∏
i=1

(1− pj) =

n∑
j=1

(1− pj)
n. (20)

Hence,

1

n
EWq

[
rank

(
hardmax

(
XWqW

⊤
k X⊤))] ≤ 1− 1

n

n∑
j=1

(1− pj)
n. (21)

Let pj = cj/n, we get
∑n

j=1 cj =
∑n

j=1 npj = n
∑n

j=1 pij = n. Let δj(n) := (1 − cj/n)
n −

exp (−cj). By Lemma 2 and Heine’s theorem, we have limn→∞ nδj(n) = −c2j exp (−cj)/2. No-
tice that g(y) := y2 exp (−y), y ∈ (0, n) has a unique maximum g(2) = 4 exp (−2), we get

1

n2

n∑
j=1

c2j exp (−cj) ≤
4 exp (−2)

n
<

1

n
. (22)

Hence, for ϵ0 > 0 sufficiently small, there exists n0 ∈ N+ such that for any n ≥ n0, we have∣∣∣∣∣∣ 1n
n∑

j=1

δj(n)

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1n2

n∑
j=1

nδj(n)

∣∣∣∣∣∣ < 1

n
. (23)
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This gives

1

n

n∑
j=1

(1− pj)
n =

1

n

n∑
j=1

exp (−cj) +
1

n

n∑
j=1

δj(n)

≥

 n∏
j=1

exp (−cj)

 1
n

− 1

n

=

exp

−
n∑

j=1

cj

 1
n

− 1

n

= exp (−1)− 1

n
, (24)

where the AM-GM inequality is applied, and the equality holds if and only if p1 = p2 = · · · = pn.
Hence, RHS of (21) ≤ 1− exp (−1) + 1/n, which completes the proof.
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