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ABSTRACT

Federated learning is a distributed paradigm that allows multiple parties to collab-
oratively train deep models without exchanging the raw data. However, the data
distribution among clients is naturally non-i.i.d., which leads to severe degrada-
tion of the learnt model. The primary goal of this paper is to develop a robust
federated learning algorithm to address feature shift in clients’ samples, which
can be caused by various factors, e.g., acquisition differences in medical imaging.
To reach this goal, we propose FEDFA to tackle federated learning from a dis-
tinct perspective of federated feature augmentation. FEDFA is based on a major
insight that each client’s data distribution can be characterized by statistics (i.e.,
mean and standard deviation) of latent features; and it is likely to manipulate these
local statistics globally, i.e., based on information in the entire federation, to let
clients have a better sense of the underlying distribution and therefore alleviate
local data bias. Based on this insight, we propose to augment each local feature
statistic probabilistically based on a normal distribution, whose mean is the origi-
nal statistic and variance quantifies the augmentation scope. Key to our approach
is the determination of a meaningful Gaussian variance, which is accomplished
by taking into account not only biased data of each individual client, but also un-
derlying feature statistics characterized by all participating clients. We offer both
theoretical and empirical justifications to verify the effectiveness of FEDFA. Our
code is available at https://github.com/tfzhou/FedFA.

1 INTRODUCTION

Federated learning (FL) (Konečnỳ et al., 2016) is an emerging collaborative training framework
that enables training on decentralized data residing devices like mobile phones. It comes with the
promise of training centralized models using local data points such that the privacy of participating
devices is preserved, and has attracted significant attention in critical fields like healthcare or finance.
Since data come from different users, it is inevitable that the data of each user have a different
underlying distribution, incurring large heterogeneity (non-iid-ness) among users’ data. In this work,
we focus on feature shift (Li et al., 2020b), which is common in many real-world cases, like medical
data acquired from different medical devices or natural image collected in diverse environments.

While the problem of feature shift has been studied in classical centralized learning tasks like domain
generalization, little is understood how to tackle it in federated learning. (Li et al., 2020b; Reisizadeh
et al., 2020; Jiang et al., 2022; Liu et al., 2020a) are rare exceptions. FEDROBUST (Reisizadeh et al.,
2020) and FEDBN (Li et al., 2020b) solve the problem through client-dependent learning by either
fitting the shift with a client-specific affine distribution or learning unique BN parameters for each
client. However, these algorithms may still suffer significant local dataset bias. Other works (Qu
et al., 2022; Jiang et al., 2022; Caldarola et al., 2022) learn robust models by adopting Sharpness
Aware Minimization (SAM) (Foret et al., 2021) as the local optimizer, which, however, doubles the
computational cost compared to SGD or Adam. In addition to model optimization, FEDHARMO
(Jiang et al., 2022) has investigated specialized image normalization techniques to mitigate feature
shift in medical domains. Despite the progress, there leaves an alternative space – data augmentation
– largely unexplored in federated learning, even though it has been extensively studied in centralized
setting to impose regularization and improve generalizibility (Zhou et al., 2021; Zhang et al., 2018).

While seemingly straightforward, it is non-trivial to perform effective data augmentation in feder-
ated learning because users have no direct access to external data of other users. Simply applying
conventional augmentation techniques to each client is sub-optimal since without injecting global
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information, augmented samples will most likely still suffer local dataset bias. To address this, FED-
MIX (Yoon et al., 2021) generalizes MIXUP (Zhang et al., 2018) into federated learning, by mixing
averaged data across clients. The method performs augmentation in the input level, which is natu-
rally weak to create complicated and meaningful semantic transformations, e.g., make-bespectacled.
Moreover, allowing exchange of averaged data will suffer certain levels of privacy issues.

In this work, we introduce a novel federation-aware augmentation technique, called FedFA, into
federated learning. FEDFA is based on the insight that statistics of latent features can capture essen-
tial domain-aware characteristics (Huang & Belongie, 2017; Zhou et al., 2021; Li et al., 2022a;b;
2021a), thus can be treated as “features of participating client”. Accordingly, we argue that the
problem of feature shift in FL, no matter the shift of each local data distribution from the underlying
distribution, or local distribution differences among clients, even test-time distribution shift, can be
interpreted as the shift of feature statistics. This motivates us to directly addressing local feature
statistic shift by incorporating universal statistic characterized by all participants in the federation.

FEDFA instantiates the idea by online augmenting feature statistics of each sample during local
model training, so as to make the model robust to certain changes of “features of participating
client”. Concretely, we model the augmentation procedure in a probabilistic manner via a multi-
variate Gaussian distribution. The Gaussian mean is fixed to the original statistic, and variance
reflects the potential local distribution shift. In this manner, novel statistics can be effortlessly
synthesized by drawing samples from the Gaussian distribution. For effective augmentation, we
determine a reasonable variance based on not only variances of feature statistics within each client,
but also universal variances characterized by all participating clients. The augmentation in FEDFA
allows each local model to be trained over samples drawn from more diverse feature distributions,
facilitating local distribution shift alleviation and client-invariant representation learning, eventually
contributing to a better global model.

FEDFA is a conceptually simple but surprisingly effective method. It is non-parametric, requires
negligible additional computation and communication costs, and can be seamlessly incorporated
into arbitrary CNN architectures. We propose both theoretical and empirical insights. Theoretically,
we show that FEDFA implicitly introduces regularization to local model learning by regularizing
the gradients of latent representations, weighted by variances of feature statistics estimated from
the entire federation. Empirically, we demonstrate that FEDFA (1) works favorably with extremely
small local datasets; (2) shows remarkable generalization performance to unseen test clients outside
of the federation; (3) outperforms traditional data augmentation techniques by solid margins, and
can complement them quite well in the federated learning setup.

2 OUR APPROACH

2.1 PRELIMINARY: FEDERATED LEARNING

We assume a standard federated learning setup with a server that can transmit and receive messages
from M client devices. Each client m∈ [M ] has access to Nm training instances

{
(xi, yi)

}Nm
i=1

in
the form of image xi∈X and corresponding labels yi∈Y that are drawn i.i.d. from a device-indexed
joint distribution, i.e., (xi, yi)∼Pm(x, y). The goal of standard federated learning is to learn a deep
neural network: f(wg,wh) , g(wg) ◦ h(wh), where h : X → Z is a feature extractor with K
convolutional stages: h = hK ◦ hK−1 ◦ · · · ◦ h1, and g : Z →Y is a classifier. To learn network
parameters w={wg,wh}, the empirical risk minimization (ERM) is widely used:

LERM(w) ,
1

M

∑
m∈[M ]

LERM
m (w), where LERM

m (w) = E(xi,yi)∼Pm [`i(g ◦ h(xi), yi;w)]. (1)

Here the global objective LERM is decomposable as a sum of device-level empirical loss objectives
(i.e., {LERM

m }m). Each LERM
m is computed based on a per-data loss function `i. Due to the separation

of clients’ data, LERM(w) cannot be solved directly. FEDAVG (McMahan et al., 2017) is a leading
algorithm to address this. It starts with client training of all the clients in parallel, with each client
optimizing LERM

m independently. After local client training, FEDAVG performs model aggregation to
average all client models into a updated global model, which will be distributed back to the clients
for the next round of client training. Here the client training objective in FEDAVG is equivalent
to empirically approximating the local distribution Pm by a finite Nm number of examples, i.e.,
Pem(x, y)=1/Nm

∑Nm
i=1 δ(x=xi, y=yi), where δ(x=xi, y=yi) is a Dirac mass centered at (xi, yi).
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2.2 MOTIVATION

While the ERM-based formulation has achieved great success, it is straightforward to see that the
solution would strongly depend on how each approximated local distribution Pem mimics the un-
derlying universal distribution P. In real-world federated learning setup however, in all but trivial
cases each Pem exhibits a unique distribution shift from P, which causes not only inconsistency
between local and global empirical losses (Acar et al., 2021; Wang et al., 2020), but also gener-
alization issues (Yuan et al., 2022). In this work, we circumvent this issue by fitting each local
dataset a richer distribution (instead of the delta distribution) in the vicinal region of each sample
(xi, yi) so as to estimate a more informed risk. This is precisely the principle behind vicinal risk
minimization (VRM) (Chapelle et al., 2000). Particularly, for data point (xi, yi), a vicinity distribu-
tion Vm(x̂i, ŷi|xi, yi) is defined, from which novel virtual samples can be generated to enlarge the
support of the local data distribution. In this way, we obtain an improved approximation of Pm as
Pvm=1/Nm

∑Nm
i=1 Vm(x̂i, ŷi|xi, yi). In centralized learning scenarios, various successful instances of

Vm, e.g., MIXUP (Zhang et al., 2018), CUTMIX (Yun et al., 2019), have been developed. Simply
applying them to local clients, though allowing for performance improvements (see Table 6), is sub-
optimal since, without injecting any global information, Pvm only provides a better approximation to
the local distribution Pm, rather than the true distribution P. We solve this by introducing a dedicated
method FEDFA to estimate more reasonable Vm in federated learning.

2.3 FEDFA: FEDERATED FEATURE AUGMENTATION

FEDFA belongs to the family of label-preserving feature augmentation (Xie et al., 2020). During
training, it estimates a vicinity distribution Vkm at each layer hk to augment hidden features in client
m. Considering Xk

m ∈ RB×C×H×W as the intermediate feature representation of B mini-batch im-
ages, with spatial size (H×W ) and channel number (C), and Y km as corresponding label. Vkm is
label-preserving in the sense that Vkm(X̂k

m, Ŷm|Xk
m, Ym),Vkm(X̂k

m|Xk
m)δ(Ŷm = Ym), i.e., it only

transforms the latent feature Xk
m to X̂k

m, but preserves the original label Y km.

2.3.1 FEDERATED FEATURE AUGMENTATION FROM A PROBABILISTIC VIEW

Instead of explicitly modeling Vkm(X̂k
m|Xk

m), our method performs implicit feature augmentation
by manipulating channel-wise feature statistics. Specifically, for Xk

m, its channel-wise statistics,
i.e., mean µkm and standard deviation σkm are given as follows:

µkm =
1

HW

H∑
h=1

W∑
w=1

Xk,(h,w)
m ∈ RB×C , σkm =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(X
k,(h,w)
m − µkm)2 ∈ RB×C , (2)

where X
k,(h,w)
m ∈RB×C represents features at spatial location (h,w). As the abstract of latent fea-

tures, these statistics carry domain-specific information (e.g., style). They are instrumental to image
generation (Huang & Belongie, 2017), and have been recently used for data augmentation in image
recognition (Li et al., 2021a). In heterogeneous federated learning scenarios, the feature statistics
among local clients will be inconsistent, and exhibit uncertain feature statistic shifts from the statis-
tics of the true distribution. Our method explicitly captures such shift via probabilistic modeling.
Concretely, instead of representing each feature Xk

m with deterministic statistics {µkm, σkm}, we hy-
pothesize that the feature is conditioned on probabilistic statistics {µ̂km, σ̂km}, which are sampled
around the original statistics based on a multi-variate Gaussian distribution, i.e., µ̂km∼N (µkm, Σ̂

2
µkm

)

and σ̂km∼N (σkm, Σ̂
2
σkm

), where each Gaussian’s center corresponds to the original statistic, and the
variance is expected to capture the potential feature statistic shift from the true distribution. Our core
goal is thus to estimate proper variances Σ̂2

µkm
/Σ̂2

σkm
for reasonable and informative augmentation.

Client-specific Statistic Variances. In client-side, we compute client-specific variances of feature
statistics based on the information within each mini-batch:

Σ2
µkm

=
1

B

B∑
b=1

(µkm − E[µkm])2 ∈ RC , Σ2
σkm

=
1

B

B∑
b=1

(σkm − E[σkm])2 ∈ RC , (3)

where Σ2
µkm

and Σ2
σkm

denote the variance of feature mean µkm and standard deviation σkm that are
specific to each client. Each value in Σ2

µkm
or Σ2

σkm
is the variance of feature statistics in a particular

channel, and its magnitude manifests how the channel will change potentially in the feature space.
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Client-sharing Statistic Variances. The client-specific variances are solely computed based on
the data in each individual client, and thus likely biased due to local dataset bias. To solve this,
we further estimate client-sharing feature statistic variances taking information of all clients into
account. Particularly, we maintain a momentum version of feature statistics for each client, which
are online estimated during training:

µ̄km ← αµ̄km + (1− α)
1

B

B∑
b=1

µkm ∈ RC , σ̄km ← ασ̄km + (1− α)
1

B

B∑
b=1

σkm ∈ RC , (4)

where µ̄km and σ̄km are the momentum updated feature statistics of layer hk in client m, and they are
initialized as C-dimensional all-zero and all-one vectors, respectively. α is a momentum coefficient.
We set a same α for both updating, and found no benefit to set it differently. In each communication,
these accumulated local feature statistics are sent to the server along with model parameters. Let
µ̄k = [µ̄k1 , . . . , µ̄

k
M ] ∈ RM×C and σ̄k = [σ̄k1 , . . . , σ̄

k
M ] ∈ RM×C denote collections of accumulated

feature statistics of all clients, the client sharing statistic variances are determined in server-side by:

Σ2
µk =

1

M

M∑
m=1

(µ̄km − E[µ̄k])2 ∈ RC , Σ2
σk =

1

M

M∑
m=1

(σ̄km − E[σ̄k])2 ∈ RC . (5)

In addition, it is intuitive that some channels are more potentially to change than others, and it
will be favorable to highlight these channels to enable a sufficient and reasonable exploration of
the space of feature statistics. To this end, we further modulate client sharing estimations with a
Student’s t-distribution (Student, 1908; Van der Maaten & Hinton, 2008) with one degree of freedom
to convert the variances to probabilities. The t-distribution has heavier tails than other alternatives
such as Gaussian distribution, allowing to highlight the channels with larger statistic variance, at
the same time, avoiding overly penalizing the others. Formally, denote Σ

2,(j)

µk
and Σ

2,(j)

σk
as the

shared variances of the jth channel in Σ2
µk and Σ2

σk (Eq. 5), respectively. They are modulated by
the t-distribution as follows:

γ
(j)

µk
=

C(1 + 1/Σ2,(j)

µk
)−1∑C

c=1(1 + 1/Σ2,(c)

µk
)−1

∈ R, γ
(j)

σk
=

C(1 + 1/Σ2,(j)

σk
)−1∑C

c=1(1 + 1/Σ2,(c)

σk
)−1

∈ R, (6)

where γ(j)
µk

and γ(j)
σk

refer to the modulated variances of the j-th channel. By applying Eq. 6 to
each channel separately, we obtain γµk = [γ(1)µk , . . . , γ

(C)
µk ] ∈ RC and γσk = [γ(1)σk , . . . , γ

(C)
σk ] ∈ RC

as modulated statistic variances of all feature channels at layer hk. In this way, the channels with
large values in Σ2

µk(or Σ2
σk ) will be assigned with much higher importance in γµk(or γσk ) than other

channels, allowing for more extensive augmentation along those directions.

Adaptive Variance Fusion. The modulated client sharing estimations {γµk , γσk} provide a quan-
tification of distribution difference among clients, and larger values imply potentials of more signifi-
cant changes of corresponding channels in the true feature statistic space. Therefore, for each client,
we weight the client specific statistic variances {Σ2

µkm
,Σ2

σkm
} by {γµk , γσk}, so that each client has

a sense of such difference. To avoid overly modification of client specific statistic variances, we add
a residual connection for fusion, yielding an estimation of Gaussian ranges as:

Σ̂2
µkm

= (γµk + 1)� Σ2
µkm

∈ RC , Σ̂2
σkm

= (γσk + 1)� Σ2
σkm

∈ RC , (7)

where � denotes the Hadamard product.

Implementation of Feature Augmentation. After establishing the Gaussian distribution, we syn-
thesize novel feature X̂k

m in the vicinity of Xk
m as follows:

X̂k
m = σ̂km

Xk
m − µkm
σkm

+ µ̂km, where µ̂km∼N (µkm, Σ̂
2
µkm

), σ̂km∼N (σkm, Σ̂
2
σkm

). (8)

Here Xk
m is first normalized with its original statistics by (Xk

m−µ
k
m)/σkm, and further scaled with

novel statistics {µ̂km, σ̂km} that are randomly sampled from corresponding Gaussian distribution. To
make the sampling differentiable, we use the re-parameterization trick (Kingma & Welling, 2013):

µ̂km = µkm + εµΣ̂µkm , σ̂km = σkm + εσΣ̂σkm , (9)
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where εµ∼N (0, 1) and εσ∼N (0, 1) follow the normal Gaussian distribution.

The proposed federated feature augmentation (FFA) operation in Eq. 8 is a plug-and-play layer, i.e.,
it can be inserted at arbitrary layers in the feature extractor h. In our implementation, we add a
FFA layer after each convolutional stage of the networks. During training, we follow the stochastic
learning strategy (Verma et al., 2019; Zhou et al., 2021; Li et al., 2022b) to activate each FFA layer
with a probability of p. This allows for more diverse augmentation from iteration to iteration (based
on the activated FFA layers). At test time, no augmentation is applied. In Appendix A, we provide
detailed descriptions of FEDFA in Algorithm 1 and FFA in Algorithm 2.

3 THEORETICAL INSIGHTS

In this section, we provide mathematical analysis to gain deeper insights into FEDFA. To begin with,
we show that FEDFA is a noise injection process (Bishop, 1995; Camuto et al., 2020; Lim et al.,
2022) that injects federation-aware noises to latent features.
Lemma 1. Consider clientm∈ [M ], for a batch-wise latent feature Xk

mat layer k, its augmentation
in FEDFA (cf. Eq. 8) follows a noising process X̂k

m=Xk
m+ekm, with the noise ekm taking the form:

ekm = εσΣ̂σkmX̄k
m + εµΣ̂µkm , (10)

where εµ∼N (0, 1), εσ∼N (0, 1), X̄k
m = (Xk

m−µ
k
m)/σkm.

Based on Lemma 1, we can identify the federation-aware implicit regularization effects of FEDFA.
Theorem 1. In FEDFA, the loss function LFEDFA

m of client m can be expressed as:

LFEDFA
m = LERM

m + LREG
m , (11)

where LERM
m is the standard ERM loss, and LREG

m is the regularization term:

LERM
m = E(Xm,Ym)∼Pm`(g(h1:K(Xm)), Ym), (12)

LREG
m = EZ∼KE(Xm,Ym)∼Pm 5h1:K(Xm) `(g(h1:K(Xm)), Ym)>

∑
z∈Z

Jz(Xm)ezm, (13)

where Jz denotes the Jacobian of layer z (see Proposition 1 in Appendix for its explicit expression).

Theorem 1 implies that, FEDFA implicitly introduces regularization to local client learning by reg-
ularizing the gradients of latent representations (i.e., 5h1:K(Xm)`(g(h1:K(Xm)), Ym)>), weighted
by federation-aware noises in Lemma 1, i.e.,

∑
z∈Z Jz(Xm)ezm.

4 EMPIRICAL RESULT

4.1 SETUP

Datasets. We conduct extensive experiments on five datasets: Office-Caltech 10 (Gong et al., 2012),
DomainNet(Peng et al., 2019) and ProstateMRI(Liu et al., 2020b) for validation of FEDFA in terms
of feature-shift non-IID, as well as larger-scale datasets CIFAR-10 (Krizhevsky & Hinton, 2009) and
EMNIST (Cohen et al., 2017) for cases of label distribution and data size heterogeneity, respectively.

Baselines. For comprehensive evaluation, we compare FEDFA against several state-of-the-art fed-
erated learning techniques, including FEDAVG (McMahan et al., 2017), FEDAVGM (Hsu et al.,
2019), FEDPROX (Li et al., 2020a), FEDSAM (Qu et al., 2022), FEDBN (Li et al., 2020b), FE-
DROBUST (Reisizadeh et al., 2020), and FEDMIX (Yoon et al., 2021). Moreover, we compare with
FEDHARMO (Jiang et al., 2022) in ProstateMRI, that is specialized designed for medical imaging.

To gain more insights into FEDFA, we develop two baselines: FEDFA-R(ANDOM) and FEDFA-
C(LIENT). FEDFA-R randomly perturbs feature statistics based on Gaussian distribution with a
same standard deviation for all channels, i.e., Σ̂µkm= Σ̂σkm=λ, where λ= 0.5. FEDFA-C performs
augmentation based only on client specific variances, i.e., Eq. 7 turns into Σ̂2

µkm
=Σ2

µkm
, Σ̂2

σkm
=Σ2

σkm
.

Metrics. As conventions, we use top-1 accuracy for image classification and Dice coefficient for
medical image segmentation, respectively. We report the performance only for the global model.

Implementation Details. We use PyTorch to implement FEDFA and other baselines. Following
FEDBN (Li et al., 2020b), we adopt AlexNet (Krizhevsky et al., 2017) on Office-Caltech 10 and
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Table 1: Image classification performance on Office-Caltech 10 and DomainNet test. Top-1 accuracy
(%) is reported. Office-Caltech 10 has four clients: A(mazon), C(altech), D(SLR), and W(ebcam), while
DomainNet has six: C(lipart), I(nfograph), P(ainting), Q(uickdraw), R(eal), and S(ketch). See §4.2 for details.

Office-Caltech 10 (Gong et al., 2012) DomainNet (Peng et al., 2019)Algorithm A C D W Average C I P Q R S Average
FEDAVG 84.4 66.7 75.0 88.1 78.5 71.5 33.2 57.8 76.5 72.9 65.2 62.8
FEDPROX 84.9 64.0 78.1 88.1 78.8 70.9 32.9 61.2 74.1 71.1 67.9 63.0
FEDSAM 81.7 63.1 50.0 81.4 69.1 60.1 30.1 53.0 64.8 61.9 47.3 52.9
FEDAVGM 85.9 64.0 71.9 94.9 79.2 79.8 33.3 58.8 72.6 72.8 66.1 62.5
FEDROBUST 82.3 64.0 81.3 93.2 80.2 70.9 32.9 60.7 75.7 72.6 68.5 63.6
FEDBN 82.3 63.6 81.2 94.9 80.5 72.4 32.7 64.3 74.0 69.9 70.8 64.0
FEDMIX 81.7 63.1 81.3 93.2 79.8 75.9 34.1 61.7 73.8 69.4 70.6 64.3
FEDFA 88.0 65.8 90.6 88.1 83.1 77.4 34.9 61.2 78.8 73.2 73.5 66.5

DomainNet, using the SGD optimizer with learning rate 0.01 and batch size 32. Following FED-
HARMO (Jiang et al., 2022), we employ U-Net (Ronneberger et al., 2015) on ProstateMRI using
Adam as the optimizer with learning rate 1e-4 and batch size 16. The communication rounds are
400 for Office-Caltech 10 and DomainNet, and 500 for ProstateMRI, with the number of local up-
date epoch setting to 1 in all cases. For EMNIST, we strictly follow FEDMIX (Yoon et al., 2021)
to introduce data size heterogeneity by partitioning data w.r.t. writers, and train a LeNet-5 (LeCun
et al., 1998) using SGD with batch size 10. The total number of clients is 200 and only 10 clients
are sampled per communication round. We run 200 rounds in total. For CIFAR-10, we sample local
data based on Dirichlet distribution Dir(α) to simulate label distribution heterogeneity. As (Qu et al.,
2022; Kim et al., 2022), we set α to 0.3 or 0.6, and train a ResNet-18 (He et al., 2016). The number
of clients is 100 with participation rate 0.1, while the number of communication round is set to 100.

4.2 MAIN RESULTS
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Figure 1: Test accuracy versus communi-
cation rounds on Office-Caltech 10.

We first present the overall results on the five benchmarks,
i.e., Office-Caltech 10 and DomainNet in Table 1 and
Fig. 1, ProstateMRI in Table 2 and Fig. 2, EMNIST and
CIFAR-10 in Table 3.

Results on Office-Caltech 10 and DomainNet. FEDFA
yields solid improvements over competing methods for
image classification. As presented in Table 1, FEDFA
leads to consistent performance gains over the competi-
tors across the benchmarks. The improvements over FE-
DAVG can be as large as 4.6% and 3.7% on Office-
Caltech 10 and DomainNet, respectively. Moreover, in
comparison to prior data augmentation-based algorithm
FEDMIX, FEDFA also brings solid gains, i.e., 3.3% on
Office-Caltech 10 and 2.2% on DomainNet. This is en-
couraging since our approach in nature better preserves
privacy than FEDMIX, which requires exchanging aver-
aged data across clients. Moreover, Fig. 1 depicts the convergence curves of comparative methods
on Office-Caltech 10. At the early training stage (0∼ 200 rounds), FEDFA shows similar training
efficiency as other baselines like FEDPROX and FEDMIX. But as the training goes, FEDFA is able
to converge to a more optimal solution.

Results on ProstateMRI. FEDFA shows leading performance with extremely small local datasets.
In some practical scenarios like healthcare, the size of local dataset can be very small, which poses
a challenge for federated learning. To examine the performance of federated learning algorithms
in this scenario, we build mini-ProstateMRI by randomly sampling only 1/6 of all training samples
in each client for training. Results are summarized in Table 2. FEDFA outperforms FEDAVG by
significant margins (i.e., 3.0%) and it even performs better than FEDHARMO, which is specifically
designed for medical scenarios. In addition, Fig. 2 shows how the performance of methods varies
with respect to the size of local dataset. We train methods with different fractions (i.e., 1/6, 2/6, 3/6,
4/6, 5/6, 1) of training samples . FEDFA shows promising performance in all cases.
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Table 2: Medical image segmentation accuracy on mini-
ProstateMRI test (Liu et al., 2020b) with small-size local
datasets. Dice score (%) is reported. The dataset consists of data
from six medical institutions: B(IDMC), H(K), I(2CVB), (B)M(C),
R(UNMC) and U(CL). The number in the bracket denotes the num-
ber of training samples in each client. See §4.2 for more details.

Algorithm B (32) H (32) I (46) M (38) R (41) U (32) Average
FEDAVG 81.2 90.8 86.1 84.0 91.0 86.2 86.5
FEDPROX 82.8 89.1 89.8 79.5 89.8 85.6 86.1
FEDAVGM 80.3 91.6 88.2 82.2 91.2 86.5 86.7
FEDSAM 82.7 92.5 91.8 83.6 92.6 88.1 88.5
FEDROBUST 81.7 91.3 91.5 88.5 89.4 84.2 87.7
FEDBN 88.9 92.3 90.6 88.1 87.6 85.4 88.8
FEDMIX 86.3 91.6 89.6 88.1 89.8 85.2 88.4
FEDHARMO 86.7 91.6 92.7 84.2 92.5 84.6 88.7
FEDFA 85.7 92.6 91.0 85.4 92.9 89.2 89.5
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Figure 2: Segmentation performance
w.r.t local data size (i.e., fraction of train-
ing samples over the whole training set).

Table 3: Performance on CIFAR-10 and EMNIST.

CIFAR-10Algorithm Dir (0.6) Dir (0.3) EMNIST

FEDAVG 73.3 69.2 84.9
FEDAVGM 73.4 69.1 85.5
FEDPROX 74.0 69.5 84.9
FEDBN 73.7 69.8 85.3
FEDSAM 74.3 70.0 86.5
FEDROBUST 74.9 70.5 86.7
FEDMIX 75.5 70.7 86.6
FEDFA 76.3 71.9 87.8

Results on CIFAR-10 and EMNIST. In addi-
tion to feature-shift non-i.i.d., FEDFA shows con-
sistent improvements in label distribution het-
erogeneity (CIFAR-10) and data size heterogene-
ity (EMNIST). As shown in Table 3, in CIFAR-
10, FEDFA surpasses the second best method,
FEDMIX, by 0.8% and 1.2% with respect to
two non-i.i.d levels Dir(0.6) and Dir(0.3), respec-
tively. Notably, as the non-i.i.d. level increasing
from Dir(0.6) to Dir(0.3), FEDFA tends to yield a
larger gap of performance gain, showing a strong
capability in handling severe non-i.i.d. scenarios.
In addition, in EMNIST, FEDFA outperforms FEDROBUST by 1.1% and FEDMIX by 1.2%, respec-
tively. These results reveal that though designed for feature shift non-i.i.d., FEDFA’s very nature of
data augmentation makes it a fundamental technique to various non-i.i.d. challenges in FL.

Table 4: Comparison of generalization performance to unseen test clients on the three benchmarks (§4.2).
Office-Caltech 10 DomainNet ProstateMRIAlgorithm A C D W Avg C I P Q R S Avg B H I M R U Avg

FEDAVG 64.6 49.3 71.9 55.9 60.4 63.1 27.5 49.6 44.7 51.7 48.2 47.5 60.7 85.3 78.4 67.2 83.0 59.0 72.3
FEDPROX 63.0 50.7 68.7 62.7 61.3 62.2 26.9 49.6 42.4 50.5 48.9 46.8 61.5 86.2 79.3 68.6 84.5 62.4 73.8
FEDROBUST 64.9 53.0 73.2 58.1 62.3 63.5 28.5 49.8 44.6 53.5 56.7 49.4 62.4 87.2 78.0 77.1 88.0 65.3 76.3
FEDMIX 65.1 52.6 73.8 58.9 62.6 63.3 28.0 50.1 45.9 53.3 56.8 49.6 62.1 86.7 78.1 76.8 87.7 65.6 76.2
FEDFA 65.6 54.2 78.1 59.3 64.3 64.1 28.8 49.4 47.5 56.6 61.0 51.2 64.0 88.3 75.9 79.0 89.1 68.8 77.5

4.3 FEDERATED DOMAIN GENERALIZATION PERFORMANCE

Federated learning are dynamic systems, in which novel clients may enter the system after model
training, most possibly with test-time distribution shift. However, most prior federated learning
algorithms focus only on improving model performance on the participating clients, while neglecting
model generalizability to unseen non-participating clients. Distribution shift often occurs during
deployment, thus it is essential to evaluate the generalizability of federated learning algorithms.
With a core of data augmentation, FEDFA is supposed to enforce regularization to neural network
learning, which could improve generalization capability.

To verify this, we perform experiments for federated domain generalization based on the leave-
one-client-out strategy, i.e., training on M −1 distributed clients and testing on the held-out un-
participating client. The results are presented in Table 4. As seen, FEDFA achieves leading gen-
eralization performance on most unseen clients. For example, it yields consistent improvements
as compared to FEDMIX, i.e., 1.7% on Office-Caltech 10, 1.6% on DomainNet, and 1.3% on
ProstateMRI, in terms of average performance. Despite the improved performance, we find by com-
paring to the results reported in Table 1 and Table 2 that, current federated learning algorithms still
encounter significant participation gap (Yuan et al., 2022), i.e., the performance difference between
participating and non-participating clients, which is a critical issue that should be tackled in future.
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4.4 DIAGNOSTIC EXPERIMENT

We conduct a set of ablative experiments to enable a deep understanding of FEDFA.

Table 5: Efficacy of FEDFA over FEDFA-C and FEDFA-R.

Variant Office DomainNet ProstateMRI
FEDAVG 78.5 62.8 86.5
FEDFA-R 78.6 61.0 86.1
FEDFA-C 79.5 63.7 87.8
FEDFA 83.1 66.5 89.5

FEDFAvs. FEDFA-C and FEDFA-R. We
first verify FEDFA against the two baseline
variants mentioned in §4.1. Both variants
involve only device-dependent augmenta-
tion of feature statistics, without explicitly
considering any global information. As
shown in Table 5, by randomly perturbing
feature statistics, FEDFA-R shows no improvements or even suffers performance degradation on
DomainNet and ProstateMRI against FEDAVG; FEDFA-C yields promising performance gains by
taking into account client-specific feature statistic variances; by comparing FEDFA and FEDFA-C,
we confirm the significance of universal feature statistic information in federated augmentation.

Table 6: Efficacy of FEDFA against augmentation techniques.

Algorithm Office DomainNet ProstateMRI
FEDAVG 78.5 62.8 86.5
MIXUP 79.2 63.4 87.0
M-MIXUP 79.6 63.5 87.6
MIXSTYLE 79.9 64.1 88.5
MOEX 80.2 64.6 88.3
FEDFA 83.1 66.5 89.5
FEDFA+MIXUP 83.7 67.0 89.9
FEDFA+M-MIXUP 83.6 66.9 90.2
FEDFA+MIXSTYLE 84.0 67.2 90.2
FEDFA+MOEX 83.9 67.0 90.1

FEDFA vs. traditional augmentation
methods. We compare FEDFA with
four conventional data/feature augmen-
tation techniques, i.e., MIXUP (Zhang
et al., 2018), MANIFOLD MIXUP
(Verma et al., 2019), MIXSTYLE (Zhou
et al., 2021) and MOEX (Li et al.,
2021a). The results are presented in
Table 6. We show that i) all the four
techniques yield non-trivial improve-
ments over FEDAVG, and some of them
(e.g., MOEX) even outperform well-
designed federated learning algorithms (as compared to Tables 1-2); by accounting for global feature
statistics, FEDFA surpasses all of them, yielding 2.9%/1.9%/1.0% improvements over the second-
best results on Office/DomainNet/ProstateMRI, respectively; iii) combining FEDFA with these tech-
niques allows further performance uplifting, verifying the complementary roles of FEDFA to them.

Table 7: Effectiveness of adaptive variance fusion.
Variant Office DomainNet ProstateMRI
Direct Fusion 80.6 64.1 86.9
Adaptive Fusion 83.1 66.5 89.5

Adaptive Variance Fusion. Next, we examine the
effect of adaptive variance fusion in Eqs. 6-7. We
design a baseline “Direct Fusion” that directly com-
bines the client-specific and client-sharing statistic
variances as: Σ̂2

µkm
=(Σ2

µk+1)Σ2
µkm

, Σ̂2
σkm

=(Σ2
σk+1)Σ2

σkm
. We find from Table 7 that the baseline en-

counters severe performance degradation across all three benchmarks. A possible reason is that the
two types of variances are mostly mis-matched, and the simple fusion strategy may cause significant
changes of client-specific statistic variances, which would be harmful for local model learning.
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Figure 3: Hyper-parameter
analysis for α and p.

Hyper-parameter analysis. FEDFA includes only two hyper-
parameters, i.e., momentum coefficient α in Eq. 4 and stochastic
learning probability p to apply feature statistic augmentation dur-
ing training. As shown in Fig. 3, (1) the model is overall robust to
α. Notably, it yields promising performance at α= 0, in which the
model only uses the feature statistics of the last mini-batch in each
local epoch to compute client-sharing statistic variances. This result
reveals that FEDFA is insensitive to errors of client-sharing statistic
variances. (2) For the probability p, we see that FEDFA signifi-
cantly improves the baseline (i.e., p= 0), even with a small proba-
bility (e.g., p=0.1). The best performance is reached at p=0.5.

4.5 COMPLEXITY ANALYSIS

Computation and memory costs. FEDFA involves only several basic matrix operations, thus in-
curring negligible extra computation cost. Compared to FEDAVG, it requires 4

∑K
k=1 Ck more GPU

memory allocation to store four statistic values (µ̄km, σ̄km, γµk , γσk ) at each of the K FFA layers.
Here Ck is the number of feature channel at each layer k. The costs are in practice very minor, e.g.,
18 KB/15.5 KB for AlexNet/U-Net. For comparison, FEDMIX requires 2×more GPU memory than
FEDAVG. The low computation/memory costs make FEDFA favorable for edge devices.
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Communication cost. In each round, FEDFA incurs additional communication costs since it re-
quires the sending 1) from client to server the momentum feature statistics µ̄km and σ̄km, as well as
2) from server to client the client sharing feature statistic variances γµk and γσk at each layer k.
Thus, for K layers in total, the extra communication cost for each client is ce= 4

∑K
k=1 Ck, where

the factor of 4 is for server receiving and sending two statistic values. We further denote cm as the
cost for exchanging model parameters in FedAvg. In general we have ce� cm (e.g., ce=18KB vs.
cm=99MB for AlexNet), hence, the extra communication bruden in FEDFA is almost negligible.

5 RELATED WORK

Federated Learning. Recent years have witnessed tremendous progress in federated learning
(Konečnỳ et al., 2016), which opens the door for privacy-preserving deep learning (Shokri &
Shmatikov, 2015), i.e., train a global model on distributed datasets without disclosing private data
information. FEDAVG (McMahan et al., 2017) is a milestone; it trains local models independently
in multiple clients and then averages the resulting model updates via a central server once in a while.
However, FEDAVG is designed for i.i.d. data and suffers in statistical accuracy or even diverge if
deployed over non-i.i.d. client samples. To address this issue, numerous efforts have been devoted
to handling heterogeneous federated environments, by, for example, adding a dynamic regularizer
to local objectives in FEDPROX (Li et al., 2020a) and FEDDYN (Acar et al., 2021), correcting client
drift through variance reduction in SCAFFOLD (Karimireddy et al., 2020), adaptive server opti-
mization in FEDOPT (Reddi et al., 2021), local batch normalization in FEDBN (Li et al., 2020b), or
training a perturbed loss in FEDSAM (Qu et al., 2022) and FEDROBUST (Reisizadeh et al., 2020).

FEDMIX (Yoon et al., 2021), as far as we know, is the only existing method that solves federated
learning based on data augmentation. It adapts the well-known MIXUP algorithm (Zhang et al.,
2018) from centralized learning into the federated learning scenario. Nevertheless, FEDMIX re-
quires exchanging local data (or averaged version) across clients for data interpolation, thereby
suffering privacy issues. In addition, FEDMIX operates on the input level, while our approach fo-
cuses on latent feature statistic augmentation. Since deeper representations tend to disentangle the
underlying factors of variation better (Bengio et al., 2013), traversing along latent space will poten-
tially make our method encounter more realistic samples. This is supported by the fact that FEDFA
achieves consistent performance improvements over FEDMIX in diverse scenarios.

Data Augmentation. Data augmentation has a long and rich history in machine learning. Early
studies (Schölkopf et al., 1996; Kukačka et al., 2017) focus on label-preserving transformations to
employ regularization via data, alleviating overfitting and improving generalization. For image data,
some techniques, like random horizontal flipping and cropping are commonly used for training of
advanced neural networks (He et al., 2016). In addition, there is a recent trend for label-perturbing
augmentation, e.g., MIXUP (Zhang et al., 2018) or CUTMIX (Yun et al., 2019). Separate from these
input-level augmentation techniques are feature augmentation methods (Verma et al., 2019; Li et al.,
2021a; 2022b; Zhou et al., 2021) that make augmentation in latent feature space. These various
data augmentation techniques have shown great successes to learn domain-invariant models in the
centralized setup. Our method is an instance of label-preserving feature augmentation, designed for
federated learning. It is inspired by recent efforts on implicit feature augmentation (Li et al., 2021a;
2022b; Zhou et al., 2021) that synthesize samples of novel domains by manipulating instance-level
feature statistics. In these works, feature statistics are treated as ‘features’, which capture essential
domain-specific characteristics. In FEDFA, we estimate appropriate variances of feature statistics
from a federated perspective, and draw novel statistics probablistically from a distribution centered
on old statistics, while spanning with the variances. FEDFA avoids statistics mixing of instances
from different clients, as done in FEDMIX (Yoon et al., 2021), thus can better preserve data privacy.

6 CONCLUSION

This work solves federated learning from a unique perspective of feature augmentation, yielding a
new algorithm FEDFA that shows strong performance across various federated learning scenarios.
FEDFA is based on a Gaussian modeling of feature statistic augmentation, where Gaussian vari-
ances are estimated in a federated manner, based on both local feature statistic distribution within
each client, as well as universal feature statistic distribution across clients. We identify the im-
plicit federation-aware regularization effects of FEDFA through theoretical analysis, and confirm its
empirical superiority across a suite of benchmarks in federated learning.
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7 REPRODUCIBILITY

Throughout the paper we have provided details facilitating reproduction of our empirical results.
All our experiments are ran with a single GPU (we used NVIDIA GeForce RTX 2080 Ti with a
11G memory), thus can be reproduced by researchers with computational constraints as well. The
source code has been made publicly available in https://github.com/tfzhou/FedFA. For the theoretical
results, all assumptions, proofs and relevant discussions are provided in the Appendix.
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This appendix provides theoretical proofs, additional results and experimental details for the main
paper. It is organized in five sections:

• §A summarizes the algorithms of FEDFA in Algorithm 1 and FFA in Algorithm 2;
• §B presents detailed theoretical analysis and proofs of our approach;
• §C shows additional ablative experiments;
• §D provides a more detailed analysis of extra communication cost required by FEDFA;
• §E describes experimental details and more results.

A DETAILED ALGORITHM

In Algorithm 1, we illustrate the detailed training procedure of our FEDFA. It is consistent with
algorithms such as FEDAVG (McMahan et al., 2017). In each communication round, the client
performs local model training of the feature extractor h(wh) and classifier g(wg). We append a
FFA layer (Algorithm 2) after each convolutional stage hk. Each client additionally maintains a pair
of momentum feature statistics {µ̄m, σ̄m}, which is updated in a momentum manner during training.
The parameters from local training (i.e., w = {wh,wg}), which are omitted in Algorithm 1, along
with the momentum feature statistics are sent to server for model aggregation and computation of
client-sharing statistic variances, which will be distributed back to clients for the next round of local
training.

Algorithm 1 FEDFA: federated training phase. (We omit the parameter updating procedure, which is exactly
same to FEDAVG.)
Input: Number of clientsM ; number of communication rounds T ; neural network f = g ◦h; each

X̂0
m represents the collection of training images in corresponding clients;

Output: γµk , γσk ;
1: for t = 1, 2, . . . , T do
2: for each client m ∈ [M ] do
3: µ̄m= 0, σ̄m= 1 . Initialize averaged feature statistics for the client
4: for each layer k ∈ [K] do
5: Xk

m = hk(X̂k−1
m ) . Run the k-th layer of the feature extractor h

6: X̂k
m, µ̄

k
m, σ̄

k
m = FFA(Xk

m, µ̄
k
m, σ̄

k
m) . FFA layer in Algorithm 2

7: Y = g(X̂K
m ) . Run classifer g to get predictions

8: Run loss computation and backward optimization
9: Σ2

µk = 1
M

∑M
m=1(µ̄km − E[µ̄k])2 . Compute client sharing statistic variance (Eq. 5)

10: Σ2
σk = 1

M

∑M
m=1(σ̄km − E[σ̄k])2

11: for each channel j ∈ [C] do . Compute adaptive fusion coefficients (Eq. 6)

12: γ
(j)

µk
=

C(1+1/Σ2,(j)

µk
)−1∑C

c=1(1+
1/Σ2,(c)

µk
)−1

13: γ
(j)

σk
=

C(1+1/Σ2,(j)

σk
)−1∑C

c=1(1+
1/Σ2,(c)

σk
)−1

14: return γµk , γσk

B THEORETICAL INSIGHTS

In this section, we provide mathematical analysis to understand FEDFA. We begin with interpreting
FEDFA as a noise injection process (Bishop, 1995; Camuto et al., 2020; Lim et al., 2022), which is a
case of VRM (§2.1), and show that FEDFA injects federation-aware noises to latent representations
(§B.1). Next, we demonstrate that, induced by federation-aware noise injection, FEDFA exhibits a
natural form of federation-aware implicit regularization to local client training (§B.2). Without loss
of generality, we conduct all analysis for an arbitrary client m ∈ [M ].
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Algorithm 2 Algorithm description of FFA for the kth layer in client m.

Input: Original feature Xk
m∈RB×C×H×W ; momentum α=0.99; probability p=0.5;

Client-sharing fusion coefficients γµk ∈RC and γσk ∈RC downloaded from the server;
Accumulated feature statistics µ̄km∈RC and σ̄km∈RC ;

Output: Augmented feature X̂k
m, µ̄

k
m, σ̄

k
m;

1: if np.random.random() < p then
2: µkm = 1

HW

∑H
h=1

∑W
w=1 X

k,(h,w)
m . Compute channel-wise feature statistics (Eq. 2)

3: σkm =

√
1

HW

∑H
h=1

∑W
w=1(X

k,(h,w)
m − µkm)2

4: Σ2
µkm

= 1
B

∑B
b=1(µkm − E[µkm])2 . Compute client specific statistic variances (Eq. 3)

5: Σ2
σkm

= 1
B

∑B
b=1(σkm − E[σkm])2

6: Σ̂2
µkm

= (γµk + 1)Σ2
µkm

. Adaptive variance fusion (Eq. 7)

7: Σ̂2
σkm

= (γσk + 1)Σ2
σkm

8: µ̂km = µkm + εµΣ̂µkm . Sampling novel feature statistics (Eq. 9)

9: σ̂km = σkm + εσΣ̂σkm

10: X̂k
m = σ̂km

Xk
m−µ

k
m

σkm
+ µ̂km . Transform original feature based on novel statistics (Eq. 8)

11: µ̄km ← αµ̄km + (1− α) 1
B

∑B
b=1 µ

k
m . Momentum updating feature statistics (Eq. 5)

12: σ̄km ← ασ̄km + (1− α) 1
B

∑B
b=1 σ

k
m

13: return X̂k
m, µ̄

k
m, σ̄

k
m

B.1 UNDERSTANDING FEDFA AS FEDERATION-AWARE NOISE INJECTION

Noise Injection in Neural Networks. Let x be a training sample and xk its latent representation at
the k-th layer, with no noise injections. The xk can be noised under a process x̂k=xk + ek, where
ek is an addition noise drawn from a probability distribution, and xk is the noised representation.

A popular choice of ek is isotropic Gaussian noise (Camuto et al., 2020), i.e., ek∼N (0, σ2I), where
I is an identity matrix and σ is a scalar, controlling the amplitude of ek. To avoid over-perturbation
that may cause model collapse, σ is typically set as a small value. Despite its simplicity, the strategy
is confirmed as a highly effective regularized for tackling domain generalization (Li et al., 2021b)
and adversarial samples (Lecuyer et al., 2019; Cohen et al., 2019). However, as shown in Table 5,
its performance (see FEDFA-R) is only marginally better or sometimes worse than FEDAVG in FL.

Federation-Aware Noise Injection. From Eq. 9, we can clearly see that the feature statistic aug-
mentation in our approach follows the noise injection process above. Next we show that this even-
tually results in features perturbed under a federation-aware noising process.
Lemma 1. Consider clientm, for a batch-wise latent feature Xk

m at the k-th layer, its augmentation
in FEDFA follows a noising process X̂k

m=Xk
m + ekm, with the noise ekm taking the form:

ekm = εσΣ̂σkmX̄k
m + εµΣ̂µkm , (14)

where εµ∼N (0, 1), εσ∼N (0, 1), X̄k
m = (Xk

m−µ
k
m)/σkm.

Proof of Lemma 1. We can easily prove this by substituting Eq. 9 into Eq. 8:

X̂k
m = σ̂km

Xk
m − µkm
σkm

+ µ̂km,

= (σkm + εσΣ̂σkm)
Xk
m − µkm
σkm

+ (µkm + εµΣ̂µkm),

= Xk
m + (εσΣ̂σkmX̄k

m + εµΣ̂µkm)︸ ︷︷ ︸
ekm

,

where εµ∼N (0, 1), εσ∼N (0, 1), X̄k
m = (Xk

m−µ
k
m)/σkm.

(15)
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As compared to the Gaussian noise injections (Camuto et al., 2020; Cohen et al., 2019; Lecuyer
et al., 2019), the noise term ekm in FEDFA shows several desirable properties: it is 1) data-dependent,
adaptively determined based on the normalized input feature X̄k

m; 2) channel-independent, allowing
for more extensive exploration along different directions in the feature space; 3) most importantly
federation-aware, i.e., its strength is controlled by statistic variances Σ̂µkm and Σ̂σkm (cf. Eq. 7), which
are known carrying universal statistic information of all participating clients.

B.2 FEDERATION-AWARE IMPLICIT REGULARIZATION IN FEDFA

Next we show that with noise injections, FEDFA imposes federation-aware implicit regularization to
local client training. By this, we mean regularization imposed implicitly by the stochastic learning
strategy, without explicit modification of the loss, and the regularization effect is affected by the
federation-aware noise (Lemma 1).

Recall the deep neural network f defined in §2.1: f , g ◦ h, where h = hK ◦ hK−1 ◦ · · · ◦ h1
is a K-layer CNN feature extractor and g is a classifier. Given a batch of samples Xm with labels
Ym, its latent representation at the k-th layer is computed as Xk

m = hk ◦ hk−1 ◦ · · · ◦ h1(Xm), or
we write it in a simpler form, Xk

m=h1:k(Xm). Note that we only add noises to layers in h, but not
to g. Concretely, in each mini-batch training, FEDFA follows a stochastic optimization strategy to
randomly select a subset of layers from {hk}Kk=1 and add noises to them. For simplicity, we denote
K={1, . . . ,K} as the index of all layers in h, Z⊆K as the subset of layer indexes that are selected,
E = {ezm}∀z∈Z as the corresponding set of noises. Then, the loss function LFEDFA

m of client m in
FEDFA can be equivalently written as LFEDFA

m = EZ∼KLZm, where LZm is a standard loss function
LERM
m (cf. Eq. 1) imposed by adding noises to layers in Z . In the remainder, we relate the loss

function LFEDFA
m to the original ERM loss LERM

m as well as a regularization term conditioned on E .
Theorem 1. In FEDFA, the loss function LFEDFA

m of client m can be expressed as:

LFEDFA
m = LERM

m + LREG
m , (16)

where LERM
m is the standard ERM loss, and LREG

m is the regularization term:

LERM
m = E(Xm,Ym)∼Pm`(g(h1:K(Xm)), Ym), (17)

LREG
m = EZ∼KE(Xm,Ym)∼Pm 5h1:K(Xm) `(g(h1:K(Xm)), Ym)>

∑
z∈Z

Jz(Xm)ezm, (18)

where Jz denotes the Jacobian of layer z (defined in Proposition 1).

Theorem 1 implies that, FEDFA implicitly introduces regularization to local client learning by reg-
ularizing the gradients of latent representations (i.e., 5h1:K(Xm)`(g(h1:K(Xm)), Ym)>), weighted
by federation-aware noises

∑
z∈Z Jz(Xm)ezm.

In the remainder of this section, we prove Theorem 1.

For the sake of analysis, we first marginalize the effect of the noising process. We do so by defining
an accumulated noise êKm in the final layer K, which originates from the forward propagation of
all noises in E . We compute the accumulated noise based on (Camuto et al., 2020) that examines
Gaussian noise injection into every latent layer in a neural network. Formally, the accumulated noise
on the final convolutional layer K can be expressed as follows:
Proposition 1. Consider a K-layer neural network, in which a random noise ezm is added to the
activation of each layer z ∈ Z . Assuming the Hessians, of the form 52h1:k(Xm)|h1:n(Xm) where
k, n are the indexes over layers, are finite. Then, the accumulation noise êKm is approximated as:

êKm =

(∑
z∈Z

Jz(Xm)ezm +O(β)

)
, (19)

where Jz ∈ RCK×Cz indicates the Jacobian of layer z, i.e., Jz(X)i,j = ∂h1:K(Xm)i
∂h1:z(Xm)j

, where CK
and Cz denote the number of neurons in layer K and z, respectively. O(β) represents higher order
terms in E that tend to be zero in the limit of small noises.
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Proof of Proposition 1. Starting with layer 1 as the first convolution layer, the accumulated noise
on layer K can be approximated through recursion. If K = 1, the accumulated noise is equal to
êKm=e1m. For K=2, we apply Taylor’s theorem on h2(X1

m+e1m) around the output feature X1
m at

h1. If we assume that all values in Hessian of h2(X1
m) is finite, the following approximation holds:

h2(X1
m + e1

m) = h2(X1
m) +

∂h2(X1
m)

∂X1
m

e1
m +O(κ1), (20)

where O(κ1) denotes asymptotically dominated higher order terms given the small noise. In this
special case of K = 2 , we obtain the accumulated noise as

êKm =

(
∂h2(X1

m)

∂X1
m

e1
m +O(κ1)

)
+ ě2

m. (21)

The noise consists of two components:
(
∂h2(X1

m)
∂X1

m
e1m +O(κ1)

)
is the noise propagated from h1,

while ě2m = e2m is the noise added to h2 if the layer is activated; otherwise, ě2m=0. Note that Eq. 20
can be generalized to an arbitrary layer.

Repeating this process for each layer z ∈ Z , and assuming that all Hessians of the form
52hk(Xm)|hn(Xm), ∀k < n are finite, we obtain the accumulated noise for layer K as

êKm =

 ∑
z∈Z\K

∂h1:K(Xm)

∂h1:z(Xm)
ezm +O(β)

+ ěKm =

(∑
z∈Z

∂h1:K(Xm)

∂h1:z(Xm)
ezm +O(β)

)
, (22)

where ěKm = eKm is the noise added to hK if layer K is activated; otherwise, ěKm=0.

Denoting ∂h1:K(Xm)
∂h1:z(Xm) as the Jacobian Jz(Xm) completes the proof.

Based on Proposition 1, we provide a linear approximation of the loss ` for samples (Xm, Ym) as

`(g(h1:K(Xm) + êKm), Ym)

≈ `(g(h1:K(Xm)), Ym) +5h1:K(Xm)`(g(h1:K(Xm)), Ym)>êKm

= `(g(h1:K(Xm)), Ym) +5h1:K(Xm)`(g(h1:K(Xm)), Ym)>
∑
z∈Z

Jz(Xm)ezm,

(23)

in which the higher order terms in Proposition 1 are neglected.

Based on Eq. 23, we further approximate the local training objective LFEDFA
m in client m and derive

the regularization term as follows:

LFEDFA
m = EZ∼KLZm

= EZ∼KE(Xm,Ym)∼Pm [`(g(h1:K(Xm) + êKm), Ym)]

= EZ∼KE(Xm,Ym)∼Pm [`(g(h1:K(Xm)), Ym)+

5h1:K(Xm) `(g(h1:K(Xm)), Ym)>
∑
z∈Z

Jz(Xm)ezm]

= E(Xm,Ym)∼Pm`(g(h1:K(Xm)), Ym)︸ ︷︷ ︸
LERM
m

+

EZ∼KE(Xm,Ym)∼Pm 5h1:K(Xm) `(g(h1:K(Xm)), Ym)>
∑
z∈Z

Jz(Xm)ezm︸ ︷︷ ︸
LREG
m

.

(24)
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Table 9: A summary of key experimental configuration for each dataset.

Hyper-parameters Office-Caltech 10 DomainNet ProstateMRI EMNIST CIFAR-10

federation-aware configuration
Number of rounds 400 400 500 200 100
Local training epochs 1 1 1 10 10
Number of clients 4 6 6 100 100
Participation rate 1.0 1.0 1.0 0.1 0.1
Number of total classes 10 10 2 62 10
local client training configuration
Network AlxeNet AlexNet U-Net LeNet ResNet
Optimizer SGD SGD Adam SGD SGD
Local batch size 32 32 16 64 10
Local learning rate 1e-2 1e-2 1e-4 1e-1 1e-1

C ADDITIONAL ABLATION STUDY Table 8: Performance for different sets of eligible
layers to apply FFA.

Variant Office DomainNet ProstateMRI
FEDAVG 78.5 62.8 86.5
{1} 78.8 63.5 88.5
{1, 2} 80.0 63.9 88.6
{1, 2, 3} 80.0 64.0 89.0
{1, 2, 3, 4} 80.6 64.3 88.8
{1, 2, 3, 4, 5} 83.1 66.5 89.5
{2, 3, 4, 5} 81.6 65.2 88.6
{1, 2, 4, 5} 82.0 65.8 88.8
{3, 4, 5} 78.4 63.8 87.0
{4, 5} 79.4 64.7 85.9
{5} 79.2 64.6 86.3
{1, 5} 80.4 65.5 88.5
{2, 3, 4} 79.5 64.3 88.8
{2, 3} 78.7 64.0 88.5
{3, 4} 78.3 63.2 86.5
{3} 78.0 63.1 86.5

In this section, we study the sensitivity of FedFA
to the set of eligible layers to apply FFA. For no-
tation, we use {1} to represent that FFA is applied
to the 1st convolutional stage; {1, 2} to represent
that FFA is applied to both the 1st and 2nd con-
volutional stages; and so forth. The results are
shown in Table 8. We observe that i) our default
design (using five layers) always shows the best per-
formance on the three datasets (Office, DomainNet
and ProstateMRI). We conjecture that this is due
to its potential to beget more comprehensive aug-
mentation; ii) applying FFA to only one particular
layer brings minor gains against FedAvg; but iii)
by adding more layers, the performance tends to
improve. This implies that our approach benefits
from inherent complementarity of features in differ-
ent network layers.

D ANALYSIS OF ADDITIONAL
COMMUNICATION COST IN FEDFA

In each round, FEDFA incurs additional communication costs since it requires the sending 1) from
client to server the momentum feature statistics µ̄km and σ̄km, as well as 2) from server to client the
client sharing feature statistic variances γµk and γσk at each layer k. Thus, for K layers in total,
the extra communication cost for each client is ce = 4

∑K
k=1 Ck, where the factor of 4 is for server

receiving and sending two statistic values. As presented in Table 10 and Table 14, we append one
FFA layer after each convolutional stage of feature extractors in AlexNet and U-Net. Hence, the
total additional communication costs for AlexNet and U-Net are:

AlexNet: 4× (64 + 192 + 384 + 256 + 256)/1024× 4 = 18 KB,
U-Net: 4× (32 + 64 + 128 + 256 + 512)/1024× 4 = 15.5 KB.

(25)

However, it should be noted that these additional costs are minor in comparison with the cost re-
quired for exchanging model parameters, which are 2×49.5 MB and 2×29.6 MB for AlexNet and
U-Net, respectively.
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E EXPERIMENTAL DETAILS

E.1 DATASET

We conduct extensive experiments on five datasets:

Office-Caltech 10 (Gong et al., 2012) has four data sources, three from Office-31 (Saenko et al.,
2010) and one from Caltech-256 (Griffin et al., 2007). They are collected from different camera
devices or in diverse environments with different background.

DomainNet (Peng et al., 2019) contains images from six domains (clipart, infograph, painting, real,
and sketch), which are collected by searching a category name along with a domain name in different
search engines.

ProstateMRI (Liu et al., 2020b) is a multi-site prostate segmentation dataset consisting of six data
sources of T2-weighted MRI from different medical institutions. For all the three datasets, we regard
each data source as a client, and thus real-world feature shift exists among clients.

CIFAR-10 (Krizhevsky & Hinton, 2009) is a popular natural image classification dataset for feder-
ated learning. It contains 50,000 training and 10,000 test images. We introduce label distribution
heterogeneity for the dataset, by sampling local data based on the Dirichlet distribution Dir(α), and
consider two different concentration parameters, i.e., α = 0.6 or 0.3.

EMNIST (Cohen et al., 2017) is an image classification dataset with 62 classes, including all 26
capital and small letter of alphabet as well as numbers. We follow the setup in FEDMIX to simulate
data size heterogeneity.

In Table 9, we summarize the configuration of our experiments for each of the datasets.

E.2 EXPERIMENTAL DETAILS FOR IMAGE CLASSIFICATION

Network Architecture. For the image classification tasks on Office-Caltech 10 (Gong et al., 2012)
and DomainNet (Peng et al., 2019), we use an adapted AlexNet (Krizhevsky et al., 2017), with the
detailed network architecture shown in Table 10.

Training Details. For each training image in Office-Caltech10 and DomainNet, we reshape its size
into 256×256. We train AlexNet with the SGD optimizier with a learning rate of 0.01, a mini-batch
size of 32, using the standard cross-entropy loss. The total number of communication round is set to
400, with one local epoch per round by default. Two basic data augmentation techniques are also ap-
plied for training, i.e., random horizontal flipping and random rotation with degree in [−30, 30]. The
dataset splits of Office-Caltech 10 and DomainNet in our experiments are summarized in Table 11
and Table 12, respectively.
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Table 10: Network architecture of AlexNet for Office-Caltech10 and DomainNet experiments. For convolu-
tional layer (Conv2D), we list parameters with sequence of input and output dimension, kernal size, stride and
padding. For max pooling layer (MaxPool2D), we list kernal and stride. For fully connected layer (FC), we
list input and output dimension. For Batch Normalization layer (BN), we list the channel dimension. Note that
FFA denotes the proposed feature augmentation layer, and we list the dimension of its input feature.

Layer Details

1 Conv2D(3, 64, 11, 4, 2), BN(64), ReLU, MaxPool2D(3, 2)

2 FFA(64)

3 Conv2D(64, 192, 5, 1, 2), BN(192), ReLU, MaxPool2D(3, 2)

4 FFA(192)

5 Conv2D(192, 384, 3, 1, 1), BN(384), ReLU

6 FFA(384)

7 Conv2D(384, 256, 3, 1, 1), BN(256), ReLU

8 FFA(256)

9 Conv2D(256, 256, 3, 1, 1), BN(256), ReLU, MaxPool2D(3, 2)

10 FFA(256)

11 AdaptiveAvgPool2D(6, 6)

12 FC(9216, 1024), BN(1024), ReLU

13 FC(1024, 1024), BN(1024), ReLU

14 FC(1024, num class)

Table 11: Numbers of samples in the training, validation, and testing sets of each client in Office-Caltech 10
used in our experiments.

Split Amazon Caltech DSLR Webcam

train 459 538 75 141

val 307 360 50 95

test 192 225 32 59

Table 12: Numbers of samples in the training, validation, and testing sets of each client in DomainNet used in
our experiments.

Split Clipart Infograph Painting Quickdraw Real Sketch

train 672 840 791 1280 1556 708

val 420 525 494 800 972 442

test 526 657 619 1000 1217 554

Table 13: Numbers of samples in the training, validation, and testing sets of each client in ProstateMRI used in
our experiments.

Split BIDMC HK I2CVB BMC RUNMC UCL

train 156 94 280 230 246 105

val 52 31 93 76 82 35

test 52 31 93 76 82 35
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E.3 EXPERIMENTAL DETAILS FOR MEDICAL IMAGE SEGMENTATION

Network Architecture. For medical image segmentation on ProstateMRI (Liu et al., 2020b), we
use a vanilla U-Net architecture, as presented in Table 14 and Table 15.

Training Details. Following FEDHARMO, we use a combination of standard cross-entropy and
Dice loss to train the network, using the Adam optimizer with learning rate 1e-4, batch size 16,
and weight decay 1e-4. No any data augmentation techniques are applied. The dataset splits of
ProstateMRI used in our experiments are summarized in Table 13

Additional Results. Table 16 provides a detailed performance statistic of different methods on
ProstateMRI, w.r.t. different fractions (1/6, 2/6, 3/6, 4/6, 5/6, 1) of training samples used in each
client. The table corresponds to the plot in Fig. 2.

Table 14: Network architecture of U-Net for medical image segmentation experiments on ProstateMRI. The
structure of ‘Block’ module is provided in Table 15. Note that FFA denotes the proposed feature augmentation
layer, and we list the dimension of its input feature.

Layer Details

1 Block(in features=3, features=32, name=“encoder1”), MaxPool2D(2, 2)

2 FFA(32)

3 Block(in features=32, features=64, name=“encoder2”), MaxPool2D(2, 2)

4 FFA(64)

5 Block(in features=64, features=128, name=“encoder3”), MaxPool2D(2, 2)

6 FFA(128)

7 Block(in features=128, features=256, name=“encoder4”), MaxPool2D(2, 2)

8 FFA(256)

9 Block(in features=256, features=512, name=“bottleneck”)

10 FFA(512)

11 Block(in features=512, features=256, name=“decoder4”)

12 Block(in features=256, features=128, name=“decoder3”)

13 Block(in features=128, features=64, name=“decoder2”)

14 Block(in features=64, features=32, name=“decoder1”)

15 Conv2d(32, num class, 1, 1)

Table 15: Detailed structure of the ‘Block’ module in U-Net (Table 14)

Layer Details

1 Conv2d(in features, features, 3, 1)

2 BatchNorm2d(features)

3 ReLU

4 Conv2d(features, features, 3, 1)

5 BatchNorm2d(features)

6 ReLU
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Table 16: Segmentation performance on ProstateMRI test (Liu et al., 2020b) in terms of Dice score (%).
We sample different fractions ([1/6, 2/6, 3/6, 4/6, 5/6, 1]) of training samples over the original training set in each
client to study the effects of methods w.r.t the variations of local training size. The table provides a detailed
statistic for Fig. 2.

Algorithm BIDMC HK I2CVB BMC RUNMC UCL Average
fraction of training samples over the whole training set: 1/6
FEDAVG (McMahan et al., 2017) 81.2 90.8 86.1 84.0 91.0 86.2 86.5
FEDPROX (Li et al., 2020a) 82.8 89.1 89.8 79.4 89.8 85.6 86.1
FEDAVGM (Hsu et al., 2019) 80.3 91.6 88.2 82.2 91.2 86.5 86.7
FEDSAM (Qu et al., 2022) 82.7 92.5 91.8 83.6 92.6 88.1 88.5
FEDHARMO (Jiang et al., 2022) 86.7 91.6 92.7 84.2 92.5 84.6 88.7
FEDMIX (Yoon et al., 2021) 86.3 91.6 89.6 88.1 89.8 85.2 88.4
FEDFA-R 78.9 91.3 87.0 81.9 90.6 86.6 86.1
FEDFA-C 80.5 92.4 89.2 83.7 92.1 89.4 87.9
FEDFA 85.7 92.6 91.0 85.4 92.9 89.2 89.5
fraction of training samples over the whole training set: 2/6
FEDAVG (McMahan et al., 2017) 83.5 92.4 90.1 86.5 93.7 89.4 89.3
FEDPROX (Li et al., 2020a) 83.9 92.7 93.7 86.2 94.0 88.6 89.8
FEDAVGM (Hsu et al., 2019) 80.8 91.8 91.7 83.5 93.5 86.1 87.9
FEDSAM (Qu et al., 2022) 83.6 93.7 94.3 86.6 94.7 88.2 90.2
FEDHARMO (Jiang et al., 2022) 85.6 90.8 92.5 88.5 94.3 87.6 89.9
FEDMIX (Yoon et al., 2021) 88.6 92.7 93.3 90.0 91.7 87.3 90.6
FEDFA-R 81.5 92.1 90.9 84.2 93.1 89.4 88.5
FEDFA-C 81.1 92.0 92.9 85.2 94.0 86.9 88.7
FEDFA 87.8 92.3 92.9 86.6 95.1 89.8 90.8
fraction of training samples over the whole training set: 3/6
FEDAVG (McMahan et al., 2017) 84.2 90.9 93.9 87.0 93.8 89.1 89.8
FEDPROX (Li et al., 2020a) 82.0 92.5 92.0 84.7 92.3 88.1 88.6
FEDAVGM (Hsu et al., 2019) 81.8 92.0 94.4 85.7 93.5 88.7 89.3
FEDSAM (Qu et al., 2022) 85.1 92.9 95.0 88.2 95.4 90.3 91.2
FEDHARMO (Jiang et al., 2022) 92.2 90.9 96.3 89.8 95.0 86.7 91.8
FEDMIX (Yoon et al., 2021) 87.2 92.8 94.9 90.1 92.5 90.0 91.3
FEDFA-R 82.7 92.8 94.4 87.0 94.7 88.2 90.0
FEDFA-C 87.0 91.1 93.5 90.3 93.9 89.4 90.9
FEDFA 87.4 93.5 95.6 90.6 95.6 91.4 92.4
fraction of training samples over the whole training set: 4/6
FEDAVG (McMahan et al., 2017) 86.4 92.3 95.7 87.7 95.2 89.3 91.1
FEDPROX (Li et al., 2020a) 87.2 92.9 94.0 85.8 94.5 89.7 90.7
FEDAVGM (Hsu et al., 2019) 85.6 93.0 95.0 84.9 94.8 87.3 90.1
FEDSAM (Qu et al., 2022) 91.3 93.8 95.8 91.1 96.0 92.5 93.4
FEDHARMO (Jiang et al., 2022) 91.0 94.2 94.3 90.3 95.8 92.2 93.0
FEDMIX (Yoon et al., 2021) 90.0 94.2 95.5 91.7 93.2 91.5 92.7
FEDFA-R 84.9 91.1 95.2 86.0 95.4 91.2 90.6
FEDFA-C 87.4 93.6 95.2 88.8 95.4 91.4 92.0
FEDFA 91.1 93.6 95.1 89.5 95.3 91.2 92.6
fraction of training samples over the whole training set: 5/6
FEDAVG (McMahan et al., 2017) 89.2 94.2 94.8 89.0 95.1 91.3 92.3
FEDPROX (Li et al., 2020a) 88.7 94.7 94.8 88.9 95.6 91.1 92.3
FEDAVGM (Hsu et al., 2019) 87.7 94.6 94.3 89.3 95.2 90.4 91.9
FEDSAM (Qu et al., 2022) 91.9 95.2 96.1 90.7 96.3 91.2 93.5
FEDHARMO (Jiang et al., 2022) 89.8 94.5 95.6 91.0 96.0 92.1 93.2
FEDMIX (Yoon et al., 2021) 91.6 92.9 94.4 92.8 94.0 92.0 93.0
FEDFA-R 89.9 94.6 95.6 88.8 95.7 91.4 92.7
FEDFA-C 90.3 94.7 95.5 88.7 95.8 91.5 92.7
FEDFA 93.2 95.1 96.4 91.2 96.3 91.3 93.9
fraction of training samples over the whole training set: 1
FEDAVG (McMahan et al., 2017) 89.5 94.0 95.6 87.5 95.1 91.1 92.1
FEDPROX (Li et al., 2020a) 88.2 94.1 95.6 88.8 95.9 91.6 92.4
FEDAVGM (Hsu et al., 2019) 92.1 94.2 96.0 87.4 95.0 90.6 92.6
FEDSAM (Qu et al., 2022) 92.0 95.4 96.6 90.1 96.3 92.2 93.8
FEDHARMO (Jiang et al., 2022) 87.4 95.0 95.5 91.2 96.1 92.2 92.9
FEDMIX (Yoon et al., 2021) 93.7 95.2 95.7 91.9 94.8 92.8 94.0
FEDFA-R 87.1 92.5 95.0 86.9 95.7 90.8 91.3
FEDFA-C 91.5 93.4 96.5 88.9 95.4 91.6 92.9
FEDFA 93.7 95.4 96.0 92.2 96.2 92.5 94.3
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