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Abstract

Transformers are widely used deep learning architectures. Existing transformers
are mostly designed for sequences (texts or time series), images or videos, and
graphs. This paper proposes a novel transformer model for massive (up to a million)
point samples in continuous space. Such data are ubiquitous in environment sci-
ences (e.g., sensor observations), numerical simulations (e.g., particle-laden flow,
astrophysics), and location-based services (e.g., POIs and trajectories). However,
designing a transformer for massive spatial points is non-trivial due to several
challenges, including implicit long-range and multi-scale dependency on irregular
points in continuous space, a non-uniform point distribution, the potential high com-
putational costs of calculating all-pair attention across massive points, and the risks
of over-confident predictions due to varying point density. To address these chal-
lenges, we propose a new hierarchical spatial transformer model, which includes
multi-resolution representation learning within a quad-tree hierarchy and efficient
spatial attention via coarse approximation. We also design an uncertainty quantifi-
cation branch to estimate prediction confidence related to input feature noise and
point sparsity. We provide a theoretical analysis of computational time complexity
and memory costs. Extensive experiments on both real-world and synthetic datasets
show that our method outperforms multiple baselines in prediction accuracy and
our model can scale up to one million points on one NVIDIA A100 GPU. The
code is available at https://github.com/spatialdatasciencegroup/HST.

1 Introduction

Transformers are widely used deep learning architectures. Existing transformers are largely designed
for sequences (texts or time series), images or videos, and graphs [1, 2, 3, 4, 5, 6, 7]. This paper
proposes a novel transformer model for massive (up to a million) points in continuous space. Given a
set of point samples in continuous space with explanatory features and target response variables, the
problem is to learn the spatial latent representation of point samples and to infer the target variable at
any new point location.

Learning transformers for continuous-space points has broad applications. In environmental sciences,
researchers are interested in fusing remote sensing spectra with in-situ sensor observations at irregular
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sample locations to monitor coastal water quality and air quality [8, 9, 10]. In scientific computing,
researchers learn a neural network surrogate to speed up numerical simulations of particle-laden
flow [11] or astrophysics [12]. For example, in cohesive sediment transport modeling, a transformer
surrogate can predict the force and torque of a large number of particles dispersed in the fluid and
simulate the transport of suspended sediment [13, 14]. In location-based service, people are interested
in analyzing massive spatial point data (e.g., POIs, trajectories) to recommend new locations [15, 16].

However, the problem poses several technical challenges. First, implicit long-range and multi-scale
dependency exists on irregular points in continuous space. For example, in coastal water quality
monitoring, algae blooms in different areas are interrelated following ocean currents and sea surface
wind (e.g., Lagrangian particle tracking). Second, point samples can be non-uniformly distributed
with varying densities. Some areas can be covered with sufficient point samples while others may
have only very sparse samples. Third, because of the varying sample density as well as feature noise
and ambiguity, model inference at different locations may exhibit a different degree of confidence.
Ignoring this risks over-confident predictions. Finally, learning complex spatial dependency (e.g.,
all-pair self-attention) across massive (millions) points has a high computational cost.

To address these challenges, we propose a new hierarchical spatial transformer model, which includes
multi-resolution representation learning within a quad-tree hierarchy and efficient spatial attention
via coarse approximation. We also design an uncertainty quantification branch to estimate prediction
confidence related to input feature noise and point sparsity. We provide a theoretical analysis of
computational time complexity and memory costs. Extensive experiments on both real-world and
synthetic datasets show that our method outperforms multiple baselines in prediction accuracy and
our model can scale up to one million points on one NVIDIA A100 GPU.

2 Problem Statement

A spatial point sample is a data sample drawn from 2D continuous space, denoted as oi =
(x(si), y(si), si), where 1  i  n, si 2 R2 is 2D spatial location coordinates (e.g., latitude
and longitude), x(si) 2 Rm⇥1 is a vector of m non-spatial explanatory features, and y(si) is a target
response variable (y(si) 2 R for regression, y(si) 2 {0, 1} for binary classification). For example,
in water quality monitoring, a spatial point sample consists of non-spatial explanatory features from
spectral bands of an Earth imagery pixel, the spatial location of that pixel in longitude and latitude,
and ground truth water quality level (e.g., algae count) at that location.

We aim to learn the target variable as a continuous-space function y : R2
! R or {0, 1}. Given a set

of point sample observations O = {(x(si), y(si), si)}ni=1, where si is irregularly sampled in 2D, our
model learns the contiguous function y that can be evaluated at any new spatial points ŝ /2 {si}

n
i=1.

We define our model as learning the mapping from the observation samples to the continuous target
variable function y(ŝ) = f✓(O,x(ŝ), ŝ). Thus, we formulate our problem as follows.

Input: Multiple training instances D = {Oj}
L
j=1 (sets of irregular points in continuous 2D space).

Output: A spatial transformer model f : {y(ŝ), u(ŝ)} = f(x(ŝ), ŝ,Oj) for any j 2 [1, ..., L], where
ŝ is any new sample location for inference, and x(ŝ) and y(ŝ) are the explanatory features and output
target variable for the new sample, respectively, and u(ŝ) is the uncertainty score corresponding to
the prediction y(ŝ).
Objective: Minimize prediction errors and maximize the uncertainty quantification performance.
Constraint: There exists implicit multi-scale and long-range spatial dependency structure between
point samples in continuous space.

Note that to supervise model training, we can construct the training instances by removing a single
point sample from each set Oj as the new sample location and use its target variable as the ground
truth.

3 Related Work

• Transformer models: Attention-based transformers are widely used deep learning architecture for
sequential data (e.g., texts, time series) [1], images or videos [5, 6], graphs [7]. One main advantage
of transformers is the capability of capturing the long-range dependency between samples. One major
computational bottleneck is the quadratic costs associated with the all-pair self-attention. Various
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techniques have been developed to address this bottleneck. For sequential data, sparsity-based
methods [17, 18] and low-rank-based methods [19, 20, 21] have been developed. Sparsity-based
methods leverage various attention patterns, such as local attention, dilated window attention, or
cross-partition attention to reduce computation costs. For low-rank-based methods, they assume the
attention matrix can be factorized into low-rank matrices. For vision transformers, patch-based [22,
23] or axial-based [24, 25] have been proposed to improve computational efficiency. Similarly, for
graph data, sampling-based [26, 27, 28] and spectral-based [29, 30] attention mechanisms were
proposed to reduce computation complexity. However, these techniques require an explicit graph
structure with fixed topology. To the best of our knowledge, existing transformer models cannot be
applied to massive point samples in continuous space.

• Numerical Operator learning in continuous space: Neural operator learning aims to train a neural
network surrogate as the solver of a family of partial differential equation (PDE) instances [31]. The
surrogate takes initial or boundary conditions and predicts the solution function. Existing surrogate
models include deep convolutional neural networks [2], graph neural operators [3, 32], Fourier
neural operators [33, 34], DeepONet [31], NodeFormer [26, 35] and vision transformers [36, 37, 38].
However, existing methods are mostly designed for regular grid or fixed graph node topology
and thus cannot be applied to irregular spatial points. There are several methods for irregular
spatial points in continuous space through implicit neural representation [39, 40, 41], or fixed-graph
transformation [42], but their neural networks are limited by only taking each sample’s individual
spatial coordinates without explicitly capturing spatial dependency.

• Deep learning for spatial data: Extensive research exists on deep learning for spatial data. Deep
convolutional neural networks (CNNs) [43, 44] are often used for regular grids (e.g., satellite images,
and global climate models) [45, 46], and graph neural networks (GNNs) [47] are used for irregular
grids (e.g., meshes with irregular boundaries) [48, 49, 50] or spatial networks (e.g., river or road
networks) [51, 52, 53]. However, CNNs and GNNs only capture local spatial dependency without
long-range interactions. In recent years, the transformer architecture [1, 54] has been widely used for
spatial representation learning with long-range dependency, but existing transformer models are often
designed for regular grids (images, videos) [5, 6, 23, 24, 25, 22] and thus cannot be directly applied
to irregular point samples in continuous space.

4 Approach

This section introduces our proposed hierarchical spatial transformer (HST) model. Figure 1
shows the overall architecture with an encoder and a decoder. The encoder learns a multi-resolution
representation of points via spatial pooling within a quad-tree hierarchy (quadtree pooling) and
conducts efficient hierarchical spatial attention via point coarsening. The intuition is to approximate
the representation of faraway key points by the representation of coarse quadtree cells. The decoder
makes inferences at a new point location by traversing the quadtree and conducting cross-attention
from this point to all other points. The decoder also contains an uncertainty quantification (UQ)
branch to estimate the confidence of model prediction related to feature noise and point sparsity. Note
that our model differs from existing tree-based transformers [55, 56] for images or videos, as these
methods require a regular grid and cannot be directly applied to irregular points in continuous space.

4.1 Multi-resolution representation learning within a quadtree hierarchy

Learning a multi-resolution latent representation of point samples is non-trivial due to the non-uniform
(irregular) distribution of points in continuous space (instead of a regular grid in images [22]). To
address this challenge, we propose to use a quadtree to establish a multi-scale hierarchy, a continuous
spatial positional encoding for point representation, and a spatial pooling within a quadtree hierarchy
to learn multi-resolution representations.

4.1.1 Spatial representation of individual points (quadtree external nodes)

Continuous spatial positional encoding: A positional encoding is a continuous functional mapping
� : R2

! R d
2 from the 2D continuous space to a d

2 -dimensional encoded vector space. The encoding
function needs to allow a potentially infinite number of possible locations in continuous space and the
similarity between the positional encodings of two points should reflect their spatial proximity, i.e.,
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Figure 1: The overall architecture of our hierarchical spatial transformer model.

nearby samples tend to have a higher dot product similarity in their positional encoding. Common
positional encodings based on discrete index numbers for sequence data are insufficient. We propose
to use a multi-dimensional continuous space position encoding [57] as follows,

�(s) ⇡ [cos(⌦1s), sin(⌦1s), ..., cos(⌦ d
2
s), sin(⌦ d

2
s)], (1)

where d is the encoding dimension, ⌦i ⇠ N (0,⌃) is a 1 by 2 projection matrix following an i.i.d.
Gaussian distribution with a standard deviation �. The advantage of this encoding is that it satisfies
the following property, < �(s1),�(s2) >⇡ k(||s1 � s2||) = exp{�(s1 � s2))T⌃�1(s1 � s2)).
Here the hyperparameter ⌃ controls the spatial kernel bandwidth. Next, we use �(oi) to denote the
positional encoding �(si) for consistency.

Spatial representation: We propose an initial spatial representation of individual points by concate-
nating its continuous-space positional encoding and a non-spatial feature embedding, i.e.,

h(oi) = [ (oi);�(oi)] (2)

where �(oi) is a positional encoding,  (oi) = W · [xi; y] is the non-spatial embedding,
W 2 R d

2⇥(m+1) is the embedding parameter matrices, and d is the dimension of concatenated
representation. We denote the representation of all point samples (external quadtree nodes) in a
matrix Ho = [h(o1), ...h(on)]T 2 Rn⇥d, where each row is the representation of one point.

4.1.2 Spatial representation of coarse cells (quadtree internal nodes)

To learn a multi-resolution representation of non-uniformly distributed points in continuous space,
we propose a spatial pooling operation within a quadtree hierarchy. A quadtree is a spatial index
structure designed for a large number of points in 2D continuous space. It recursively partitions a
rectangular area into four equal cells until the number of points within a cell falls below a maximum
threshold. In a quadtree, an internal node at a higher level represents an area at a coarser spatial scale
and nodes at different levels provide a multi-resolution representation. Another advantage of using a
quadtree is that it can handle non-uniform point distribution. A subarea with denser points will have
a deeper tree branch through continued recursive space partitioning.

Formally, given the set of point samples O = {oi}
N
i=1 in continuous space, we construct a quadtree T .

The quadtree has two kinds of node sets: an external node set E , which corresponds to the observed
spatial point samples, and an internal node set I , which represents the spatial cells. A quadtree has L
levels, and all the nodes in level l form a set Rl = {r

l
1, ..., r

l
kl
}, where r

l
j is the j-th node at level l,

and kl is the total number of nodes in level l. Given one node r
l
j , we represent its sibling node set as

S(rlj) (nodes on the same hierarchical level under the same parent node), the ancestor node set as
A(rlj) (nodes on the path from the node r

l
j to the root). We denote the spatial representation of the

node r
l
j as h(rlj) and l 2 {1, ...L} and j 2 {1, ..., kl}.

For example, in Figure 2(a), there are 11 input point samples with denser point distribution in the
upper left corner and the lower right corner. Assuming a maximum leaf node size of two samples, the
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Figure 2: An example of a quadtree and pooling operation.

corresponding quadtree is shown in Figure 2(b), which has 12 internal nodes (blue) and 11 external
nodes (green). There are five different levels starting with level 0 (the root node). Level 1 has four
internal nodes, i.e., R1 = {r

1
1, ..., r

1
4}. For instance, r11 corresponds to the largest quad cell in the

upper left corner. It has two non-empty children nodes at level 2, one of which r
2
1 is an internal node

and the other of which r
2
2 is a leaf node linked to an external node r

3
4 (also expressed as o5). The

sibling set S(r21) is {r22} (the other two sibling nodes are empty cells and are thus ignored). The set
of ancestors A(r21) is {r11, r0}.

Assume the total number of quadtree nodes is N , including n leaf nodes (point samples) and N � n

internal nodes (coarse cells). We can compute the representation of each internal node by an average
pooling of the representation of its children within the quadtree hierarchy (i.e., quadtree pooling).

Formally, the spatial representation Hp for all quadtree internal nodes can be computed by sparse
matrix multiplication, as shown in Equation 3, where Ho 2 Rn⇥d is the representation matrix of
n point samples (external nodes), Hp 2 R(N�n)⇥d is the pooled representation matrix of N � n

internal nodes, and P 2 R(N�n)⇥n is a sparse pooling matrix. Each row of P is normalized and its
non-zero values indicate all the corresponding external nodes (point samples) under an internal node.
The computational structure is shown by Figure 2(c). We concatenate the internal node feature Hp

and external nodes feature Ho to form a representation matrix H 2 RN⇥d for all quadtree nodes.

Hp = QuadtreePooling(Ho) = PHo, (3)

4.2 Efficient Hierarchical Spatial Attention

The goal of the spatial attention layer is to model the implicit long-range spatial dependency between
all sample points. Computing all-pair self-attention across massive points (e.g., a million) is compu-
tationally prohibitive due to high time and memory costs. To reduce the computational bottleneck,
we propose an efficient hierarchical spatial attention operation based on a coarse approximation of
key points. Specifically, instead of computing the attention weight from a query point oi to all other
points as keys, we only compute the weight from oi to a selective subset of quadtree nodes. Our
intuition is that for key points that are far away from the query point oi, we can use coarse cells
(nodes) to approximate them, and the further away those points are, the coarser cells (upper-level
nodes) we can use to approximate them.

Formally, for each query point (external node), we define its key node set as K, which includes
the point itself, its own siblings (points) as well as the siblings of its ancestors. That is, K(oi) =
{oi}[S(oi)[{S(r)|r 2 A(oi)}. For example, in Figure 3, the key set of the external node o1 (also
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Figure 3: An example of a quadtree (a) and the
selective key node set of o1 in red boxes (b).

noted as r
4
1) is {o1,o2, r

3
2, r

3
3, r

2
2, r

1
2, r

1
3, r

1
4}.

In this way, we reduce the number of atten-
tion weight calculations from all 11 points to
8 quadtree nodes. Particularly, we use one
quadtree node r

1
4 to approximate all the four

points within it (o8 to o11) since they are far
away from o1. Based on the definition of a
key set, the spatial attention operator can be ex-
pressed as Equation 4 below, where hi is the
output representation for oi, Ki is the key node
set of oi, qi is the query vector of point oi, kj

and vj are the key vector and value vector of
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the attended node rj , respectively, and d is the
latent dimension of these vectors.

hi =
X

j2Ki

exp(qik
T
j /

p
d)vj

P
j2Ki

exp(qik
T
j /

p
d)

(4)

We can express the spatial attention operator in matrix and tensor notations. Assume the spatial
representation of all quadtree nodes from the prior layer is H 2 RN⇥d and the representation of
external nodes (point samples) as Ho. The query matrix of all point samples can be computed
by an embedding with learnable parameter matrix Wq, i.e., Qo = WqHo. For simplicity, we
denote the query matrix Qo as Q. For each query point oi, its keys are a subset of quadtree
nodes. We denote their embedded key vectors in a matrix Ki 2 Rd⇥|Ki|. If we concatenate the
key matrices for all queries, we get a 3D tensor K̂ 2 Rd⇥|Ki|⇥n. Similarly, the corresponding
value matrices can be concatenated into a 3D tensor V̂ 2 Rd⇥|Ki|⇥n. The construction of 3D
tensors can be implemented by the torch.gather() API in Pytorch. The corresponding cross-attention

All Pair Attention

Hierarchical Spatial Attention

Figure 4: Sparse spatial attention
with selective key set.

weights can be calculated by matrix and tensor multiplications,
as illustrated in Figure 4. We can see the difference between the
proposed hierarchical spatial attention and the default all-pair
attention. In the all-pair self-attention (Figure 4 top), we would
have to compute the dot product attention for all point entries,
i.e., QT

o ·Ko, whose size is n⇥n and can become too large (e.g.,
n = 1, 000, 000 for a million points). In our spatial attention
layer, we conduct a sparse self-attention, i.e., only computing
the attention weight of a sample point to its key set. In other
words, the corresponding key matrix for oi is a vertical slicing
of K̂, which can be denoted as K̂[:, :, i] 2 Rd⇥|Ki|, where |K|

is the maximum key node set size (|K| << n).

Time cost analysis: The proposed spatial attention computation cost depends on the uniformness
of spatial point distribution, which determines how balanced the quadtree is. Assume that there are
n points and the maximum number of points in each quadtree node is M (quadtree threshold). We
analyze two scenarios. If the quadtree is completely balanced, the tree depth and the key set size for
every external node is O(log n

M ). Thus total computation cost is O(n · (M + log n
M )). In the worst

case, the spatial points are highly nonuniform, then the quadtree structure will be highly imbalanced.
The extreme tree depth is O( n

M ), thus the attention computation is O(n · ( n
M +M)). However, such

a worst-case scenario is unlikely in practice, as it would require samples to be concentrated within a
single subgroup of the quadtree at every level. For instance, for water quality monitoring, the sensors
are sparsely distributed across a broad area to monitor multiple locations. In practical applications, it
takes O(n · (log n

M +M)) complexity. This is validated in our experiments.

Memory cost analysis: We analyze the memory costs of the HST model theoretically. Assume the
number of input point samples n, leaf node size threshold M , batch size B, and the number of head
h, and hidden dimension d. The memory costs of HST are dominated by the hierarchical spatial
attention layer. Its memory cost is O(B · h · d · n · |Ki|) per layer, where |Ki| = log n

M +M for
relatively balanced quadtree.

4.3 Decoder: inference on a new point with uncertainty quantification

Model inference (prediction): Given a test sample ot = (xt, st), the decoder module predicts
yt based on learned spatial representations of quadtree nodes H. Similar to the encoder, we use
cross-attention between the test sample and its corresponding key node set in the quadtree as in
Equation 4. As shown in Figure 1, we first conduct a quadtree traversal of the test point until reaching
the leaf node and then identify the key node set. Based on that, we can apply a hierarchical spatial
cross-attention between the test location and its key node set, followed by a dense layer.

Uncertainty quantification (UQ): Due to the varying point density as well as feature noise and
ambiguity, the model prediction at a new location may come with different confidence levels.
Intuitively, the prediction at a test location surrounded by many input point samples tends to be more
confident. Many methods exist in UQ for deep learning (e.g., MC dropout and deep ensemble [58,
59, 60, 61]), but few consider the uncertainty due to varying sample density. The most common
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method for UQ in the continuous spatial domain is the Gaussian process (GP) [62, 63]. The UQ
of GP is based on Equation 5, where c0 2 R1⇥n is the covariance vector between the test sample
and all input point samples, C 2 Rn⇥n is the covariance matrix for input samples, and �

2
0 is the

self-variance. In GP, the covariance C is computed with a kernel function that reflects the location
proximity [64]. Although a GP has good theoretical properties, it is inefficient for massive points
due to expensive matrix inverse operation on a large covariance matrix, and it is unable to learn a
non-linear representation for samples.

�
2
t = �

2
0 � c

T
0 C

�1
c0 (5)

Our proposed spatial transformer framework can be considered a generalization of a GP model. We
use the dot-product cross-attention weights to approximate the covariance vector c0 between the
test location to all points, which reflects the dependency among point sample locations based on
their non-linear embeddings, i.e., c0 = Hqt, where qt is the embedded query vector for the test
sample. However, this idea is insufficient for the approximation of the entire covariance matrix C

across all points, since the inverse computation of a full covariance matrix is very expensive. To
overcome this challenge, we propose to directly approximate the precision matrix (C�1) based on an
indicator matrix of selective key sets for all queries S 2 RN⇥n, in which each column indicates the
key node set of a query point (and thus specifies the dependency between a query point to all other
quadtree nodes). Thus, we use S

T
· S/T

2
u to approximate the precision matrix C

�1, where T
2
u is a

hyper-parameter to be calibrated by independent validation data with calibrated with the Expected
Calibration Error (ECE) [65]. The intuition is that the precision matrix reflects the conditional
independence structure among point samples (similar to the selective spatial attention in our model).
Since S

T
· S =

P
i sis

T
i (si is a column of S), we can see that ST

· S is a summation of several
sparse block-diagonal matrices. This reflects our assumption in the quadtree that each external node
(point sample) is conditionally independent of all other nodes given its key node set. Based on the
above approximation, our uncertainty quantification method can be expressed by Equation 6, where
Kt = SH is the key matrix corresponding to the selective key set of the test sample.

ut = �
2
0 � (qT

t H
T )ST

S(Hqt)/T
2
u

= �
2
0 � q

T
t (SH)T (SH)qt/T

2
u

= �
2
0 � (Ktqt)

T (Ktqt)/T
2
u (6)

Note that our approach shares similarities with the multipole graph neural operator model (MGNO)
[32]. MGNO employs a multi-scale low-rank matrix factorization technique to approximate the full
kernel matrix across all samples. A key distinction lies in that MGNO uses a neighborhood graph
structure to approximate the dependency relationships. In contrast, our approach can capture the
long-range interactions among samples in Euclidean space and we provide uncertainty quantification
in prediction.

5 Experimental Evaluation

The goal is to compare our proposed spatial transformer with baseline methods in prediction accuracy
and uncertainty quantification performance. All experiments were conducted on a cluster installed
with one NVIDIA A100 GPU (80GB GPU Memory). The candidate methods for comparison are
listed below. The models’ hyper-parameters are provided in the supplementary materials.
Gaussian Process (GP): We used the GP model based on spatial location without using the explana-
tory feature [62]. The prediction variance was used as the uncertainty measure. Deep Gaussian
Process (Deep GP): We implememted a hybrid Gaussian process neural network [66] with the
sample explanatory features and locations. The GP variance is used as the uncertainty. Spatial graph
neural network (Spatial GNN): We first constructed a spatial graph based on each sample’s kNN
by spatial distance. Then we trained a GNN model [47]. We used the MC-dropout [58] method to
quantify the prediction uncertainty. Multipole graph neural operator (MGNO): It belongs to
the family of neural operator model [32]. NodeFormer : It is an efficient graph transformer model
for learning the implicit graph structure [26]. We used the code from its official website. Galerkin
Transformer: It uses softmax-free attention mechanism and acheieve linearlized transformer [35].
We quantify the prediction uncertainty based on MC-dropout. Hierarchical Spatial Transformer
(HST): This is our proposed method. We implemented it with PyTorch.
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The prediction performance is evaluated with mean square error (MSE) and mean absolute er-
ror (MAE). The evaluation of UQ performance is challenging due to the lack of ground truth of
uncertainty.

UQ evaluation metrics: The quantitative evaluation metrics for UQ performance is Accuracy versus
Uncertainty (AvU)[67]. We set accuracy uncertainty thresholds Tac, Tau to group prediction accuracy
and uncertainty into four categories as Table 1 shows. nAC, nAU, nIC, nIU represent the number of
samples in the categories AC,AU, IC, IU, respectively. As Equation 7 shows, AvU measures the
percentage of two categories AC and IU. A reliable model should provide a higher AvU measure
(AvU 2 [0, 1]). The details on how we choose the thresholds are provided in the supplementary
materials.

AvU =
nAC + nIU

nAC + nAU + nIC + nIU
(7)

However, AvU is usually biased by the accuracy of the model. Since models tend to have high
confidence in accurate predictions. We propose an evaluation metric that evaluates uncertainty
performance for accurate and inaccurate prediction separately. Specifically, we computed AvUA for
accurate predictions and AvUI for inaccurate predictions with the following equations:

AvUA =
nAC

nAC + nAU
, AvUI =

nIU

nIC + nIU
(8)

In our evaluation, we computed the harmonic average of AvUA and AvUI : AvU = 2⇤AvUA⇤AvUI
AvUA+AvUI

to penalize the extreme cases instead of the arithmetic average.

Table 1: Accuracy versus Uncertainty (AvU)
Uncertainty

Certain Uncertain

Accuracy Accurate Accurate Certain (AC) Accurate Uncertain (AU)
Inaccurate Inaccurate Certain (IC) Inaccurate Uncertain (IU)

Dataset description: We used three real-world datasets, including two water quality datasets collected
from the Southwest Florida coastal area, and one sea-surface temperature and one PDE simulation
dataset: Red tide dataset: The input data are satellite imagery obtained from the MODIS-Aqua sensor
[68] and in-situ red tide data obtained from Florida Fish and Wildlife’s (FWC) HAB Monitoring
Database [69]. We have 104, 100 sensor observations and we use a sliding window with a sequence
length 400 to generate 103700 inputs. It is split into training, validation, and test sets with a ratio
of 7 : 1 : 2. Turbidity dataset: We used the same satellite imagery features as in the red tide
dataset. The ground truth samples measure the turbidity of the coastal water. It contains 13808
sensor observations. Darcy flow for PDE operator learning: The Darcy flow dataset [33] contain
100 simulated images with 241⇥ 241 resolution. For each image, we subsample 100 sets of point
samples from the original image (each set has 400 nodes). Sea Surface Temperature: We used the
sea surface temperature dataset of Atlantic ocean [70]. We subsampled 400 point samples from the
grid pixels.

Table 2: Comparison of model performance on two real-world datasets and one simulation dataset
Model Red tide Turbidity Darcy flow

MSE MAE MSE MAE MSE MAE
GP 7.42 ± 0.25 2.55 ± 0.18 0.42 ± 0.02 0.46 ± 0.03 0.19 ± 0.03 0.33 ± 0.04
Deep GP 6.23 ± 0.42 2.32 ± 0.24 0.35 ± 0.04 0.42 ± 0.06 0.18 ± 0.03 0.31 ± 0.05
Spatial GNN 5.68 ± 0.07 2.19 ± 0.04 0.34 ± 0.02 0.46 ± 0.03 0.15 ± 0.02 0.26 ± 0.04
All-pair transformer 5.30 ± 0.12 1.98 ± 0.07 0.31 ± 0.03 0.35 ± 0.04 0.10 ± 0.02 0.22 ± 0.03
MGNO 5.41 ± 0.26 2.04 ± 0.10 0.32 ± 0.03 0.38 ± 0.05 0.12 ± 0.03 0.27 ± 0.03
NodeFormer 5.34 ± 0.10 2.05 ± 0.06 0.32 ± 0.04 0.38 ± 0.04 0.16 ± 0.03 0.29 ± 0.04
GalerkinTransformer 5.44 ± 0.17 2.11 ± 0.08 0.34 ± 0.03 0.42 ± 0.05 0.11 ± 0.02 0.25 ± 0.03
HST (Our method) 5.25 ± 0.11 1.97 ± 0.07 0.30 ± 0.03 0.35 ± 0.04 0.11 ± 0.02 0.23 ± 0.03

5.1 Comparison on prediction performance

We first compared the overall regression performance between the baseline models and our proposed
HST model. The results on two datasets were summarized in Table 2. The first column summarizes
the performance of the red tide dataset with MSE and MAE evaluation metrics. We can see that
the GP model performed the worst due to the ignorance of the samples’ features. The deep GP
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model improved the GP performance from 7.42 to 6.23 by leveraging the neural network feature
representation learning capability as well as considering point sample correlation in both spatial
and feature proximity. The spatial GNN model performed well because the model considered local
neighbor dependency structure and feature representation simultaneously. However, the spatial GNN
model relies on proximity-based graph structure so it ignores the spatial hierarchical structure and
long-range dependency. MGNO baseline model performs slightly better than spatial GNN because
the multi-level message-passing mechanism captures the long-range dependency structure. Our
framework performs better because of the awareness of multi-scale spatial relationships, which is
crucial for point samples’ inference. Additionally, the performance of all-pair attention is better than
the fix-graph GNN model because of the long-range modeling. However, the vanilla transformer
models lack the hierarchical attention structure, which may cause an imperfect attention weight
score. In contrast, our model performed best with the lowest MAE of 5.25 because it modeled the
interaction among point samples in the continuous multi-scale space efficiently. We can see similar
results on the MAE metrics. For the second turbidity dataset, our model consistently performed the
best in accuracy. For the PDE operator learning task, the results are shown in Table 2. We can see our
proposed framework outperforms baselines except all-pair transformer but our model is more efficient.
In summary, compared with recent SOTA graph transformer and neural operator learning methods,
our framework performs best due to the capability of learning multi-scale spatial representations
among massive point samples. Compared with the all-pair transformer model, our HST reduces the
time costs and makes a trade-off between efficiency and spatial granularity when calculating attention
between points. More experiment results on the Sea Surface Temperature dataset are provided in the
supplementary materials.

Sensitivity analysis: We also conducted a sensitivity analysis of our model to various hyper-
parameters, including the quadtree leaf node size threshold M , spatial position encoding length scale
�, the number of attention layers, and the embedding dimension on the red-tide dataset. The results
are summarized in Figure 5 and the detailed analysis is in the Supplementary material. We can see
that our model is generally stable with changes of the hyper-parameters.

(a) Quadtree leaf node size (b) Length scale (c) Attention layer (d) Embedding dimension

Figure 5: Parameters sensitivity analysis.

5.2 Comparison on uncertainty quantification performance (UQ)

We use AvU in Equation 7 to evaluate the performance of UQ for our proposed HST
model versus baseline methods and the results were summarized in Table 3. The num-
bers in the table correspond to the number of samples in four categories: nAC, nAU, nIC, nIU.

Table 3: Comparison on uncertainty quantification
performance on Red tide dataset

Model Accurace Uncertainty AvUa/
AvUc AvU

GP
Certain Uncertain

0.33Accurate 2726 9144 0.23
Inaccurate 3252 4919 0.60

Deep
GP

Certain Uncertain
0.38Accurate 3316 8509 0.28

Inaccurate 3094 5122 0.62

Spatial
GNN

Certain Uncertain
0.40Accurate 3152 3949 0.44

Inaccurate 8355 4585 0.35

Galerkin
Transformer

Certain Uncertain
0.38Accurate 4515 4925 0.47

Inaccurate 7166 3435 0.32

HST
Certain Uncertain

0.54Accurate 4342 5302 0.46
Inaccurate 3874 6503 0.65

We can see the base GP model had good un-
certainty estimation for inaccurate predictions
(65% are uncertain) but for the accurate predic-
tions, the uncertainty estimation tended to be
confident, only 14% were certain. This might be
due to sparse area prediction being less confident
but the long-range spatial correlation or feature
similarity can improve prediction in the sparse
sample area, but the GP model was unaware
of such dependency. The deep GP model im-
proved the accurate prediction confidence based
on the feature representation learning but still
performed worse than other models and gave a
0.38 AvU score. The spatial GNN model was
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(a) Computation cost per epoch
for 64 training samples.

(b) Computation cost per epoch
versus leaf node size threshold
for 5K training samples.

(c) Computation cost per epoch
versus hidden dimension for 5K
training samples.

Figure 6: Computation cost analysis

more confident in the accurate prediction, but
the model was over-confident in the inaccurate prediction, thus resulting in a lower AvU score
(0.44). In contrast, our uncertainty model improved both the accurate prediction confidence and
inaccurate prediction uncertainty, and improved the overall AvU score to 0.49, because it modeled
the uncertainty coming from both feature space and sample density simultaneously. The results
validate our decoder attention capability in modeling the prediction uncertainty.

5.3 Analysis on computation and memory cost

We evaluate the computation costs on a simulation dataset. The point samples’ locations are uniformly
distributed on the two-dimensional space, and we generate the input feature and target label based
on the simulated Gaussian Process. The simulated number of point samples varies from 102 to
106. The training batch size is 1. Other simulation parameters and training hyperparameters are
provided in the Appendix. We compare our model with the vanilla all-pair attention transformer on
both computation times. The computational time per epoch on the 64 training dataset is shown in
Figure 6(a). When the number of point samples increases to 50K, the computation time and memory
costs of the vanilla all-pair transformer increase dramatically and become out-of-memory (OOM)
when further increasing the number to 100K. However, our model can be scaled to 1M point samples
and trained with a reasonable time cost (1 hour). We also analyze the effect of the quadtree leaf
node size threshold (the maximum number of point samples in the quadtree leaf) using 5K training
samples. The computation time is shown in Figure 6(b). When the leaf node size threshold increase,
the computation first decrease and then increase. Because when the quadtree depth decreases from 10
to 25, the quadtree depth decreases and can decrease the total number of query-key pairs. When the
threshold increases from 50 to 200, the leaf node point sample will increase the computation. The
computational costs with hidden feature dimensions are shown in Figure 6(c). It’s observed that the
computational costs scale linearly with respect to the hidden feature dimension.

6 Conclusion and Future Work

This paper proposes a novel hierarchical spatial transformer model that can model implicit spatial
dependency on a large number of point samples in continuous space. To reduce the computational
bottleneck of all-pair attention computation, we propose a spatial attention mechanism based on
hierarchical spatial representation in a quadtree structure. In order to reflect the varying degrees of
confidence, we design an uncertainty quantification branch in the decoder. Evaluations of real-world
remote sensing datasets for coastal water quality monitoring show that our method outperforms
several baseline methods. In future work, we plan to extend our model to learn surrogate models
for physics-simulation data on 3D mesh and explore improving the scalability of our model on
multi-GPUs.
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