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ABSTRACT

Graphs are ubiquitous and are often used to understand the dynamics of a system.
Probabilistic Graphical Models comprising Bayesian and Markov networks, and
Conditional Independence graphs are some of the popular graph representation
techniques. They can model relationships between features (nodes) together with
the underlying distribution. Although theoretically these models can represent
very complex dependency functions, in practice often simplifying assumptions
are made due to computational limitations associated with graph operations. This
work introduces Neural Graphical Models (NGMs) which attempt to represent
complex feature dependencies with reasonable computational costs. Specifically,
given a graph of feature relationships and corresponding samples, we capture
the dependency structure between the features along with their complex function
representations by using neural networks as a multi-task learning framework. We
provide efficient learning, inference and sampling algorithms for NGMs. Moreover,
NGMs can fit generic graph structures including directed, undirected and mixed-
edge graphs as well as support mixed input data types. We present empirical studies
that show NGMs’ capability to represent Gaussian graphical models, inference
analysis of a lung cancer data and extract insights from a real world infant mortality
data provided by CDC.

Keywords: Graphical models, Deep learning, Learning representations
Software:NGM code link (provided in Supplementary)

1 INTRODUCTION

Graphical models are a powerful tool to analyze data. They can represent the relationship between
the features and provide underlying distributions that model functional dependencies between them.
Probabilistic graphical models (PGMs) are quite popular and often used to describe various sys-
tems from different domains. Bayesian networks (directed acyclic graphs) and Markov networks
(undirected graphs) are able to represent many complex systems due to their generic mathematical
formulation Pearl (1988); Koller & Friedman (2009). These models rely on conditional independence
assumptions to make representation of the domain and the probability distribution over it feasible.

Learning, inference and sampling are operations that make such graphical models useful for domain
exploration. Learning, in a broad sense, consists of fitting the distribution function parameters from
data. Inference is the procedure of answering queries in the form of marginal distributions or reporting
conditional distributions with one or more observed variables. Sampling is the ability to draw samples
from the underlying distribution defined by the graphical model. One of the common bottlenecks of
graphical model representations is having high computational complexities for one or more of these
procedures. Figuring out approximate algorithms or coming up with analytically favorable underlying
distributions have been topics of interest to the research community for the past few decades.

In particular, various graphical models have placed restrictions on the set of distributions or types of
variables in the domain. Some graphical models work with continuous variables only (or categorical
variables only) or place restrictions on the graph structure (e.g., that continuous variables cannot be
parents of categorical variables in a DAG). Other restrictions affect the set of probability distributions
the models are capable of representing, e.g., to multivariate Gaussian.

Practically, for graphical models to be widely adoptable, the following properties are desired:

* Facilitate rich representations of complex underlying distributions.
* Support various relationship representations including directed, undirected, mixed-edge graphs.
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* Fast and efficient algorithms for learning, inference and sampling.

* Direct access to the learned underlying distributions for analysis.

* Handle different input data types such as categorical, continuous, images, text, and generic embed-
ding representations.

In this work we propose Neural Graphical Models (NGMs) that satisfy the aforementioned desiderata
in a computationally efficient way. NGMs accept a feature dependency structure that can be given by
an expert or learned from data. The dependency structure may have the form of a graph with clearly
defined semantics (e.g., a Bayesian network graph or a Markov network graph) or an adjacency matrix.
Note that the graph may be either directed or undirected. Based on this dependency structure, NGMs
represent the probability function over the domain using a deep neural network. The parameterization
of such a network can be learned from data efficiently, with a loss function that jointly optimizes
adherence to the given dependency structure and fit to the data. Probability functions represented by
NGMs are unrestricted by any of the common restrictions inherent in other PGMs. They also support
efficient inference and sampling.

The rest of this paper is organized as follows: in Section 2 we briefly review work most closely
related to ours, in Section 3 we introduce Neural Graphical Models including representation, learning,
inference, sampling and handling of extended data types. We present experiments, both on synthetic
and real-life data in Section 4 and Appendix B, discuss design considerations and limitations of our
framework in Appendix A and close with conclusions and directions for future work in Section 5.

2 RELATED WORK

Probabilistic graphical models aim to learn the underlying joint distribution from which input
data is sampled. Often, to make learning of the distribution computationally feasible, inducing an
independence graph structure between the features helps. In cases where this independence graph
structure is provided by a domain expert, the problem of fitting PGMs reduces to learning distributions
over this graph. Alternatively, there are many methods traditionally used to jointly learn the structure
as well as the parameters Heckerman et al. (1995); Spirtes & Meek (1995); Koller & Friedman (2009);
Scanagatta et al. (2019) and have been widely used to analyse data in many domains Barton et al.
(2012); Bielza & Larrafiaga (2014); Borunda et al. (2016); Shrivastava et al. (2019a); Shrivastava
(2020).

A few researchers explored discriminative PGMs, learning not joint probability distributions over a
domain, but an approximation to a conditional distribution P(Y'|X — Y) where Y is a pre-selected
subset of X, typically in the context of undirected graphs. The best known are conditional random
fields (CRF) Lafferty et al. (2001). Discriminative models are more flexible in ignoring complex
dependencies between most of the variables in the domain and focusing on their impact on a small
subset. They often have faster and more accurate inference, albeit restricted to the pre-selected set of
variables. Generative models have higher bias — they make more assumptions about the form of the
distribution. The bias helps with regularization and avoiding overfitting. However, generative models
are poorer predictors than discriminative models. In this work, we attempt to combine the advantages
of both methods by creating a discriminative model capable of predicting the value of any variable in
a domain.

Recently, many interesting deep learning based approaches for DAG recovery have been pro-
posed Zheng et al. (2018; 2020); Lachapelle et al. (2019); Yu et al. (2019). These works primarily
focus on the structure learning but technically they are learning a probabilistic graphical model.
These works depend on the existing algorithms developed for the Bayesian networks for the inference
and sampling tasks. A parallel line of work combining graphical models with deep learning are
Bayesian deep learning approaches: Variational AutoEncoders, Boltzmann Machines etc. (Wang
& Yeung, 2020). The deep learning models have significantly more parameters than traditional
Bayesian networks. Thus, using these deep graphical models for downstream tasks is computationally
expensive and often impedes their adoption.

We would be remiss not to mention the technical similarities NGMs have with some recent research
works. First, we found ‘Learning sparse nonparametric DAGs’ Zheng et al. (2020) to be the closest
in terms of representation ability. In one of their versions, they model each independence structure
with a different neural network (MLP). However, their choice of modeling feature independence
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Figure 1: Graphical view of NGMs: The input graph G (undirected) for given input data X € R™*?_ Each
feature z; = f;(Nbrs(x;)) is a function of the neighboring features. For a DAG, the functions between features
will be defined by the Markov Blanket relationship x; = f;(MB(«;)). The adjacency matrix (right) represents
the associated dependency structure S.

Wy
Figure 2: Neural view of NGMs: NN as a multitask learning architecture capturing non-linear dependencies
for the features of the undirected graph in Fig. 1. If there is a path from the input feature to an output feature,
that indicates a dependency between them. The dependency matrix between the input and output of the neural
network reduces to a simple matrix multiplication operation Sp, = II;|W;| = |Wi| X |Wa]|. Note that not all
the zeroed out weights of the MLP (in black-dashed lines) are shown for the sake of clarity.

criterion differs from NGM. They zero out the weights of the row in the first layer of the NN to
induce independence between the input and output features. This type of formulation restricts them
from sharing the NNs across different factors. Second, we found similar path norm formulations
of using the product of NN weights for input to output connectivity for NGMs in Lachapelle et al.
(2019). They use the path norm to parametrize the DAG constraint for continuous optimization,
while Shrivastava et al. (2020; 2022b) use the within unrolled algorithm framework to learn sparse
gene regulatory networks.

There are methods that model the conditional independence graphs (Friedman et al., 2008; Belilovsky
et al., 2017; Shrivastava et al., 2019b; 2022a) which are a type of graphical models that are based on
underlying multivariate Gaussian distribution. Probabilistic Circuits (Peharz et al., 2020), Conditional
Random Fields or Markov Networks (Sutton et al., 2012)are some other popular formulations.
These PGMs often make simplifying assumptions on the underlying distributions and have certain
restrictions on the input data type that can be handled. Real-world input data often consist of mixed
datatypes (real, categorical, text, images etc.) and is challenging for the existing graphical model
formulations to handle.

3 NEURAL GRAPHICAL MODELS

We propose a new probabilistic graphical model type, called Neural Graphical Models (NGMs) and
describe the associated learning, inference and sampling algorithms. Our model accepts all input
types and avoids placing any restrictions on the form of underlying distributions.
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3.1 PROBLEM SETTING

We are given input data X that have M sample points with each sample consisting of D features.
An example of such data can be gene expression data, where data is a matrix of the microarray
expression values (samples) and genes (features). Another example is a mix of continuous and
categorical data describing a patient’s health in a medical domain. We are also provided a graph
G which can be directed, undirected or have mixed-edge types that represents our belief about the
feature dependency relationships (in a probabilistic sense). Such graphs are often provided by experts
and include inductive biases and domain knowledge about the underlying system functions. In cases
where the graph is not provided, we make use of the state-of-the-art algorithms to recover DAGs or
CI graphs, as described in Sec. 2. The NGM input is the tuple (X, G).

3.2 REPRESENTATION

. Algorithm 1: NGMs: Learning algorithm
Fig. 1 shows a sample graph recovered and

how we view the value of each feature as a
function of the values of its neighbors. In the
case of directed graphs, each feature’s value
is represented as a function of its Markov
blanket in the graph. We use the graph G to
understand the domain’s dependency struc-
ture, but ignore any potential parametrization
associated with it.

We introduce a ‘neural’ view which is another
way of looking at G, represented in Fig. 2.
These neural networks are multi-layer per-
ceptrons with appropriate input and output
dimensions that represent graph connections
in NGMs. Specifically, we view the neural
networks as an ‘open-box’ and focus on the
paths from input to output. These paths repre-
sent functional dependencies. Consider a neu-
ral network with H number of layers having
ReLU non-linearity fi, w,.... wy (X5) =
(++- (Wy - ReLU(Wy - XX + by) + bg)--+).
The dimensions of the weights and biases are
chosen such that the neural network input
and output units are equal to Z. The prod-
uct of the weights of the neural networks

Function proximal-init (X,5):
fw < Init MLP using dimensions from S
fWo —
argminyy, 30 [ X5 — fw(XE)||”
(Using ‘adam’ optimizer for F; epochs)
| return fyyo

Function £it-NGM (X, S, fiyo, A0):
Fore=1,---,F> do
2
Lio= Y00, || X5 - fWF—ll (X5)]|
AT (W) s
W€ <« backprop Ly, to update params
-+ (optional A update) - - -
e € (& 2
A® = [[(IL W) + 5
| Detach A\® from the computational graph
| return O, Z, \

Function NGM-1earning (X, S5):
fwo < proximal-init (X,95)
)
AT = [ (TL2]) e 5
fw —Eit-NGM (X, S, fyo, A0)
| return fyy

Snn = IL|W;| = |[Wh| x [Wa| x -+ x [W¢| gives us path dependencies. If S, [x;, z,] = 0 then
the output z, does not depend on input z;. Increasing the layers and hidden dimensions of the NN
will provide us with richer dependence function complexities.

Representing categorical variables. Assume that in the input X, we have a column X, having
|C| different categorical entries. One way to handle categorical input is to do one-hot encoding on
the column X, and end up with |C| different columns, X. = [X,,, X.,,- -+ , X..]. We replace the
single categorical column with the corresponding one-hot representation in the original data. The
MLP capturing path dependencies S will need to be updated accordingly. Whatever connections
where previously connected to the categorical column X, should be maintained for all the one-hot
columns as well. Thus, we connect all the one-hot columns to represent the same path connections as
the original categorical column.

3.3 LEARNING

Using the rich and compact functional representation achieved by using the ‘neural’ view, the learning
task is to fit the neural networks to achieve the desired dependency structure S, along with fitting the
regression to the input data X. Given the input data X we want to learn the functions as described
by the NGMs ‘graphical-view’, Fig. 1. These can be obtained by solving the multiple regression
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problems shown in neural view, Fig. 2. We achieve this by considering the neural view as a multi-task
learning framework. The goal is to find the set of parameters {)V} that minimize the loss expressed
as the distance from X% to f,,(X%) while maintaining the dependency structure provided in the
input graph G. We can define the regression operation as follows:

M
arg minz ||X% — fW(Xé)‘
Wom

‘ 2

ey

Here, S¢ represents the compliment of the matrix S, which essentially replaces 0 by 1 and vice-versa.
The A x B represents the hadamard operator which does an element-wise matrix multiplication
between the same dimension matrices A, B. Including the constraint as a lagrangian term with (;
penalty and a constant A that acts a tradeoff between fitting the regression and matching the graph
dependency structure, we get the following optimization formulation

M
argvgﬂnZ X% = f(X5)||” + A ALIWL) * 5¢, )
k=1

Though the bias term is not explicitly written in the optimization to avoid cluttering, we learn the
weights {W} and the biases {b; } while optimizing for Eq. 2. In our implementation, the individual
weights are normalized using /2-norm before taking the product. We normalize the regression loss
and the structure loss term separately, so that both the losses are on a similar scale while training and
recommend the range of A=[le-2, 1e2]. Appropriate scaling is applied to the input data features.

Proximal Initialization strategy: To get a good
initialization for the NN parameters JV and A\ we - -
implement the following procedure. We solve Function gradient-based (fw, X1):

Algorithm 2: NGMs: Inference algorithm

the regression problem described in Eqn. 1 with- { Xk, Xu} < Xy, split the data
out the structure constraint. This gives us a good X}, « fixed tensor (known)

initial guess of the NN weights WW°. We choose Xy ¢ learnable tensor (unknown)
the value A = || (IL|W?]) SCH2 and update z;\(/)v ¢ freeze weights

after each epoch. Experimentalfy, we found X1 {Xp, X}

that this strategy may not work optimally in few XI _f (’3’( )"

cases and in such cases we recommend fixing P = WAL 9

the value of \ at the beginning of the optimiza- L = || Xplk] — X1[K][l

tion. The value of A can be chosen such that it X < updated by backprop on Ly
brings the regression loss and the structure loss while £, > €

values to same scale. | return X;

The learned NGM describes the underlying Function message-passing (fiy, X9):

graphical model distributions, as presented in X + X2 < XO, split the data
Alg. 1. There are multiple benefits of jointly t=20

optimizing in a multi-task learning framework while || Xt — Xt_1H2 > e do
modeled by the neural view of NGMs, eq. 2. (X1 Xy} = f (2{Xt—1.X )
First, sharing of parameters across tasks helps L ¢ :“t’ +’€1 w u ok
in significantly reducing the number of learning

parameters. It also makes the regression task X' Xg + X}

more robust towards noisy and anomalous data L return X*

points. Second, we fully leverage the expressive
power of the neural networks to model complex
non-linear dependencies. Additionally, learning

Function NGM-inference (fyy, X°):
Input: fyy trained NGM model

all the functional dependencies jointly allows us X" € RP*! (mean values for unknown)
to leverage batch learning powered with GPU X +message-passing (fyy,X")
based scaling to get quicker runtimes. RN R

X ¢gradient-based (fyy, X%)
3.4 INFERENCE L return X

Inference is the process of using the graphical model to answer queries. Calculation of marginal distri-
butions and conditional distributions are key operations for inference. Since NGMs are discriminative
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models, for the prior distributions, we follow the frequentist approach and directly calculate them
from the input data. We consider two iterative procedures to answer conditional distribution queries
over NGMs described in Alg. 2. We split the input data X} + Xy < X into two parts, k& denotes the
known (observed) variable values and u denotes the unknown (target) variables. The inference task is
to predict the values of the unknown nodes based on the trained NGM model distributions. In the
fist approach, we use the popular message passing algorithms that keeps the observed values of the
features fixed and iteratively updates the values of the unknowns until convergence. We developed an
alternative algorithm which is efficient and is our recommended approach to do inference in NGMs.

Gradient based approach: The weights of the trained NGM model are frozen once trained. The input
data is divided into fixed X}, (observed) and learnable X, (target) tensors. We then define a regression
loss over the known attribute values as we want to make sure that the prediction matches values for
the observed features. Using this loss we update the learnable input tensors until convergence to
obtain the values of the target features. Since the NGM model is trained to match the output to the
input, we can view this procedure of iteratively updating the unknown features such that the input and
output matches. Based on the convergence loss value reached after the optimization, one can assess
the confidence in the inference. Furthermore, plotting the individual feature dependency functions
also helps in gaining insights about predicted values.

Obaining probability distributions. It is of-
ten desirable to get the full probability density
function rather than just a point value for any Function get-sample (fyy,Ds):

Algorithm 3: NGMs: Sampling algorithm

inference query. In case of categorical vari- D =len(D;,)

ables, this is readily obtained as we output a X € RP*1 (random init, learnable tensor)
distribution over all the categories. For real Sample 15! feature value from empirical
or numerical features, we consider a binned marginal distribution 2, ~ U(P(x1))
input on the input side and real value out- Fori=2---.Ddo

put. In this case, the regression term of the X, (_’ X[f : i — 1] (fixed tensor)
loss function, Eq. 3 will take binned input and X, « X[i : D] (learnable tensor)
output a real value for the real valued fea- X — {Xp, Xu}

tures Zkle (| X5 e — fw(proj(Xf_bmed))H?. X + NGM-inference( fyy, X)

In practice, given a distribution over different X[i] ~U(P(x;| X[1: ¢ —1])
categories obtained during the NGM inference, | return X

we clip the individual values between [e, 1] and

then divide by the total sum to get the final dis- Function NGM-sampling (fw, G):
tribution. Input: fyy trained NGM model

Randomly choose z;’th feature
D,=BFS(G,x;) [undirected]

3.5 SAMPLING -+ - queue the features - - -
Ds=topological-sort(G) [DAGs]
One common way of sampling is to define cu- X ¢<—get-sample (fyy, D)

mulative density functions and then sample from
them. This will not be possible for NGMs. So,
instead, we propose a procedure akin to Gibbs
sampling as described in Alg. 3.

We based our sampling procedure to follow X; ~ U(f,,(nbrs(X;))). Note that nbrs(X;) will be
MB(X;) for DAGs. We start sampling by choosing a feature at random. To get the order in which the
features will be sampled, we do a Breadth-first-search (topological sort in DAGs) and arrange the
nodes in D;. In this way, the immediate neighbors are chosen first and then the sampling spreads
over the graph away from the starting feature. As we go through the ordered features in the sampling
procedure, we sample the value of each feature from the conditional distribution based on previously
assigned values and then keep it fixed for the subsequent iterations (feature is now observed). We
then call the inference algorithm conditioned on these fixed features to get the distributions over the
unknown features. This process is repeated till we get a sample value of all the features.

return X

Our sampling procedure differs from the Gibbs sampling with regards to conditional distribution
calculations. Traditionally, in Gibbs sampling, sample X* is derived from the previous sample X*~!
by following a conditional distribution update. Specifically, the value of X is obtained according

to the distribution specified by p (XF|XF, .-, XF | X' -+, X)), The new sample of the

NGM is not derived from the previous sample, hence we avoid the ‘burn-in’ period issue with Gibbs
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Figure 3: Neural view with Projection modules of NGMs: The input X can be one-hot (categorical), image or
in general an embedding (text, audio, speech and other data types). Projection modules (encoder + decoder) are
used as a wrapper around the neural view of NGMs. The architecture choice of the projection modules depends
on the input data type and users’ design choices. Note that the output of the encoder can be more than 1 unit
(e1 can be a hypernode). In that case, we just need to adjust the graph dependency structure S to account for
that many units and the corresponding feature connections. Same will be the case with the decoder side of the
architecture. The remaining details are similar to the ones described in Fig. 2

sampling where one has to ignore the initial set of samples. The conditional updates for the NGMs
are of the form, p (XF, XF ,, -+, Xp|XF,---, XF ). We keep on fixing the value of features
and run inference on the remaining features until we have obtained the values of all the features
and thus get a new sample. The inference algorithm of the NGM facilitates conditional inference
on multiple unknown features over multiple observed features. We leverage this capability of the
inference algorithm for faster sampling from NGMs.

3.6 EXTENSION TO GENERIC DATA TYPES

The learning, inference and sampling algorithms proposed for NGMs in the previous section can be
extended to any generic input data type. This implies that the data X can be real, categorical, image
or have an embedding based representation. We add a Projection module consisting of an encoder
and decoder that act as a wrapper around the neural view of the NGMs. With a slight modification,
we obtain the following optimization for generic data types,

M

. . 2 C
argmin 3 || X5 — fuu(proi(XH)||” + A (IT:IWi]) » 57, 3)
sproj

The Projection module can be jointly learned in the optimization, as shown in Eq. 3, or one can add
fine-tuning layers to the pretrained versions depending on the data type and user preference.

Alternatively, one can extend the idea of soft-thresholding the connection patterns to the encoder and
decoder networks. This will result in an efficient training strategy that leverages batch processing.

M
. 12 n c
arg min g | X2 = A (XE)||” + An (1AL W) * Sl )
W'Il’WS)Wd =1

+ e | (T WD) # SEIly + Aa || (T W) = Sl

where, the connectivity of the input = and the input to the neural view is modeled by the ¢; sparsity
term for the encoder network’s sparsity pattern SS. Similar procedure is applied to the decoder side.

If the Projection modules are used, the number of nodes in the neural view input should be adjusted
according to the output units of the encoder. Similar adjustment is needed for neural view output
and the decoder. In real world applications, we often find inputs consisting of mixed datatypes.
For instance, in the gene expression data, there can be additional meta information (categorical) or
images associated with the genes. Optionally, one can desire to utilize node embeddings from some
other pretrained deep learning models. NGMs are designed to handle such mixed input data types
simultaneously which are otherwise very tricky to accommodate in the existing graphical models.
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Figure 4: The leftmost graph shows the chain graph G (partial correlations in green are positive, red are negative,
thickness shows the correlations strength) obtained from the initialized partial correlation matrix. Samples
X € R2900%10 were drawn from the GGM. NGM was learned on the input (X, G). The 2 plots on the right show
the dependency functions of NGM and GGM for a particular node by varying its neighbor’s values. The positive
and negative correlations are reflected in the slope of the curve, as expected analytically. We then sampled from
the learned NGM to obtain data Xs € R>*10_The graph, second from the left, shows the recovered graph by
running uGLAD Shrivastava et al. (2022a) on Xs. We can observe that it missed some of the edges but most of
the connections along with the correlations signs were retrieved from the NGM samples.

4 EXPERIMENTS

We evaluate NGMs on synthetic and real data. Appendix A contains some best practices that we
developed while working with NGMs. In Appendix B, we present an analysis of CDC’s Infant
Mortality Data (of Health et al.) using NGMs, which highlights NGMs-generic architecture’s ability
to model mixed input datatypes.

4.1 MODELING GAUSSIAN GRAPHICAL MODELS

We designed a synthetic experiment to study the capability of NGMs to represent Gaussian graphical
models. The aim of this experiment is to see (via plots and sampling) how close are the distributions
learned by the NGMs to the GGMs.

Table 1: The recovered CI graph from NGM samples is compared Samples AUPR AUC

with the CI graph defined by the GGMs precision matrix. Area under 1000 | 0.84+0.03 | 0.91 +0.002
the ROC curve (AUC) and Area under the precision-recall curve 2000 | 0.86£0.02 | 0.93 +0.001
(AUPR) values for 10 runs are reported, refer to Fig. 4. 4000 | 0.96+0.00 | 0.99 + 0.003

Setup: Define the underlying graph. We defined a ‘chain’ (or path-graph) containing D nodes as the
underlying graph. We chose this graph as it allows for an easier study of dependency functions.

Fit GGM and get samples. Based on the underlying graph structure, we defined a precision matrix ©
that randomly samples its entries from ©; ; ~ U{(—1,—0.5) U (0.5, 1)}. We then used this precision
matrix as a multivariate Gaussian distribution parameter to obtain the input sample data X. We get
the corresponding partial correlation graph G by using the formula, Px, x, . Xp\; ; = Jon6

Fit NGM and get samples. We fit a NGM on the input (X, G). We chose H = 30 with 2 layers and
non-linearity tanh for the neural view’s MLP. Training was done by optimizing eq. 2 for the input,
refer to Fig. 4. Then, we obtained data samples Xs from the learned NGM.

Anmalysis: ‘How close are the GGM and NGM samples?’ We recover the graph using the graph
recovery algorithm uGLAD on the sampled data points from NGMs and compare it with the true CI
graph. Table 1 shows the graph recovery results of varying the number of samples from NGMs. We
observe that increasing the number of samples improves the graph recovery, which is expected.

‘Were the NGMs able to model the underlying distributions?’ The functions plot (on the right) in
Fig. 4 plots the resultant regression function for a particular node as learned by NGM. This straight
line with the slope corresponding to the partial correlation value is what we expect theoretically for
the GGM chain graph. This is also an indication that the learned NGMs were trained properly and
reflect the desired underlying relations. Thus, NGMs are able to represent GGM models.
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Figure 5: (left) The CI graph recovered by uGLAD for the Lung cancer data. Plots on the right show the condi-
tional distribution for the features P(Lung cancer="Yes’| nbrs(Lung cancer)) and P(Smoking| nbrs(Smoking))
based on their neighbors. We used a 2-layer NGM with hidden size H = 30 and non-linearity as tanh. NGMs
are able to capture the non-linear dependencies between the features. Interestingly the NGMs match the relation-
ship trends discovered (positive and negative correlations) by the corresponding CI graph.

4.2 LUNG CANCER DATA ANALYSIS

We analysed a lung cancer data on Kaggle using NGMs. The effectiveness of cancer prediction
system helps people to know their cancer risk with low cost and it also helps people to take appropriate
decisions based on their cancer risk status. This data contains 284 instances of patients and for each
patient 16 features (Gender, Smoking, Anxiety, Lung cancer present, etc.) are collected. Each entry is
a binary entry (YES/NO) or in some cases (AGE), entries are binarized. Particularly, we used NGMs
to study how different features are related and discover their underlying functional dependencies.

The input data along with the CI graph recovered using Methods | Lung-cancer | Smoking
uGLAD were used to learn a NGM in Fig. 5. In order to gauge LR 0.95+0.02 | 0.71 £0.01
the regression quality of NGMs, we compare with logistic re- [ NGM | 0.96=£0.01 | 0.79 £0.02
gression to predict the probability of feature values given the Table 2: 5-fold CV results.

values of the remaining features. Table. 2 shows regression results of logistic regression (LR) and
NGMs on 2 different features, ‘lung cancer’ & ‘smoking’. The prediction probability for NGMs were
calculated by running inference on each test datapoint, eg. P(lung-cancer="yes’| f; = v; Vi in test
data). This experiment primarily demonstrates that a single NGM model can robustly handle fitting
multiple regressions and one can avoid training a separate regression model for each feature while
maintaining at-par performance. Furthermore, we can obtain the dependency functions that bring in
more interpretability for the predicted results, Fig. 5. Samples generated from this NGM model can
be used for multiple downstream analyses.

5 CONCLUSIONS

This work attempts to improve the usefulness of probabilistic graphical models by extending the
range of input data types and distribution forms such models can handle. Neural Graphical Models
provide a compact representation for a wide range of complex distributions and support efficient
learning, inference and sampling. The experiments are carefully designed to systematically explore
the various capabilities of NGMs. Though NGMs can leverage GPUs and distributed computing
hardware, we do forsee some challenges in terms of scaling in number of features and performance
on very high-dimensional data. Using NGMs for images & text based applications will be interesting
to explore. We believe that NGMs is an interesting amalgam of the deep learning architectures’
expressivity and Probabilistic Graphical models’ representation capabilities.

Upcoming version: Discovering the dependency graph with NGMs. We are currently working
on a version of NGM that can jointly discover the feature dependency graph along with fitting the
regression. One way can be to optimize this loss function,

M
. . A 2
arg min Y || X5 — fw(proj(XE)||” + A || (T [Wi]) * Saiag (5)
PrOJ g

where Sgiae has diagonal entries as 1. Essentially, we start with a fully connected graph and then the
¢; term induces sparsity. This will be helpful in cases where input G is not provided.
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